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S U M M A R Y
We investigate the influence of mantle dynamics on low degree deformations of the Earth at
geological timescale. We first compute surface deformations, and discuss the analytical form
of the tangential surface displacement induced by internal loads, in a reference frame related
to the centre of mass of the planet. We use the theoretical Love numbers formalism since the
Earth has a viscoelastic behaviour at geological timescale.

Then we quantify degree-one and degree-two deformations induced by upwelling domes
and subducted plates sinking into the mantle. We use a simple model in which the slabs are
modelled as blobs diving vertically through the mantle, and in which the domes are assumed
to be stable over the last 120 Ma. Their location is modelled from seismic tomography within
the lower mantle. The temporal evolutions of the J 2 gravitational potential coefficient and of
the geocentre motion are plotted since 120 Ma.

We find that:

(1) The mantle density heterogeneities within the mantle can explain the present-day non-
hydrostatic flattening of the Earth. However they vary at a too slow timescale to significantly
perturb the J̇2 coefficient.

(2) Although there is a significant discrepancy of about a few hundred metres between the
centre of figure and the centre of mass of the Earth, the secular variation of the geocentre
motion is one order of magnitude smaller than the one induced by surface loads.

Key words: Time variable gravity; Global change from geodesy; Dynamics of lithosphere
and mantle.

1 I N T RO D U C T I O N

The recent space geodesy measurements [Doppler Orbitography of
Radiopositioning Integrated by Satellite (DORIS), Global Position-
ing System (GPS) and Satellite Laser Ranging (SLR)] give the varia-
tions of centre of figure of the outer surface of the Earth with respect
to a fixed reference frame, the so-called geocentre (Blewith 2003).
These observations (since 1993) have annual and semi-annual com-
ponents with amplitudes ∼10 mm. Since very recent time, one
observed values of the time-derivative of the geocentre coordinates.
The up-to-date realization of the International Terrestrial Reference
System (ITRF2005) presents a particularly large translation rate of
1.8 mm yr−1 on the Z-component with respect to the ITRF2000. It is
not sure that such rate can be interpreted as a secular motion of the
geocentre: as a matter of fact, it may probably be linked to the in-
homogeneous shape of the station measurement network and other
technique systematic errors (Collilieux et al. 2009). It nevertheless
allows to quantify the order of magnitude of the time-derivative of
the geocentre coordinates: less than a few millimetre per year.

The geocentre motion, defined as the figure centre of the de-
formed outer surface, is related to spherical harmonics degree 1 de-
formations of the Earth. Some geophysical studies have computed
the displacement vector between the centre of figure of the outer
deformed surface of the Earth and the centre of mass induced by
the atmospheric loading and the ground water storage (Dong et al.
1997; Greff-Lefftz & Legros 1997; Chen et al. 1999) in order to
explain its annual and semi-annual variations. At decadal timescale,
the magnetic pressure within the fluid core acting at the CMB de-
forms the mantle and involves weak perturbation of the geocentre
motion, at a level of 0.1 mm yr−1 (Greff-Lefftz & Legros 2007).
At secular timescale, the geocentre motion induced by postglacial
rebound has been shown to be at the level of −0.4 to 0.2 mm yr−1

(Greff-Lefftz 2000). A recent study (Métivier et al. 2009) found that
the recent climate changes and the associated ice melting and sea
level rise can contribute, essentially in the Z coordinates, to a rate of
secular geocentre motion of about a few tenths of a millimetres per
year. Geocentre motions are due to the combined effect of mass re-
distributions within the planet and changes in the Earth’s shape. For
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these reasons, at secular and geological timescales, the geocentre
position should be affected by the mantle dynamics, which generate
lateral variations of density within the Earth, and motions of the sur-
face plates and continents, which change the Earth’s shape. These
contributions on the geocentre motion are today poorly known.

According to space geodetic observations over the past 25 yr, the
zonal degree 2 coefficient of the Earth’s gravitational potential-J 2-
related to the Earth’s dynamic oblateness, has undergone a secular
decrease with superimposed decadal variations (Cox & Chao 2002)
and, with the well-known superimposed seasonal variation induced
by the mass-redistribution within the oceans and the atmosphere.
Several mechanisms which could explain the decadal observations
have been discussed: the melting of glaciers or polar ice caps (Cox &
Chao 2002; Dickey et al. 2002), mass moving in the fluid outer core
(Greff-Lefftz et al. 2004) or in oceans (Cazenave & Nerem 2002).

The secular decrease is usually associated with the post glacial
rebound and is used in a non-linear inverse problem approach to give
information about the internal viscoelastic structure of the planet
(Peltier 1985; Mitrovica & Peltier 1991, 1993; Bills & James 1997;
Vermeersen et al. 1998) and also on the history of the deglaciation
(Tushingham & Peltier 1991). These approaches assumed that the
secular variation of the gravitational field is only induced by the last
deglaciation. Forte & Mitrovica (1996) performed joint inversions
for mantle viscosity of geophysical observables associated with both
mantle convection and glacial isostatic adjustment (GIA) and found
that both data sets may be reconciled using a single profile of mantle
viscosity.

The geological evolution of the Earth’s rotational axis is most
likely controlled by internal mass redistribution within the mantle
(e.g. Richards et al. 1997; Steinberger & O’Connell 1997, 2002).
Palaeomagnetic evidence from recent Earth history (Besse & Cour-
tillot 2002) suggests that this motion has been small with a rate
about 0.1◦–0.4◦ per Myrs, that is to say about a few cm yr−1. Con-
sequently, changes in mantle density heterogeneities induce a polar
wander at geological timescale with the same order of magnitude
than the one induced by the last deglaciation at secular timescale.

The time-variable mantle density heterogeneities also affect
global geodetic observables such as the time derivative of the de-
gree 2 coefficient of the gravitational field or the geocentre motion.
How mantle density heterogeneities do affect the present-day secu-
lar variation of the Earth’s geocentre and J 2 coefficient is the aim
of this paper.

In Section 2, we review the viscoelasto-gravitational theory and
we present the analytical form of the Love numbers related to surface
displacement induced by internal loads. In Section 3, we compute
the present-day geoid, the J 2 coefficient and its time-derivative, the
present-day surface topography and the geocentre variation for a
simple model of time-dependent mass anomalies within the mantle.
The values of these parameters and their time-derivatives produce
independent pieces of information which in some cases allow to
separate the contributions induced by surface loads and the ones
induced by internal loads. The effects of plate tectonics are also
discussed. The conclusions are presented in Section 4.

2 V I S C O E L A S T I C L OV E N U M B E R S
A N D I N T E R NA L L OA D S

In this part, we review the viscoelasto-gravitational theory we use
to compute the deformations induced by internal loads varying at
geological timescale.

2.1 Equations

The equations governing the elastic deformations within a hydro-
statically pre-stressed planet are the momentum equation, the con-
servation of mass and the Poisson equation. A rheological law is
necessary to relate the stress to the strain. In the classical elastograv-
itational theory, in a frame related to the centre of mass of the Earth,
the displacement vector field �u and the traction �T are expanded in
spherical spheroidal vector of degree n and order m, with the use of
six radial function yi(r ) (Alterman et al. 1959).

�u =
∞∑

n=1

n∑
m=0

y1n(r )Y m
n (θ, ϕ)

�r
r

+ r y3n(r ) �∇Y m
n (θ, ϕ) (1)

�T =
∞∑

n=1

n∑
m=0

y2n(r )Y m
n (θ, ϕ)

�r
r

+ r y4n(r ) �∇Y m
n (θ, ϕ), (2)

where r is the radius. We note for the potential U =∑∞
n=1

∑n
m=0 y5n(r )Y m

n (θ, ϕ) and introduce for the radial derivative
of the potential (Longman 1962) a function defined by

y6n(r ) = dy5n(r )

dr
− 4πGρy1n(r ), (3)

where Y m
n are the spherical harmonics, θ the colatitude and ϕ the

longitude. The spherical coordinates are defined in a geographical
reference frame centred on the centre of mass of the planet and in
which the x (respectively the y) axis is the intersection between the
equatorial plane and the Greenwich meridian (respectively the 90◦E
meridian) and the z-axis is the axis perpendicular to the equatorial
plane.

For each degree n, the elastogravitational system can be then
written, for n ≥ 1 as a first order differential equations in a form
given by Alterman et al. (1959)

dyin(r )

dr
= An

i j y jn(r ), (4)

where An
ij is a 6 × 6 matrix whose elements are function of the

compressibility, the rigidity μ(r), the density ρ(r ) and the gravity
g(r). We assume that the deformations are static, that is to say we
neglect the inertial acceleration in the momentum equation.

Our earth model consists of N homogeneous incompressible lay-
ers: a lithosphere (layer 1), a stratified mantle (layer 2 to N − 2), an
inviscid fluid core (layer N − 1) and an inner core (layer N).

The analytical solutions of the elastogravitational system are de-
scribed in the Appendix for such an earth model, when the excitation
source is a surface load or an internal load.

2.2 Viscoelastic mantle and lithosphere

At secular and geological timescales, we have to take into account
the viscous response of the Earth. To do that we have chosen as
rheological law, a linear viscoelastic Maxwell model of rheology.
In Laplace domain, the stress–strain relation for an incompressible
Maxwell body is the Hookean law, but the rigidity is function of the
frequency s:

μi (s) = μi
el

s

s + μi
el

νi

,

where ν i is the viscosity of the layer i and μi
el its elastic shear

modulus.
In Laplace domain, the viscoelastic equations and the bound-

ary conditions are the same than those for an elastic body with
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Table 1. Geometrical and physical parameters of our five-layered earth model
(PREM-averaged values).

Layer (km) Density (kg m−3) Rigidity (Pa) Viscosity (Pa s)

6271 < r < 6371 4414 1.66 × 1011 11 × 1021

5701 < r < 6271 4414 1.66 × 1011 1 × 1021

3480 < r < 5701 4414 1.66 × 1011 V R × 1021

1225.5 < r < 3480 12420 0 0
0 < r < 1225.5 12420 1.64 × 1011 1 × 1013

Note: VR is the viscosity ratio between lower and upper mantle.

the same geometry. Consequently, we may use the correspondence
principle: we solve the elastic problem for different frequencies in
order to build the viscoelastic solutions (Peltier 1974). We compute
the determinant of the viscoelasto-gravitational system of boundary
conditions, and we find a frequency dependent polynomial whose
zeros are called relaxation modes. For the deformation of degree
n > 1, it is well known that these relaxation modes are generated
at each interface by the discontinuity of physical parameters. For
example, for a five layered model consisting of a viscoelastic litho-
sphere, a viscoelastic upper and lower mantle (we assume that the
lithosphere and the whole mantle have the same density ρm), an in-
viscid fluid core (with a density ρc) and a viscoelastic inner core, we
have seven relaxation modes (Peltier 1974): Mo due to the surface
discontinuity at r = a, C and G because of the density discontinuity
between the fluid core and the lower mantle and between the fluid
core and the inner core, L1 and L2 due to the discontinuity in the
Maxwell time between the lithosphere and the upper mantle, T 1 and
T 2 due to a jump in the Maxwell time between the upper and the
lower mantle and called transition modes because they relax rapidly
and are weakly excited.

For the degree one, the initial system of boundary conditions
degenerates, and consequently the number of modes is different.
We find that the Mo mode disappears and that there is only one
transition mode instead of two at each interface with a viscosity or
rigidity jump (Greff-Lefftz & Legros 1997).

The geometrical and physical parameters of our five-layered earth
model are given in the Table 1 where VR is the viscosity ratio be-
tween lower and upper mantle. As done by Lithgow-Bertelloni &
Richards (1998), we introduce an effective viscosity for the litho-
sphere of about 11 × 1021 Pa s in order to take into account plate
tectonics.

We plot, on Fig. 1, the viscoelastic relaxation times for the degree
n = 1 (left-hand side) and the degree n = 2 (right-hand side) in Kyr
as a function of the viscosity ratio VR ranging from 5 to 100.

Note that the transition times (related to the viscosity contrast
between upper mantle and lithosphere and to viscosity contrast
between lower and upper mantle) do not depend on VR, for V R >

10, whereas the relaxation time associated with the mode C, for n =
1, or with the modes Mo and C, for n = 2, strongly increases with VR.
The order of magnitude of these relaxation times are smaller than
100 Kyr, whatever VR, that is to say are small in comparison with
the timescale of the mantle convection (about the million years).

2.3 Viscoelastic Love numbers

The solutions of the degree n viscoelasto-gravitational deformations
are usually written using viscoelastic degree n Love numbers, noted
kn

′(s, ro) for the mass redistribution potential, hn
′(s, ro) for the radial

displacement or ln ′(s, ro) for the tangential displacement. For surface
(Se) or internal (Sint) loading at radius ro, the gravitational potential
and the radial and tangential displacements may be written, at the
Earth’s surface (r = a).

(i) In the Laplace transform domain

y5(a, s) = [1 + k ′
n(s)]Se(s) +

[(ro

a

)n+1
+ k ′

n(s, ro)

]
Sint(s, ro)

(5)

y1(a, s) = h′
n(s)

Se(s)

go
+ h′

n(s, ro)
Sint(s, ro)

go
(6)

y3(a, s) = l ′
n(s)

Se(s)

go
+ l ′

n(s, ro)
Sint(s, ro)

go
. (7)
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Figure 1. Viscoelastic relaxation times for the degree n = 1 (left-hand panel) and the degree n = 2 (right-hand panel) in Kyr as a function of a viscosity ratio
VR ranging from 5 up to 100. Circle symbol: transition times associated with the viscosity jump between lower and upper mantle. Square symbol: transition
times associated with the viscosity jump between upper mantle and lithosphere. Triangle up symbol: time associated with C mode induced by density jump at
the CMB. Star: time associated with Mo mode induced by density jump at the surface.
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(ii) In the temporal domain

y5(a, t) = [δ(t) + k ′
n(t)] ∗ Se(t)

+
[(

ro
a

)n+1
δ(t) + k ′

n(t, ro)
]

∗ Sint(t, ro)
(8)

y1(a, t) = h′
n(t) ∗ Se(t)

go
+ h′

n(t, ro) ∗ Sint(t, ro)

go
(9)

y3(a, s) = l ′
n(t) ∗ Se(t)

go
+ l ′

n(t, ro) ∗ Sint(t, ro)

go
, (10)

where ∗ denotes the temporal convolution, that-is-to-say the vis-
cous memory of the planet, and δ(t) is the Dirac function, which
expresses the instantaneous deformation induced by the source. go

is the surface gravity.

2.3.1 Surface load viscoelastic Love numbers

These Love numbers have already been investigated for surface
loading. For a Maxwell model of rheology, Peltier (1974) (see also
Spada et al. 1990) has shown that the viscoelastic Love numbers
have the following form, whatever the degree n, where the subscript
n has been omitted for simplicity

h′(s) = h′e +
M∑

j=1

h jτ j

1 + sτ j
or h′(t) = h′eδ(t) +

M∑
j=1

h j e
−t/τ j H (t)

l ′(s) = l ′e +
M∑

j=1

l jτ j

1 + sτ j
or l ′(t) = l ′eδ(t) +

M∑
j=1

l j e
−t/τ j H (t)

k ′(s) = k ′e +
M∑

j=1

k jτ j

1 + sτ j
or k ′(t) = k ′eδ(t) +

M∑
j=1

k j e
−t/τ j H (t),

where H(t) is the Heaviside distribution.
The first term in the right member h′e is the instantaneous elastic

Love number, τ j and hj are the relaxation times and residues of the
M modes of the earth model. hj depend on the excitation sources.

For the degree one, the form is conserved and only the number
of relaxation modes changes.

2.3.2 Internal load viscoelastic Love numbers

Analytical form

For internal load, we have analytically computed the frequential
form of the Love numbers, solving the viscoelasto-gravitational set
of boundary conditions described in the Appendix, using the Maple
software package.

Note that in the fluid limit (for a Maxwell model of rheology,
the fluid limit s = 0 corresponds to an inviscid fluid mantle), an
internal load in an homogeneous mantle is not stable (because there
is no more viscous stress, see boundary condition in y2 at the
radius ro) and that the linear theory of the viscoelasto-gravitational
deformation becomes not valid. Nevertheless, we can investigate
the viscous fluid limit, that is to say the deformation remaining after
viscoelastic relaxation, which is equivalent to a Newtonian viscous
limit.

We find that, in the Laplace domain, the form of the viscoelas-
tic Love numbers associated with an internal load located at the

radius ro is

h′(s, ro) = h′e(ro) +
M∑

j=1

h j (ro)τ j

1 + sτ j

l ′(s, ro) = l ′e(ro) + l0(ro)

s
+

M∑
j=1

l j (ro)τ j

1 + sτ j

k ′(s, ro) = k ′e(ro) +
M∑

j=1

k j (ro)τ j

1 + sτ j
.

Note that there is an additional term in 1
s for the viscoelastic tangen-

tial surface displacement, l0(ro), which vanishes for loads located
at the core–mantle boundary (CMB) and at the surface. This term
means that if the mantle is an inviscid fluid, the tangential displace-
ment and stress induced by loads within the mantle are not defined.
This term does no appear for the radial displacement: in the fluid
limit, the radial problem is well defined and we obtain that the form
is the equipotential within the mantle. The term in 1

s does not also
appear in the k ′(s, ro) Love number, because this last one is re-
lated to the mass redistribution potential and consequently for an
incompressible Earth depends only on the radial displacements at
interfaces with density jumps (in our model at the CMB and at the
surface).

If the mantle is assumed to be rigid, the viscoelastic Love numbers
will vanish excepted for the degree n = 1, for which we have

(i) k ′
1(s, ro) = −( ro

a )2 because of the conservation of the centre
of mass ([y5(a, s) = 0])

(ii) h′
1(s, ro) = l ′

1(s, ro) = −( ro
a )2, because the rigid translation

is a solution of the viscoelasto-gravitational set of eqs (A2) for the
degree n = 1 (see the term in Ci

4 in the propagators of y1(r ) and
y3(r ) in the Appendix).

At the timescale of the mantle convection we have sτ j � 1 and
consequently we can introduce a quasi-fluid approximation for the
Love numbers

h′(s, ro) � h′e(ro) +
M∑

j=1

h j (ro)τ j

l ′(s, ro) � l ′e(ro) + l0(ro)

s
+

M∑
j=1

l j (ro)τ j

k ′(s, ro) � k ′e(ro) +
M∑

j=1

k j (ro)τ j .

These frequential forms are valid, whatever the degree n of the Love
numbers.

Degree one and two Love numbers

In this part, we investigate in details the degree 1 and degree 2
viscoelastic internal loading Love numbers.

We plot on the Fig. 2 the three kernels for the surface radial
displacement as a function of the radius of the load ro, for the
degree n = 1 (left-hand side) and the degree n = 2 (right-hand
side), for our five-layers earth’s model.

(i) Rigid Love number h ′R
1 (ro) = −( ro

a )2 for n = 1 and
h′R

2 (ro) = 0 for n = 2.

(ii) Elastic Love number h′e (ro).
(iii) Fluid Love number h′e(ro) + ∑M

j=1 h j (ro)τ j .
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Figure 2. Kernels for the surface radial displacement, for the degree n =
1 (left-hand panel) and the degree n = 2 (right-hand panel): elastic Love
number (solid line) and fluid Love number (dashed line).

Note that for the degree 1, the rigid and the elastic radial dis-
placement are quasi identical. It can be explained by looking at
the analytical form of the discrepancy between h′e(ro) and h′R

1 (ro),
which is proportional to the density contrast between mantle and
fluid core and is very small with respect to h′R

1 (ro). The rigid trans-
lation is the dominant term in the displacement of the planet for
n = 1.

The fluid Love numbers differ from the elastic ones essentially
when the load is located at the surface or at the CMB where it is
isostatically compensated.

The elastic and fluid Love numbers are negative whatever the
depth of the internal load. It means that a positive mass anomaly
within the mantle will induce a negative surface topography.

We plot now, on Fig. 3, the four kernels for the surface tangential
displacement, for the degree n = 1 (left-hand side) and the degree
n = 2 (right-hand side): l ′R(ro), l ′e(ro), l ′e(ro) + ∑M

j=1 l j (ro)τ j and
l0(ro) in Myr−1, as a function of the radius of the load ro, assuming
a viscosity ratio V R = 40.

Similarly to radial displacements, rigid and elastic degree-one
tangential displacements are quasi identical, because the global dis-
placement of the planet is dominated by a rigid translation. The
dimension of l0(ro) is [T ]−1, where T is time dimension. For a char-
acteristic time of mantle dynamics t  25 000 yr, we have l0(ro) t 
1, that is to say very large in comparison with the rigid or elastic Love
numbers. This is the limit of our approach. We cannot compute tan-
gential displacement using our viscoelasto-gravitational approach

for timescale larger than 25 000 yr, because the shear modulus van-
ishes and consequently the tangential stress and displacement within
the mantle are not defined. We have tested the influence of VR on
this ‘limit’: for plausible value of VR ranging from 10 to 100, the
maximum value of l0(ro) t (reached at the upper-lower mantle dis-
continuity) is between 35 and 50. Consequently, our approach is
valid for characteristic times smaller than 20 000 yr for low VR, or
29 000 yr for high VR.

2.3.3 Degree n viscous geoid and topography kernels

The Love number k ′(s, ro) is relative to the mass redistribution
potential. The surface degree n geoid induced by a degree n internal
load may be written as a sum of the direct gravitational effect of the
load + the viscoelastic mass redistribution potential

y5(a, s)

go
=

[(ro

a

)n+1
+ k ′(s, ro)

]
Sint(s, ro)

go
.

We define the viscous geoid kernel as the quantity [k ′e(ro) +∑M
j=1 k ′

j (ro)τ j + ( ro
a )n+1], function of ro the radius where is located

the load. This kernel is a good approximation when the time scale
of internal loads greatly exceeds the viscoelastic relaxation times
(t  τ j).

We plot on the Fig. 4 (left-hand panel) the geoid kernel for
various degree n = 2, 4, 8 and 12. For the degree n = 2, a positive
mass anomaly located in the upper part of the mantle will involve a
positive geoid whereas a positive mass anomaly in the lower mantle
will involve a negative geoid; the degree 2 geoid kernel changes its
sign at the depth 1200 km. The depth in which the geoid vanishes
depends on the degree n. The larger is n, the larger is the depth: for
n = 12 this depth is 2340 km.

These kernels are close to those computed in studies based
on the best fitting between the observed geoid and the one in-
duced by mantle density heterogeneities derived from tomogra-
phy and/or geodynamic models (e.g. Steinberger 2000; Marquart
et al. 2205). These studies assumed a Newtonian viscous stratified
mantle.

On the right-hand panel of the Fig. 4 is plotted the surface to-
pography kernel h′e(ro) + ∑M

j=1 h j (ro)τ j for various degree n = 2,
4, 8 and 12. This kernel is always negative such as a positive mass
anomaly in the mantle will induce a negative topography. Note that
the surface topography is essentially induced by mantle density in
the upper mantle.
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Figure 3. Kernels for the surface tangential displacement, for the degree n = 1 (left-hand panel) and the degree n = 2 (right-hand panel): elastic Love number
(solid line), fluid Love number (dashed line) and l0(ro) in Myr−1 in dot–dashed line. The y-axis is ro

a the normalized radius of the load.
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Figure 4. Geoid kernel and surface topography kernel for degree n = 1 (grey line), n = 2 (solid line), n = 4 (dotted line), n = 8 (dashed line) and n = 12
(dot–dashed line). The y-axis is ro the radius of the load.

For a surface load, we can analytically show that the fluid Love
number is

h′e(a) +
M∑

j=1

h j (a)τ j = −2n + 1

3

ρ̃

ρ(a)

which means that a surface mass density causes a large surface
displacement such as the mass is isostatically compensated. ρ̃ is the
mean density of the Earth as defined in the Appendix.

2.3.4 Viscoelastic Love numbers in temporal domain

To end this theoretical part, we write the viscoelastic Love numbers
in the temporal domain

h′(t, ro) = h′e(ro)δ(t) +
M∑

j=1

h j (ro)e−t/τ j H (t)

k ′(t, ro) = k ′e(ro)δ(t) +
M∑

j=1

k j (ro)e−t/τ j H (t)

l ′(t, ro) = l ′e(ro)δ(t) + l0(ro)H (t) +
M∑

j=1

l j (ro)e−t/τ j H (t).

3 G E O P H Y S I C A L A P P L I C AT I O N

In this part, we compute the surface gravitational potential (geoid
and J 2 coefficient), the surface topography and the geocentre motion
for a simple model of time-dependent mass anomalies within the
mantle.

3.1 Temporal evolution of the mantle mass anomalies
since 120 Ma

We first present our simple model for the large-scale pattern of
mantle dynamics. This model is described in details in Rouby et al.
(2010). From mantle density heterogeneities, the model may explain
the observed wander of the rotation axis since 120 Ma. In this
section, we just point out its main features.

3.1.1 Upwellings

Laboratory study (Davaille 1999) of thermochemical convection in
a fluid with stratified density and viscosity has shown that a ‘dom-
ing’ regime may be observed for a range of parameters plausible
for the Earth. In this regime, the domes oscillate vertically within
the mantle with very large periodicities ranging from some hundred
Myr up to 1 Gyr. Such domes could be responsible for the super-
swells observed at the Earth’s surface. From experimental study
as well as palaeomagnetic observations (Davaille et al. 2005), the
characteristic timescale of the doming regime seems larger than the
timescale of the subduction. Consequently, we have assumed that
the mass anomalies in the lower mantle associated with these large-
scale upwellings are constant with time since 120 Myr, and we have
modelled their spatial distribution from the present-day tomography
within the lower mantle, assuming a constant density contrast 	ρ =
−50 kg m−3 between the ‘hot’ domes and the surrounding mantle.

3.1.2 Downwellings

Subducted lithosphere is a major component of mantle density het-
erogeneity. We start with the model of mantle density heterogeneity
derived by Ricard et al. (1993). This model uses plate-motion recon-
struction under the assumption that subducted slabs sink vertically
into the mantle (Fig. 5). When the slab is in the upper mantle, its
diving velocity is its surface velocity. How such plates cross the
670 km discontinuity is not well known. In the model proposed by
Ricard et al. (1993) that we used, the velocity of the plates is as-
sumed to decrease by a factor F whereas the size (the thickness) of
the plates increases by the same factor F. They suggest that such a
factor may be written as the log of the viscosity ratio between lower
and upper mantle, that is to say for VR ranging from 10 up to 100
may vary from 2.5 up to 4.5. For V R = 40, the factor is about F =
4. The density contrast between the cold plates and the surrounding
mantle is assumed to remain constant with depth and equal to 80
kg m−3. The plate-motion reconstruction and details about the slabs
modelling are reviewed in (Lithgow-Bertelloni & Richards 1998).

Lithgow-Bertelloni & Richards (1998) modelled the temporal
evolution of the mantle density heterogeneities associated with
large-scale pattern of plate tectonic motions since 120 Ma, assuming
that the plates sink until the CMB. However, the tomographic im-
ages, inferred from seismology and from mineral physics, show that
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Upper Mantle

660 km

Lower Mantle
Vt=Vc/4

(CMB) 2890 km

Vc

Vc

Figure 5. Cartoon representing the construction of a density heterogeneity
model for the Earth based on subduction history from Lithgow-Bertelloni
& Richards (1998).

the subducted plates do not reach systematically the CMB (Fukao
et al. 2001; Ricard et al. 2005). We have thus also investigated the
influence of the depth down to which the plates present a signifi-
cant density contrast with respect to the surrounding mantle (Rouby
et al. 2010).

3.1.3 Our simple model

Our ‘preferred’ model of mantle density heterogeneities is the model
for which we obtain:

(1) A present-day heterogeneous structure of the man-
tle in good agreement with results obtained from seismic
tomography,

(2) The best variance reduction between the present-day com-
puted and observed geoid (for degree 2 up to 12).

For each test, the mantle mass anomalies have been expanded in
spherical harmonics, at each radius r:

	ρ(r, θ, ϕ, t) =
∞∑

n=0

n∑
m=0

[
	ρcm

n (r, t) cos mϕ

+	ρsm(r, t) sin mϕ
]
Pm

n [cos(θ)],

where Pm
n are the Legendre functions, 	ρcm

n and 	ρsm
n are the

coefficients of the spherical harmonics expansion, normalized to
4π , in kg m−3.

Using the geoid kernel (Fig. 4), we have computed the associated
present-day geoid (for degree 2 up to 12) and its variance reduction
with respect to the observed geoid.

Our final model assumes time-independent large-scale up-
wellings within the lower mantle. All the plates reach the CMB
with exception of North America sinking down to 2250 km and
South America that stops its diving at a depth about 800 km. Stop-
ping its diving means that a plate does not display a significant
density contrast with respect to the surrounding mantle.

The associated present-day geoid (for degree 2 up to 12) is com-
pared to the observed one in Fig. 6. For this model, we obtain a
variance reduction of 
 = 0.91 for the degree 2 alone, and 
 =
0.79 for degree 2–12. Cancelling in the deep mantle the density
contrast of some plates with respect to the surrounding mantle al-
lows to ameliorate significantly the present-day computed geoid in
comparison with the case where all the plates sink until the CMB.
We found that the degree 2 component of the geoid is now in good
agreement with the observed one and the maximum principal inertia
axis is close to the North Pole.

3.1.4 Surface dynamic topography

We then compute the present-day radial surface displacement using
the surface topography kernel plotted in Fig. 4. We plot on Fig. 7
the dynamic topography associated with our model. For degree
n = 1, . . . , 12, a slab sinking into the mantle will involve a negative
topography whereas a hot dome within the lower mantle will involve
a surface swell. The maximum negative anomaly of the topography
is around the Pacific, below large subduction zones. Note that, in our

-80

-40

-40

-40

0

0

0

40

4
0

80

-120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120

Geoid (m)

-40

-4
0

-40

0

0

0

40

80

-120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120

Geoid (m)Figure 6. Geoid in metre, from degree 2 to 12. The contour interval is 20 m. Left-hand panel: observed geoid from EIGEN-GL04 model (Foerste et al. 2008)
in which the hydrostatic reference ellipsoid (Nakiboglu 1979, 1982) and the effect of postglacial rebound have been corrected. The gravitational contribution
of the postglacial rebound has been corrected using the simple model (three ice-sheets with the same dependence) detailed in Greff-Lefftz (2000) and our
surface loading viscoelastic Love numbers for V R = 40. Right-hand panel: present-day computed geoid induced by our mantle density heterogeneities model,
for a mantle with a viscosity ratio V R = 40, using geoid kernels plotted in Fig. 4.
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Present-day surface topography (in meter)
Figure 7. Surface topography from degree 1 to 12. The contour interval is
200 m.

model, the upwelling plumes in the upper mantle are not taken into
account. Because the surface topography is strongly dependent on
mantle density heterogeneities in the upper mantle (see Fig. 4b) such
plumes will involve large surface radial displacement. Nevertheless
these plumes are narrow and therefore too small to significantly
affect large wavelength geodetic observables.

The mean value of this surface topography over the continents is
about −90 m, one order of magnitude smaller than the continental
elevation due to the isostasy adjustment. This is due to the fact that
the oceanic crust is globally denser than the continental crust (see
Section 3.3.2).

These mantle density heterogeneities are time-dependent and
their temporal evolutions are mostly due to the subducted plates
sinking into the mantle.

From the degree 1 and the degree 2 components of these mass
anomalies, we can compute using our Love number formalism the
secular variation of the zonal degree 2 geopotential coefficient J 2

and of the geocentre motion.

3.2 Geological variation of J2 since 120 Ma

Starting with this model of time-dependent internal loads, and tak-
ing into account the viscoelastic deformations, we compute, since
120 Ma, the perturbations of the degree 2 geopotential coefficient
J 2 using the degree 2 geoid kernel introduced in Section 2.

δ J2(t) = − 3√
5

∫ a

b

[( r

a

)3
δ(t) + k2(r, t)

]
r

a

	ρc0
2 (r, t)

ρ̃a
dr. (11)

The temporal evolution of δ J 2(t) since 120 Ma is plotted on Fig. 8.
Our present computed value is δ J 2(0) = 0.57 × 10−5.

The difference between the observed J obs
2 = 0.001082626360

(Foerste et al. 2008) and the hydrostatic one J H
2 = 0.001072701000

(Nakiboglu 1982) is about 10−5. Consequently, we can conclude
that our simple model of mantle density heterogeneities can explain
most of the part of the non-hydrostatic oblateness of the Earth. This
result was already proposed by Forte et al. (1995). This contribution
of the mantle mass anomalies to the degree 2 component of the geoid
has to be added to other contributions such as the stabilization of
continent–ocean heterogeneity which reduces the vertical flow of
mass and heat across the upper mantle (Forte et al. 1995) or to
the stabilizing effect of the elastic upper part of the lithosphere
on the equilibrium rotation form of the Earth (Mitrovica et al.
2005).

40 0 0

Time Before Present (in Ma)

0

Perturbation of J2 coefficient

Figure 8. Temporal evolution of the degree 2 geopotential coefficient J 2

induced by our time-dependent internal loads model, since 120 Ma.

To compare this effect with the one induced by the postglacial
rebound, we use the simple model (three ice-sheets with the same
dependence) we developed in (Greff-Lefftz 2000). For the same
earth model (homogeneous mantle with a viscosity ratio VR = 40),
we will obtain a perturbation of the zonal degree two coefficient
of the geopotential δ J pgr

2 = 0.1 × 10−5, one order of magnitude
smaller than the contribution of mantle mass anomalies.

Let us now investigate the secular variation of the J 2 coefficient,
that is to say the time-derivative J̇ 2. Note, in our Fig. 8, that since
15 Ma, there is a linear trend in the perturbation δ J 2 induced by the
dynamics of the mantle, with the present rate:

δ J̇ 2 = −1.17 × 10−13 yr−1.

According to space geodetic observations over the past 25 yr,
the zonal degree 2 coefficient of the Earth’s gravitational potential
J 2 has undergone a decrease, with a secular term of about J̇ 2 =
∼ −2.6 × 10−11 yr−1 (Foerste et al. 2008). Our computed value is
less than 1 per cent of the observed one which is usually assumed
to result from the postglacial rebound excitation source, which per-
turbs the geoid at a timescale faster than the one of the mantle dy-
namics. For our simple model of deglaciation (Greff-Lefftz 2000),
with V R = 40, we would obtain δ J̇ 2 = −4 × 10−11yr−1, value a
little bit too large to explain the observations but with the correct
order of magnitude.

To end this study about the secular variation of the J 2 coefficient,
we can conclude that, contrary to the surface load induced by the last
deglaciation which perturb significantly the δ J̇ 2 but not the static
term δ J 2, the mantle density heterogeneities within the mantle can
explain the present-day non-hydrostatic flattening of the Earth but
that they vary at a too slow timescale to significantly perturb the J̇ 2

coefficient.

3.3 Geological variation of the geocentre

In this part, we investigate the influence of the mantle dynamics and
the plate tectonics on the degree 1 deformations at the geological
timescale.

3.3.1 The mantle dynamics

We define the geocentre as the figure centre of the deformed surface

[X, Y, Z ] = 1

4π

∫
�

�u1 sin θdθ dϕ, (12)
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Figure 9. Temporal evolution of the coordinates of the geocentre (left-hand panel), and present-day degree 1 surface displacement with contour interval of
50 m (right-hand panel), in metre, induced by our time-dependent internal loads model, since 120 Ma.

where �u1 is the degree 1 displacement vector at the Earth’s surface
�. X , Y , Z are the coordinates of the geocentre with respect to the
initial reference frame centred to the centre of mass of the Earth
and defined in Section 2.1.

Using the degree one viscoelastic Love numbers introduced in
Section 2 for the radial displacement h′

1(t , r ) and the tangential
displacement l ′

1(t , r ), we can compute the geocentre perturbations
induced by the mantle mass anomalies

⎡
⎢⎢⎣

X (t)

Y (t)

Z (t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1
ρ̃
√

3

∫ a
b

(
r
a

)
[h′

1(t, r ) + 2l ′
1(t, r )] ∗ 	ρc1

1 (r, t)dr

1
ρ̃
√

3

∫ a
b

(
r
a

)
[h′

1(t, r ) + 2l ′
1(t, r )] ∗ 	ρs1

1 (r, t)dr

1
ρ̃
√

3

∫ a
b

(
r
a

)
[h′

1(t, r ) + 2l ′
1(t, r )] ∗ 	ρc0

1 (r, t)dr

⎤
⎥⎥⎥⎦ .

(13)

We have shown in the first section that our theoretical approach
with the internal load viscoelastic Love number formalism is not
valid to compute the tangential displacement at the timescale of the
mantle convection. Because we want simply to quantify the order
of magnitude of the secular geocentre variation, we will do a simple
approximation: it seems, from the study about the radial and tangen-
tial displacement (see Fig. 2), that the most important contribution
of an internal load to the degree one surface displacement is the
rigid one (i.e. the direct effect of the mass on the degree one surface
displacement). Consequently, we assume, in this preliminary study
that the mantle is rigid. In this case, the Love numbers become

h′
1(r, t) = −

( r

a

)2
δ(t) and l ′

1(r, t) = −
( r

a

)2
δ(t)

and the geocentre perturbations induced by internal loads may be
written

⎡
⎢⎢⎣

X (t)

Y (t)

Z (t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−
√

3
ρ̃

∫ a
b

(
r
a

)3
	ρc1

1 (r, t)dr

−
√

3
ρ̃

∫ a
b

(
r
a

)3
	ρs1

1 (r, t)dr

−
√

3
ρ̃

∫ a
b

(
r
a

)3
	ρc0

1 (r, t)dr

⎤
⎥⎥⎥⎦ . (14)

We use our model of mantle density heterogeneities and first plot,
in Fig. 9, the temporal evolution of the geocentre coordinates since
120 Ma (left-hand panel) and the present-day surface displacement
(right-hand panel) induced by these mantle mass anomalies.

We find that the present-day difference between the centre of
figure of the outer surface and the centre of mass of the Earth, that
is, the coordinates of the geocentre, are, in metre:

[X (0), Y (0), Z (0)] = [316, −368,−256] m

that is to say a translation of about 550 m towards the direction
−28◦ S, 311◦ E .

We can compare this translation with the one induced by the last
deglaciation: for our simple model (Greff-Lefftz 2000), we obtained
a translation of about 7 m towards the direction −70◦S, 134◦E (i.e.
towards the opposite direction of Greenland). It is negligible in
comparison with present-day surface displacement induced by the
mantle mass anomalies.

The physical interpretation of this result is difficult: it corre-
sponds to the variation of the figure centre between an Earth with
mantle density heterogeneity and our reference earth model which
is radially stratified. However it could be interesting to develop a
geodetical method allowing to measure the difference between the
centre of mass (inferred from the studies of the satellites trajec-
tories) and the centre of figure (inferred from the location of the
geodetical stations at the Earth’s surface).

Another result is the secular variation of the geocentre. We plot
on Fig. 10 the time-derivatives of the geocentre coordinates since
120 Ma: the order of magnitude is a 10 m Myr−1, that is, a 1
mm Cy−1 (one millimetre per century).
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Figure 10. Time-derivative of the coordinates of the geocentre, in metre
per million years (or in millimetre per century), since 120 Ma.
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Geodesy and mantle dynamics 1089

Note on Fig. 10, that since 10 Ma, there is a constant rate of
secular variation of the geocentre coordinates

Ẋ = 0.17 mm Cy−1; Ẏ = −0.85 m Cy−1; Ż = 1.12 mm Cy−1

These values are negligible in comparison with the geocentre mo-
tions induced by postglacial rebound, which has been shown to
be at the level of −0.4–0.2 mm yr−1 (Greff-Lefftz 2000), or by
recent climate changes (about a few tenths of a millimetre per
year).

The rigid translation induced by this mantle dynamic depends
only on the degree one component of the mass anomalies, that is
to say on the distribution of the plates within the mantle at large

20 km

15 km

ocean continent

35

z=0

gabbrosperidotite

granitic rocks

gneissbasalts, gabbros

Figure 11. Simple model of continental and oceanic crust.

wavelengths. The mantle viscosity plays a role only via the factor
F, related to how plates cross the 670 km discontinuity. We have
investigated the influence of such a factor on the associated variation
in the geocentre motion and have found that it does not change the
order of magnitude of our results: the present-day geocentre has
an amplitude varying from 400 m (for F = 2.5) up to 600 m
(for F = 4.5) in a direction varying in latitude from −22◦S up to
−34◦S and in longitude from 306◦E up to 314◦E. The rate of the
secular variation of the geocentre remains closed to one millimetre
per century.

From our results we can conclude that the observed secular vari-
ation of the geocentre is not induced by internal loading. Surface
loading seems to be a better candidate to create a rate of about 1
mm yr−1.

3.3.2 The plate tectonics

To end this study, let us investigate another phenomenon related to
mantle dynamics.

Since the oceanic crust is globally denser than the continental
crust, the isostasy adjustment creates a higher surface topography
over the continents than over the oceans. We use a simple model
of continental and oceanic crust (e.g. Turcotte & Schubert 1982;
Lowrie 1997) plotted on Fig. 11.

The study of the continental crust gives for the density profile

1. 0− > 20 km: ρ = 2750 kg m−3 (granitic rock and gneiss)
2. 20− > 35 km: ρ = 2950 kg m−3 (gabbros)
3. up to 35 km: ρ = 3310 kg m−3 (peridotite).

The study of the oceanic crust gives for the density profile

1. 0− > 4 km: ρ = 1000 kg m−3 (water)
2. 4− > 5 km: ρ = 1500 kg m−3 (water + sediments)

Figure 12. Continent distribution from 200 Ma to today.
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1090 M. Greff-Lefftz, L. Métivier and J. Besse

3. 5− > 11 km: ρ = 2850 kg m−3 (basalts and gabbros)
4. 11− > 35 km: ρ = 3310 kg m−3 (peridotite).

Because of the isostatic equilibrium at the depth of 35 km where the
weight of a continental crust column and the one of an oceanic crust
column are equal, there is an elevation h = 843 m of the continental
crust with respect to the oceanic one. Such isostatic topography does
not modify the geoid in our first order perturbation theory of the
viscoelasto-gravity and consequently the associated perturbation of
the J 2 coefficient is zero. It will imply a discrepancy between the
centre of figure of the surface and the centre of mass due to the
associated degree one term in the continental topography.

The plate tectonic slow motions of continents over time (typi-
cally at a cm yr−1 level, see Nuvel1-NNR for example; Altamimi
et al. 2007) should change the geocentre position, on a geological
timescale.

Let us introduce the ocean–continent function f (θ , ϕ) which is
equal to 1 over the ocean and to 0 over the continent. It may be

expanded in spherical harmonics

f (θ, ϕ) =
∞∑

n=0

n∑
m=0

(anm cos mϕ + bnm sin mϕ)Pm
n (cos θ ), (15)

where anm and bnm are the coefficients of the spherical harmon-
ics expansion, normalized to 4π . The surface topography may be
written as h[1 − f (θ , ϕ)] and consequently the geocentre motion is⎡
⎢⎢⎣

X (t)

Y (t)

Z (t)

⎤
⎥⎥⎦ = h√

3

⎡
⎢⎢⎣

a11(t)

b11(t)

a10(t)

⎤
⎥⎥⎦ . (16)

In order to quantify this phenomenon, we investigated the posi-
tion of continents over the last 200 Myr, using information provided
by hotspot reference frame, palaeomagnetism and kinematic data
from the sea floor. Fig. 12 shows the ocean–continent repartition
over time that we used in the present study. We compute the co-
efficients a10(t), a11(t) and b11(t) associated with such a motion.
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Figure 13. Centre of mass wrt geocentre position and velocity induced by the continent motion from 200 Ma to today.
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Geodesy and mantle dynamics 1091

Assuming as in the present-day situation that the continents present
a mean topography of 843 m with respect to the mean sea level, we
calculated the motion and the velocity of the geocentre over time.
Fig. 13 presents the variations of geocentre position (X , Y , Z ) on
top and the velocity variations (Ẋ , Ẏ , Ż ) on bottom. One can see
that the presence of continents and their motion induce a departure
between the geocentre and the centre of mass relatively large, about
a few tens metres, with a maximum of 130 m on X component
during the Mesozoic when there was only one continent on Earth
(the Pangea). The present-day values are, in metre:

[X (0), Y (0), Z (0)] = [−53, −28, −58] m

that is to say a translation of about 84 m towards the direction
−62◦S, 208◦E.

The geocentre velocity is between −0.05 and 0.05 mm Cy−1,
which is smaller than the impact of mantle dynamics.

Let us end this section with comments about the mean elevation
of the continents with respect to the oceans.

The mean topography over the continent induced by isostatic
adjustment between oceanic and continental crust is about 843 m,
although the one induced by mantle mass anomalies is negative
and about of −90 m. The sum of this two effects leads to a mean
elevation of about 753 m. The mean topography on the continent
obtained from the observed surface topography is 793 m, based
on ETOPO global relief model (Amante & Eakins 2008). Conse-
quently, it remains a small positive part of the mean topography
on the continent, which is not explained by our large-wavelength
model. It may be induced by mantle density anomalies within the
upper part of the mantle and especially by the narrow hot plumes
existing in the upper mantle.

4 C O N C LU S I O N

We quantified the J 2 gravitational potential coefficient and the geo-
centre motion induced by upwelling domes and subducted plates
sinking into the mantle, using a simple model in which the slabs
are modelled as blobs diving vertically through the mantle, and in
which the domes are assumed to be stable over the last 120 Ma and
modelled from tomography within the lower mantle.

We can conclude that the density heterogeneities within the man-
tle can explain an important part of the present-day non-hydrostatic
flattening of the Earth but that they vary at a timescale which is too
slow to significantly perturb the J̇ 2 coefficient. Although there is
a significant discrepancy of about a few hundred metres between
the centre of figure and the centre of mass of the Earth, the secular
variation of the geocentre motion is one order of magnitude smaller
than the one induced by surface loads.

We also quantified the impact of continents motions on the
geocentre motion: the present-day geocentre velocity is less than
0.05 mm Cy−1 and consequently negligible.

The combination of the effects induced by the mantle density
heterogeneities and those resulting from plates tectonics involves a
discrepancy between the centre of figure and the centre of mass of
the Earth about 570 m in the direction −33◦S, 303E.
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A P P E N D I X A

The elastogravitational system can be written, for each degree n ≥ 1 as a first order differential equations in a form given by Alterman et al.
(1959)

dyin(r )

dr
= An

i j y jn(r ), (A1)

where An
ij is a 6 × 6 matrix whose elements are function of the compressibility, the rigidity, the density and the gravity g(r ). We assume that

the deformations are static, that is to say we neglect the inertial acceleration in the impulsion equation.
Our earth model consists of N homogeneous incompressible layers: a lithosphere (layer 1), a stratified mantle (layer 2 to N − 2), an inviscid

fluid core (layer N − 1) and an inner core (layer N). The density and rigidity stratification within the outer core and the mantle are obtained
from the PREM earth model (Dziewonski & Anderson 1981).

In each homogeneous incompressible solid layer i (that is in each layer except for the fluid core) with a density ρ i and a constant rigidity
μi, solving the elasto-gravitational system, we obtain

yi
1n(r ) = Ci

1n

rn
+ Ci

2n

rn+2
+ Ci

3nrn+1 + Ci
4nrn−1

yi
5n(r ) = Ci

5nrn + Ci
6n

rn+1
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3n(r ) = − n − 2

n(n + 1)
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1n

rn
− 1

n + 1
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2n

rn+2
+ n + 3

n(n + 1)
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3nrn+1 + Ci
4n

n
rn−1
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2n(r ) = 2μi

[−n2 − 3n + 1

n + 1
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1n

rn+1
− (n + 2)

Ci
2n

rn+3
+ n2 − n − 3

n
Ci

3nrn + (n − 1)Ci
4nrn−2

]
+ ρi g(r )yi

1n(r ) − ρi yi
5n(r )

yi
4n(r ) = 2μi

[n − 1

n
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1n

rn+1
+ n + 2

n + 1
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2n

rn+3
+ n + 2

n + 1
Ci

3nrn + n − 1

n
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]
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6n = nCi

5nrn−1 − (n + 1)
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6n

rn+2
− 4πGρi yi

1n(r ).
(A2)
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In each layer i there are 6 constants (Ci
1n, . . . , Ci

6n) which will be determined from the boundary conditions and consequently will be
dependent on the excitation sources deforming the planet.

Within the inviscid fluid core, the differential system of 6 equations is not valid. We use the theoretical approach introduced by Chinnery
(1975): the outer core is assumed to be in hydrostatic equilibrium, that is to say the form is the equipotential [yN−1

5n (r ) = g(r ) yN−1
1n (r ) and

yN−1
2n (r ) = 0] and the tangential displacement yN−1

3n (r ) is undetermined. For an homogeneous incompressible fluid core, we obtain:

yN−1
5n (r ) = C N−1

5n rn + C N−1
6n

rn+1

yN−1
1n (r ) = yN−1

5n (r )/g(r )

yN−1
6n = nC N−1

5n rn−1 − (n + 1)
C N−1

6n

rn+2
− 4πGρi yN−1

1n (r ).

There are two constants (CN−1
5n and CN−1

6n ) which will be determined from the boundary conditions.

A1 Boundary conditions

We are interested in the deformations induced by a surface load as well as by internal loading.
A degree n surface mass distribution σ n, located at the radius ro produces two effects.

(i) a degree n pressure effect − g(ro) σ n acting at the interface ro

(ii) a degree n potential effect 4πG
2n+1 σnro

⎧⎪⎨
⎪⎩

( r

ro

)n
if r ≤ ro

(ro

r

)n+1
if r ≥ ro.

We note Sint
n = 4πG

2n+1 σnro the internal load, and Se
n = 4πG

2n+1 σna the surface load, where a is the surface radius.
In the above section the subscript n will be suppressed for simplicity of notation.
When the Earth is submitted to these different excitation sources, the boundary conditions may be written.

1. At the surface: the tangential stress is equal to the acting tangential traction, that-is-to-say zero and the radial stress is equal to the acting
pressure; the discontinuity in the gravitational potential leads to a relation between y6(a), y5(a) and the acting potential (Longman 1962;
Farrell 1972):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y1
4 (a) = 0

y1
2 (a) = −2n + 1

3
ρ̃Se

y1
6 (a) + n + 1

a
y1

5 (a) = 2n + 1

a
Se

ρ̃ is the mean density of the Earth.
2. At an interface ai within the mantle: the radial and tangential displacements, the tangential stress and the potential are continuous; taking

into account an internal loading potential Sin acting at the radius ro the continuity of the radial stress and that of the gravity at an interface ai

will depend on this excitation source if ai = ro,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi
1(ai ) = yi+1

1 (ai )
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2(ai ) = yi+1

2 (ai ) + 2n + 1

3

g(ai )

g(a)

a

ai
ρ̃Sintδ(ai − ro)

yi
5(ai ) = yi+1

5 (ai )

yi
3(ai ) = yi+1

3 (ai )

yi
4(ai ) = yi+1

4 (ai )

yi
6(ai ) = yi+1

6 (ai ) − 2n + 1

ai
Sintδ(ai − ro),

where δ(ai − ro) is the Dirac function which is equal to 1 when ai = ro and zero when ai �= ro.
3. At the CMB: the radial displacement is continuous but we have to introduce an unknown parameter K 1 in order to take into account

the difference between the form of the solid mantle and the form of the fluid core which is an equipotential (Chinnery 1975); the tangential
displacement is not determined; the tangential stress is equal to zero; the gravitational potential is continuous; the continuity of the radial
stress depends on fluid pressure acting within the core and the gravitational attraction of the mantle is related to the one of the fluid core,
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taking into account the discrepancy K 1⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yN−2
1 (aN−2) = yN−1

1 (aN−2) + aN−2 K1

yN−2
3 (aN−2) = aN−2 K3

yN−2
4 (aN−2) = 0

yN−2
5 (aN−2) = yN−1

5 (aN−2)

yN−2
2 (aN−2) = ρN−1g(aN−2)aN−2 K1

yN−2
6 (aN−2) = yN−1

6 (aN−2) − 4πGρN−1aN−2 K1

4. At the ICB: the radial displacement is continuous but we have to introduce an unknown parameter K 2 in order to take into account the
difference between the form of the solid inner core and the form of the fluid core which is an equipotential; the tangential displacement is
not determined; the tangential stress is equal to zero at the ICB; the gravitational potential is continuous; the continuity of the radial stress
depends on fluid pressure within the core acting at the ICB and the gravitational attraction of the inner core is related to the one of the fluid
core, taking into account the discrepancy K 2⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yN−1
1 (aN−1) = yN

1 (aN−1) − aN−1 K2

yN−1
3 (aN−1) = aN−1 K4

yN−1
4 (aN−1) = 0

yN−1
5 (aN−1) = yN

5 (aN−1)

yN−1
2 (aN−1) = −ρN−1g(aN−1)aN−1 K2

yN−1
6 (aN−1) = yN

6 (aN−1) + 4πGρN−1aN−1 K2.

For the degree n = 1, Farrell (1972) has shown that there is a Consistency Relation, that is, a special condition in which the degree one valid
solutions have to obey, which is written, in the layer i, when the Earth is submitted to surface or internal loads

yi
2(r ) + 2yi

4(r ) + g(r )

4πG

[
yi

6(r ) + 2

r
yi

5(r )

]
= 0.

Because of that, only two of the three surface conditions are needed and the Consistency Relation ensures that the third boundary condition is
met automatically. To solve this problem, we have to add a new boundary condition: the conservation of the centre of mass of the Earth plus
internal load. It will simply require that the degree one surface potential is equal to zero, that is to say, we just have to add a surface boundary
condition:

y1
5 (a) = 0.

These 6 N − 3 boundary conditions for surface and internal loads allow us to determine the 6(N − 2) constants (Ci
1n, . . . , Ci

6n) for i = 1, . . . ,
N − 2 of the mantle, the six constants of the fluid core CN−1

5n , CN−1
6n , K 1, K 2, K 3, K 4, and the three constants CN

3n, CN
4n and CN

5n of the inner
core. The constants known, we can compute the surface displacement and the gravitational potential and deduce the internal loading Love
numbers.
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