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S U M M A R Y
In this study we address the question under which conditions a saturated velocity field stem-
ming from geodynamo simulations leads to an exponential growth of the magnetic field in a
corresponding kinematic calculation. We perform global self-consistent geodynamo simula-
tions and calculate the evolution of a kinematically advanced tracer field. The self-consistent
velocity field enters the induction equation in each time step, but the tracer field does not
contribute to the Lorentz force. This experiment has been performed by Cattaneo and Tobias
and is closely related to the test field method by Schrinner et al. We find two dynamo regimes
in which the tracer field either grows exponentially or approaches a state aligned with the
actual self-consistent magnetic field after an initial transition period. Both regimes can be
distinguished by the Rossby number and coincide with the dipolar and multipolar dynamo
regimes identified by Christensen and Aubert. Dipolar dynamos with low Rossby number are
kinematically stable whereas the tracer field grows exponentially in the multipolar dynamo
regime. This difference in the saturation process for dynamos in both regimes comes along
with differences in their time variability. Within our sample of 20 models, solely kinematically
unstable dynamos show dipole reversals and large excursions. The complicated time behaviour
of these dynamos presumably relates to the alternating growth of several competing dynamo
modes. On the other hand, dynamos in the low Rossby number regime exhibit a rather simple
time dependence and their saturation merely results in a fluctuation of the fundamental dynamo
mode about its critical state.

Key words: Dynamo: theories and simulations.

1 I N T RO D U C T I O N

The time variability of cosmic magnetic fields has always been an
argument in favour of hydromagnetic dynamo action. Its under-
standing is crucial for insights in the interior dynamics of stars and
planets. The time dependence of convective dynamos is attributable
to a non-stationary buoyancy flux as well as to a time-dependent
equilibration of the magnetic field. The latter is the subject of this
study.

How do dynamos saturate, and in particular, in which way is the
saturation reflected in their time dependence? In a general descrip-
tion, the infinite growth of a magnetic field due to an appropriate
motion of a conducting fluid is inhibited owing to the backreaction
of the Lorentz force on the flow; the resulting changes in the flow
cause a reduction of dynamo action. Flows which are influenced
by the Lorentz force in this way are called saturated. Nevertheless,
Cattaneo & Tobias (2009) as well as Tilgner & Brandenburg (2008)
demonstrate that saturated flows may lead to exponential growth of
the magnetic field in a corresponding kinematic calculation. Despite
the fact that the magnetic field is saturated in the full non-linear sys-
tem, it can grow in a kinematic treatment, because both associated
linearized stability problems are different. The flows taken from a

saturated dynamo simulation and then used in a kinematic calcula-
tion need only quench the growth of the particular magnetic field
found in the non-linear problem and can in principle allow others
to grow. As Tilgner & Brandenburg (2008) have pointed out there
is at least one example, the benchmark dynamo case 1 (Christensen
et al. 2001), where the field taken from a saturated dynamo is also
kinematically stable.

In this study, we show that there is in fact a whole class
of saturated, chaotic and time-dependent dynamos for which the
corresponding kinematic dynamo is stable. To assess kinematic
stability—in the sense explained—we solve the magnetohydrody-
namics (MHD) equations for a Boussinesq fluid in a rotating spher-
ical shell. At the same time we evolve a second passive tracer field
using the induction equation. Although the tracer field experiences
the self-consistent velocity field at each time step it does not con-
tribute to the Lorentz force. This method has been used by Cattaneo
& Tobias (2009) for box simulations and a shell model and is closely
related to the test-field method to determine mean-field coefficients
(Schrinner et al. 2005, 2007).

Within a sample of 20 models, we identify two distinct dynamo
regimes dependent on a modified Rossby number (Christensen &
Aubert 2006) in which the tracer field either grows exponentially or
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676 M. Schrinner et al.

reaches a state aligned with the actual self-consistent magnetic field
after an initial transition period. Moreover, differences in the kine-
matic stability of the dynamos are linked to differences in their time
variability: exclusively kinematically unstable dynamos in the high
Rossby number regime show polarity reversals of the axial dipole
field. We attribute the complicated time behaviour of these models
to an alternating growth of many competing dynamo modes. On the
other hand, an eigenvalue computation suggests that dynamos with
low Rossby number are dominated by only one fundamental mode
which is repeatedly quenched and rebuilt. All other modes in this
case are clearly subcritical. In this sense, dynamo models in the low
Rossby number regime, that is, fast rotators, exhibit a simple time
dependence and their time variability consists of fluctuations about
their critical state.

Apart from the implications of kinematic stability for fully self-
consistent dynamos pointed out, the finding of a class of kinemat-
ically stable dynamos is relevant for all attempts to parametrize
induction processes and to use such parameters, or dynamo coef-
ficients, in simplified models, for example, in the framework of
mean-field electrodynamics (Krause & Rädler 1980). Intrinsically,
this is a kinematic approach, since dynamo coefficients capture the
dynamo action of a given flow and usually depend only on the ve-
locity field. Thus, the applicability of parametrized models seems
to be limited either to situations in which the Lorentz force is neg-
ligible, or to dynamos, for which the kinematically advanced field
and the self-consistent field exhibit the same growth rates, that is,
to kinematically stable dynamos. The survey of such dynamos was
the original motivation of the study presented in this paper.

2 DY NA M O C A L C U L AT I O N S

We consider an electrically conducting Boussinesq fluid in a rotating
spherical shell and solve the MHD equations as given by Olson et al.
(1999) and described in detail by Christensen & Wicht (2007). In
addition, we compute the evolution of a passive tracer field with the

help of a second induction equation

∂ BTr/∂t = ∇ × (u × BTr) + 1/Pm∇2 BTr. (1)

Although the tracer field, BTr, experiences the self-consistent ve-
locity field u in each time step, it does not contribute to the Lorentz
force. Hence it does not act on the velocity field and is ‘passive’ in
this sense. The initial conditions for the tracer field have been chosen
arbitrarily with the help of a random number generator. Moreover,
for models 10–15, we added some random noise to the tracer field
in each time step. This enables us to perturb the tracer field per-
manently and prevents it from becoming aligned with the actual,
self-consistent field. In these simulations, we advance the tracer
field for at least 10 magnetic diffusion times to test for kinematic
stability.

According to the scaling we used, the equations are governed
by four parameters. These are the Ekman number E = ν/�L2,
the (modified) Rayleigh number Ra = αT g0�T L/ν�, the Prandtl
number Pr = ν/κ and the magnetic Prandtl number Pm = ν/η. In
these expressions, ν denotes the kinematic viscosity, � the rotation
rate, L the shell width, αT the thermal expansion coefficient, g0 is
the gravitational acceleration at the outer boundary, �T stands for
the temperature difference between the inner and outer spherical
boundaries, κ is the thermal and η = 1/μσ the magnetic diffusivity
with the magnetic permeability μ and the electrical conductivity σ .
All four parameters have been varied to build up a sample of 20
dynamo models, see Table 1.

Output parameters used here to interpret the results are the mag-
netic Reynolds number, Rm = U L/η, the Elsasser number, 
 =
B2/�μη� and the Rossby number, Ro = U/L�. In these expres-
sions, U and B denote rms values of the velocity and the magnetic
field inside the shell, respectively, and ρ is the density. Further-
more, we adopt the definition of a local Rossby number proposed
by Christensen & Aubert (2006),

Rol = Ro
l̄

π
. (2)

Table 1. Overview of the runs considered, ordered with respect to their modified Rossby number.

Model E Ra Pm Pr Ro Mean l Rol f dip Rm 


Kinematically stable models

model 1 1 × 10−3 100 5 1 0.0079 5 0.013 0.88 39 6.3
model 2 1 × 10−4 334 2 1 0.0043 11 0.015 0.89 86 1.0
model 3 3 × 10−4 195 3 1 0.0067 9 0.019 0.92 67 0.6
model 4 3 × 10−4 243 2 1 0.0085 9 0.024 0.93 56 1.7
model 5 3 × 10−4 285 2 1 0.0092 9 0.026 0.91 61 2.2
model 6 3 × 10−4 375 3 1 0.0110 10 0.035 0.80 110 5.7
model 7 3 × 10−4 330 9 3 0.0094 13 0.039 0.63 283 11.9
model 8 3 × 10−4 330 3 3 0.0094 13 0.039 0.86 95 2.7
model 9 3 × 10−4 375 1.5 1 0.0120 11 0.042 0.92 60 2.0
model 10 3 × 10−4 630 3 1 0.0200 12 0.076 0.65 200 6.8
model 11 1 × 10−4 1117 1.5 1 0.0128 19 0.078 0.88 129 2.3
model 12 1 × 10−3 400 10 1 0.0352 8 0.090 0.42 352 20.0
model 13 3 × 10−4 810 5 1 0.0244 12 0.093 0.57 406 18.0
model 14 3 × 10−4 750 3 1 0.0257 13 0.106 0.62 257 5.5

Kinematically unstable models

model 15 3 × 10−4 810 3 1 0.0276 13 0.114 0.61 (0.16) 276 4.7
model 16 1 × 10−3 450 10 1 0.0406 9 0.116 0.37 406 19.0
model 17 1 × 10−3 500 10 1 0.0442 9 0.127 0.17 442 10.5
model 18 3 × 10−4 1050 3 1 0.0340 13 0.141 0.23 341 2.2
model 19 3 × 10−4 1250 3 0.3 0.0479 10 0.153 0.14 479 7
model 20 3 × 10−4 2970 1 0.3 0.1154 10 0.367 0.16 385 0.4

Note: All kinematically unstable models exhibit dipole reversals whereas all kinematically stable models do not.

C© 2010 The Authors, GJI, 182, 675–681

Journal compilation C© 2010 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/182/2/675/569574 by guest on 11 M

arch 2022



Saturation of geodynamo models 677

Here, l̄/π is the mean half wavelength of the flow and l̄ is the mean
harmonic degree derived from the kinetic energy spectrum,

l̄ =
∑

l

l
〈ul · ul〉
〈u · u〉 . (3)

The brackets in eq. (3) denote an average over time and radii, ul

stands for the velocity component of harmonic degree l.

3 R E S U LT S

Within our 20 examples (see Table 1) we find five dynamos which
are kinematically unstable and 14 which are kinematically stable.
One example (model 15) belongs to both classes; although in gen-
eral unstable, the tracer field does not grow within certain periods
of several magnetic diffusion times. Note that all dynamos consid-
ered here operate in the so-called strong field regime, that is, the
Elsasser number is of order unity or larger. The equatorial symme-
try is broken for most of the kinematically stable and all unstable
models. Except for model 1, the quasi-steady benchmark dynamo
(Christensen et al. 2001), all models exhibit highly time-dependent
or even chaotic behaviour. This is demonstrated in Fig. 1 for model 2,
the next simplest example to the benchmark dynamo. This dynamo
appears to be chaotic, and as an experiment we performed two
simulations starting from almost identical initial conditions (the
difference between two initial conditions is a small deflection of
the magnetic dipole axis in the second run). The evolution from
both initial conditions is shown in Fig. 1 where the magnetic energy
densities can be seen to diverge rapidly with time.

The regimes of kinematically stable and unstable dynamos can
be clearly distinguished by the modified Rossby number (see
Table 1), Rol. Models with low Rossby number are kinematically
stable whereas the tracer field grows exponentially for dynamos
in the high Rossby number regime. The transition between both
regimes occurs at Rol ≈ 0.12. There are two further properties re-
lated to both regimes which deserve mentioning. All dynamos we
found to be kinematically stable are dipolar and do not show any po-
larity reversals, while dynamos in the second regime are multipolar
and do reverse. This is also illustrated in Fig. 2. Here, the relative
dipole field strength, fdip, on the outer shell boundary is plotted
versus the modified Rossby number, Rol; fdip is defined as the
time-average ratio of the dipole field strength to the field strength
in harmonic degrees 1–12. Both regimes visible in Fig. 2 coin-
cide with those identified earlier by Christensen & Aubert (2006).

Figure 1. Magnetic energy densities for two computational runs of model
2. Both runs have been started from very similar initial conditions which
differ only by a small deflection (dashed line) of the magnetic dipole axis.
Nevertheless, both models evolve differently which demonstrates the chaotic
character of these dynamos.

Figure 2. Relative dipole field strength f dip versus local Rossby number
Rol . Stars denote non-reversing dynamos which are kinematically stable,
whereas triangles represent dynamos which do reverse and are kinematically
unstable. Both regimes coincide with the dipolar and multipolar dynamo
regimes identified by Christensen & Aubert (2006). There is one example
(diamonds), model 15, which undergoes a transition between both regimes.
Note that this example has a considerably lower relative dipole field strength
in its second state.

Figure 3. Ratio of the magnetic energy densities for the tracer field, EmagTr ,
and the actual magnetic field, Emag, versus time for model 8 (dashed line)
and model 19 (solid line).

Fig. 3 compares the magnetic energy densities of the tracer field for
a kinematically stable (model 8) and a kinematically unstable dy-
namo (model 19), varying with time. Although the tracer field grows
rapidly after an initial transient phase in the latter case, it reaches
a state aligned with the actual field if the dynamo is kinematically
stable. Then, the energy density of the tracer field normalized with
the energy density of the actual self-consistent field approaches a
constant level which depends only on the initial conditions. This
is also confirmed by looking at the corresponding field configura-
tions. Fig. 4 displays the radial component of the tracer field for
model 8, which differs from the actual field only by an overall scale
factor. Therefore, only one contour plot is given. On the other hand,
although they have similar spatial scales, both field components are
clearly not aligned but very different for model 19 (see Fig. 5).

Model 15 is in general not only kinematically unstable but also
exhibits periods of several magnetic diffusion times in which the
tracer field stays stable. According to its local Rossby number,
Rol = 0.114, it is located close to the boundary between both
dynamo regimes and undergoes transitions from one to the other.

We could detect transitions from a kinematically stable to an
unstable state (see Fig. 6) and vice versa. As long as the tracer
field remains stable, the tilt angle of the dipole axis fluctuates about
the actual polarity state. However, when the tracer field becomes
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678 M. Schrinner et al.

Figure 4. Snapshot of the radial component of the actual magnetic field
and the tracer field for model 8 taken some time after an initial transition
period at r = 0.62ro where ro is the outer shell radius. Note that the tracer
field is completely aligned with the actual magnetic field. Both components
are normalized due to their maxima and minima. Therefore the greyscale
coding varies from −1, white, to +1, black, and the contour lines correspond
to ±0.1, ±0.3, ±0.5, ±0.7 and ±0.9. Following contour plots are presented
in the same style.

Figure 5. Snapshots of the radial component of the actual magnetic field
(top panel) and the tracer field (bottom panel) for model 19 at r = 0.62ro.
Contour lines: see Fig. 4.

unstable, also the polarity of the dipole field starts to reverse. This
coincidence is observed for transitions in both directions, that is, the
tilt angle of the dipole axis also stabilizes when model 15 becomes
intermittently stable. Although the magnetic field is quite dipolar
with fdip = 0.61 for periods in which the polarity and the tracer field
are stable, the relative dipole field strength decreases drastically to
fdip = 0.16 otherwise. The strong connection of field morphology,
time dependence and saturation is not only present separately in
several models but manifests itself in the time variation of a single
dynamo model, too.

4 D I S C U S S I O N

The existence of kinematically unstable dynamos was expected
(Tilgner & Brandenburg 2008; Cattaneo & Tobias 2009). The find-
ing of a class of kinematically stable but yet time-dependent or even

Figure 6. Tilt angle of the dipole axis for model 15 as a function of time
(solid line) and magnetic energy density of the tracer field normalized by
the magnetic energy density of the actual field, EmagTr /Emag (dashed line
which runs out of the figure at roughly 2.3 magnetic diffusion times). As
soon as the dynamo reverses it becomes kinematically unstable.

chaotic dynamos, however, needs some further explanation. The
lack of growing modes for these models already suggests that al-
most all field configurations for the tracer field are decaying, except
the one aligned with the actual, self-consistent field. However this
component of the tracer field is quenched by the saturated veloc-
ity field. Thus, the tracer field follows the actual field with time,
apart from a different, arbitrary amplitude due to the linearity of the
induction equation.

This interpretation is confirmed by looking at the spectrum of the
time and azimuthally averaged dynamo operator D,

Dbi = λi bi , (4)

with eigenmodes bi and eigenvalues λi. In this, the operator D is
defined as

Db = ∇ × (ū × b + α · b − β ∇b − η∇ × b). (5)

Note that D, also known as mean-field dynamo operator (Krause
& Rädler 1980), contains the mean velocity field ū as well as the
so-called mean-field coefficients α and β, which are tensors of
second and third rank, respectively. As noted by Hoyng (2009),
these quantities appear inevitably as a consequence of averaging.
They depend on the velocity field and the magnetic diffusivity of
the considered dynamo model only and have been determined with
the help of the test field method (Schrinner et al. 2005, 2007). A
detailed discussion on the applicability of mean-field concepts to
direct numerical simulations of rotating magnetoconvection and a
(quasi-)stationary dynamo is provided by Schrinner et al. (2007). A
similar discussion for time-dependent dynamos is not given here but
will be subject of a forthcoming paper. A recent review on the test-
field method and its applications has been given by Brandenburg
(2009).

The operator D describes the time-averaged dynamo action of
a given flow, but there is no direct a priori relation to the time-
dependent actual magnetic field. However, for the class of statisti-
cally steady and kinematically stable dynamos considered here, it
turns out that the fundamental eigenmode of D represents the actual
magnetic field very well.

Eigenvalues and eigenfunctions of D have been computed as re-
ported by Schrinner et al. (2010) for models 2–4. In Fig. 7 the radial
components of the first three (dipolar) eigenmodes for model 2,
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Saturation of geodynamo models 679

Figure 7. Radial components of the first three dipolar eigenmodes bi, i =
1 . . . 3 of the time-averaged dynamo operator for model 2. The corresponding
growth rates are λ1 = −3.87, λ2 = −34.83 and λ3 = −42.45 in units of
η/L2. Note the huge drop in growth rates after λ1.

bi, are displayed. All modes decay exponentially; this had to be
expected for kinematically stable dynamos (see also the discussion
in Hoyng 2009). However, the decay rates are given here in units
of η/L2, in which the molecular diffusivity η is about 20 times
smaller than the turbulent one inferred from components of β (see
Appendix A). Thus, 1/|λ1| ≈ 1/4 is much larger than one effective
diffusion time and the first, fundamental, eigenmode is indeed close
to its critical state. Due to a noticeable gap in decay rates after the
fundamental mode, |λ1| � |λ2|, this is not equally true for the sub-
sequent eigenmodes. They are much more diffusive, thus leaving
the fundamental mode as the preferred eigenstate of the dynamo.
Hence, the time dependence of model 2 may be understood in parts
as a fluctuation of the fundamental mode about its critical state.

The qualitative picture for model 3 and model 4 is the same. The
decay rates of their fundamental modes, λ1 = 1.4 η/L2 for model
3 and λ1 = −0.66 η/L2 for model 4, are close to marginal stability
and all their overtones are highly diffusive.

The dominance of the first eigenstate is also revealed by a de-
composition of the actual, time-dependent magnetic field of model
2 in a set of eigenmodes bi of D,

B(r, t) =
∑

i

ai (t)bi (r). (6)

The time-dependent and in general complex mode coefficients ai (t)
have been computed as

ai (t) =
∫

V
ĵ

i
(r) · A(r, t) d3r, (7)

in which ĵ
i

denotes the adjoint of the current j i = ∇ × bi, and A
is the vector potential of the actual, time-dependent field, B = ∇ ×
A. The integration is carried out over the whole fluid domain V . For
a derivation of eq. (7) we refer to Hoyng (2009) and Schrinner et al.
(2010).

In Fig. 8 the energy contribution of the fundamental eigenmode
a1(t) b1(r) is compared with the total axisymmetric magnetic en-
ergy density. The fundamental eigenmode contributes at least 75–
85 per cent to the total amount, revealing again its permanent dom-
inance throughout the simulation.

The equilibration process for model 2 has been studied earlier
by Olson et al. (1999), too. They found that in regions with high
magnetic energy density, the Lorentz force simply reduces locally
the flow velocity without changing the overall pattern of convection.
They investigated possible changes in the velocity, if the magnetic
field and thus the Lorentz force is arbitrarily reduced at some in-
stant in time and then recovers towards its equilibration value. The
kinematic effects relevant for dynamo action identified by them,

Figure 8. Axisymmetric magnetic energy density as an outcome of the di-
rect numerical simulation (solid line) and energy contribution of the first,
fundamental eigenmode (dashed line) varying with time. The fundamen-
tal eigenmode a1(t) b1(r) already contributes 75–85 per cent to the total
amount and its time variability reflects much of the time dependence of the
axisymmetric magnetic field.

an α-effect from helicity in the columnar convection and an anti-ω
effect from the mean azimuthal flow, were present in the same pro-
portions close and far from equilibrium conditions of the magnetic
field. Their finding is supported by the study presented here. Sat-
uration may reduce the amplitudes of α and thus the growth rates
of the eigenstates of the related dynamo operator, however does
not change their relative order. Therefore, the preferred eigenstate
stays the same throughout the simulation. This is clear as there is
a large gap between the growth rate of the fundamental eigenmode
of the time-averaged dynamo operator D and all other eigenmodes,
as mentioned earlier.

So far we only analysed models 2–4 in detail. Here the veloc-
ity field is nearly symmetric with respect to the equatorial plane
and the magnetic field belongs to the dipolar family. Contributions
of quadrupolar type are not present. In a more complicated exam-
ple with broken equatorial symmetry, we expect the fundamental
quadrupolar mode to be excited too. Although its growth rate will be
smaller than the one for the fundamental dipolar mode and probably
subcritical, it is typically of the same order. In such a case a clear
dominance of only one fundamental dipolar mode can no longer be
deduced from the spectrum of the time-averaged dynamo operator
D, and a second, quadrupolar mode may become important.

For the models in the high Rossby number regime the findings
of Cattaneo & Tobias (2009) apply. These models act kinemati-
cally as dynamos and the dynamo operator D possesses in general
growing eigenmodes. A kinematic treatment of these dynamos does
not reveal their actual time dependence. However, the results pre-
sented here suggest that the regime of dipolar dynamos identified
by Christensen & Aubert (2006) is kinematically stable. For these
models, the quenching of any magnetic field is fully captured in
the velocity field and a kinematic treatment may indeed reproduce
their actual time dependence. Models of this dynamic regime are
applicable to planetary dynamos and probably also to dynamos of
fast rotating stars (Christensen et al. 2009a), thus covering a large
range of magnetic Reynolds numbers. Hence, an attempt to explain
the kinematic stability of these models due to a magnetic Reynolds
number which is close to its critical value fails. We emphasize
again that the transition between both regimes is governed by the
local Rossby number Rol and not by Rm, as can be already seen
from Table 1. In the low Rossby number regime, the rotational
constraint leads to columnar structured flows, dipolar magnetic
fields and finally to a rather simple time dependence, although these
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680 M. Schrinner et al.

models operate in general far away from the dynamo threshold at
Rmc ≈ 40.

Dipolar dynamo models which show occasional reversals are
located close to the regime boundary in Fig. 2, with Rol ≤ 0.12.
They resemble the geodynamo in many respects and are therefore
of particular interest. Explaining polarity reversals of an otherwise
pre-dominantly dipolar field, Olson & Christensen (2006) suggest
that the geodynamo crosses the boundary towards the multipolar
dynamo regime from time to time. With the help of scaling laws
derived from numerical models, they indeed succeed in predicting
a local Rossby number of Rol ≈ 0.09 for the Earth’s core. Adopting
this viewpoint we link the occurrence of geomagnetic reversals to
a change in the saturation process. The quenching of a previously
dipolar field may result in the preference of different, higher order
modes if inertia gains importance in comparison to the Coriolis
force, and the dynamo undergoes an excursion into the kinematically
unstable regime. Subsequently the dipole field is built up again, but
it may have either polarity. A computation of eigenmodes and a
mode decomposition similar to (6) for model 15 seems to be a
promising approach to confirm this picture. Note that from the
viewpoint we take here, the existence of dipolar, stable periods for
model 15 demands more explanation than the fact that it reverses.

However, whether inertia is indeed as important for the geo-
dynamo as it is for present dynamo models is under debate (e.g.
Sreenivasan & Jones 2006). In fact, the assumption of Rol ≈ 0.09
for the Earth’s core leads to a characteristic length scale of only a
few hundred metres, on which the magnetic field would be highly
diffusive (Christensen et al. 2009b).

5 C O N C LU S I O N S

Fast rotating dynamos, characterized by a low Rossby number,
are kinematically stable. Within this regime, a saturated velocity
field taken from dynamo simulations does not lead to exponential
growth of the magnetic field in a corresponding kinematic calcu-
lation. Hence, saturation may be understood as a quality of the
velocity field, only. For these dynamos, saturation results in the un-
changed preference of a fundamental eigenstate, whereas different
eigenmodes may supersede each other if inertia gains importance.
This difference in the saturation process involves differences in the
morphology of the magnetic field and its time dependence. Kine-
matically stable dynamos are dipolar and exhibit a rather simple
time variability, which may be interpreted as the fluctuation of the
fundamental mode about its critical state. Kinematically unstable
dynamos are much more complicated. The alternating growth of
various modes leads to a multipolar field morphology and polarity
reversals of the dipole field appear as a natural consequence.
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A P P E N D I X A : D I F F U S I O N T E N S O R
F O R M O D E L 2

In Fig. A1, six independent components of the diffusion tensor are
displayed which have been used to compute the eigenfunctions of

Figure A1. Diffusion tensor for model 2 in units of η. The contour plots
are again normalized due to the maxima of their absolute values. Maxima
and minima are written next to each plot. Contour lines: see Fig. 4.
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model 2. They are given by

D̃κλ = η + β̂κλ. (A1)

The symmetric tensor of second rank, β̂, is usually interpreted as a
term which accounts for turbulent diffusion. It is fully determined
by linear combinations of components of the third rank tensor β

introduced in (5) and dominates the molecular diffusion in most
examples. For further details we refer to Schrinner et al. (2007).
The magnitudes of D̃ for model 2 are up to 20 times larger than
the molecular diffusivity η. Thus, we expect the decay time of the
fundamental mode, 1/|λ1| ≈ 1/4 L2/η, to be much larger than one
effective diffusion time and the fundamental mode to be close to
criticality.
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