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We present a method to model geomagnetic field requiring only a restricted number of measurements on
magnetic survey satellite orbits. These points are chosen in an optimal—or close to optimal—manner relying on
recent developments in the problem of numerical integration over spheres. The method allows us to compute a
series of models at short time intervals, namely 10 days in the present study. At each of these close dates several
models are computed from independent sets of data; their redundancy in turn provides a control of results thanks
to which the selection of data—for example, as a function of magnetic activity or latitude—may be reduced. We
find that the internal low degree Gauss coefficients derived from Oersted and Champ data, respectively, differ
from one another by 1 or 2 nT. We then take as a second example of the method application a brief study of the
so-called external field. We compare the first-degree axisymmetric field with the Dst index.
Key words: Geomagnetic field model, satellite, numerical integration over spheres.

1. Introduction
The problem of computing a model of magnetic field

that first fits ground observations, then satellite observations
(since the years 1960) goes back to Gauss in the 1830s. The
most recent models using Oersted and Champ data rely on
a least squares technique providing the spherical harmonic
coefficients, and some of these solve the Euler angles of
the sensor attitude at the same time (Olsen et al., 2006).
There is probably no need to abandon spherical harmonic
expansion, which is so practical for all applications of the
models. Nevertheless, even when keeping to this classical
method, different options exist. We will describe and use
one of these, the choice of which is guided by a few consid-
erations.

First, it is desirable to retain as much data as possible
from high (>55◦) latitude regions, despite the large dis-
turbances which are present in those regions. Second, the
key issue in spherical harmonic expansion modeling, i.e.
the computation of Gauss coefficients, both internal and ex-
ternal, is the geographical distribution of data; integral or-
thogonality properties of the harmonics over the data points
must be strongly adhered to, not loosely. Third, we call
for a flexible algorithm, using the minimum but sufficient
number of data points to compute the internal and external
fields, at short time intervals, for night hours or day hours,
different universal times, and different conditions of activ-
ity, etc.

Excellent models have been computed by different teams
according to their own methods: using data from Pogo,
Magsat, Oersted and Champ satellites as well as from
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ground magnetic observatories (Sabaka et al., 2002) and
Sabaka et al. (2004) have constructed comprehensive mod-
els covering the time interval (1960–2002). Maps of the
internal field (core + crustal) and the external field (iono-
spheric and magnetospheric) are made available with a
short time sampling. Other teams have produced models
of the different ingredients of the geomagnetic field from
satellite data covering the time interval (2000, 2005) (Maus
et al., 2006; Olsen et al., 2006).

We present the general features of our method in the main
text reserving more mathematical considerations for Ap-
pendix. Its efficiency will be demonstrated in the following
sections.

2. The Model
2.1 Optimal arrays of points

Let us consider a sphere S of unit radius. An optimal
array—in the sense to be defined below—of N points on S
is made of the points whose colatitude θk and longitude ϕk ,
k = 1, . . . N , are given by the formulae below

θk = arccos(hk), hk = −1 + 2k − 2

N − 1
, 1 � k � N

ϕk =

ϕk−1 + const√

N
· 1√

1 − h2
k


 (mod 2π), 1 < k < N ;

ϕ1 = ϕN = 0

A subroutine computes the longitudes ϕk and colatitudes
θk of the optimal array, N being given (Appendix). In this
paper, we will take N = 1000, 2000, 3000, 5000, 10000.

Let the surface harmonic functions

Y{n,m,c}(θ, ϕ) = Pm
n (cos θ) cos mϕ

Y{n,m,s}(θ, ϕ) = Pm
n (cos θ) sin mϕ
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(a)

(b)

Fig. 1. Examples of optimal array {Ql } (black points) and close to optimal {Pl } (red points) extracted from 130 days of data centered on at 2003.0 (a)
N = 1000, (b) N = 3000.

be ranked in the usual lexicographic order, and u j be
the corresponding j th harmonic, internal or external (see
Eq. (2)), in the corresponding series. The gradients ∇ui ,
∇u j are orthogonal on the set of N points Ql , l = 1, . . . N .
(see Appendix)

(
ui , u j

) =
∑

l

∇ui (Ql) · ∇u j (Ql) = Ciδi j (1)

with Ci being the corresponding norm of ∇ui .
2.2 Array of points close to an optimal array
Let us compute, as an example, a model based on night

values of a given period of time. We first retain all mea-
surement points Pk satisfying this local time condition. Let
E (Pk) = E (Pk(r, θ, ϕ)) be this set of points. We pick up
in E (Pk) the point Pi which is the closest to the point Qi of
a given optimal array, in the sense that the angle Pi O Qi (O
being the sphere center) is the smallest (Fig. 1). The num-
ber N of points Pi , equal to the number of points Qi of the
optimal array, is much smaller than the number of points Pk .
After this operation is made for each point Qi , we are left
with an N array close to the optimal: EN (Pi (ri , θi , ϕi )).
Now, let the geomagnetic potential to be computed be writ-

ten in the usual form:

V (P) = V (r, θ, ϕ)

=
K [int]∑
j=1

g j u
[int]
j (r, θ, ϕ) +

K [ext]∑
j=1

γ j u
[ext]
j (r, θ, ϕ) (2)

with u[int]
j = (

a
r

)n+1
u j , u[ext]

j = (
r
a

)n
u j , and K [int] and

K [ext] being the degrees of the internal and external expan-
sions.
Let �B(Pl) = (X (Pl), Y (Pl), Z(Pl)) be the vectorial mea-

surement of �B at Pl ∈ EN (P). We want to compute the
Gauss coefficients g and γ such that

N∑
l=1

(
�B(Pl) − ∇V (Pl)

)2
(3)

is minimal.
V contains K [tot] = K [int](K [int] + 2) + K [ext](K [ext] + 2)

unknown coefficients, and there are 3N equations (3). In
this paper we will address the core field and, briefly, a com-
ponent of the so-called external field, with K [int] = 165,
and K [ext] = 2. For such values, N = 1000 already pro-
vides a largely overdetermined set of equations. The system
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Fig. 2. Examples of the evaluation the Gauss coefficients estimation as a function of the number of points N : left coefficient g1
1 , right coefficient h2

3.
Error bars are shown.

(3) will be solved by the usual least squares technique, and
the inversion of the resulting normal matrix by the Singu-
lar Value Decomposition algorithm. When computing this
matrix, the following approximations of scalar products in
Eq. (1) appear:〈

u[int]
i , u[int]

j

〉
,

〈
u[ext]

i , u[ext]
j

〉
,

〈
u[ext]

i , u[int]
j

〉
with, for example,

〈
u[int]

i , u[int]
j

〉
=

N∑
l=1

∇u[int]
i (Pl) · ∇u[int]

j (Pl)

which allows for computing the following angles between
the K [tot] column vectors of the matrix:

βi j = arccos

⎛
⎝ 〈

ui , u j
〉

√
〈ui , ui 〉

〈
u j , u j

〉
⎞
⎠ ui = u[int]

i , u[ext]
j

Looking at the values of βi j is key to the method. Indeed,
u j vectors are not expected to be strictly orthogonal on the
{Pi } array: their projections on the sphere (r = a) are not
located exactly at points of the optimal array and, further-
more, radii of Pi points may vary within 200 kilometers (see
next paragraph).

Remark We could correct �B(Pi ) for the difference
�B(Pi ) − �B(Qi ) using an a priori model. However, here we
prefer to present a self-contained algorithm.
2.3 A synthetic example

First, we pick up a model
{
g j , γ j

}
from the literature

(Langlais et al., 2003; K [int] = 16, K [ext] = 2 ) and com-
pute the values X , Y , Z of the model field at M points
which are “real” points in the sense that there are points of
the orbits of Champ where real measurements were made
(specifically the data points corresponding to 130 days cen-
tered at 2003.0). We select N points Pl from the whole
set, the one closest to an optimal array of 1000 or 3000
points {Ql}, as explained in Fig. 1, and compute back the
Gauss coefficients

{
g j , γ j

}
. The differences between the

initial Gauss coefficients and the recovered ones, g j and γk ,
j = 1, . . . 288 k = 1, . . . 8, for N = 1000 and N = 3000,
are of the order of 10−5 nT.

Let us take the opportunity with this synthetic example—
but with real orbit points—to be more specific about the
orthogonality of u j vectors, taking the case N = 1000

(1000 points in array {Qi }). For K [int] = 16 and K [ext] = 2,
we find that 99% of couples ui , u j vectors make angles
π
2 ±ε with ε < 0.01 radian. The value of ε does not change
much with the degree: from 0.005 for the low harmonic
couples to 0.03 for the high harmonics. Simulations show
that for such values of the departure ε from orthogonality,
the coefficients g j and γ j can be recovered independently
of one another with the required accuracy. Such will be the
case for all the computations in the paper.
2.4 The time sampling of the modeling

A huge advantage of satellite data is their high density
(∼108 per year!), which allows for a massive number of
computations which could not be dreamed of in the pre-
satellite times; this density makes it possible to split the data
set into many subsets for various applications. In particular,
it is possible to compute models at a succession of close
time moments; in this paper, we will compute a model every
10 days, at times tk = t0 + k × 10 days. Nevertheless, those
models are not genuine instantaneous models at tk . Indeed,
to get a uniform enough distribution of local times when
computing a model of the main field Eq. (2), it is necessary
to consider data spanning a time interval τ around tk ; the
duration τ is different for Champ and Oersted. So, our
model at time tk is a model computed from data in a time
interval of length τ centered on tk . But we keep g(t), h(t)
(with a daily sampling) in the following temporal series, and
not the decimated series with a sampling of τ days (τ =
130 in case of Champ; see below); a surprising amount of
information on short term (
τ ) features is preserved in the
process of computing the model from data in a window of
length τ (e.g., Blanter et al., 2005).
2.5 The choice of data amount

We have addressed the question of the number N of data
points required to compute a model (an expansion) to de-
gree d with an empirical point of view; indeed, not only
the distribution of data points, but also the noise intervene
in a broad sense, on the data. We compute a large num-
ber (∼100) of models {gi , h j } from suitable random sim-
ulations of data; we infer a mean value m and error bar σ

on each coefficient. Each random simulation at N points is
obtained by biasing the initial vector field (calculated from
a 16-degree model) by a Gaussian random vector whose
distribution parameters were estimated at each point using
real data records. And we repeated those computations
varying N from 700 to 6000 in 25 steps. For the large
majority of coefficients, m is approximately stabilized at
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Fig. 3. Examples of Gauss coefficients computed as described in the main text. Crosses correspond to estimates obtained with no selection of
measurements in the function of magnetic activity, dots to am ≤ 20. (a) g1

1 , (b) h2
3, (c) h3

3, (d) g2
4 .

N = 2400 (Fig. 2). The value of σ decreases from 0.75 nT
for N = 700 to 0.2–0.4 nT (depending on the coefficient)
for N = 2400 and keeps decreasing slowly thereafter. From
these results we retained N = 2400 in most of the compu-
tations of the present paper, for models of degree � 16.
2.6 Selecting the data as a function of magnetic activity
We now switch to real data. In most studies, measure-

ments are selected according to the magnetic situation at
the time of the measurement, as characterized by the value
of the planetary Kp index. We made a series of experiments
to evaluate the influence of magnetic activity on our mod-
eling. We take advantage of redundant observations. Let
us first retain all of the data, without any selection, versus
magnetic activity. For each date tk (multiple of 10 days)
we build a number of quasi-optimal arrays {Pi } close to the
same optimal array {Qi } (with, in general, N = 2400), from
different disjoint sets of data; we then compute as many co-
efficient sets or models. Some of these appear to be per-
turbed by big magnetic storms; but it is always possible to
find some which are not. The trend of the representative
curves allows us to easily discard perturbed values due to
the tightness of time sampling. Figure 3(a) has been cho-
sen to illustrate the situation; it represents the evolution of
the g1

1 estimate. Crosses are for estimates computed from
130 days of Champ measurements without any selection in
the function of magnetic activity. A segment of the curve,
in the second half of 2002, is shifted 12 nT below the gen-
eral trend. And a blank is observed in the first months of
2004. Both segments (S. Maus, personal communication)
are characterized by a relatively low number of usable mea-
surement points, which makes it harder to find points close
to optimal data sets in the 130 days of data, especially if
high magnetic activity is present during those intervals; in

this situation, steps in (g, h) estimate may occur. In fact,
due to the abundance of data, it is always possible—except
in the case of long gaps—to find close to optimal subsets
from which g, h estimates fill the gaps of the graphs of
Fig. 3, and are on the general trend. Those conclusions
hold for all low degree coefficients of the main field. We
kept those gaps here for illustration. Nevertheless, it would
be awkward not to take advantage of the large redundancy
of data to avoid computations from data corresponding to
high activity, e.g., am > 20 nT (Mayaud, 1980). An ex-
tra verification is easily obtained by changing the threshold
for am . Coefficients computed with this condition are repre-
sented by dots in Fig. 3 together with those estimated with-
out selection. Along the same lines, we keep the vectorial
measurements in high latitudes (as Maus et al., 2006).

3. Fitting Oersted and Champ Data
3.1 The data
We use Champ data provided by the German team in

the form of a list {t, X (t), Y (t), Z(t), �r(t)}, �r(t) being the
current point and t being the time of the measurement on
the orbit, counted in seconds from June 2001 to December
2004, and Oersted data provided by the Danish team in the
same form, t being then a multiple of 1.3 sec (see Stolle et
al., 2006), running from March 1999 to June 2003. Note
that these data are transformed data. To obtain geocentric
components X, Y, Z , Euler angles of the sensor attitude
have been determined by the teams in charge. We do not
discuss this determination.
3.2 Fitting the data
A first opportunity to check the efficiency and accuracy

of the algorithm is to look at how coefficients issued from
Oersted and Champ fit together, paying special attention to
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Fig. 4. Gauss coefficients derived from Oersted data (blue points) and Champ data (red points) with am < 20. (a) g0
1 (b) h1

1, (c) h3
5, (d) h4
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Fig. 5. (a) Evolution of the moment of the centered dipole 4
μ
πa3

[(
g0
1

)2 + (
g1
1

)2 + (
h1
1

)2]1/2
computed from Oersted data (blue points) and Champ

data (red points). (b) Evolution of the angle θ between the rotation axis and the axis of the centered dipole.

the overlapping period (June 2001–June 2003). We treat the
data from both satellites exactly the same way, except for
the time span τ required to build a model from data reason-
ably uniformly distributed in local time; indeed, 130 days
are required in the case of Champ, while 2 years are needed
in the case of Oersted to get the same performance; actually
we use a 90-day time span for Oersted to the cost of a less
strict condition on the uniformity of local time distribution.
Results are illustrated, for a few Gauss coefficients in

Fig. 4. Let us look, for example, at h1
1 (Fig. 4(b)); at each

time tk there are eight estimates for Champ, five for Oersted.
We will systematically use this control in all our computa-
tions. Clearly, h1

1 values derived from Oersted and Champ
agree within 2 nT most of the time, without any further av-
eraging. Other examples are for h3

5 and h4
5 (mind the en-

larged scale): the mean values from Oersted and Champ co-
incide within a nT. In the computations of this section, we

retained data subsets built in such a way that local times are
reasonably uniformly distributed. The agreement between
Oersted- and Champ-derived coefficients is pretty good but
not perfect. There is a physical limitation to this agreement:
the ionospheric field is not sampled in exactly the same way
by the two satellites. Resulting departures are small and
quite variable with the coefficient. For example, for coef-
ficient g0

1, a tiny drift of Oersted estimates with respect to
Champ ones is observed Fig. 4(a) (the differences remain-
ing smaller than 2 nT).
We also computed the dipole moment and the angle be-

tween the geographical axis and the dipole axis over the
1999–2004 time span (Fig. 5(a)). Except for some trouble
at the beginning of Oersted life, the linear decreasing trend
appears almost perfect.
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Fig. 6. Evolution of Gauss coefficients computed from Champ data. Black—all local times, red—day local times (6:00 to 18:00 LT), blue—night local
times (18:00 to 6:00 LT). (a) g0

1 , (b) g2
2 .

4. Internal and External Field
The satellite sees as a field of internal origin the sum of

the main field generated by the dynamo, the lithospheric
field, and the field generated by electric currents flowing in
the ionosphere below the perigee of the satellite, especially
according to the classical views, in the E layer at 110 km
altitude (Ratcliffe, 1972). The satellites also encounter elec-
tric currents since they are flying in the upper part of the F
layer. In particular, the fields associated with field-aligned
electric currents in the polar regions can be large. But, as
discussed in Section 2.6, despite their large magnitude, they
do not severely affect the aimed modeling (the computation
of internal low (� 13) degree Gauss coefficients from data
covering a given time interval). So, we may reasonably as-
sume that the essential part of the field which is external to
the solid Earth but internal to the satellites orbits is gener-
ated by currents in the E layer, i.e., currents driven by the
atmospheric dynamo and currents driven in high latitude re-
gions by forces originating high in the ionosphere (the polar
current system) (Ratcliffe, 1972; Encrenaz et al., 2004).
To obtain a model of the main field, we have to get rid

of this ionospheric field. As is well known, this is not an
easy task (Olsen, 1996; Thomson, 2000). It is nevertheless
possible to estimate the magnitude of the ionospheric con-
tribution to the internal Gauss coefficients. We will not de-
velop this question at length in the present paper. A classical
method is to select data on the basis of local time, e.g., all
local times, only day times or only night times (e.g., 6:00–
18:00 or 18:00–6:00 LT). Our results will be illustrated by a
few graphs. Figure 6(a) shows estimates of g0

1, over a time
span of 4 years, derived from Champ data, computed re-
spectively from data at all local times, day times, and night
times. The difference between night time estimates and the
all times estimates is almost everywhere smaller than 3 nT
(2 nT in the second half of 2004). Results for g2

2 are shown
in Fig. 6(b) (mind the scale). Generally, the amplitudes of
the differences between the different estimates as well as
their evolution in time depend on the considered coefficient
in a way which is not straightforward to understand. For all
of the coefficients, differences between different estimates
do not exceed 2 or 3 nT. A last graph Fig. 7 shows two
estimates of g0

1 using all local times; for the first one, no
selection is made in the function of activity; for the second
one, only measurements corresponding to am � 20 nT are

2001 2002 2003 2004 2005
-29600

-29590

-29580

-29570

-29560

-29550

-29540

nT

Fig. 7. Two estimates of g0
1 . All local times. Red points—all data, blue

points—am �20.

retained. A significant difference of ∼2 nT shows up, but
the trend is the same.
4.1 The internal field
To obtain the main (dynamo) field model, we first take

the average of models of the internal field (sources within
the sphere r = rperigee) computing on all the universal times
(practically at 0:00 UT, 1:00 UT to 23:00 UT). That comes
down to compute a model I from points uniformly dis-
tributed in longitude; to check it we choose points Qi (see
Section 2.1) whose measurements correspond to local times
drawn randomly in the interval 0:00 LT–24:00 LT and com-
pute a model II derived from this set of points. Figure 8(c)
shows that the two models are indeed identical. Of course,
adopting such a model for the main field means that the 24-
h averaged ionospheric field is supposed to be zero—when
averaged over a full day. It is such a model that we compute
at days tk = t0 + k × 10 days, from data in a 130-day time
span τ centered on tk .
We compare our two models, relative to 2003.0, with the

POMME-3 model (Maus et al., 2006) relative to the same
epoch, in two ways. First, we compare the coefficients of
our models and those of the POMME-3 model by comput-
ing their differences as well as the mean and standard de-
viation of these differences (Fig. 8(a) and 8(b)). Except for
g0
1 and g0

3 , the models can be said to be very similar. Our
computation of the main field supposes we eliminate the
ionospheric field by averaging in longitude, i.e. that this lat-
ter field has no zonal component, or, for approximate sym-
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Fig. 8. (a) Differences between the coefficients of POMME-3 model and our model I computed from data uniformly distributed in local times. Standard
deviation 0.35 nT, 0.17 nT when removing g0

1 , g0
3 . (b) Differences between coefficients of POMME-3 model and our model II computed as the

average of 24 UT models. Standard deviation 0.32 nT, 0.16 nT. (c) Differences between coefficients of models I and II. Standard deviation 0.16 nT.
Lexicografic ranking of Gauss coefficients is used.

metry reasons, no component g0
2k+1. Choosing only night

values leads to slightly different estimates (Fig. 6(a)). We
then draw the maps of the vertical components of models I
and POMME-3 at the core-mantle boundary (CMB) more
precisely on a sphere of radius 3480 km. We also map their
differences (Fig. 9). We note that, despite the smallness of
difference in coefficients illustrated by Fig. 8, a few small
scale anomalies may reach a notable amplitude. The geo-

metrical factor
(
6350
3480

)14
is indeed equal to 4500; the down-

ward continuation to the CMB of a core field contaminated
by crustal anomalies is known to require some precautions.
As expected, the largest discrepancies are observed in high
lattitudes, due to field aligned currents.

4.2 The external (ring current) field
We keep here a rather formal point of view, without ad-

dressing the physical nature of the field. This is the way
the question has been treated for decades—the external field
was globally called the ring current field up to recent model-
ings of satellite data (Olsen et al., 2000). Only external field
coefficients of the first degree were considered to be safely
determined. So we compute, with the same sampling inter-
val (every 10 days), from the same sets of data, coefficients
(we note them γ , η for simplicity, γ for the cosine and η for
sine term) of the external field, i.e., external to the sphere
containing the satellites’ orbits (r > rapogee max). It is useful
to recall again that we are not computing an instantaneous
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Fig. 9. Map of the radial field at the CMB (r = 3480 km). top: our model
computed from 130 days of Champ data centered on 2003.0; middle:
POMME-3, Potsdam Magnetic Model of the Earth, centered on 2003.0;
bottom: Difference of models. Model degrees 1–13 are used in both
cases.

field, but, at day tk , a field based on a data set extracted
from 130 days of data centered at tk (for Champ). For each
data set we check that the orthogonality conditions required
in Section 2 are verified: the ∇u[ext]

i are orthogonal, with
a high accuracy, to one another, and orthogonal to all the
∇u[int]

i (Section 3). There is no contamination of the exter-
nal coefficients by the internal ones, i.e., no contamination
of the external field by the internal field. The results depend
on what is being looked for. For example, γ 0

1 value is much
larger when computed only from night (18:00–06:00 LT)

2000 2001 2002 2003 2004 2005
-10

0

10

20

30

40

50

Fig. 10. The evolution of γ 0
1 coefficient. Blue points: Oersted data. Red

points: Champ data. Black curve: Dst index 90 days averaged.

values than when computed from day (06:00–18:00) val-
ues. This asymmetry was pointed out as early as in 1970 by
Olson (1970).
We retain all the local times—which comes down to av-

eraging in longitude—and focus on the axisymmetric coef-
ficients γ 0

k . The graph of Fig. 10 represents the variation
from April 1999 to December 2004 of γ 0

1 . Data from both
satellites, Champ and Oersted, are used. Again, the fit of the
models derived from the two data sets is excellent, within 1
or 2 nT. γ 0

1 displays variations with time constants of a
few months and amplitudes of some 15 nT. At the bottom
of Fig. 10 the evolution of Dst index is presented, averaged
over a running window of 90 days to make the two graphs
comparable (such a comparison is not a new idea (e.g. Cain
et al., 1967). Let us recall that Dst (Sugiura, 1964) is “the
disturbance field which is axially symmetric with respect to
the dipole axis, and which is regarded as a function of storm
time”. The correlation between Dst and γ 0

1 is good up to the
end of 2002; amplitudes of γ 0

1 variations are smaller. An
interesting observation concerns the base level; it is zero
by construction for Dst index, while γ 0

1 evolves between 15
and 40 nT.
Maus and Lühr recently performed a study of the mag-

netospheric field during magnetically quet times (Maus and
Lühr, 2005) using Oersted and Champ data from the years
1999–2004. The field is decomposed into contributions
from sources in the solar-magnetic frame, and those in the
geocentric-solar-magnetospheric frame. Such a separation
is probably necessary for a coherent study of the external
field. We pointed out at the beginning of this section the
limited scope of our study of the “external field”.

5. Conclusion
The general objective of the analysis we presented here

is to model different ingredients of the field altogether. The
method reported here is the realization. This paper also has
also a methodological character; we computed Gauss coef-
ficients of the main (dynamo) field, and computed coeffi-
cients of the so-called ring current field. The characteris-
tics of the analysis are the following. To compute a given
model of the main field, for example, it is possible to use for
each τ -interval centered on day t a number of disjoint data
sets, each including a rather small (1000, 2400) number of
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points. In this way, spurious values of coefficient estimates
are made conspicuous; this provides a control of the model
(g, h) which allows us to release data selection. An advan-
tage of a close time-spacing of the model is to provide time
series whose trends can be studied in the usual way.
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Appendix A. The Numerical Integration Over
Spheres

The question of distributing uniformly N points on a
surface—we consider here the case of a sphere—is by no
means a trivial one; it has been of interest to mathematicians
since Antiquity, and is still the object of research (Hardin
and Saff, 2004).

We want an algorithm which distributes a set of N points
on a sphere in such a way that the distribution of these
points converges to an uniform distribution when N gets
large. But uniformity makes sense only for infinite sets.
For N finite, we look for a configuration which is optimal
with respect to some property, but which may be poor with
respect to another property.

For example, we may want to approximate the integral of
a function over the sphere S2 by an arithmetic sum (without
weights) of values f

(�rk
)

at some N well-chosen points �rk

on S2, in other words we want the difference∣∣∣∣∣ 1

4π

∫
S2

f
(�r) dσ

(�r) − 1

N

N∑
k=1

f
(�rk

)∣∣∣∣∣ (A.1)

to be small for a large class of functions. Such a config-
uration of points will be called optimal for the evaluation
of the integral. The problem has not yet received a general
precise solution, but explicit particular solutions have been
found. For example Delsarte et al. (1977) considered so-
called {N , t} spherical designs: configurations of N points
�rk such that for all polynomials Pm(�r) (i.e., polynomials in
three variables (x, y, z) = �r) of degree m � t , the differ-
ence in Eq. (A.1) is equal to zero. By means of a computer
search, Hardin and Sloane (1996) found spherical designs
for all t � 13 with a minimal number of points; for in-
stance, they produced a (94, 13)-design. A variety of algo-
rithms have also been proposed for explicitly constructing
asymptotically uniform distributions of points on S2. The
most recent approach is to look for configurations corre-
sponding to the minimum potential energy of N repelling
points (repelling force needs to be redefined). The prob-
lem with the minimum energy configurations algorithm is
that it is long and cumbersome. That is why we consider in
this paper much more straightforward “spiral sets” which
are almost as good as the “polynomial adapted” or “energy
sets” refered to above. They are also good with respect to
the property of orthogonality of spherical harmonics; this
essential property will be simply checked.

Let us now describe the spiral set devised by Rakhmanov,
Saff, and Zhou (Rakhmanov et al., 1994), used in the
present study. In spherical coordinates (θ, ϕ), 0 � θ � π ,

0 � ϕ � 2π , we take the following coordinates of the N
points as:

θk = arccos(hk), hk = −1 + 2k − 2

N − 1
, 1 � k � N

ϕk =

ϕk−1 + const√

N
· 1√

1 − h2
k


 (mod 2π), 1 < k < N ;

ϕ1 = ϕN = 0
(A.2)

The estimate of the maximum diameter of N non-
overlapping disks on the spherical surface (the so-called
“best packing argument” (Habicht and van der Waerden,
1951)) suggests the constant in Eq. (A.2) to be chosen such
that

(ϕk − ϕk−1)

√
1 − h2

k ≈
√

8π

N
√

3
≈ 3.8√

N

The following version of the latter construction with a good
choice of the constant is easy to remember: we first generate
N points (x, y) belonging to the unit square 0 � x, y �
1 and then use the cylindrical equal-area projection (i.e.,
θ = arcsin(2y − 1), ϕ = 2πx) onto the spherical surface.
The generation of the initial sequence in the square is also
simple: xk = {(k − 1) · φ} (here braces denote the non-
integer part of the real value) and yk = (k − 1)/(N − 1).
The good value of the constant in Eq. (A.2) corresponds to
φ = 1

2 (
√

5 − 1) (the reciprocal of the so-called “golden
number”). This spiral set is illustrated in the main text for
N = 1000 and N = 3000 (Fig. 1).

Let the surface harmonic functions Pm
n (cos θ) cos mϕ,

Pm
n (cos θ) sin mϕ be ranked in the usual lexicographic or-

der, let u j be the j th surface harmonic in the corresponding
series. Their gradients ∇ui , ∇u j are orthogonal to one an-
other on the set of N points �rl , l = 1, . . . N :

Ci δi j = (
ui , u j

) =
∑

l

∇ui
(�rl

) · ∇u j
(�rl

)
(A.3)

This ensures that computing Gauss coefficients gm
n , hm

n in
the main text through non-weighted averages taken on the
points �rl of the spiral set (Ql in the main text) is valid. To
keep a practical point of view we checked that this orthogo-
nality property is satisfied with a sufficient accuracy for our
needs in the present study (see main text).

As we do not know of any other algorithm as simple to
operate as this spiral set one, while producing better results
for the problem at hand, we did not extend the analysis to
other constructions.
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