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S U M M A R Y
We present an inversion of nutation observations in terms of parameters characterizing the
Earth’s interior properties. We use a Bayesian inversion in the time-domain, allowing us to
take fully into account non-linearities in the nutation model and to reduce the loss of infor-
mation occurring in frequency-domain inversions. Among the parameters we retrieve are two
complex parameters, K CMB and K ICB, referred to as ‘coupling constants’, characterizing the
mechanical coupling at the core–mantle boundary (CMB) and the inner core boundary (ICB),
respectively. Based on a joint inversion of nutation observations provided by different analy-
sis centres, we find Im(K CMB) = (−1.78 ± 0.02) 10−5, Re(K ICB) = (1.01 ± 0.02) 10−3 and
Im(K ICB) = (−1.09 ± 0.03) 10−3 (where the errors correspond to 99.7 per cent confidence
intervals). While our value of Im(K CMB) is similar to previous estimates, our new values
of Re(K ICB) and Im(K ICB) are significantly different. This is mainly because of the different
inversion strategy that we use and also because of the lengthier record of observation available.
We show that, based on existing coupling models, neither viscous nor electromagnetic coupling
alone can explain our new values of Re(K ICB) and Im(K ICB). A combination of these two mech-
anisms is required and necessitates a radial magnetic field at the ICB of total rms strength be-
tween 6 and 7 mT and a kinematic viscosity of the fluid core at the ICB should be between 10 and
30 m2 s−1, depending on the exact partition between viscous and electromagnetic coupling.

Key words: Inverse theory; Earth rotation variations; Core, outer core and inner core.

1 I N T RO D U C T I O N

The gravitational (tidal) forces from the Moon, the Sun and other
planets apply a torque on the elliptical Earth. In response to this
torque, the orientation of the Earth’s rotation and figure axes varies
in time when observed from a frame fixed in space, giving rise
to precession/nutation motion. The precession is the large secular
part of the motion while nutations are defined as the small periodic
variations with periods larger than two days.

The amplitudes of the nutations depend on the Earth’s elliptic-
ity, internal density distribution, and rheological properties. For a
three-layer Earth comprised of a mantle, fluid outer core and solid
inner core, each of these individual regions would respond differ-
ently to the tidal torque on account of their different densities and
ellipticities. As the outer core is fluid, differential rotations between
the three layers can occur. The Earth’s nutations are then also de-
pendent on the interaction between the fluid core and mantle at the
core–mantle boundary (CMB) and that between the fluid core and
inner core at the inner core boundary (ICB).

Moreover, the amplitudes of the forced nutations are amplified by
the presence of two normal modes, the ‘free core nutation’ (FCN)

and the ‘free inner core nutation’ (FICN), whose frequencies are
close to those of the tidal forcing. These modes are characterized
by a differential rotation between the mantle, the fluid outer core
and the solid inner core and mechanical couplings at boundaries
affect their natural frequencies. Similarly, the damping of these
modes depends on the energy dissipated through this coupling. The
observed amplitude and phase of the forced nutations depend thus
directly on the frequencies of the normal modes, which in turn
depend on the mechanical coupling at the CMB and ICB.

Many of the physical properties at these boundaries on which
the couplings depend are not well known. For instance, viscous
coupling requires a knowledge of the viscosity of the fluid core close
to the boundaries. Measurements are performed in laboratories on
liquid iron alloys (e.g. Rutter et al. 2002a; Rutter et al. 2002b) but
those experiments are carried on at much lower pressures (∼6 GPa)
and temperatures (∼2000 K) than those typical of the outer core.
Similarly, electromagnetic (EM) coupling depends on the electrical
conductivity of both the fluid core and of the solid side of the
boundary (mantle or inner core) as well as on the magnetic field
at the boundary. We only have partial knowledge of the magnetic
field at the CMB, the short-wavelength being masked by the crustal
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magnetic field (e.g. Stacey & Davis 2008). The magnetic field at
the ICB cannot be observed at all due to the screening effect of the
conducting core.

The tidal torque is known very precisely from celestial mechan-
ics (Bretagnon et al. 1998; Roosbeek & Dehant 1998; Souchay
et al. 1999). Without a precise knowledge of the key parameters
that participate in the coupling at boundaries, it is then difficult
to predict accurately the nutational response of the Earth. However,
conversely, precise observations of Earth’s nutations offer an oppor-
tunity to obtain information on these internal quantities for which
we have little or no other constraints.

The nutational response of the Earth to the tidal torque has been
the subject of many studies, including the model of Mathews et al.
(2002) on which our study is based. This model predicts the nutation
motion of an Earth model at hydrostatic equilibrium comprised of an
elastic solid inner core, an inviscid fluid outer core and an anelastic
mantle surrounded by an ocean layer. The gravitational interaction
between the internal regions as well as the fluid pressure acting on
the elliptical boundaries are included in the model. Other possible
coupling mechanisms are not explicitly modelled but are taken
into account by means of two complex parameters, referred to as
‘coupling constants’, K CMB and K ICB, characterizing the coupling
at the CMB and ICB, respectively.

The key internal parameters of the nutation model, among them
K CMB and K ICB, can thus be determined by an inversion procedure,
where one infers knowledge on these parameters from a comparison
between the nutation observations and model. A first estimation of
K CMB and K ICB was obtained by Mathews et al. (2002). They used
a linearized least-squares inversion in the frequency domain, only
including the most dominant forced nutations that could be reliably
estimated from the observations (Herring et al. 2002). In Koot et al.
(2008), we developed a different inversion procedure directly in the
time domain, thus avoiding any loss of information from retaining
only a few of the forced nutations. Additionally, we used Bayesian
inversion method, allowing us to take better into account the non-
linearity of the nutation model.

In this study, we further improve on the inversion procedure
developed by Koot et al. (2008). We now include in the model non-
periodic variations in the tidal forcing, the so-called ‘Poisson terms’,
and the freely excited FCN mode. In addition, we use nutation time-
series computed by different Very Long Baseline Interferometry
(VLBI) analysis centres. This allows us to determine the accuracy
with which we can recover the parameters that have an influence on
nutations.

Our analysis is focused on the coupling constants K CMB and K ICB.
We find that our retrieved value for K CMB is in agreement with that
of Mathews et al. (2002) while K ICB is markedly different. Since
K ICB characterizes the coupling at the ICB, this difference implies
that previous estimates of physical parameters entering coupling
models at the ICB must be revised. The coupling constant K ICB

has been previously interpreted in terms of EM coupling at the
ICB (Buffett et al. 2002). Mathews & Guo (2005) and Deleplace &
Cardin (2006) generalized the model of Buffett et al. (2002) in order
to take viscous coupling into account. In this paper, we concentrate
our attention on these two coupling mechanisms. We investigate the
fluid viscosity and the amplitude and structure of the magnetic field
at the ICB that are compatible with our new value of K ICB.

Our paper is organized as follow. We start by presenting a brief
description of the nutation model in Section 2. In Sections 3 and
4, we describe the nutation data sets that we use in our study and
our inversion strategy, respectively. Results are presented in Sec-
tions 5 and 6, the latter also including the interpretation of our

coupling constants in terms of physical parameters. We conclude
by a summary and a discussion of our results in Section 7.

2 N U TAT I O N M O D E L

2.1 Forced nutations

From the perspective of an observer rotating with the Earth, the
action of the gravitational (tidal) potential (φ̃) on the elliptical
Earth leads to small deviations from a uniform angular rotation
�0 about an axis i3 aligned with the geometrical figure. This devia-
tion is termed ‘wobble’. The perturbed rotation vector is then � =
�0(i3 + m), where m is a non-dimensional vector characterizing
the wobble. The perturbation in the rotation vectors of the fluid core
(�f ), and solid inner core (�s) can be similarly defined as �f =
�0(i3 + m + mf ) and �s = �0(i3 + m + ms), where mf and ms are
the wobbles of the fluid core and the solid inner core, respectively.

A prediction of the response of the Earth (in terms of these wob-
bles) from a given tidal forcing depends on the Earth’s interior prop-
erties and on the coupling between the mantle, fluid core and inner
core. For our study, we use the model of Mathews et al. (2002), an
updated version of the model developed in Mathews et al. (1991a).
We only present here a brief description of the model and refer the
interested reader to the original articles. The model consists of a
system of three dynamic equations relating the equatorial angular
momentum of the whole Earth, outer core and inner core, to the
equatorial torques acting on them. A fourth kinematic equation de-
scribes the orientation of the inner core. As the deviations from the
steady rotation state are expected to be very small, the dynamic
equations are developed to the first order in the wobbles.

The angular momentum of each internal region is given by the
product of its moment of inertia tensor and its instantaneous rota-
tion vector. The former are expressed in terms of mean principal
moments of inertia (A, Af and As in the equatorial plane, C , C f and
C s in the polar direction, respectively for the whole Earth, the fluid
core, and the solid inner core) and of small corrections cij, cf

ij and
cs

ij (respectively for the whole Earth, the outer core and the inner
core) due to deformations. These are from three different sources:
(1) tidal forces (characterized by the tidal potential φ̃), (2) departure
of the centrifugal force from that of the steady axial rotation (char-
acterized by the wobbles m, mf and ms) and (3) the time-dependent
surface loading from the ocean (characterized by a loading poten-
tial φ̃L). To the first order, the cij’s can be expressed as (Sasao et al.
1980; Sasao & Wahr 1981; Mathews et al. 1991a):

c̃3 ≡ c31 + ic32 = A[κ(m̃ − φ̃) + ξ m̃f + ζ m̃s + χφ̃L] (1a)

c̃ f
3 ≡ c f

31 + ic f
32 = Af [γ (m̃ − φ̃) + βm̃f + δm̃s + ηφ̃L] (1b)

c̃s
3 ≡ cs

31 + ics
32 = As[θ (m̃ − φ̃) + αm̃f + νm̃s + λφ̃L], (1c)

where the tilde stands for the complex combination of the two equa-
torial components, for example, m̃ = m1 + im2. Eqs (1) introduce
12 so-called ‘compliances’ or ‘generalized Love numbers’ (κ , ξ ,
ζ , χ , γ , β, δ, η, θ , α, ν and λ), characterizing the deformation
of each region in response to a given forcing. For an elastic Earth,
these compliances are real numbers. Here, we follow Mathews et al.
(2002) and take mantle anelasticity into account, in which case the
compliances are complex numbers. Since nutations are located in
a very narrow frequency band, the compliances are assumed to be
frequency independent.
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In addition to the external tidal torque, misalignments between
the rotation vector of each region lead to internal torques between
them. Inertial and gravitational torques have been computed by
Sasao et al. (1980) and Mathews et al. (1991a) to the first order in
the perturbations induced by the tidal potential. The torques from
other coupling mechanisms, such as electromagnetic, viscous and
topographic, are not modelled explicitly in Mathews et al. (2002)
but are introduced in a parametrized way. The amplitude of these
torques depends on the differential rotation at region boundaries.
To first order, the equatorial torque applied on the outer core by the
mantle (�̃CMB) and that applied on the inner core by the outer core
(�̃ICB) can be written as (Mathews et al. 2002)

�̃CMB = −i �2
0 Af KCMB m̃f (2a)

�̃ICB = −i �2
0 As KICB (m̃s − m̃f ), (2b)

where m̃f and (m̃s − m̃f ) characterize the differential rotation be-
tween the mantle and outer core, and between the outer and in-
ner cores, respectively. The non-dimensional parameters K CMB and
K ICB are constants characterizing the strength of the coupling. They
are complex parameters: their norm characterizes the strength of the
coupling and the imaginary part the amount of dissipation.

The first-order dynamic equations form a system of coupled lin-
ear differential equations in the variables m̃, m̃f , m̃s, and ñs, this
latter variable representing the deviation of the figure axis of the
inner core from that of the mantle. Solutions for the dynamic vari-
ables depend on the forcing from the tidal potential φ̃. Because the
motion of the celestial bodies is nearly periodic, to a very good
degree of approximation, the tidal potential can be written as a sum
of periodic terms

φ̃(t) =
N∑

l=1

φ̂0(σl )e
iσl �0t , (3)

where σ l is the angular frequency in cycles per sidereal day (cpsd),
as seen from an Earth-fixed reference frame.

As the dynamic differential equations are linear, they can be
solved independently for each term φ̂0(σl ) of the tidal potential
(3). The four dynamic variables can also be expressed as a sum of
periodic terms, such as

m̃(t) =
N∑

l=1

m̂(σl )e
iσl �0t (4)

and similar expressions for m̃f (t), m̃s(t) and ñs(t). Time derivatives
are replaced by iσ l�0 and solutions for each coefficient m̂(σl ) can
be found independently in terms of the coefficient φ̂0(σl ) of the tidal
potential.

The dynamic equations form a system of coupled linear algebraic
equations written concisely in matrix form as

M(σl ) · x(σl ) = y(σl )φ̂0(σl ) + yL(σl )φ̂L(σl ) + yh(σl )ĥ(σl ), (5)

where the vector x = [m̂, m̂f , m̂s, n̂s]T and φ̂0(σl ), φ̂L(σl ) and ĥ(σl )
are the three sources of excitation of the wobble motion, all in the
frequency domain: the tidal and ocean loading potentials, as well
as the changes in the relative angular momentum of the ocean rep-
resented by ĥ(σl ). Among these, the tidal potential is by far the
most important. The 4 × 4 matrix M and the four-components
vectors y, yL and yh describe the rotational response of the Earth
to these three types of excitation. It includes the physical prop-
erties of the Earth characterized by the principal moments of in-
ertia of each region, the 12 compliances, and the coupling con-
stants K CMB and K ICB. The complete expression of M and y are

given in Mathews et al. (1991a) (and in Mathews et al. (2002)
for the inclusion of the coupling constants). The vectors yL and
yh are given by: yL(σ ) = [(1 + σ )(τ − χ ),−ση,−σλ, 0]T , and
yh(σ ) = [−(1 + σ ), 0, 0, 0]T , where τ = a5 �2

0/(3G A), a is the
mean radius of the Earth, and G is the gravitational constant.

The solution of the wobble in the frequency domain is

m̂(σl ) = [
M−1(σl ).y(σl )

]
1
φ̂0(σl ) + [

M−1(σl ).yL(σl )
]

1
φ̂L(σl )

+ [
M−1(σl ).yh(σl )

]
1

ĥ(σl )

A�0
, (6)

where the notation [. . .]1 indicates the first component of the vector.
Eqs (4) and (6) allow us to compute the wobble m̃(t) for given

excitation sources. This wobble is kinematically related to the nu-
tation of the figure axis, that is, the variations in the direction of
this axis in space. The latter is expressed in terms of two variables:
the ‘nutation in obliquity’ (�ε), defined as the angle between the
figure axis and the pole of the ecliptic, and the ‘nutation in longi-
tude’ (�ψ) corresponding to the motion of the vernal point (the
intersection between the equator and the ecliptic) along the ecliptic.
This 2-D motion is represented by the complex nutation variable
η̃(t) defined as

η̃(t) = �ψ(t) sin ε0 + i�ε(t), (7)

where ε0 = 23◦ 26′21.4′′ is the mean obliquity of the equator at J2000
(i.e. on 2000 January 1). The relation between the wobble m̃(t) and
the nutation η̃(t), referred to as the Euler kinematic relation, is given
by (e.g. Moritz & Mueller 1987; Mathews & Bretagnon 2003)

i
dη̃(t)

dt
= �0 m̃(t) ei�0t . (8)

This expression allows us to obtain a prediction of the nutation η̃(t)
based on the wobble solution m̃(t) of our model. This prediction
can be compared to the actual observations and the parameters that
enter the nutation model can then be estimated.

2.1.1 Secular terms

Let us first consider the particular case of a periodic wobble with
frequency σ l = −1, namely m̃(t) = m̂(−1)e−i�0t . In this case,
eq. (8) becomes: dη̃/dt = −i�0m̂(−1). As the right-hand side is
constant, the solution for η̃(t) is linear in time. This is the secular part
of the motion which, for the component in longitude, corresponds
to the precession. This secular term can be written in the form

η̃sec(t) = {P sin ε0 + i�ε̇}(t − t0) + cψ sin ε0 + icε, (9)

where P and �ε̇ are constants called the precession and obliquity
rates, respectively, and cψ and cε are offset constants characterizing
η̃sec at the initial time t0. Here, we fix t0 to J2000. The constants P
and �ε̇ depend directly on H ≡ (C − A)/C , and for this reason H
is referred to as the ‘precession constant’.

2.1.2 Periodic terms

For a wobble m̃(t) given by eq. (4) with σ l �= −1, ∀ l , eq. (8) gives
the associated nutations

η̃per(t) =
N∑

l=1

η̂0(σl ) ei(1+σl )�0t (10)

with

η̂0(σl ) = − m̂(σl )

(1 + σl )
. (11)

C© 2010 The Authors, GJI, 182, 1279–1294

Journal compilation C© 2010 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/182/3/1279/597699 by guest on 11 M

arch 2022



1282 L. Koot et al.

Thus, the nutation associated with a periodic wobble of frequency
σ l �= −1 and amplitude m̂(σl ) is also periodic with a frequency (1 +
σ l) and an amplitude −m̂(σl )/(1 + σl ). The difference of one cycle
per day in the angular frequencies of the wobble and the associated
nutation results from the different reference frames in which they
are defined: the wobble is defined in the terrestrial frame, itself
rotating with an angular velocity of one cycle per day with respect
to the inertial frame in which the nutation is defined. With eqs (6),
(10) and (11), a prediction for the nutation variable η̃(t) can be
computed.

In order to emphasize the role played by deformations and internal
couplings on the nutation motion, the solution is classically given
in terms of the nutation η̃R that the Earth would have if it were
completely rigid. The relation between the rigid-Earth nutation and
the tidal potential is given by (Mathews et al. 1991a)

η̂R
0 (σl ) = eR

(σl − eR)(1 + σl )
φ̂0(σl ), (12)

where eR is the dynamic ellipticity [i.e. (C − A)/A] of the rigid-
Earth model. Rigid-Earth nutations η̂R

0 (σl ) can be computed from
the very precise ephemerides of the solar system bodies. Several
rigid Earth nutation models are available; here, we use the model
REN2000 computed by Souchay et al. (1999).

Written in terms of the rigid-Earth nutation, the prediction for
the nutation of the non-rigid Earth becomes

η̂0(σl ) = TFG(σl ) η̂R
0 (σl ) + TFL (σl ) φ̂L(σl ) + TFh(σl )

ĥ(σl )

A�0
, (13)

where the coefficients TFG(σ l), TFL(σ l) and TFh(σ l) are called
‘transfer functions’ and are given by

TFG(σl ) = eR − σl

eR

[
M−1(σl ).y(σl )

]
1

(14a)

TFL (σl ) = −
[
M−1(σl ).yL(σl )

]
1

1 + σl
(14b)

TFh(σl ) = −
[
M−1(σl ).yh(σl )

]
1

1 + σl
. (14c)

TFG(σ l) accounts for all deformations and internal couplings char-
acterizing the non-rigidity of the Earth. TFL(σ l) and TFh(σ l) de-
scribe the nutational response of the Earth to the loading potential
and relative angular momentum of the ocean, respectively. Writing
the nutation motion in the form (13) allows for a separation of two
different problems: the modelling of the rigid-Earth nutation, which
is a purely astronomical problem that can be solved from celestial
mechanics, and the modelling of the transfer functions, a geophys-
ical problem that depends on parameters characterizing the Earth’s
interior.

The transfer function TFG(σ l) can be rewritten in the form
(Mathews et al. 2002)

TFG(σ ) = eR − σ

1 + eR

H

HR

[
1 + (1 + σ )

4∑
i=1

Ni

σ − σi

]
, (15)

where H and H R are the precession constants of the Earth and
of the rigid-Earth model, respectively. The σ i are four resonance
frequencies, corresponding to the frequencies of the free modes
allowed by the system (5). These corresponds to the frequencies for
which Det[M (σ )] = 0. They are: the Chandler wobble (CW), the
FCN, the FICN and the inner core wobble (ICW). Eq. (15) shows
that the nutational response of the Earth to an external forcing

depends on the forcing frequency in a resonant way: the closer is
the forcing frequency to that of one of the free modes, the largest
is the amplitude of the corresponding nutation. To the first order,
the frequencies of the free modes are given, in the terrestrial frame
(Mathews et al. 2002)

σCW 	 A

Am
(e − κ) (16a)

σFCN 	 −1 −
(

1 + Af

Am

)(
ef − β + KCMB + KICB

As

Af

)
(16b)

σFICN 	 −1 +
(

1 + As

Am

)
(α2es + ν − KICB) (16c)

σICW 	 es(1 − α2), (16d)

where e, ef and es are the dynamic ellipticities of the Earth, the
outer core and the inner core, respectively, and α2 is a parameter
introduced by Mathews et al. (1991a) in the computation of the
inertial and gravitational torque on the inner core. If there was no
dissipation inside the Earth, the free mode frequencies would be
real. In our model, dissipation occurs through mantle anelasticity
and couplings at the CMB and ICB and the free modes have complex
frequencies. Two of the free modes have frequencies that are close
to diurnal and therefore close to those of the tidal potential, the
FCN and FICN. These modes are then of major importance for the
nutation motion.

The oceanic effects on nutation are described in eq. (13) by φ̂L(σl )
and ĥ(σl ). Following Mathews et al. (2002), we only consider the
effects from ocean tides and we do not take into account other dy-
namic effects of the oceanic circulation. The oceanic tidal angular
momentum (OTAM) can be separated into two terms, called re-
spectively the ‘height’ (Ĥ L ) and ‘current’ (Ĥ c) terms, which are
directly related to φ̂L and ĥ by Ĥ L = −Aτ�0φ̂L and Ĥ c = ĥ.
The OTAM can be computed from models of the main ocean tides
(see e.g. Chao et al. 1996). For the other frequencies, the OTAM is
computed from an interpolation procedure introduced by Wahr &
Sasao (1981). Further details on the computation of the OTAM can
be found in Koot et al. (2008).

2.1.3 Poisson terms

Although we approximated φ̃ in (3) as a sum of periodic terms, the
current precision of nutation observations is such that the effect of
small departures from a purely periodic tidal potential can be de-
tected. Very small linear corrections, φ̂1(σl ), called ‘Poisson terms’,
have to be introduced

φ̃(t) =
N∑

l=1

{φ̂0(σl ) + φ̂1(σl )t}eiσl �0t . (17)

These small φ̂1(σl ) terms are assumed to give rise to a nutation
motion of the form

η̃P (t) =
N∑

l=1

η̂1(σl ) t ei(σl +1)�0t . (18)

Folgueira et al. (2007) showed that, to the first order, η̂1(σl ) is given
by

η̂1(σl ) = TFG(σl ) η̂R
1 (σl ), (19)

where η̂R
1 (σl ) are the Poisson terms of the rigid-earth model, which

are directly related to the tidal potential terms φ̂1(σl ).
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2.2 Free nutations

In addition to their amplification effect on the forced nutations, the
free nutations FCN and FICN, excited by other means, participate
in the total nutation motion. Their amplitude is expected to be time-
dependent, depending on the time-history of their excitation source.
While the free nutation arising from the FICN mode has not been
observed yet, the FCN mode can actually be observed in the nutation
data (e.g. Herring et al. 2002), with an amplitude approximately five
orders of magnitude smaller than that of the main forced nutation
(less than 0.5 mas over the period 1979–2010). The FCN mode
is presumed to be excited, at least partly, by diurnal variations in
atmospheric pressure (Sasao & Wahr 1981; Lambert 2006).

Unfortunately, models of the atmospheric angular momentum
(AAM), computed from general circulation models, are not precise
enough in the diurnal band to allow for a modelling of the excited
FCN mode (Lambert 2006). For this reason, we model the free
nutation empirically, as a pseudo-periodic term with an amplitude
varying in time

η̃ f cn(t) = −i aFCN(t) eiFFCN(t−t0), (20)

where FFCN is the frequency of the FCN mode in the celestial
frame, that is, FFCN = [1 + Re(σ FCN)] �0. Following Herring et al.
(2002), we choose to model the time-varying amplitude aFCN(t) as a
piecewise linear function, that is, a function which is linear between
given time nodes. The time nodes are chosen from a preliminary
analysis to be at 1979, 1984, 1990, 1997, 2001 and 2010.

2.3 Corrections to the model

The nutation model is based on classical mechanics and does not
take into account relativistic effects such as the geodesic nutation.
This effect has been computed by Fukushima (1991) and contribute
a change of −0.0304 and −0.0004 mas on the prograde annual and
semi-annual nutations, respectively, and 0.0304 and 0.0004 mas on
the retrograde annual and semiannual nutations, respectively. We
have added these corrections to our model.

Additionally, as the equations are developed to the first order,
the model does not take into account non-linear effects. Second
order effects have been computed by Lambert & Mathews (2006),
who showed that these effects almost compensate each other so that
the only non-negligible contributions are on the 18.6 yr nutation
and are (0.0070 – i 0.0003) mas for the prograde component and
(−0.0070 – i 0.0013) mas for the retrograde component. These
corrections are also added to our model.

2.4 Parameters to be estimated

Among the parameters of the precession/nutation model, some have
a large influence on the motion and can thus be estimated from the
observations. These parameters are listed in Table 1. Parameters
that have a lower influence on nutation are assigned fixed numerical
values and are listed in Table 2.

2.4.1 Geophysical parameters

The focus of our study is on the geophysical parameters. Among
them, the precession constant H [or equivalently the dynamic ellip-
ticity e which is related to H by H = e/(1 + e)] determines the pre-
cession rate and has the largest influence on the precession/nutation
motion. Additionally, it also directly influences the nutation transfer

Table 1. Parameters to be estimated from the nutation observations.

Symbol Definition

Geophysical parameters
e Dynamic ellipticity of the whole Earth
ef + Re(K CMB) Dynamic ellipticity of the fluid core

+ CMB coupling constant (real part)
κel Elastic compliance of the whole Earth
γ el Elastic compliance of the fluid core
Im(K CMB) CMB coupling constant (imaginary part)
Re(K ICB) ICB coupling constant (real part)
Im(K ICB) ICB coupling constant (imaginary part)

Secular terms parameters
�ε̇ Obliquity rate
cψ Constant offset in longitude
cε Constant offset in obliquity

Amplitude of the FCN
Re(aFCN) Real parts of the complex amplitudes
Im(aFCN) Imaginary parts of the complex amplitudes

Atmospheric contribution to the amplitude of the prograde annual term
Re(aap) Real part of the contribution
Im(aap) Imaginary part of the contribution

Probabilistic modelling parameter
σ M Standard deviation of the Gaussian modelling

uncertainty

function (see eq. 15) so that it affects the amplitude of all of the
forced nutations as well.

The most important parameters for the nutation motions are those
that determine the frequencies and damping of the three main free
modes (σ CW, σ FCN and σ FICN) and the strengths of the associated
resonances (N 1, N 2, N 3 in eq. 15). The expressions for N 1 and N 2

are (Mathews et al. 2002)

N1 	 − A

Am

(
e − κ

e

)
(21a)

N2 	 Af

Am

(
e − γ

e

)
(21b)

the expression of N 3 is not given as it does not introduce other
geophysical parameters.

Eqs (16a), (21a) and (21b) show the importance of the compli-
ances κ and γ . These compliances are complex numbers and can
be written as the sum of their (real) value for an elastic earth model
and a small complex correction for mantle anelasticity effects: κ =
κel + �κAE and γ = γ el + �γ AE. Following Mathews et al. (2002),
we fix the value of the anelastic contributions �κAE and �γ AE to
that computed from an Earth interior model and we estimate the
elastic term, namely κel and γ el.

Eqs (16b) and (16c) show combinations between K CMB, K ICB, β,
ν, ef and es. Following Mathews et al. (2002), we choose to fix the
values of the compliances (except κel and γ el) to those computed
from an Earth interior model. The compliances for an elastic Earth
have been computed by Mathews et al. (1991b) for the PREM
model (Dziewonski & Anderson 1981) and are listed in Table 2.
Small contributions to the compliances from mantle anelasticity
can be computed, assuming no bulk dissipation, from the shear
wave quality factor Qμ of the PREM model. We computed these
contributions following the procedure described in Mathews et al.
(2002) and the numerical values are listed in Table 2. Also, we fix
es to its hydrostatic value as the whole of the inner core is not ex-
pected to depart much from hydrostatic equilibrium (e.g. Defraigne
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Table 2. Numerical values of other parameters entering the
nutation model.

Parameter Numerical values

Principal moments of inertia
A 8.0115 × 1037 kg m2

Af 9.0583 × 1036 kg m2

As 5.8531 × 1034 kg m2

es 2.422 × 10−3

Elastic compliances
θ el 6.794 × 10−6

ξ el 2.222 × 10−4

βel 6.160 × 10−4

αel −7.536 × 10−5

ζ el 4.964 × 10−9

δel −4.869 × 10−7

νel 7.984 × 10−5

χ 1.073 × 10−3

η 1.940 × 10−3

λ 0

Anelastic contributions to the compliances
�κAE (13 + i 5) × 10−6

�γ AE (22 + i 9) × 10−6

�θAE (3.7 + i 1.5) × 10−8

�ξAE (2.5 + i 1.0) × 10−6

�βAE (7.4 + i 3.0) × 10−6

�αAE (1 + i 0.4) × 10−8

�ζAE (25.1 + i 1.2) × 10−11

�δAE 0
�νAE 0

Parameter τ

τ 3.481 × 10−3

Parameters αi

α1 0.9463
α2 0.8294
α3 0.0537

Precession
HR 0.0032737668
PR 50 384.565 mas a−1

d PR/d H R 15 397 060 mas a−1

PNR –0.2015 mas a−1

et al. 1996). The parameters that are to be estimated are then ef +
Re(K CMB), Im(K CMB), Re(K ICB) and Im(K ICB). Their values are
directly dependent on the values adopted for the fixed parameters.
For example, if es departs slightly from its hydrostatic equilibrium
value, this departure is absorbed in the parameter Re(K ICB). Simi-
larly, errors in the computation of the compliances β and ν directly
affect the estimate of the coupling constants.

The numerical values of A, Af , As and es, as well as the parame-
ters αi are taken as those computed by Mathews et al. (1991b) from
the PREM interior model (Dziewonski & Anderson 1981). They are
given in Table 2.

2.4.2 Secular terms parameters

The secular component of the motion, given by eq. (9), depends on
the parameters P,�ε̇, cψ and cε . The latter three are new parameters
to estimate and are listed in Table 1. The precession rate P can be
expressed in terms of the precession constant H in the form

P(H ) = PR(H ) + PNR, (22)

where PR(H ) is the precession rate of the rigid Earth, which depends
directly on H , and PNR is the contribution to the precession rate due
to non-rigid effects and is independent of H . The value of H is close
to that estimated from rigid Earth models (H R) so that PR(H ) can
be expanded as

PR(H ) = PR(HR) + dPR

dHR
(H − HR). (23)

Numerical values for H R, PR(H R) and d PR/d H R from Bretagnon
et al. (1998) are listed in Table 2 along with the value of PNR

computed by Mathews et al. (2002).

2.4.3 Free nutation parameters

The amplitudes aFCN = {aFCN(ti )}6
i=1 of the FCN mode at the time

of the selected time nodes {ti }6
i=1 are parameters of the model to be

estimated from the observations.

2.4.4 Atmospheric contributions parameters

Variations in the AAM, mainly due to the diurnal cycle in the heating
of the atmosphere by the Sun, also induce forced nutations whose
amplitudes are typically five orders of magnitude smaller than those
driven by the tidal potential. In principle, these contributions could
be computed from AAM models (Bizouard et al. 1998) but, as
shown by Yseboodt et al. (2002), the results strongly depend on the
choice of the atmospheric model. The estimation from AAM models
is thus not precise enough to be added to our model. However,
atmospheric effects influence mainly the annual prograde nutation
(Bizouard et al. 1998); we thus follow Mathews et al. (2002) and
incorporate them as a correction to the annual prograde nutation.
This correction aap is an additional parameter of the model to be
estimated.

3 N U TAT I O N DATA

Nutations are computed from VLBI observations. This technique
consists in observing very distant galactic objects (quasars) from an
array of Earth based large radio-telescopes. After each observing
session, the signals recorded at each telescope are compared and
differences between arrival times (delays) are inferred by correla-
tions. These observed delays can be modelled in terms of several
parameters such as the geographic location of the telescopes, the po-
sition of the quasars, the propagation delays due to the atmosphere,
and the orientation of the Earth in space (and thus, in particular, the
precession/nutation motion). The delays are then inverted to obtain
an estimation of these parameters.

VLBI-delay data are processed by several analysis centres in
order to get estimations of these parameters, including the pre-
cession/nutation angles of interest in our study. Each centre uses
different analysis strategies and softwares to compute the nutation
offsets. In this study, we use nutation angle time-series produced by
three such centres: the NASA Goddard Space Flight Center (GSFC),
the Paris Observatory (OPA) and the Institute of Applied Astron-
omy (IAA). We choose these centres because they present important
differences in their analysis strategies. While both the GSFC and
OPA centres use the Calc/Solv software, the IAA centre uses the
OCCAM software. One of the characteristics of the OPA solution is
that they use a different celestial reference frame that is defined by
247 stable sources selected by Feissel-Vernier et al. (2006), while
the other centres use the conventional 212 sources that defined the
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International Celestial Reference Frame (ICRF). All three nutation
time-series cover the time interval from 1979 up to the present.
The specific data sets used here are available on the International
VLBI Service (IVS) web site: http://ivscc.gsfc.nasa.gov and labelled
‘gsf2008a.eops’, ‘opa2009b.eops’, and ‘iaa2007a.eops’.

4 I N V E R S I O N S T R AT E G Y

The strategy that we use for the inversion of the nutation obser-
vations has been described in details in Koot et al. (2008). We
summarize here its main features.

4.1 Inversion in the time-domain

As the gravitational forcing is mainly periodic, nutation models
are often developed in the frequency domain. However, nutation
observations are available as time-series. In order to compare the
model to the data, there are two possibilities: either (1) to estimate
the amplitudes of the most important periodic terms in the time-
domain data and compare these amplitudes to the frequency-domain
nutation model or (2) to expand the nutation model in the time
domain and compare it directly to the time-domain observations.
The first method was used by Herring et al. (2002) while in Koot
et al. (2008) we developed the second one.

The main advantage of using the time-domain method is that it
allows us to use all the available data, which is not the case in the
frequency domain where only the amplitudes of some 21 periodic
terms can be extracted from the data (Herring et al. 2002).

The time-domain nutation model that we use is composed of the
secular (eq. 9), periodic (eqs 10, 13), Poisson (eq. 18) and free FCN
(eq. 20) motions,

η̃(t, θ ) = η̃sec(t, θ ) + η̃per(t, θ ) + η̃P (t, θ ) + η̃fcn(t, θ ), (24)

where the symbol θ represents the parameters of the model that
are to be estimated. The time-domain model given by (24) is more
complete than the one used in Koot et al. (2008) where the Poisson
terms were not taken into account. Also, in Koot et al. (2008), the
time-variable amplitude of the FCN mode was estimated separately
from a preliminary analysis and was removed from the data be-
fore the final inversion. Here, we estimate it jointly with the other
geophysical parameters, a more self-consistent approach.

4.2 Bayesian inversion method

4.2.1 The Bayesian framework

In a Bayesian inversion framework (e.g. Gregory 2005; Tarantola
2005), knowledge of the model parameters (θ) is inferred from
independent probability density functions (pdf) that describe the
information provided by the observed data (d), the data-independent
prior information on the parameters (π ) and the model predicted
data (d∗).

The probability for the parameters given the observed data and
the prior information is called the ‘posterior’ pdf and can be written
as

p(θ |d) ∝ L(d|θ ) π (θ ), (25)

where L(d|θ ) represents the likelihood of observing the data d
given the parameter values θ . We construct L by assuming that the
observed data are related to the model prediction by

d = d∗ + ed , (26)

where ed represents the uncertainty associated with the observed
data and is chosen to be a normal distribution of zero mean and
variance σ 2. The model predictions d∗ are related to the parameters
by

d∗ = M(θ ) + eM , (27)

where M(θ ) is the model, also called the ‘forward problem’, and eM

characterizes model uncertainty, independent of data. We choose
the pdf representing eM to be a normal distribution of zero mean
and variance σ 2

M . In this case, it can be shown (e.g. Gregory 2005)
that the likelihood for observing data d given parameter values θ is

L(d|θ ) ∝
[

N∏
i=1

(
σ 2

i + σ 2
M

)− 1
2

]
exp

{
−1

2

N∑
i=1

[di − Mi (θ)]2(
σ 2

i + σ 2
M

)
}

.

(28)

From the posterior pdf, we can get the pdf for one specific pa-
rameter θ i by computing the marginal of the posterior defined by

p (θ i |d) =
∫

p (θ |d) dθ 1 . . . dθ i−1dθ i+1 . . . dθn . (29)

From this marginal, an estimated value for the parameter θ i can be
obtained by computing its mean or the value for which the prob-
ability is the highest (the maximum a posteriori, MAP, solution).
Confidence intervals (CI) corresponding to a given probability can
also be estimated from the marginal in order to get an estimation of
the error on the parameter.

4.2.2 Posterior used in our study

In our case, the data are two time series: dR = {�ψ i sin ε0}N
i=1 for

the nutation in longitude and dI = {�εi}N
i=1 for the nutation in

obliquity, corresponding to the time indices {ti}N
i=1. We assume that

the uncertainties in the measurement of each are independent and
that they are given by normal distributions of zero mean and standard
deviations σ R = {σψ

i sin ε0}N
i=1 and σ I = {σ ε

i }N
i=1, respectively. In

this case we have

L(d|θ ) = L(dR |θ ) L(dI |θ ) (30)

and the likelihood functions L(dR|θ ) and L(dI |θ ) can both be com-
puted from eq. (28), which gives

L(d|θ ) ∝
(

N∏
i=1

[(
σ R

i

)2 + σ 2
M

]− 1
2
[(

σ I
i

)2 + σ 2
M

]− 1
2

)

× exp

{
−1

2

N∑
i=1

[(
d R

i − M R
i (θ )

)2

(
σ R

i

)2 + σ 2
M

+
(
d I

i − M I
i (θ)

)2

(
σ I

i

)2 + σ 2
M

]}
,

(31)

where M R
i (θ ) = Re[η̃(ti , θ )] and M I

i (θ) = Im[η̃(ti , θ )], with
η̃(ti , θ ) given by eq. (24).

In writing eq. (31), we make the hypothesis that the standard
deviation characterizing the model uncertainty σ M is the same for
nutation in longitude and obliquity. As this parameter is unknown,
it is considered as an additional parameter to be estimated. From
eq. (25), the posterior pdf is then given by

p (θ , σM |d) ∝ L(d|θ ) π (θ, σM ), (32)

where L(d|θ ) is given by eq. (31) and π (θ , σ M ) is the prior pdf
on the parameters θ and σ M . Detail on the prior that we use are
given in Koot et al. (2008). Note that, by our choice of prior,
we impose the following constraints on the coupling constants:
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Table 3. Estimated values and errors for the nutation model parameters computed from the GSFC, OPA and IAA nutation time-series, as well as for the joint
inversion.

Parameter Units Data sets

Joint inversion GSFC OPA IAA GSFC1 MHB
GSFC, OPA, IAA (1990-2009.3)

e 10−3 3.2845482 ± 1 3.2845481 ± 2 3.2845477 ± 2 3.2845488 ± 2 3.2845484 ± 2 3.2845479 ± 13
ef +Re(K CMB) 10−3 2.6753 ± 2 2.6751 ± 4 2.6755 ± 4 2.6753 ± 4 2.6751 ± 3 2.6680 ± 21
κel 10−3 1.038 ± 2 1.038 ± 3 1.035 ± 3 1.042 ± 3 1.038 ± 4 1.034 ± 10
γ el 10−3 1.9649 ± 3 1.9647 ± 5 1.9652 ± 5 1.9646 ± 5 1.9647 ± 5 1.966 ± 2
Im(K CMB) 10−5 −1.78 ± 2 −1.80 ± 3 −1.78 ± 3 −1.76 ± 4 −1.79 ± 3 −1.85 ± 15
Re(K ICB) 10−3 1.01 ± 2 0.99 ± 4 1.03 ± 3 1.00 ± 4 1.02 ± 4 1.11 ± 11
Im(K ICB) 10−3 −1.09 ± 3 −1.06 ± 5 −1.09 ± 6 −1.10 ± 6 −1.04 ± 5 −0.78 ± 14
Re(aap) μas 0 ± 4 −10 ± 6 12 ± 7 −1 ± 8 −9 ± 7 −10
Im(aap) μas 107 ± 4 104 ± 6 108 ± 7 109 ± 9 106 ± 7 108
�ε̇ mas a−1 −0.2572 ± 7 −0.2584 ± 12 −0.2530 ± 13 −0.2602 ± 14 −0.2615 ± 15 —
cε mas −6.880 ± 5 −6.914 ± 7 −6.845 ± 7 −6.879 ± 9 −6.910 ± 7 —
cψ mas −41.68 ± 1 −41.70 ± 2 −41.64 ± 2 −41.71 ± 2 −41.71 ± 2 —
σ M mas 0.121 ± 3 0.106 ± 5 0.107 ± 5 0.132 ± 5 0.097 ± 5 —

Notes: Results for the GSFC time-series are shown for the whole period (1979–2009.3) and also for the period 1990–2009.3 (labeled GSFC1). The errors,
corresponding to the 99.7 per cent CI, refer to the last written digits. The last column shows the results obtained by Mathews et al. (2002) (MHB).

Table 4. Estimated values and 99.7 per cent CI for the time-
variable amplitude of the FCN mode computed from the inver-
sion of the GSFC data set (units: mas).

Time Re(aFCN) Im(aFCN)

1979 −0.14 ± 0.33 −0.33 ± 0.32
1984 0.20 ± 0.06 −0.32 ± 0.05
1990 0.03 ± 0.02 −0.15 ± 0.02
1997 −0.07 ± 0.02 −0.10 ± 0.02
2001 0.16 ± 0.02 0.11 ± 0.02
2010 −0.21 ± 0.02 0.20 ± 0.02

Im(K CMB) < 0, Re(K ICB) > 0 and Im(K ICB) < 0, in accordance
with theoretical models of the couplings (Buffett et al. 2002; Math-
ews & Guo 2005). Samples of the posterior pdf are obtained
from the Metropolis–Hastings algorithm (Metropolis et al. 1953;
Hastings 1970).

We note finally that the parameter σ M appearing in eq. (31)
cannot be distinguished from a constant additive correction to the
measurement errors σ R

i and σ I
i . Therefore, our inversion takes into

account a possible underestimation of VLBI nutation angles errors,
which have been shown by Herring et al. (2002) to be too optimistic.

5 I N V E R S I O N R E S U LT S

We have carried out individual inversions for each of the three
nutation time-series independently, as well as an inversion with all
the times series together. As the quality of the data largely improves
with time, we have also performed an inversion of the GSFC time-
series restricted to the last 20 yr, that is, from 1990 to 2009.3.

5.1 Estimated parameters

The estimated values and the 99.7 per cent CI for all parameters,
for each inversion, are presented in Table 3. The time-dependent
amplitude of the FCN is given in Table 4 for the GSFC data set
and shown in Fig. 1 for the three data sets. As expected, for all
the parameters, the estimated values obtained from the joint inver-
sion are practically equal to the mean of the individual inversions.
The associated errors of the joint inversion are smaller than for

the individual inversions, consistent with the fact that more data
were used.

Figs 2 and 3 show the marginal posteriors for Im(K CMB),
Re(K ICB) and Im(K ICB). The marginal posteriors for other param-
eters are similar. Figs 2 and 3 also illustrate that while the errors
for the inversions are small, the fact that the pdf’s of individual
inversions do not completely overlap indicates that these errors are
likely underestimated.

In general, our retrieved parameters are in good agreement with
the values estimated in Mathews et al. (2002). The only discrep-
ancies are for the estimates of Re(K ICB), Im(K ICB) and ef +
Re(K CMB). The differences for the former two and their implication
are the focus of Section 6. The discrepancy for ef + Re(K CMB) does
not come from our different inversion strategy as we get the same
estimation when inverting the frequency data used by Mathews et al.
(2002). It comes probably from a different value of Re(�βAE).

Differences between the results presented here and those in Koot
et al. (2008) are from the inclusion of the Poisson terms which alter
the amplitude of the long periods nutations. Other differences are
from the contribution of mantle anelasticity on all of the compli-
ances (rather than only on κ and γ ). The inclusion of the anelas-
tic contribution to the compliance β affects directly our estimates
of ef + Re(K CMB) and Im(K CMB) because, as already noted in
Section 2.4.1, it is the sum (ef + K CMB − β) that enters the expres-
sion of the FCN frequency (16b).

5.2 Residuals

The residuals between the data and the model can be computed by
the following estimator:

r̄i =
∫

(di − η̃(ti , θ )) p(θ |d) dθ . (33)

The estimated residuals are shown on Fig. 4 for the GSFC time-
series. The residuals for the other data sets are very similar. The
weighted root-mean-squares (WRMS) of the residuals, defined by

WRMS(r, σ ) =
√∑

i

wi r 2
i , where wi = 1/σ 2

i∑
j 1/σ 2

j

(34)
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Figure 1. Estimated values and 99.7 per cent CI for the time-variable amplitude of the free FCN mode computed from the GSFC, OPA and IAA data sets.
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Figure 2. Marginal posterior pdf of Im(K CMB) for the individual inversion
of the three time-series (GSFC, OPA and IAA), the joint inversion (Joint)
and for the GSFC data truncated to the period 1990–2009.3 (GSFC1). The
blue box is the 99.7 per cent CI obtained by Mathews et al. (2002) (MHB).

are 0.12 mas for both the �ψ sin ε0 and the �ε components, for the
GSFC data set, and 0.13 mas for the OPA and IAA data sets. These
are smaller than the WRMS obtained by Herring et al. (2002). They
are also smaller than in Koot et al. (2008) because the Poisson terms
are no longer part of the residuals. This is also why the parameter
σ M , characterizing model uncertainty, is smaller here than in Koot

et al. (2008). The direct consequence of a smaller σ M is smaller
errors on the parameters.

5.3 Periods and Q of the normal modes

From the samples of the posterior pdf given by eq. (32), we can
infer the pdf of the complex frequencies (σ ) of the rotational normal
modes that are in the frequency band of nutation, namely the FCN
and FICN. These frequencies correspond to values of σ for which
Det[M (σ )] = 0. The estimations for the corresponding periods
T and quality factors Q, defined by: σ + 1 = T −1[1 − (i/2Q)], are
given in Table 5 for the individual inversions.

6 C O U P L I N G C O N S TA N T S A N D
P H Y S I C A L P RO P E RT I E S O F T H E C M B
A N D I C B

We now focus our attention on the coupling parameters. At the CMB,
as Re(K CMB) cannot be separated from ef , only Im(K CMB) can be
used to infer information on the coupling. We are thus interested in
the parameters Im(K CMB), Re(K ICB) and Im(K ICB). The numerical
values of the latter two parameters are significantly different from
previous nutation inversions. We explore below the reasons for these
differences and investigate the consequence of these new values on
the coupling at both the CMB and ICB.

6.1 Coupling constants

The estimates of Im(K CMB), Re(K ICB) and Im(K ICB) obtained from
the OPA and IAA time-series are in close agreement (see Table 3).
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Figure 3. Marginal posterior pdf of Re(K ICB) and Im(K ICB) for the individual inversion of the three time-series (GSFC, OPA and IAA), the joint inversion
(Joint) and for the GSFC data truncated to the period 1990–2009.3 (GSFC1). The blue boxes are the 99.7 per cent CI obtained by Mathews et al. (2002) (MHB).
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Figure 4. Residuals for the GSFC nutation data set in longitude (upper) and obliquity (lower).

The estimates from the GSFC time-series are somewhat different
but are still consistent with the two other time-series as the 99.7 per
cent CI always have an intersection. The inversion of the GSFC1
time-series gives mean values slightly different from that of the
complete GSFC time-series but again the 99.7 per cent CI widely
overlap one another.

Our estimate of Im(K CMB) from the joint inversion is (−1.78 ±
0.02) × 10−5. As mentioned above, and shown on Fig. 2, the
pdf’s of Im(K CMB) from the different inversions do not overlap
one another exactly. The smallest (resp. largest) absolute value of
Im(K CMB), within the 99.7 per cent CI, from all our inversions is
Im(K CMB) = −1.72 × 10−5 from the IAA time-series [resp.
Im(K CMB) = −1.83 × 10−5, from GSFC]. These upper and lower
bounds on Im(K CMB) are perhaps more representative of the un-
certainties than the very small errors obtained in each separate
inversions. We use these values in our analysis below.

Similarly, our estimates of Re(K ICB) and Im(K ICB) from the
joint inversion are (see Tab. 3) (1.01 ± 0.02) 10−3 and (−1.09 ±
0.03) 10−3, respectively. Upper and lower bounds within the

99.7 per cent CI from individual time-series are 1.06 × 10−3 and
0.95 × 10−3, and −0.99 × 10−3 and −1.16 × 10−3, respectively.

Although Re(K ICB) and Im(K ICB) are significantly different, our
estimate of Im(K CMB) is in agreement with that of Mathews et al.
(2002). This can be explained as follows. The parameter K ICB af-
fects directly the complex frequency of the FICN (see eq. 16c). The
period of this mode is approximately 1000 d in the celestial frame
(Mathews et al. 2002, and Table 5) so that the forced nutations that

Table 5. Periods and quality factors of the FCN and FICN. The errors
correspond to the 99.7 per cent CI.

Data set FCN FICN

T (days) Q T (days) Q

GSFC −429.09 ± 0.07 19641 ± 270 904 ± 29 467 ± 24
OPA −429.00 ± 0.07 19716 ± 288 945 ± 30 455 ± 23
IAA −429.05 ± 0.08 19886 ± 328 919 ± 33 453 ± 24
GSFC1 −429.07 ± 0.07 19721 ± 277 929 ± 31 480 ± 24
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are the most affected by resonance are the ones with long periods
and in particular the nutation of 18.6 yr. The amplitude of this nu-
tation is known with less precision than the other dominant forced
nutations because only 30 yr of data are available. The difference in
K ICB comes then mainly from a better account of the long-period
terms: all the long-period periodic and Poisson terms are part of our
model (not only the 18.6 yr periodic term). A part of the difference
in K ICB also originates simply from the 10 yr of additional nutation
observations that are part of our inversion. In contrast, Im(K CMB)
is mainly determined from the amplitude of the retrograde annual
nutation, the forced nutation with the closest frequency to that of the
FCN. Since the amplitude of the retrograde annual nutation could
already be well determined with data prior to 2000, our estimate of
Im(K CMB) is not different from that of Mathews et al. (2002).

6.2 Coupling model

Our new estimations of the coupling constants have implications
for the coupling at the CMB and ICB and in turn, on the physical
parameters on which these depend. Our goal here is not to develop
new models of coupling. We are merely interested in determining
the numerical values of the physical parameters that are consistent
with our coupling constants. We restrict our attention to EM and
viscous coupling, which have been the focus of the most recent
studies. We adopt the viscomagnetic coupling model of Mathews
& Guo (2005), in which the coupling constant at one boundary b is
given by

Kb = πa4
b

2i�0 As

∫ π

0

(
μ−1

0 I em
b + ρν I vis

b

)
sin θ dθ, (35)

where ab is the boundary radius, μ0 is the magnetic permeability of
free space, and θ is colatitude. I em

b and I vis
b include the contributions

from EM and viscous forces, respectively, to the boundary torque.
They depend on the radial magnetic field at the boundary (Br), on
the electrical conductivities of the fluid core (σ f ) and the solid side
of the boundary (σ m for the mantle and σ s for the inner core), on
the kinematic viscosity of the fluid core close to the boundary (ν),
and on the density of the fluid core. The complete expressions for
I em

b and I vis
b , at the CMB and ICB, can be found in Mathews &

Guo (2005). In the limit of zero viscosity, the second term of the
integrand in (35) vanishes and the purely EM model of Buffett et al.
(2002) is retrieved.

We fix the electrical conductivities of the outer and inner cores to
that of iron under core conditions, namely σ f = σ s = 5 × 105 S m−1

(Stacey & Anderson 2001). We take the densities of the fluid core
at the CMB and ICB as given by PREM (Dziewonski & Anderson
1981), 9903.4 and 12166.3 kg m −3, respectively.

The radial magnetic field at the CMB and ICB that enters I em
b is

decomposed into a dipolar (BD
r ) and a uniform (BND

r ) component,
the latter representing an effective contribution to the EM torque
from all field components other than the axial dipole. The viscous
coupling part depends on the kinematic viscosity of the fluid core.
Since it is poorly known, it is considered as an unknown parameter.

6.3 Coupling at the CMB

Our estimate of Im(K CMB) is in agreement with that of Mathews
et al. (2002) used in the study of Mathews & Guo (2005). Thus,
we agree with the interpretation of Im(K CMB) in terms of physical
parameters presented in this latter study. Nevertheless, for com-
pleteness, we do include here an analysis of the coupling at the

CMB on the basis of updated values of BD
r and BND

r based on the
recent model CHAOS-2s (Olsen et al. 2009) constructed from satel-
lite observations of the magnetic field. Also, in our study, we give
the errors on the physical parameters that arise from the errors on
Im(K CMB), which was not done by Mathews & Guo (2005).

Assuming a perfectly insulating mantle, the long-wavelength
components (spherical harmonic degrees smaller or equal to 13) of
the magnetic field at the CMB can be determined from a downward
continuation of the magnetic field observed at the Earth’s surface.
The amplitude of the axial dipole at the CMB is thus well deter-
mined though it is currently decreasing at a rate of approximately
150 nT per year (e.g Gubbins et al. 2006). Since this corresponds
to a very small change over the time-span of the nutation obser-
vations, we simply assume a fixed rms value of B̄ D

r = 0.209 mT
based on CHAOS-2s (Olsen et al. 2009) evaluated at J2000. As
for rms strength of BND

r at the CMB, though its long wavelength
contribution is well determined, the short-wavelength contribution
cannot be obtained from surface observations because it is masked
by the crustal field. The true rms strength of BND

r is thus unknown.
However, the power spectrum of the field between degrees 2 and 13
is found to follow a log-linear trend. Assuming this trend continues
to higher degrees, an estimate of B̄ND

r can be constructed by extrap-
olation. Based on the mean power spectrum of CHAOS-2s between
2000 and 2008, we get B̄ND

r = 0.281 mT. We refer to this value
of B̄ND

r below as that inferred from magnetic field observations,
though this remains an unknown quantity.

We consider first the case of a purely EM coupling. We use
B̄ D

r = 0.209 mT and treat B̄ND
r as an unknown parameter. The other

unknown parameter is σ m. These two parameters cannot be both es-
timated from the single parameter Im(K CMB). We choose to estimate
B̄ND

r for different choices of σ m. Following Buffett et al. (2002), we
first consider the case of a very high lowermost mantle conductivity
taken to be equal to that of the core, σ m = 5 × 105 S m−1.

Fig. 5 shows the real and imaginary parts of K CMB as a function
of B̄ND

r . The black solid horizontal line corresponds to Im(K CMB) =
−1.78 × 10−5, our estimate from the joint inversion (see Table 3).
The dashed (resp. dotted) horizontal line corresponds to the up-
per (resp. lower) bound reported above: Im(K CMB) = −1.72 ×
10−5 [resp. Im(K CMB) = −1.83 × 10−5]. The value Im(K CMB) =
−1.78 × 10−5 corresponds to B̄ND

r = 0.631 mT, while the two
extreme values Im(K CMB) = −1.72 × 10−5 and −1.83 × 10−5

give B̄ND
r = 0.617 and 0.642 mT, respectively. These values, as

well as the corresponding values of the rms of the total radial field

B̄Tot
r =

√
(B̄ D

r )2 + (B̄ND
r )2, are reported in Table 6.

Since σ m cannot be larger than the electrical conductivity of the
fluid core, the retrieved value of B̄ND

r = 0.617 mT under the above
scenario corresponds to a lower bound on B̄ND

r . Smaller values of
σ m require larger values of B̄ND

r : as reported in Table 6, with σm =
5×104 Sm−1, B̄ND

r must be approximately 0.91 mT. These estimates
of B̄ND

r are much larger than our above quoted value of 0.281 mT
based on magnetic field observations. This has been interpreted to
indicate that, if no other coupling than EM participates, the small
wavelength component of the radial field at the CMB has much
larger amplitude than that expected from an extrapolation of its
long wavelength component (Buffett et al. 2002; Mathews et al.
2002; Buffett & Christensen 2007).

As an alternative to the large B̄ND
r required in the purely EM

coupling scenario, a part of Im(K CMB) may be explained by viscous
coupling. In Fig. 5, we show how adding viscous coupling affects
the real and imaginary parts of K CMB and how a particular value of
Im(K CMB) can be explained by different combinations of ν and B̄ND

r .
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Figure 5. Re(K CMB) and Im(K CMB) as a function of B̄ND
r at the CMB,

for σ m = 5 × 105 S m−1 and B̄ D
r = 0.209 mT. The results for three

different choices of the fluid core viscosity are shown: ν = 0 (orange),
ν = 10−2 m2 s−1 (purple), and ν = 2.6 × 10−2 m2 s−1 (blue). The horizontal
lines are the values of Im(K CMB) estimated from nutation observations and
the three black vertical lines are the corresponding values of B̄ND

r in the case
of the purely EM model. The vertical red line correspond to B̄ND

r = 0.281
mT inferred from magnetic field observation.

Table 6. The rms of the radial magnetic field at the CMB required to match
the estimated coupling constant for purely EM coupling. B̄ D

r is fixed to
0.209 mT.

σm Im(K CMB) B̄ND
r B̄Tot

r
(S m−1) (10−5) (mT) (mT)

5 × 105 −1.78 ± 0.02 0.631 ± 0.004 0.664 ± 0.004
−1.72 0.617 0.651
−1.83 0.642 0.675

5 × 104 −1.78 ± 0.02 0.911 ± 0.006 0.935 ± 0.006
−1.72 0.893 0.917
−1.83 0.926 0.949

Fig. 6 shows the relation between ν and B̄ND
r in agreement with our

Im(K CMB) estimates. Our curve for σ m = 5 × 105 S m−1 is similar
to that obtained by Mathews & Guo (2005); we also show the curves
of ν for other choices of σ m. As expected, the viscosity required to
explain the estimated coupling constant increases as B̄ND

r decreases.
In particular, assuming σ m = 5 × 105 S m−1, in order to reconcile
B̄ND

r with 0.281 mT (the lowest value shown on Fig. 6), the viscosity
of the fluid core has to be between 0.023 and 0.028 m2 s−1. Smaller
σ m require larger values of ν , though the increase is modest: even
for σ m reduced by four orders of magnitude, the required increase
in ν is less than a factor 2. These values are upper bounds on the
viscosity of the fluid core at the CMB and are reported in Table 7.

6.4 Coupling at the ICB

Our estimate of K ICB is not in agreement with that of Mathews
et al. (2002). Both the real and imaginary parts are outside of the
99.7 per cent CI estimated by these authors. Moreover, for each
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Figure 6. Fluid core viscosity and radial uniform magnetic field at the CMB,
for different values of the conductivity of the lowermost mantle σ m. The
solid lines correspond to Im(K CMB) obtained from the joint inversion, the
dashed (resp. dotted) lines correspond to the lowest (resp. highest) absolute
value of Im(K CMB) allowed by our various inversions.

Table 7. The fluid core viscosity ν at the CMB required to
match the estimated coupling constant when the magnetic field
at the CMB is fixed to B̄ D

r = 0.209 mT and B̄ND
r = 0.281 mT.

σm Im(K CMB) ν

(S m−1) (10−5) (10−2 m2 s−1)

5 × 105 −1.78 ± 0.02 2.6 ± 0.1
–1.72 2.3
−1.83 2.8

5 × 104 −1.78 ± 0.02 3.3 ± 0.1
−1.72 3.0
−1.83 3.5

10 −1.78 ± 0.04 3.9 ± 0.1
–1.72 3.6
−1.83 4.1

of our inversions we find that Re(K ICB)/|Im(K ICB)| < 1, while in
Mathews et al. (2002) found that Re(K ICB)/|Im(K ICB)| > 1. This
ratio is important because it provides information on the nature of
the coupling at the ICB. Fig. 7 shows, for a purely EM coupling
model, how the ratio Re(K ICB)/|Im(K ICB)| varies as a function
of B̄Tot

r at the ICB and for different partitions between B̄ D
r and

B̄ND
r . Regardless of the value of B̄Tot

r or of the relative proportion
between the dipolar and uniform component, the ratio Re(K ICB)/
|Im(K ICB)| is always larger than 1. Consequently, our new value of
K ICB appears incompatible with a purely EM coupling, at least on
the basis of the model developed by Buffett et al. (2002).

It is important to note that there remains a degree of uncertainty
in the ratio Re(K ICB)/|Im(K ICB)| that we infer. Since Re(K ICB) is
determined by the resonance of the nutations with the FICN (see
eq. 16c), larger values of Re(K ICB) would be obtained for larger
value of the combination α2 es + νel. The numerical values of these
three parameters is given in Table 2. An increase of 5 per cent in es,
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Figure 7. The ratio Re(K ICB)/|Im(K ICB)| as a function of B̄Tot
r at the ICB.

The different curves show different partitions of the field between B̄ D
r and

B̄ND
r , from a purely uniform field (lowest curve) to a purely dipolar field

(upper curve).

corresponding for instance to a non-hydrostatic contribution to the
flattening, would lead to an increase in Re(K ICB) of approximately
10−4 and to Re(K ICB)/|Im(K ICB)| ≈ 1. A larger increase in es, how-
ever, is incompatible with the upper bound of the non-hydrostatic
contribution on ef (Mathews et al. 2002). Thus, though the exact ra-
tio Re(K ICB)/|Im(K ICB)| is difficult to pin down, it seems unlikely
that Re(K ICB)/|Im(K ICB)| can be much higher than about 1, and
thus remains incompatible with the values suggested in Fig. 7.

For a purely viscous coupling, we expect Re(K ICB)/
|Im(K ICB)| 	 0.1 (Busse 1968; Rochester 1976; Mathews & Guo
2005). It is thus possible to match our new estimates of K ICB if both
viscous and EM forces contribute to the coupling at the ICB.

We use again the model of Mathews & Guo (2005) given by
eq. (35), in which we prescribe σ f = σ s = 5 × 105 S m−1. B̄ D

r

and B̄ND
r at the ICB cannot be determined from magnetic field

observations. These two parameters, together with ν close to the
ICB, are the three unknowns of our model. Only two parameters can
be derived from nutation observations for constraining the coupling:
Re(K ICB) and Im(K ICB). Because the coupling model has one more
free parameter, we choose to fix the value of B̄ D

r and we estimate
the values of B̄ND

r and ν required to match Re(K ICB) and Im(K ICB).
We take B̄ D

r to vary between 0 and the maximum value for
which we can find a solution. For each chosen value of B̄ D

r , we
find B̄ND

r and ν by inverting Re(K ICB) and Im(K ICB), using once
more the Bayesian inversion method with MCMC sampling de-
scribed in Section 4.2. The parameters that we want to estimate
are p = {B̄ND

r , ν}. The forward problem is the viscomagnetic cou-
pling model K model

ICB (p) (eq. 35). The ‘data’ are our estimated values
of Re(K ICB) and Im(K ICB). Because the marginal pdf obtained for
these parameters are close to Gaussian distributions, we consider
our estimate of those parameters as Gaussian ‘measurements’. The
estimates of Re(K ICB) and Im(K ICB) are not correlated, so they are
considered as independent measurements. The likelihood function

Br

ND

Br

Tot

0 1 2 3 4 5 6
0

2

4

6

8

10.

15.

20.

25.

30.

RMS of the Radial Dipolar Magnetic Field mT

B
rN

D
a
n
d

B
r

T
o
ta

l
m

T

Magnetic Field and Viscosity at the ICB

V
is

c
o
s
it
y

m
2

s
1

Figure 8. Estimates of B̄ND
r and ν (solid lines) obtained from the inversion

of the coupling constant at the ICB for different choices of B̄ D
r . The dashed

lines correspond to the 99.7 per cent CI.

(eq. 28), without model uncertainty, can be written as

L(d|p) ∝ 1

σ1σ2
exp

{
−1

2

(
d1 − Re(K model

ICB (p))

σ1

)2

− 1

2

(
d2 − Im(K model

ICB (p))

σ2

)2 }
, (36)

where d is the ‘data’, that is, d1 is Re(K ICB) and d2 is Im(K ICB)
taken from Table 3, and σ 1, σ 2 are the corresponding standard
deviations.

The prior pdf for ν is chosen to be uniform on the interval
0–100 m2 s−1 and zero elsewhere. We assume B̄ND

r has a Jeffreys
prior [i.e. a prior pdf in 1/x , see e.g. Gregory (2005)] on the interval
0–20 mT and zero elsewhere.

From the posterior pdf, we compute the MAP solutions and the
99.7 per cent CI. Fig. 8 and Table 8 show the results obtained
when K ICB is taken from the joint inversion of the three time-
series, namely for Re(K ICB) = (1.01 ± 0.02) 10−3 and Im(K ICB) =
(−1.09 ± 0.03) 10−3. Results for K ICB obtained from the individual
inversions are very similar and are not shown here.

In Fig. 8 and Table 8, we also show the corresponding values
and CI of B̄Tot

r . Samples of the pdf for B̄Tot
r are obtained from the

samples of the marginal of B̄ND
r by computing, for each sample,

B̄Tot
r =

√
(B̄ND

r )2 + (B̄ D
r )2. From these samples, we compute the

MAP values and 99.7 per cent CI.
As it can be seen from Table 8 and Fig. 8, B̄ D

r varies from 0 to
6.1 mT and the corresponding value of B̄ND

r varies from 6.5 mT to
0. The value of B̄ND

r decreases as B̄ D
r increases. The rms of the total

radial magnetic field remains almost constant and approximately
equal to 6.5 mT, regardless of the individual values of B̄ D

r and B̄ND
r .

The viscosity of the fluid core at the ICB is almost constant for
values of B̄ D

r between 0 and 3 mT. This value, around 10 m2 s−1,
is a lower bound on the value of this physical parameter. For B̄ D

r

larger than 3 mT, the viscosity begins to increase and reaches a
maximum around 30 m2 s−1, corresponding to the maximum value
of B̄ D

r , namely 6.1 mT, and the minimum value of B̄ND
r , namely

0 mT.
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Table 8. Estimates of ν, B̄ND
r and B̄Tot

r for specific values of B̄ D
r .

B̄ D
r ν B̄ND

r B̄Tot
r

0 9.97 6.51 6.51
(8.39, 11.54) (6.4, 6.63) (6.4, 6.63)

1 9.88 6.49 6.57
(8.41, 11.36) (6.38, 6.6) (6.46, 6.67)

2 9.72 6.39 6.7
(8.23, 11.22) (6.29, 6.5) (6.6, 6.8)

3 9.86 6.16 6.85
(8.37, 11.36) (6.04, 6.28) (6.74, 6.96)

4 12.09 5.58 6.87
(10.55, 13.63) (5.43, 5.73) (6.74, 6.99)

5 18.46 4.35 6.63
(16.85, 20.06) (4.13, 4.58) (6.48, 6.78)

5.4 22.04 3.55 6.47
(20.48, 23.61) (3.27, 3.83) (6.31, 6.62)

6 28.54 1.23 6.11
(26.96, 30.12) (0, 1.9) (6., 6.3)

6.1 29.52 0 6.1
(28.00 , 31.04) (0, 1.1) (6.1, 6.2)

Notes: The first line gives the estimated value whereas the values in
parentheses on the second line correspond to the 99.7 per cent CI. The
results are given for K ICB based on the joint inversion of GSFC, OPA and
IAA time-series. Magnetic field values are in mT and kinematic viscosities
are in m2 s−1.

We note finally that it is not possible to explain our estimated
value of K ICB by viscous coupling alone. This is because the
ratio Re(K ICB)/|Im(K ICB)| does not permit it, regardless of how
large the viscosity near the ICB can be. Based on our results,
30 m2 s−1 corresponds to an approximate upper bound for the kine-
matic viscosity near the ICB. Values as high as 107 m2 s−1 that have
been proposed (e.g. Smylie 1999) are incompatible with nutation
observations.

7 D I S C U S S I O N A N D C O N C LU S I O N

The coupling constant at the CMB that we have inferred from nu-
tation observations, is in agreement with the results previously ob-
tained by Mathews et al. (2002). We find Im(K CMB) = (−1.78 ±
0.02) 10−5 for an inversion that includes three different nutation
time-series. The errors correspond to 99.7 per cent confidence inter-
val, though these are likely underestimates of the true uncertainties
in Im(K CMB). The highest and lowest value of Im(K CMB) within
the 99.7 per cent CI that we find from inversions of individual
time-series are −1.72 × 10−5 and −1.83 × 10−5, respectively.

The physical properties of the CMB that we derive on the ba-
sis of Im(K CMB) are thus in agreement with those of Buffett et al.
(2002) and Mathews & Guo (2005). If the coupling is purely of
EM nature, the non-dipolar part of the rms radial field at the CMB,
B̄ND

r , must be at least 0.631 ± 0.004 mT or larger in order to ex-
plain the strength of the coupling. This is much larger than B̄ND

r =
0.281 mT inferred on the basis of an extrapolation of the long wave-
length power spectrum of the field model CHAOS-2s. However, it
is not inconceivable that the small wavelength part of the field at the
CMB contains more energy than based on such a simple extrapola-
tion (Buffett & Christensen 2007). If this is the case, then B̄ND

r =
0.631 mT may be taken as a constraint from nutation observations.

If instead one takes B̄ND
r = 0.281 mT to represent an upper

bound, then an additional coupling mechanism must be present. If
this coupling is from viscous forces, the required kinematic viscosity
of the fluid near the CMB is between 0.023 and 0.041 m2 s−1,
depending on the electrical conductivity of the lower mantle and

the precise value of Im(K CMB). These values are upper bounds on
the viscosity of the fluid core at the CMB.

For the real part of the coupling constant at the ICB, we find
Re(K ICB) = (1.01 ± 0.02) 10−3 for the inversion that includes
all three nutation time-series. Upper and lower bounds within the
99.7 per cent CI from individual time-series are, 1.06 × 10−3 and
0.95 × 10−3, respectively. These values are lower, but remain com-
patible within error bars with the value Re(K ICB) = (1.11 ± 0.11)
10−3 obtained by Mathews et al. (2002). However, the imaginary
part of K ICB that we find is significantly different: Im(K ICB) =
(−1.09 ± 0.03) 10−3, for the joint inversion, with upper and lower
bounds of −0.99 × 10−3 and −1.16 × 10−3, compared to Im(K ICB)
= (−0.78 ± 0.14) 10−3 obtained by Mathews et al. (2002).

Our new values of Re(K ICB) and Im(K ICB) have profound im-
plications for the nature of the coupling at the ICB. The previous
estimate of these parameters by Mathews et al. (2002) could be
explained by EM coupling alone: this required a total rms radial
field of 7.17 mT at the ICB. This is a much larger value than the
typical magnetic field amplitudes in the core of 2–3 mT expected on
the basis of numerical simulations of the geodynamo (Christensen
& Aubert 2006), but could be taken as an observational constraint
from nutations. However, with our new values of Re(K ICB) and
Im(K ICB), the coupling at the ICB cannot be explained in terms
of EM coupling alone, at least on the basis of existing models,
regardless of the amplitude of the field. This is because the ratio
Re(K ICB)/|Im(K ICB)| that we find is smaller than 1, whereas the
EM coupling model can only accommodate a ratio larger than 1
(see Fig. 7).

An additional coupling mechanism must then be present. If this
coupling is of viscous nature, kinematic viscosities between 10
and 30 m2 s−1 are required, depending on the partition between
the dipolar and non-dipolar part of the radial magnetic field at the
ICB. These correspond to approximate upper bounds on the kine-
matic viscosity near the ICB. Higher values are incompatible with
nutation observations. Importantly, we note that viscous coupling
alone cannot explain our values of Re(K ICB) and Im(K ICB): a part
of the coupling must still be accomplished by EM forces. Our es-
timate of the rms of the total radial field is between 6 and 7 mT, a
value that remains much larger than that inferred from geodynamo
simulations.

The kinematic viscosities quoted above, at both the CMB and
ICB, are very large. Typical values inferred from laboratory mea-
surements (Rutter et al. 2002b; Rutter et al. 2002a) and ‘ab initio’
computations (Alfè et al. 2000) suggest that the molecular viscosity
of iron at temperatures and pressures corresponding to that of the
core should be of the order of 10−6 m2 s−1. Our much larger viscosity
estimates must then be taken as representing an effective viscosity
νe caused by turbulent motion transport in the fluid (e.g. Deleplace
& Cardin 2006), similar to the eddy viscosity concept adopted when
modelling boundary layers in the ocean and atmosphere (Pedlosky
1987).

Such a concept may seem appropriate at first glance. Adopting
a simple isotropic turbulence framework, the effective kinematic
viscosity should be approximately equal to other diffusivities in the
system. The largest molecular diffusivity in the Earth’s core is the
magnetic diffusivity η = 1/μ0 σ f ≈ 2 m2 s−1, a value approximately
compatible with the effective viscosities that we infer. However,
turbulence in the Earth’s core is expected to be highly anisotropic
on account of Coriolis and Lorentz forces (Braginsky & Meytlis
1990). It is then not clear whether taking νe ≈ η is justified.

The eddy viscosity interpretation also has additional shortcom-
mings. An effective viscosity is a property of the flow, not a property
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of the fluid. The size and turn-over timescale of the eddies that act
as an apparent viscosity must be compatible with those expected to
be present in the flow. A discussion on these issues is presented in
Buffett & Christensen (2007). We shall not repeat this discussion
here, but it is worth emphasizing a few important points. The eddy
viscosity should scale as νe ≈ vl, where v and l are typical veloc-
ity and eddy size (l is sometimes referred to as a mixing length).
An upper bound limit on l is the thickness δ of the effective vis-
cous boundary layer, otherwise the whole concept of eddy transport
within the boundary layer falls appart. δ should scale as (νe/�o)1/2

based on an Ekman boundary layer thickness (e.g. Greenspan 1968).
This leads to l ∼ δ ∼ 300 m when νe = 10 m2 s−1, and requiring
v to be of the order of 0.03 m s−1. This is a velocity two orders
of magnitude larger than the typical velocities of the large scale
flows in the core. Realistically, l should be much smaller than δ ∼
300 m for eddies to act like an apparent viscosity, in which case
even higher eddy velocities are required. The same exercise with
a viscosity typical of those that we retrieve near the CMB, νe =
0.03 m2 s−1, leads to l ∼ δ ∼ 20 m and eddy velocities of at least
0.0015 m s−1, still an order of magnitude larger than typical core
flows.

Whether typical eddy velocities higher than 0.03 m s−1 and mix-
ing lengths smaller than ∼100 m are compatible with the energetics
and the force balance in the fluid core is clearly too vast a question
to be tackled here. Though these would be the typical values that
are required to explain the coupling at boundaries inferred from
nutation observations.

We thus reach the conclusion that, at the ICB, not only a large
radial magnetic field is required to explain the coupling constant,
a large fluid viscosity difficult to reconcile with molecular or eddy
viscosity values is also required. As these large values for both the
magnetic field and fluid viscosity appear to be incompatible with
other geophysical constraints, this may indicate that the present-day
models of EM and viscous coupling have serious inadequacies. For
instance, the assumption that the differential rotation of the fluid core
in the characterization of the free modes is adequately represented
by a rigid motion may be incorrect. Using a Largrangian approach,
Rogister & Valette (2009) has shown that indeed, for both the FCN
and FICN, departures from rigid motion may be important. These
non-rigid motions need to be taken into account in the coupling
between the flow and the boundaries. Alternatively, other unmod-
elled physical processes may also be at play. For instance, viscous
dissipation in the inner core may be important on diurnal timescales
and could explain a significant part of K ICB (e.g. Greff-Lefftz et al.
2000). Some of these ideas are currently under investigation.
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