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Monte Carlo simulation of multiple scattering 
of elastic waves 

Ludovic Margetin t and Michel Campillo 
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Universit6 Joseph Fourier, Grenoble, France 

Bart Van Tiggelen 
Laboratoire de Physique et Mod•lisation des Syst•mes Condenses 
Maison des Magist•res Jean Perrin CNRS, Grenoble, France 

Abstract. We study multiple scattering of elastic waves with a Monte Carlo 
method. We take into account the mode conversions and the polarization of the 
$ waves. Some important physical parameters relevant to the description of the 
polarization are recalled, such as the definition and properties of the elastic Stokes 
vector. We briefly derive the scattering and Mueller matrices, as well as the 
differential and total scattering cross sections for one spherical inclusion embedded 
in a homogeneous matrix. The results of the single-scattering problem are used 
as a building block for multiple scattering. A Monte Carlo method to simulate 
the propagation of full elastic waves is presented. We pay a special attention to 
the convergence toward the diffusive regime which exhibits the equilibration of 
the P and S•energy densities. Our simulations show the shear energy to become 
very rapidly dominant in the coda and the $ to P energy density ratio to tend 
to 10.4 for a Poisson solid, as predicted by the equipartition theorem. However, 
the typical timescale and length scale to reach equipartition heavily depend on 
the scattering parameter kpa, where kp is the P wave number and a is the sphere 
radius. For Rayleigh scattering (kpa << 1) we find a smooth evolution of energy 
density with time and a slow convergence toward the equilibration, mainly because 
of the large difference between the P and $ scattering mean free paths in this case. 
On the other hand, for Rayleigh-Gans scattering (kpa • 1.2, 1.6) a peak of energy 
associated with the forward scattered waves is observed, followed by a slow decay 
according to the diffusion approximation. We find that after only a few mean free 
times, equipartition is reached in spite of the strong anisotropy of the scattering in 
this regime. As the scattering parameter k?a increases, we find that equipartition 
is again delayed because the transport mean free paths become quite large. We 
find that a large source-station distance favors a rapid equilibration. This effect is 
seen to be very pronounced for Rayleigh scatterers. When a source of P waves is 
considered, the equipartition time can be twice as long as compared with a shear 
source. The time evolution of the Ep/Es ratio could be used as a marker for the 
different scattering mechanisms. 

1. Introduction 

The propagation of high-frequency elastic waves in 
the Earth's crust is a complex problem that has been 
addressed many times in recent years [Zeng, 1993; $ato, 
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1994; Shapiro and Hubral, 1996; $ato and Fehler, 1998]. 
The complexity stems from the heterogeneity of the 
crust which involves numerous physical phenomena like 
reflection and refraction from velocity discontinuities 
and multiple scattering. One specific feature of elastic 
wave propagation is that the energy can be transport- 
ed by coupled compressional (P) and shear (S) waves. 
Each time a seismic wave encounters boundaries or het- 

erogeneities of the medium, it gives rise to scattered P 
and $ waves which, in turn, will give rise to new scat- 
tered P and $ waves. This makes the interpretation 
of high-frequency seismograms rather complex because 
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the coherent P and $ wave arrivals from the source 

are followed by numerous incoherent arrivals which are 
called coda waves. Most often, the coda is modeled 
with the acoustic radiative transfer equation. This ap- 
proximation relies on certain observational and theo- 
retical evidences that the transport of scattered energy 
should be rapidly dominated by the shear mode [Dain- 
ty and TSksSz, 1990; Aki, 1992; Papanicolaou et al., 
1996]. However, even if shear waves are dominant, the 
P-$ mode conversions lead to results different from the 

acoustic approximation. For example, Turner [1998] 
has shown that in the long-wavelength limit the elas- 
tic diffusivity is about 1/3 higher than the pure shear 
diffusivity. 

Several efforts have been made to include mode con- 

versions in the modeling of the seismic coda [Zeng, 
1993; $ato, 1994] relying on some assumptions. Yet, 
as pointed out several times in the literature [Ryzhik et 
al., 1996; Turner, 1998], some of these assumptions are 
never fulfilled in practice. For example, scattering of 
elastic waves is always anisotropic, whatever the value 
of a/•, where a is the correlation length of the fluctua- 
tions and • is the wavelength. As in optics, the elastic 
scattering problem is intrinsically dependent on the s- 
tate of polarization of the waves, especially for $ waves, 
which are similar to transverse electromagnetic waves. 
Complete modeling of the multiple scattering of elastic 
waves should incorporate a description of the polariza- 
tion. An additional difficulty of elasticity is the inter- 
action of longitudinal and transverse modes. Recently, 
the radiative transfer (or transport) equations for elas- 
tic waves have been obtained independently by Weaver 
[1990] and Ryzhik et al. [1996]. These equations can be 
derived from the wave equation by a rigorous statisti- 
cal analysis. The conditions of validity of the transport 
theory are summarized by Papanicolaou et al. [1996]. 
The main condition is that the mean free paths are 
much larger than the wavelengths, making it possible 
to neglect interference effects. However, no particular 
restriction on the a/• ratio exists, and therefore strong 
interactions of the waves with the heterogeneities are al- 
lowed. The transport equations describe the space and 
time evolution of the elastic energy as well as the state 
of polarization of the waves. It has been shown that 
the evolution of the seismic energy in the coda is ruled 
by an equilibration law, which states that the ratio of 
the P to $ energy density tends to a constant ratio as 
time tends to infinity [Weaver, 1982, 1990; Ryzhik et al. 
1996; Papanicolaou et al., 1996]. In the case of a full 
space this ratio equals 2• 3/fi3, where • and fi are the P 
and $ waves velocities, respectively. This result appears 
immediately by realizing that in the diffusion regime al- 
l the volumes of the phase space are equally occupied, 
consistent with the equipartition theorem. The factor 
2 comes from the existence of 2 degrees of freedom for 
the $ waves and only I for the P waves. The ratio of 
the P to $ wave speeds cubed comes from the counting 

of the P and $ modes in a given volume of the phase 
space. 

A central question addressed in this paper concern- 
s the required timescale and length scale to reach the 
diffusion regime in the Earth. In this regime the de- 
scription of coda waves is greatly simplified. A similar 
problem has already been studied in acoustics by Turn- 
er and Weaver [1994a, b, c]. They showed that the 
time necessary to reach equipartition heavily depend- 
s on the scattering mechanism. Only a few mean free 
times suffice for Rayleigh scattering, while many mean 
free times are necessary for Mie scattering. Unfortu- 
nately, the pioneering results of Turner and Weaver ob- 
tained for incident plane waves cannot be transposed 
directly to seisinology. We have to take into accoun- 
t the fact that small earthquakes are almost point-like 
sources in both space and time. The statistical descrip- 
tion of fluctuations in the Earth can be accessed from 

well log data [Wu et al., 1994] or from geological maps 
[Holliger and Levander, 1992]. For the sake of simplic- 
ity, we consider discrete spherical inclusions embedded 
in a homogeneous matrix. 

In this paper we will explain how multiple scattering 
of elastic waves can be simulated with a Monte Car- 

lo method. For simplicity, only infinite and statisti- 
cally uniform media are considered, but anisotropy of 
scattering, polarization, mode conversions, and point- 
like sources are accurately described. When scattering 
problems are considered, a complete description of the 
polarization of the $ waves is necessary. Indeed, initially 
depolarized $ waves can become partially polarized by 
scattering. Moreover, the interaction of $ waves with 
heterogeneities in turn depends on their polarization. 
In section 2, these problems will be examined. 

2. Description of Polarization 

2.1. Definition of the Stokes Parameters 

In optics, polarized light is represented by a four- 
element vector, called the Stokes vector, whose com- 
ponents are intensities [Chandrasekhar, 1960]. In view 
of the transverse nature of $ waves and electromagnet- 
ic waves the definition of the Stokes parameters can 
readily be transposed from optics to elasticity. To be 
complete, one additional Stokes parameter is necessary 
to represent the P waves. Our definition of the elas- 
tic Stokes parameters follows the one given by Turner 
and Weaver [1994a]. Let us define a Cartesian refer- 
ence frame (x,y,z) where z denotes the propagation 
direction, and let us call w the central frequency of 
the waves. The wave displacements can be written at 
x = 0, y = 0, z = 0 (without loss of generality) as 

P(t) - Ap(t)exp [iwt + iv(t)] 
$x (t) = Ax (t) exp (i•t) 
$y(t) = Ay(t) exp [iwt + i5(t)], 

(1) 

where 5 is the phase difference between the y and x com- 
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ponent of the $ wave, t/is a phase shift for the P wave, 
and i 2 = -1. In typical experiments, Ap, Ay, Az, and 
• fluctuate with time t. These fluctuations should obvi- 
ously be slow compared to the central frequency of the 
signal. If the wave is polarized, certain constant rela- 
tions, or correlations, should persist between the phase 
and amplitude terms of the displacements. This will be 
expressed mathematically through the Stokes vector: 

s = u, v), 

where 

where p is the density of the medium and a and fi are the 
P and $ wave velocities, respectively. The angle brack- 
ets indicate that the time average is taken over a large 
number of periods. The parameters defined in (3a)-(3c) 
are just the intensities carried by the wave when mea- 
sured along the three axes of the reference frame. The 
last two parameters, U and V, measure the cross cor- 
relations between the x and y components of the shear 
wave. We note that the four parameters (3b)-(3e) con- 
tain information about the total intensity, the degree of 
polarization, the ellipticity, and the plane of polariza- 
tion of $ waves, as in optics. For future developments 
we will give the relation between the Stokes parame- 
ters and the ellipticity and azimuth of the polarization 
plane in the simple case of elliptical polarization. The 
azimuth -•r/2 < X < +7r/2 is defined as the angle be- 
tween the major axis of the ellipse and the x axis. The 
ellipticity tan lel _• 1 is defined as the ratio of length 
of the minor to the major axis; e •> 0 corresponds to 
a right-handed ellipse, and e ( 0 corresponds to a left- 
handed one. We have 

U (4) tan 2X = Is• - Is• 
V 

sin 2e = ß (5) 
Is. + Is• 

2.2. Properties of the Stokes Parameters 

A useful property is that independent Stokes vectors 
are additive. "Independent" here means that the waves, 
whose Stokes parameters are added, do not obey any 
phase relations [Chandrasekhar, 1960]. The Stokes pa- 
rameters are subject to the inequality 

(Is, + Is• )2 _< (Is. - Is• )2 + U 2 + V 2. (6) 

The equality applies when the wave is elliptically polar- 
ized. In this case, only three parameters are necessary 
to characterize the polarization ellipse. Another rela- 
tion that we will need is the transformation of the S- 
tokes parameters when the coordinate system is rotated 
an angle •b around the z axis. One can show that the 
Stokes vector S in the new coordinate system is related 
to the Stokes vector So in the old coordinate system by 
the matrix relation [see Turner and Weaver, 1994a]: 

S = LSo. (7) 

The expression of the 5 x 5 matrix L can be found 
in Appendix A. It is worth noting that V, Ip, and 
Is = Is. + I$• are invariant under this rotation. In- 
deed, V corresponds to the decomposition of the wave 
on the basis of the right and left circular polarization. 

3. Scattering by One Sphere 

To study the multiple scattering of elastic waves, we 
consider a very simple model composed of randomly 
distributed spherical inclusions in a homogeneous ma- 
trix. The spherical inclusions are of the same nature and 
show a small contrast of wave speeds and density with 
the reference medium. We assume that the wave speed- 
s and the density are equally perturbed. The choice of 
spherical scatterers introduces symmetry relations that 
greatly simplify the problem. The first step is to calcu- 
late all the physical quantities relevant to the descrip- 
tion of scattering by a single sphere. Then these results 
will be used as a building block for multiple scattering. 
The scattering of elastic waves by one sphere has been 
largely studied, and many references exist in the litera- 
ture [ Ying and Truell, 1956; Einspruch et al., 1960; Wu 
and Aki, 1985a; Korneev and Johnson, 1993a, b, 1996]. 
For the sake of simplicity, we shall follow the approach 
of Wu and Aki [1985a], who calculated the field scat- 
tered by one sphere using the Born approximation. In 
this approximation the elastic inclusion is decomposed 
in infinitesimal volumes which are considered as inde- 

pendent Rayleigh scatterers. The total scattered field 
is written as a sum of partial waves emitted by each 
fraction of the whole inclusion. Thereby, the Born ap- 
proximation neglects interactions between infinitesimal 
volumes and holds good as long as kp, sa[m- 1[ << 1, 
where kp,$ is the P or $ wave number, a is the radius 
of the sphere, and m = a/a0 or m = fi/fio is the val- 
ue of the ratio of the wave speeds inside and outside 
the sphere. As in the electromagnetic literature [Van 
de Hulst, 1981], we will term this scattering mechanism 
"Rayleigh-Gans" scattering. The results of Wu and Aki 
[1985a] written in a slightly modified form will be our 
starting point to derive some physical quantities of in- 
terest such as the scattering and Mueller matrices and 
the differential and integrated scattering cross sections. 
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3.1. Scattering and Mueller Matrices 

We consider a plane wave propagating in the z direc- 
tion, incident on a sphere centered at the origin of the 
Cartesian reference frame (x, y, z). The scattered wave 
propagates in the z • direction, at an angle © with z. 
The plane containing z and z • is called the scattering 
plane. To derive the scattering matrix, we choose the 
following convention (see Figure 1): the incident Stokes 
parameters are expressed in the (r, 1, z) Cartesian frame 
where r and 1 denote the directions perpendicular and 
parallel to the scattering plane, respectively. 

Similarly, the Stokes parameters of the scattered wave 
are expressed in the (r •, ¾, z •) Cartesian frame where the 
same convention is assumed. We find that the incident 

and scattered Stokes vectors Sinc, Ssc are related by 

Ssc- •FSinc, (8) 
where r is the distance from the center of the inclusion 

to the observer and F is the scattering matrix: 

direction respectively (see Figure 2). With these con- 
ventions the incident and scattered Stokes vectors Sinc 
and Ssc are related by Ssc = PSinc, where the Mueller 
matrix P can be deduced from the scattering matrix 
F after carrying out the necessary rotations (see Chan- 
drasekhar [1960] for electromagnetic waves and Turner 
and Weaver [1994a] for elastic waves). Upon introduc- 
ing i l, the dihedral angle between the plane containing 
the directions Oz and (0 •, ;b •) and the scattering plane, 
i2, the dihedral angle between the scattering plane and 
the plane containing the directions Oz and (•, •b) (see 
Figure 2), the Mueller matrix reads 

P(9, •; 9', •') - L(i2 - 37r/2)F(©)L(il + 7r/2). (10) 

The rotation through i• brings the incident basis in the 
scattering plane and enables us to use relation (8). The 
rotation through i2 ensu'res that the outgoing Stokes 
vector is referred to the basis (us, u•, p). The expres- 
sion of the Mueller matrix for a spherical elastic inclu- 

F z 

167r 2 

where kp and ks are the P and $ wave numbers, re- 
spectively. The functions f,(©) and %(©) come out of 
the Born approximation with the subscript star denot- 
ing any of these functions. The functions f, correspond 
to Rayleigh scattering and the functions ?, are shape 
factors that appear for scatterers of finite size. In Ap- 
pendix B we explain our choice of conventions and how 
these functions can be recovered from the work of Wu 

and Aki [1985a]. The matrix F depends on © only as 
required by the rotational symmetry (see Van de Hulst 
[1981] for details). From the structure of the matrix F, 
it can be inferred that for an elliptically polarized in- 
cident wave the scattered wave will remain elliptically 
polarized. This means that depolarization can occur in 
multiple scattering only. 

The scattering matrix is not convenient to deal with 
multiple scattering, since it is referred to a local frame. 
For the purpose of our simulation we will find it con- 
venient to know how a beam of energy propagating 
in a direction of space (8•, •b •) contributes to a beam 
propagating in an other direction of space(O, •b), where 
(8(•), •b ©) refer to the usual definition of polar coordi- 
nates in a global reference frame (O, x, y, z). Moreover, 
a convention must be adopted for the analysis of the 
polarization of S waves. Following Turner and Weaver 
[1994a], the Stokes vector will be written in the basis 
(us, u,, p) composed of three unit vectors in the direc- 
tion of increasing 8, increasing •b and in the propagation 

sion is given in Appendix C. From the structure of this 
matrix we see that the parameter V alecouples and that 
linearly polarized S waves give rise to scattered waves 
that are still linearly polarized. This property will be 
helpful when considering the numerical simulation. 

3.2. Scattering Cross Sections 

We shall first consider the differential cross section- 

s, which contain all the information about the angular 
dependence of the scattered flux. They are defined as 
the ratio of the energy scattered in the space direction 
(•, •I)) (see Figure 1) per unit time and per unit solid 
angle by the spherical inclusion to the energy per unit 
area and unit time carried by the incident wave [Sato 
and Fehler, 1998]. These cross sections clearly depend 
on the polarization of incident and scattered waves. In 
the following, we will consider linearly polarized • waves 
only for simplicity, but our results can easily be gener- 
alized to any type of polarization. From the solution 
of the scattering problem given by Wu and Aki [1985a] 
and Appendix B, we find 

= (11a) d• 16• 2 

dars _ 
d• - 1•7• y(e)fs(e) (lib) 
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Figure 1. Sketch of the convention used to derive the scattering matrix. 

• 

Y 

x 

Figure 2. Sketch of the convention used to derive 
the Mueller matrix. The i l denotes the dihedral an- 
gle between the incident and scattering planes, while i2 
denotes the dihedral angle between the scattering and 
outgoing planes. © is the scattering angle. 

dasp 
d• 

dass 
d• 

(11c) 

(lid) 

In (11a)-(lld), O is the angle between the incident and 
scattered directions and (• is the angle between the scat- 
tering plane and the polarization plane of the S wave, 
which contains both the propagation and wave displace- 
ment directions. For incident S wave polarized in the x 
direction, the polarization plane is merely (x, z) and (• 
is the usual azimuthal angle. The symbol df• indicates 
that the differential cross sections are defined per unit 
solid angle. We adopt this notation because it is most 
commonly used in optics. As has already been noted by 
Papanicolaou et al. [1996] and Turner [1998], the an- 
gular distribution of scattered energy is never isotropic, 
even in the low-frequency limit kp, sa << 1 or Rayleigh 
regime. 

The integrated scattering cross sections EMN, with 
M, N = S, P, are obtained by integrating the differen- 
tial cross sections over the solid angle. In the case of 
incident S waves the total cross sections for a spheri- 
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cal inclusion do not depend on the polarization because 
of the symmetry of the scatterer [Van de Hulst, 1981]. 
In the intermediate frequency regime ka _• 1, the cross 
sections can be evaluated numerically. The accuracy 
of our computations has been checked, using the re- 
suits presented by Korneev and Johnson [1993b]. In 
the Rayleigh regime the scattering cross sections can 
be computed analytically and are given in Appendix 
D. It is important to note that according to the defini- 
tion of the scattering cross sections and the symmetry 
of the function fsp and fp$, a relation exists between 
•$p and •p$: 

oz 2 

independent of the scattering mechanism. As has been 
explained by Aki [1992], this relation finds its origin in 
the reciprocity of the Green functions. The same rela- 
tion has been obtained by Papanicolaou et al. [1996] 
for a continuous random medium. The reciprocity ar- 
gument of Aki also holds for scatterers of more compli- 
cated shape, making (12) a fundamental relation. For 
completeness, we recall the definition of the shear and 
compressional waves mean free paths, denoted by ls 
and 1p, respectively: 

1 •s 
ls = -(Esp 4- Ess) - --, (13a) 

n n 

1 Ep 
lp -- -(Y•PS q- Epp) -- --, (13b) 

where n is the density of scatterers. 

4. Diffusion of Elastic Waves 

Recently, Turner [1998] made a summary of theoret- 
ical work done on multiple scattering of elastic waves. 
For our purpose, it is important to recall some result- 
s concerning the diffusion of elastic waves. It has first 
been shown by Weaver [1990] that the propagation of e- 
lastic waves in inhomogeneous media could be described 
by a radiative transfer equation, which is a coupled e- 
quation for the five Stokes parameters described above. 
For large lapse times the equation of radiative transfer 
can be turned into a simple diffusion equation for the 
total energy density (E) of the P and $ modes. It is 
remarkable that such a simple scalar equation is able 
to describe the evolution of the seismic energy. Since 
the diffusion theory is much easier to use than the full 
radiative transfer equation, it would be very interesting 
to know what are the typical timescale and length scale 
necessary to reach the diffusive regime. In this regime 
the total energy density E for a point source in both 
space and time in an infinite nondissipative medium 
reads 

I 
exp (-R2/4Dt) (14) t) - ' 

where t is the lapse time, R is the source station dis- 
tance, and D is the diffusion constant of elastic waves: 

i D- l+2K a -- + 2Kay- ' (15) 
The variables a, • are the P and S wave speeds, respec- 
tively, and K = a/• is the P to $ wave speed ratio. 
A crucial point is the definition of the transport mean 
free paths l• and l} appearing in (15). In order to cope 
with discrete scatterers we have to modify slightly the 
definitions given by Turner [1998] and obtain 

l• = • Es- E;s + E•s (16a) 

I Sp-S•p+S•p , (16b) 

where the following notations have been introduced: 

= / df• cos ©d cos Od• 
4rr 

M,N=P,S (17) 

and n is the density of scatterers. The E* M,N are the 
averages of the cosine of the scattering angle, weighted 
by the differential cross section. The definition of the 
transport mean free paths in terms of the E* M,N are 
more complicated than in the acoustic case. The exact 
results of the diffusion theory will be useful in checking 
the accuracy of our numerical simulations. 

Another relation of importance is the value of the 
equilibration ratio of the P to $ energy density, shown 
to be independent of the details of the scattering [Ryzhik 
et at., 1996], 

Es = • ' (18) 
We finally comment on the definitions of the wave 
speeds appearing in the diffusion theory. It is now well 
established that in the case of very strong scattering, we 
have to distinguish between the phase and group veloc- 
ities of a pulse and the transport velocity appearing in 
the definition of the diffusion constant [Lagendijk and 
Van Tiggelen, 1996]. It has been shown that for res- 
onant scatterers the transport velocity can be reduced 
by a factor of 10 compared to the phase velocity. Since 
we consider scatterers away from resonances, the differ- 
ence between the phase, group, and transport velocity 
becomes immaterial. 

5. Monte Carlo Simulation 

In recent years, the Monte Carlo method has been 
used to model the propagation of high-frequency seismic 
waves in the Earth's lithosphere. Starting from infinite 
space models [Gusev and Abubakirov, 1987; Abubakirov 
and Gusev, 1990; Hoshiba, 1991], the most recent mod- 
els [Hoshiba, 1997; Margetin et at. 1998] have also in- 
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cluded depth dependence of wave velocity and scatter- 
ing mean free path, yet retain the acoustic approxima- 
tion. In the simple case of neutrons or alepolarized pho- 
tons it can be rigorously established that Monte Carlo 
simulations are, in fact, "exact" solutions of the radia- 
tive transfer equation. "Exact" here means that in the 
limit of a very large number of independent simulations 
the Monte Carlo solution converges to the exact solu- 
tion of the radiative transfer equation. Proofs are given 
by Lux and Kobtinger [1991]. To the best of our knowl- 
edge, no such formal proof exists in the case of elastic 
waves. However, there are some numerical and theo- 
retical evidences that Monte Carlo methods are able to 

solve coupled systems of integro-differential equations 
such as the elastic transport equations [Marchuk et at., 
1980]. 

Our scheme is a one-to-one simulation of the transfer 

process and is therefore restricted to the same assump- 
tions. Scatterers are supposed to be independent, that 
is, we neglect recurrent scatterings. In more technical 
words, the transport equation applies only when the 
mean free path is large enough compared to the wave- 
length. The mathematical assumptions underlying the 
transport approach are described by Ryzhik et at. [1996] 
and the transition from transport to localization phe- 
nomena is discussed by Van Tiggeten [1999]. In this 
section we will generalize the Monte Carlo method to 
include mode conversions. The problem of boundary 
reflections and nonuniform mean free path will not be 

discussed in this paper. Instead, we will emphasize the 
elastic aspects and the time-dependent propagation. 

5.1. Outline of the Simulation 

The Monte Carlo method requires three steps, which 
are schematically depicted in Figure 3. First, the ran- 
dom walk of "particles" representing seismic wave pack- 
ets is simulated. The path length distribution is given 
by an exponential probability law. Second, at each s- 
cattering event the energy contribution of the particle is 
calculated in terms of probability at different receivers. 
Finally, the average of all the random walk results is 
calculated to obtain the time evolution of the seismic 

energy at different positions of space (see, e.g., Hoshiba 
[1991] for a clear description of the basic method). 

Our treatment follows the one used for anisotropic s- 
cattering of acoustic waves [Hoshiba, 1995]. To describe 
the particle, we use the following quantities: (1) vec- 
tors I - (x•,y•,z•) and p - (Px,Pv,Pz) to determine 
the position and propagation direction, respectively, in 
a Cartesian global reference frame (x,y,z), (2) travel 
time of the particle since the emission at the source is s- 
tored in a scalar T, and (3) to allow for absorption in the 
medium, a weight 0 < w < 1 is assigned to the particle. 
In the following, we will consider nondissipative media 
only. For elastic waves, additional information is re- 
quired: (•) the polarization M of the wave (P or • and 
(2) for $ waves the Stokes vector S - (I&, Ism, U, V) 
that describes the polarization. In our simulation the 

Receiver 

Energy Detection 

Local reference frame 

0 • l It 
P • - • 

-- --' Xl • U. 
•- - - _X]' _ * 

Global reference frame u0 ,"[ --'-- 

Nx4 • Scattering 
Random Walk 

Figure 3. Schematic picture of the Monte Carlo simulation. The particle starts at a point 
source and makes a random walk in the medium. At each scattering, the choice of the new mode, 
propagation direction, and path length is made; the energy contribution of the particle is also 
calculated at the receiver. 
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Stokes vector is written with the same convention as 

the one used for the Mueller matrix. For example, if a 
particle propagates in the direction p, the shear com- 
ponents of the displacement are analyzed in the basis 
(u0, u•, p), where u0 and u• denote unit vectors in the 
direction of increasing 0 and •b, respectively, in the glob- 
al reference frame (see Figures 2 and 3). 

5.2. Random Walk 

During its random walk the particle changes its direc- 
tion of propagation and may also change polarization. 
We will assume an isotropic and point-like source radia- 
tion in both space and time of either P or S waves. For 
S waves we make the additional assumption that they 
are initially linearly polarized. Since both P and lin- 
early polarized S waves scatter into linearly polarized 
S waves as explained earlier, our last assumption im- 
plies that the particle is fully linearly polarized during 
all the propagation in the medium. Thus the depolar- 
ization of S waves can only occur when summing the 
contributions of many independent particles. This fact 
greatly simplifies the selection of the propagation direc- 
tion after scattering since we will only have to consider 
the scattering of P waves or linearly polarized S waves. 

5.2.1. Distance between collisions. Between t- 

wo collisions, the wave will propagate ballistically on a 
length L, which is determined by the exponential prob- 
ability distribution (1/IM) exp(--L/IM), where M - 
P, $ denotes the polarization of the wave. 

5.2.2. Scattering of elastic waves. When a col- 
lision occurs, one must determine the new polarization 
and propagation direction after scattering according to 
the scattering cross sections. We use the methods de- 
veloped by Collins et al. [1972] to study the propaga- 
tion of light through the atmosphere and the methods 
of Helderich [1995] and Helderich et al. [1997] to cope 
with light scattering in nematic liquid crystals. Light 
propagation in nematics bears some important resem- 
blances with elastic wave propagation. Among these 
similarities, one can cite the existence of two modes of 
propagation (ordinary and extraordinary) with two dif- 
ferent wave speeds and the anisotropy of the differential 
scattering cross sections. In elastic case, the joint prob- 
ability distribution of the polarization Msc and of the 
propagation direction (cos ©, (I)) after scattering reads 

P(Min½lMs½, cos ©, rI') 

der (Minc I Msc cos O, (I >) df• • 

•fa• •-• (Minc IMsc, cos O, •)d cos ©d•I' 
Min c 4•r 

(19) 

P(Minc[Msc, COS O, (I)) denotes that the probability dis- 
tribution is parameterized by the incident polarization 
Minc. The core of the Monte Carlo simulation consist- 

s in accurately simulating this probability distribution. 
As in the case of anisotropic scattering of scalar waves, 

the polar and azimuthal angles (©, (I)) are selected in 
a local frame (see Figure 3). A rotation of coordinates 
provides the new propagation directions in the global 
coordinate system. In the case of incident P waves the 
angle (I) is equidistributed over [0, 2•r]. In the case of in- 
cident S waves, (I) denotes the angle between the plane 
of polarization and the scattering plane. From the def- 
inition of the probability distribution (19) we conclude 
that the variables Msc, COS©, and (I) are not indepen- 
dent. This is an additional complication of the Monte 
Carlo simulation for elastic waves. To overcome this d- 
ifficulty, we will rewrite (19) as a product of conditional 
probability distributions: 

P(MinclMc, cos ©, - P(MinclM) 
x P(Minc, Mscl cos O)P(Minc, Msc, cos OIW), (20) 

where the following notations have been introduced- 

P(Min½lM•c) 

f •-•(MinclMsc, cos ©, rI')dcos©drI, 
4•r 

• f •-•(MinclMsc,COSO, rI')dcos©drI, 
Msc 4•r 

(21) 

is the conditional probability of the mode Msc, 

P(Min½,M•½IcosO) 
f der (Minc Msc[ cos O, (I))d(I) 2-• , 

f der •-• (Minc, Mscl cos O, •)d cos ©drI, 
4•r 

(22) 

is the conditional probability of the cosine of the scat- 
tering angle cos ©, and 

P(Minc, M•c, COs Ol½I>) 
der 
a-• (Minc, Msc, cos ©1•) 

= f (Mnc, Mc, cos (2a) 
4•r 

is the conditional probability of the angle •. Note 
that in these equations, the vertical bar separates the 
known parameters from those that have to be random- 
ly selected. Equation (20) decomposes the joint prob- 
ability distribution as a product of conditional proba- 
bility distributions. At this point, three independent 
numbers el,e2,e3, uniformly distributed between ]0,1[ 
are randomly generated. First, we select the mode of 
the scattered wave Msc, which depends on the mod- 
e of the incident wave. For example, in the case of 
an incident S wave the probability to be converted is 
Pconv- ESp/(E$$ + ESp), and the probability to keep 
the same mode is 1 -P½onv - Ess/(E$$ + Esp) con- 
sistent with (21). Thus, if e• is smaller than Pconv, the 
wave is converted; otherwise, it keeps its original mode. 
Once the mode of the scattered wave is known, we selec- 
t the value of cos © with the usual inverse distribution 

function method [Lux and Koblinger, 1991]' 
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cos 0 

f P(Minc, M•I cos O')dcos O' (24) 
o 

Since the angular dependence is too complicated to find 
cos © as an explicit function of e2, we divide the [-1, 1] 
interval into subintervals of equal probability such that 

ft. cøsO' P(Minc, Mcl cos O')acos O' - I (25) cos Oi- • q 

where q denotes the number of intervals and i • [0, q]. 
These values are stored in a table which is calculated 

once at the beginning of the simulation, from which 
we can select randomly the value of cos O. Finally the 
angle ß is selected with the same method: 

o 

Minc, Msc, cos Ol(I)t)d(I )t. (26) 

Once the propagation direction of the scattered wave is 
known in the local coordinate system, a rotation pro- 
vides the propagation direction of the particle (Px,Py, 
p,.) in the global coordinate system. Then, using the 
Mueller matrix, the Stokes vector of the scattered wave 
can be calculated, enabling us to also keep track of the 
orientation of the polarization in the global reference 
frame. For further details, we refer to Helderich et al. 
[1997]. It is worth mentioning that using a very sim- 
ilar method for polarized light, Collins et al. [1972] 
have shown good agreement between the Monte Car- 
lo computations and solutions of the radiative transfer 
equation obtained with other numerical methods. 

5.3. Energy Detection 

The step of the simulation dealing with energy detec- 
tion is very similar to the acoustic case except that the 
particle contributes to the P and $ modes at each scat- 

tering event. We refer to Hoshiba [1995] for the details 
of the Monte Carlo simulation for anisotropic scattering 
and just give the expressions of the probabilities for the 
elastic case' 

P(MincIMsc, cos O, ,:I:,) exp (--R,a/lMsc) 
E•sc - R2v•4,•c dt 

(27) 
where VMsc denotes the wave speed of the scattered 
mode Msc. R,a is the distance between the scatter- 
ing site and the detector, and dt is the discretization 
step of time. The energy contributions of the particle 
at each scattering event are stored in a vector p•(t), 
which is the discrete version of the energy density as a 
function of time. Finally, all random walk results are 
averaged to provide an estimate of the energy density 
of each mode. 

6. Numerical Tests 

We expect our numerical solutions to lie between the 
single-scattering (SSc) and diffusion approximations. 
The SSc approximation for elastic waves has been stud- 
ied in detail by Sate [1984] and Wu and Aki [1985b]. Us- 
ing the formulas of Sate [1984] (equations (68a)-(68d)) 
and the diffusion theory outlined in this paper, we have 
compared the decay of the total energy density in the 
SSc and diffusion approximations, against our numer- 
ical results. This comparison is plotted in Figures 4a 
and 4b for an isotropic source of linearly polarized s- 
hear waves because seismic sources mainly release shear 
energy. In all the simulations presented in this paper 
the mean free path of the shear waves is l s - 30 km. 
According to the definition of the mean free paths (see 
equations (13a), (13b), (16a), (16b)), the value of ls 
can be adjusted by changing the density of scatterers in 
the medium. Note that the ratios lp/l$ or l•/l• do not 
depend on the density of scatterers. Since the time axis 
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Figure 4. Comparison of the Monte Carlo simulation (solid) with the single-scattering (dash- 
dotted) and diffusion approximation (dotted) for an isotropic source of S waves close to the 
receiver for (a) Rayleigh regime and (b) Rayleigh-Gans regime. 
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Figure 5. P to 5' energy ratio as a function of time for different values of the ratio of wave 
speeds c•//•. The Monte Carlo solutions exhibit characteristic ripples. The theoretical asymptotic 
value of the equilibration ratio is also plotted. Time unit is the mean free time of the shear waves. 

is normalized with respect to the shear mean free time, 
the choice of 15 is completely arbitrary and determines 
only the absolute value of the energy density, which is 
not a parameter of interest in our case. 

In Figure 4a we consider Rayleigh scatterers, i.e., 
with size much smaller than the wavelength (kp,$a << 
1). In Figure 4b, we consider Rayleigh-Guns scatterers 
whose size is comparable to the wavelength (kpa = 2). 
As will be explained latter, these two regimes strong- 
ly differ in their scattering characteristics. For both 
size of scatterers, at short times, we find that our solu- 
tion perfectly matches the SSc asymptotic and as time 
increases, our solution approaches the solution of the 
diffusion equation. In addition, our Monte Carlo sim- 
ulation describes the intermediate multiple-scattering 
regime. After one mean free time, the single-scattering 
and full numerical solutions start to diverge strongly, 
which shows that multiple-scattering effects become im- 
portant. It is also clear that after a few mean free times 
the diffusion approximation is much closer to the full 
numerical solution than the SSc approximation. 

Another strong constraint on our numerical results is 
the equilibration ratio of the P to 5' energy densities, 
as given in (18). We have performed a series of sim- 
ulations in the Rayleigh regime with c•/• - 1.5, x/•, 
2. In Figure 5 the ratio of the P to 5' energy densities 
Ep/E$ is plotted as a function of time in terms of the 
mean free time of the shear waves •'$ -- 15/•. The re- 

sults are shown for an isotropic source of shear waves 
and a source station distance of two P mean free paths. 
After a transition regime, we find that •he P and 5' en- 
ergies equilibrate exactly with the expected ratio. Our 
numerical simulations show some oscillations caused by 
an incomplete averaging. The characteristic time re- 
quired to reach equipartition is about 25 shear mean 
free times, which is rather large. One should note that 
as the ratio c•/• changes, the angular dependence of 
the differential cross sections is modified. This clearly 
shows that the details of the scattering are unimpor- 
tant and that only the P and 5' speeds affect the ratio 
Ep/E$ at equilibrium. Scattering just ensures the cou- 
pling between P and 5' modes and equipartition in the 
whole phase space. We stress that the ratio of the P 
to 5' energy densities calculated with the SSc approxi- 
mation does not tend to a constant. Therefore, if the 
equilibration could be observed, the SSc approximation 
may be discarded as a physical explanation for the co- 
da, leaving the alternative of a coda composed of diffuse 
waves. 

7. Comparison of the Rayleigh-Gans 
and Rayleigh Regimes 

7.1. Scattering Characteristics 

In Figures 6a-6d we show the polar diagrams of the d- 
ifferential scattering cross sections for one sphere in the 
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Figure 6. Polar plot of the differential scattering cross sections for the mode conversions P-P, 
P-$ and $-$ for (a) Rayleigh regime/cpa << 1, (b) Rayleigh-Gans (R-G) regime/cpa - 1.2, (c) 
R-G regime kpa = 1.6, and (d) R-G regime kpa = 2 

Rayleigh-Gans and Rayleigh regimes. For $-$ scatter- 
ing, we averaged over the azimuthal angle •, which cor- 
responds to incident depolarized waves. In the Rayleigh 
regime,. scatterers are taken to be significantly smaller 
than the wavelength (kpa << 1). In this case, most part 
of the energy is scattered in the backward direction, as 
shown in Figure 6a. In multiple scattering, this feature 
tends to keep the energy close to the source. A typi- 
cal consequence of this situation is that the transport 
mean free paths 1J> and l• are smaller than the scatter- 
ing ones. We note that the ratio 1p/l$ of the mean free 
paths is rather large (2.6), which means that scattering 
is much stronger for $ waves than for P waves. 

In the Rayleigh-Gans regime (Figures 6b-6d), the s- 
catterers are supposed to b• of a size that is comparable 
to the wavelength (kpa •0 1). As kpa increases, the an- 
gular dependence of the scattering becomes more and 
more anisotropic, and the P-P and $-$ differential cross 
sections start to exhibit a peak in the forward direction, 
as also known to occur for acoustic waves [Chernov, 
1960]. The ratio 1p/l$ varies from 1.5 to 2, but the 
enhanced forward scattering causes the transport mean 
free paths to become much larger than the scattering 
mean free paths. For example, for kpa -- 2 we find 
l} •_ 4.6/$ and 1J> •0 2.5/p. Most of the scattered ener- 

gy is concentrated in a small solid angle in the forward 
direction, and therefore several scatterings are required 
before the scattered waves loose memory of their ini- 
tial direction. All the characteristics of the Rayleigh 
and Rayleigh-Gans scattering have been summarized in 
Table 1. For all values of ka, $-P or P-$ conversions 
are forbidden in the exact forward and backward direc- 

tions. From this brief description we conclude that the 
scattering mechanism heavily depends on the size of the 
scatterers as compared to the wavelength and therefore 
expect different behaviors regarding the shape of the 
envelopes and the convergence to diffusion and energy 
equilibration. These topics will be discussed in section 
8. 

7.2. Analysis of the Synthetic Codas 

In Figure 7 we present the results of our numerical 
simulations in the Rayleigh regime. Figure 7 is com- 
posed of three parts. In Figure 7(top) we show the P 
(solid lines) and $ (dashed lines) energy densities as a 
function of time. On each horizontal axis, time is ex- 
pressed in terms of the shear mean free time. In Figure 
7(middle) the total energy density Ep + Es is plotted 
in solid lines and compared to the solution of the diffu- 
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Figure 7. Results of the Monte Carlo simulation for an isotropic and point-like source of $ 
waves in a medium with Rayleigh scatterers. The ratio 1p/l$ and the source-station distance R 
(in terms of P mean free path) are indicated at the top. Time is indicated on the horizontal axis 
in term of the S mean free time. (Top) Energy density of the S waves (dashed) and of the P waves 
(solid). (Middle) Comparison of the total energy density (solid) with the diffusion approximation 
(dashed). (Bottom) Plot of the Ep/E$ ratio. The theoretical asymptotic value is also indicated. 

sion equation in dash-dotted lines. This enables us to 
discuss the accuracy of the diffusion approximation. In 
Figure 7(bottom) the ratio of •q to P energy densities is 
plotted. Note that Figure 7(bottom) has no logarithmic 
scale, which makes the evaluation of the equilibration 
time easier. We recall that in all our simulations we 

have l$ = 30 km. As explained in section 6, choosing 
another value of 15 in the simulations would just result 
in changing the absolute value of the energy density. 

In the Rayleigh regime kpa << 1, most of the energy 
is backscattered (see Figure 6a). Except when source 
and receivers are close (typically less than one trans- 
port mean free path), the synthetic codas are rather 
smooth, showing a slow evolution of the energy density 
with time. The smoothness of the curves reflects that 

in the Rayleigh regime (kpa << 1) the angular depen- 
dence of the scattering is only slightly anisotropic as 
compared to the Rayleigh-Gans regime. At a few mean 
free paths from the source the maximum of the total 
energy density occurs after the arrival time of the pri- 
mary waves. Beyond this maximum, the energy of the 
coda is almost flat. A similar behavior is observed in 

the acoustic case for isotropic scatterers [Margetin et 
al., 1998] and shows the formation of a diffusion fron- 

t. This is confirmed by the very good agreement be- 
tween the diffusion approximation and the simulation. 
We note that for elastic waves the transport mean free 
paths can be smaller than the scattering one. This can 
never be achieved for acoustic waves. In particular, in 
the Rayleigh regime of acoustic waves, scattering be- 
comes isotropic. 

Figure 8 shows the results of our computations for 
Rayleigh-Gans scattering with (k•,a = 1.6). The ener- 
gy arrival associated with the forward scattered waves 
can clearly be identified. Just after this peak, the ener- 
gy falls by 1 order of magnitude and then decays slow- 
ly, exactly as predicted by the diffusion approximation. 
The analytical form (• t -3/2) of the coda in the diffu- 
sion regime is very simple. By comparing Figures 7 and 
8 we can observe that the diffusive regime is reached 
much more rapidly for Rayleigh-Gans scattering than 
for Rayleigh scattering. Several reasons can be invoked 
to explain this result. As has already been pointed out 
by Turner [1998], a large value of the ratio 1p/l$ tends 
to delay the diffusion regime. This statement is con- 
firmed by our computations. In spite of the larger P 
wave velocity the shear mean free time is smaller than 
the compressional one. This means that the time re- 
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Table 1. Scattering Parameters in Different Regimes 

Rayleigh regime 
Rayleigh-Gans regime 

kpa = 1.2 0.7 
kpa = 1.6 1.2 
kpa - 2.0 1.2 

0.3 19.6 2.6 0.7 0.8 -0.4 -0.4 -0.3 

14.1 1.5 1.7 0.9 -0.1 -0.1 0.4 
21.2 1.67 3.1 1.5 0.2 0.5 0.7 
28.4 2.0 4.6 2.5 0.6 0.7 0.8 

quired to achieve isotropy and equipartition for P waves 
is expected to be larger than for o e waves. In addition, 
we note that for Rayleigh scattering, P waves are pref- 
erentially converted into S waves (see Table 1). This 
means that the P mode is rather unstable, which pre- 
vents the onset of a rapid equilibration between the P 
and S energies. This is illustrated by the slow evolution 
of the ratio Ep/E$ in Figure 7, where equipartition is 
reached after at least 15 mean free times. For Rayleigh- 
Gans scatterers (Figure 8), only five mean free times or 
less are required. In this case, there is a very efficient 
coupling between the P and o e modes. 

A remarkable result is the effect of the source station 

distance R on the equilibration time. In Figure 7 and 
8, we note that the largest timescale occurs when the 
source and the receiver are close. This is particularly ev- 
ident in the Rayleigh case where the onset of equilibra- 
tion takes no less than 35 mean free times. In Figure 7 
we see that it takes quite a long time for the total energy 
density to be described very accurately by the diffusion 

approximation when the source station distance R = 0. 
This means that most of the energy leaves the source 
region before it is diffuse. The part which remains cor- 
responds to the energy which propagates slowly, far be- 
hind the diffusion front, and that is not equilibrated. 
This effect is more pronounced in the Rayleigh case be- 
cause of the difference in the P and o e scattering mean 
free paths. As the source-station distance increases, the 
energy that arrives at the receiver rapidly exhibits a dif- 
fusive behavior as has been described above. Therefore 

the time evolution of the Ep/E$ ratio could be used to 
discriminate different scattering mechanisms, which are 
determined by the size of the scatterers compared to the 
wavelength. Although in some cases equipartition can 
be quite long to achieve, we find that the solution of the 
diffusion equation approximates the full solution rather 
well. This suggests that the coda could be accurately 
described in the framework of the diffusion theory, as 
has already been proposed by Campilio et al. [1999]. It 
is also noticeable that the value of equipartition is corn- 
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pletely independent of the scattering mechanism and 
only depends on the ratio c•//•. 

Even though the multiple-scattering field is found to 
converge to a universal regime, we find, for early times, 
a strong dependence of the shape of the energy en- 
velopes on the scattering mechanism. This can be most 
easily appreciated when we consider receivers located 
at a few mean free paths from the source. In Figure 
7 the envelope is spindle shaped, as can be observed 
on lunar records. When scattering is predominantlly 
forward, as is the case in Figure 8, the shape of the en- 
velope is rather impulsive and exhibits broadening with 
increasing distance. Recently, Gusev and A bubakirov 
[1999a, b] have proposed using the shape of the energy 
envelopes at early times to infer the depth dependence 
of the scattering mean free paths. Their approach is 
based on the often observed envelope-broadening phe- 
nomenon but does not incorporate the mode conversion- 
s. While an interesting problem, it is beyond the scope 
of this paper to discuss how envelope broadening of elas- 
tic waves depends on different scattering mechanisms. 
Hereinafter, we shall rather focus on the approach to 
equilibration. 

8. Diffusion and Equilibration 

In this section we discuss the parameters that can af- 
fect the equilibration time. In Figure 9 and Figure 10, 
we present the results of the Monte Carlo simulations 

in the Rayleigh-Gans regime (k•,a - 1.2 and kpa- 2) 
for a source of linearly polarized shear waves. We re- 
call that as k•,a increases, the scattering becomes more 
and more anisotropic and forwardly peaked as illustrat- 
ed by the polar plots of the differential scattering cross 
sections in Figure 6. The case k•,a - 2 is very simi- 
lar to k•,a -- 1.6 except that the equilibration time is 
largely delayed. This follows from the increase of the 
ratio lp/l$, as discussed above, and from the highly 
anisotropic angular dependence of the scattering. When 
lp is much larger than 15, the P energy can propagate 
on large distances without being significantly scattered. 
Moreover, when the angular dependence of the scatter- 
ing is highly anisotropic, the transport mean free paths 
are much larger than the scattering mean free path- 
s. Thus complete isotropy of the field will take a long, 
time to set in. 

The case kpa - 1.2 is rather interesting because 
the scattering is preferentially forward for $ waves and 
backward for P waves. Although the lp/l$ ratio is s- 
maller (about !.5) in this case, the equilibration time is 
somewhat larger than for kpa - 1.6, especially at short 
offsets. This suggests that the ratio lp/ls is not the 
only parameter that controls the equilibration time. In 
Figure 9 we note that the time variation of the ratio 
E•,/Es exhibits an overshoot which disappears as the 
receiver is moved away from the source. This can be 
explained by the fact that the P wave energy tends to 
remain close to the source, while the $ wave energy is 
scattered away. Once again, we note that the study of 
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Figure 10. Same as Figure 7 with kpa- 2 

the Ep/Es ratio could provide useful information con- 
cerning the scattering mechanism in the Earth. 

A final comment will be on the effect of the source. 

In Figure 11 we show the results of the numerical sim- 
ulation for kpa = 1.2 and kpa = 1.6, with an isotropic 
source of P energy. The situation is now the opposite to 
the one with an 5' source. Equipartition is reached more 
rapidly for kpa = 1.2 than for kpa = 1.6 where the e- 
quilibrium between the P and 5' energies is delayed by a 
factor of 2. This has also been observed for ultrasounds 

by Turner and Weaver [1994c]. To explain the effect 
of the source, we must consider the higher value of the 
1p/ls ratio for kpa = 1.6 which enables the P energy to 
propagate on larger length without being significantly 
scattered. Also in this case, Epp > Eps (see Table 
1) implies that P waves are preferentially scattered in- 
to P waves, which is unfavorable for the equilibration 
of the energy. The numerical simulations for P sources 
in the Rayleigh regime have shown no influence on the 
equilibration time because in this case the P energy is 
almost completely converted into shear energy after a 
few scatterings. 

9. Conclusion and Outlook 

Our numerical simulations have shown that in the 

coda, 5' energy rapidly dominates, independent of the 
nature of the source and consistent with the equiparti- 
tion principle. With our choice of scattering parameter- 

s the single-scattering approximation leads to exactly 
the opposite statement. Another fundamental differ- 
ence concerns the evolution of the ratio Ep/E$ with 
time. When multiple scattering is taken into account, 
the energy density ratio Ep/E$ stabilizes in a univer- 
sal way, as theoretically predicted by Weaver [1990] and 
Ryzhik et al. [1996]. An observation of the time evolu- 
tion of the Ep/Es ratio would help to identify the phys- 
ical process responsible for the formation of the coda. 
An experimental procedure to measure the Ep/Es ra- 
tio has been recently proposed by Campillo et al. [1999] 
and N.M. Shapiro et al. (The energy partitioning be- 
tween P and 5' waves and the diffusive chaacter of the 

seismic coda, submitted to Bulletin of the Seismological 
Society of America, 1999) based on the separation of the 
wave field in its rotational and divergence components. 
Preliminary observations by these authors strongly sug- 
gest that equipartion can be observed on actual data in 
Mexico. 

Although the Ep/E, ratio tends to a constant, the 
equilibration time heavily depends on the scattering 
mechanisms. With our choice of model parameters we 
find that for Rayleigh scatterers, no less than 15 mean 
free times are required to reach equipartion. The main 
reason for this is the large value of the P mean free 
path. P energy propagates on rather large distances 
without having scattered significantly. This conclusion 
is in agreement with Turner and Weaver [1994b,c]. On 
the other hand, in the Rayleigh-Gans regime, equipar- 
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Figure 11. Same as Figure 7 with a P wave source emitting in a medium with Rayleigh-Cans 
scatterers. 

tition can be reached very rapidly, within a few mean 
free times. Although the differential cross section is 
more anisotropic in this case, the 1p/ls ratio is closer 
to 1, which ensures an efficient coupling between the 
two modes. As kpa increases, the scattering becomes 
more and more anisotropic, which tends to postpone 
the equilibration. The effect of the source station dis- 
tance has also been studied. When source and receivers 

are close, equilibration is also delayed. On the other 
hand, as the source-station distance increases, the field 
becomes rapidly diffuse after the arrival of the primary 
waves. Therefore, if the offset amounts a few mean free 
paths, the equilibration of the P and $ modes could be 
observed. The use of a P source also delays the equi- 
libration time, especially in the Rayleigh-Cans regime, 
but this effect is weaker than the one of the source- 

station distance. The measurement of the Ep/Es ratio 
could be used as a marker of the scattering mechanisms 
in the Earth. 

Additional difficulties have to be overcome to model 

the propagation of high-frequency waves in the litho- 

sphere. First, we have to take into account the bound- 
ary reflections at the free surface and the Moho, which 
will introduce conversions of the P and $ modes. Sec- 

ond, most seismic experiments are set up at the free 
surface of the Earth. The reflection at the surface intro- 

duces deterministic interferences between the incident 

and reflected waves, which are neglected in the classical 
theory of radiative transfer. An important task for fu- 
ture studies will be to incorporate the mode conversions 
and deterministic interference effects. 

Appendix A' Rotation of 
the Stokes Parameters 

Let us define a Cartesian reference frame (xo, yo, zo). 
If this frame is rotated an angle q• in the positive sense 
around the Zo axis, one obtains the new reference frame 
(x, y, zo). Simple geometrical relations and the applica- 
tion of the definition of the Stokes parameters (3a)-(3e) 
lead to the matrix L given in (7) that relates original 
and rotated Stokes vectors. 
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L(•) 
I 0 

0 cos • 4 
0 sin 2 4 
0 - sin24 
0 0 

displacements in the (x, y, z) frame: 

0 0 0 
• sin 2½ 0 Uss - •exp[-iw(t- r//•)] sin2 ½ cos 2½ -•sin2½ 0 . (A1) 4•r/•r 

sin 2½ cos 2½ ( _ '2 I Px 
0 0 1 

x --PxPy p -t-Zpx•pypz iz ß 
Appendix B' Functions f and 
in the Rayleigh-Gans Approximation 

Let us introduce perturbations of the Lam6 param- 
eters 5•, 5/• and of the density 5p with respect to the 
homogeneous reference medium; c• and/• refer to the 
P wave and $ wave speeds, respectively. It is shown 
by Wu and Aki [1985a] using the Born approximation 
that the effect of an elastic inhomogeneity can be repre- 
sented by equivalent body forces and a moment tensor. 
More precisely, the scattered wave field Ui reads 

(B1) Ui = Fj ß Gij + -/¾fjk * Gij,k, 

where i, j, k denote space directions, Fj is the equiva- 
lent body forces, Gij is the elastic Green tensor, 
is the equivalent moment tensor, and the star ß is the 
convolution symbol. The difference between our results 
and those of Wu and Aki [1985a] is purely formal due 
to a different choice of coordinate system for $ wave 
incidence. They define the polar axis as the direction 
of particle motion, whereas we define the polar axis as 
the propagation direction of the incident wave. Fortu- 
nately, our result for $ wave scattering takes a simpler 
form than Wu and Aki's [1985a] form. 

Let us first discuss Rayleigh scattering. In this case 
the perturbations can be considered to be point-like. 
The scattering geometry and notation conventions are 
depicted in Figure 1. The incident $ wave propagates 
in the z direction and has particle motion along the 
x direction, with unit amplitude. The scattered wave 
propagates in the p' direction with direction cosines: 

' -- sin 6) sin• P•z -- cos 6). Us- p• - sin 6) cos •, py , 
ing the representation (B1) and following Wu and Aki 
[1985a], one obtains the far-field scattered P wave dis- 
placements in the x, y, z frame: 

ca2V 
- exp [-iw(t - r/a)] Usp - 47rc•2 r 

p'2 •p 9•'2•' • 

x -'-' ø--t2 - 2-'-'-' p- 5t• (B2) •x•y p_ •x•y•z O• •l ' 

' '@ 2 ' P•Pz p - P•Pz • Iz 

where V is the volume of the inclusion and r is the 

distance to the observer. V is assumed to be very small, 
and r is assumed to be very large, as compared to the 
wavelength; t is time and co is the angular frequency of 
the wave. Similarly, one obtains the scattered S wave 

(B3) 

The next step consists of rotating the displacement vec- 
tors onto the local spherical frame (r •, 1 •, p•). After some 
straightforward calculations we find the displacemen- 
t vectors in the loca! spherical frame. For the sake of 
simplicity, we use the same notations to represent the 
wave displacements in the new frame. We obtain 

Usp 
cos •w2V 

4•ra2r exp [-iw(t- 
sin O• -- 2•-• sin 0 cos 0 

x 0 
0 

(B4) 

for the scattered P wave and 

Uss 

for the scattered S wave. It is apparent that with our 
conventions the © and • dependences separate. It is 
thus very easy to identify the functions f, introduced 
in (9) and describing the angular dependence of the s- 
cattered field for Rayleigh scattering. For completeness, 
we give these functions for both P and $ wave incidence: 

fpp(O) - - -• + -- cos O 
•+2/• p 

-,X + 2----• cøs20 (B6) 

6P sin O (B7) 
P 

6p 
+-- sin O (B8) 

P 

- cos 0 + - 2 cos 2 o) (B9) 
p 
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Yss•(O) 6p • 3• • = + --cos O. (B10) P - L(i2 - •-)F(O)L(i1 + •) (C1) P P ' 

For acoustic waves, Rayleigh scattering would be isotrop- where L is the rotation matrix given in Appendix A 
and il and i2 are defined by the following trigonometric ic. We note that the scattering matrix depends on 

the polar angle © only. Indeed, by convention, this 
matrix relates the incident wave field expressed in the 
frame (r, 1, p) to the scattered wave field expressed in 
the frame (r •, Y, p•) (see Figure 1). When the incident 
wave field is rotated from the frame (x, y,z) onto the 
frame (r, 1, p), the ß dependence disappears. The scat- 
tering cross sections are very easily obtained using the 
definitions given by $ato and Feblet [1998]. 

In the Rayleigh-Gans approximation (termed Mie- 
Born approximation by Wu and Aki [1985a]), finite size 
heterogeneities are considered as Rayleigh scatterers 
distributed in a volume V. Our treatment for homoge- 
neous spheres exactly follows Wu and Aki and we refer 
to their original paper for a full derivation. We just out- 
line the physical assumptions underlying this approach. 
The scattered wave is considered as the superposition of 
the partial waves produced by each small portion of the 
scattering volume. The phase difference between these 
partial waves is taken into account. The validity of 
this approximation is discussed by Van de Hulst [1981] 
and Korneev and Johnson [1993b]. In incorporating the 
interferences between the partial waves the functions 
describing the angular dependence of Rayleigh-Gans s- 
cattering take the general form f, (©)fin (©), where f, 
denotes any of the functions defined in (B6)-(B10) and 
the fin are "shape factors" defined below. If the inclu- 
sion is a sphere of radius a with correlated homogeneous 
variations of the elastic parameters •, p, p, one has 

4•'a3 [ sinwSna ] 7.(0) = (wS.a) 2 wS.a - coswS. a ($11) 
2 0 
- sin -- (B12) &(O) = • 2 

s•(o) - + - • cos o ($13) 
&(o) = s•(o) ($•4) 

2 0 

&(o) = )s•nE. 
In the acoustic case, the functions 7• and S• su•ce to 
derive the shape factor. 

Appendix C' Mueller Matrix 
for a Spherical Scatterer 

Consider a plane wave incident on a scatterer in the 
direction (0 •, •b •) and scattered into the direction (0, •b), 
where the directions are given in usual polar coordi- 
nates. The angle between both directions will be de- 
noted ©. The relation between the scattering matrix F 
and the Mueller matrix P is 

relations: 

cos i 1 

cos i2 

= 1 [cos Or/1 - cos 20' 
V/1 - cos 

- cos O' V/1 - cos 

•/1 - cos 2 O sin(;b' - ;b) (C3) sinil - 1-cos 
= 1 [cos O' V/1 - cos 2 0 

v/1 - cos 2 0 

- cos 0 V/1 - cos 20' cos (½' - ½)] 

•1 - cos 20' sini2 - 1 - cos 2 0 sin(•b' - •b). (C5) 

(C2) 

(C4) 

We recall that 

cosO - V/1-cos 20V/1-cos 20'cos(½-½') 
+ cos(O) cos(O'). 

In order to simplify the final expressions, we introduce 
the following functions' 

F•(O) = f•(O),•(O) 
F•s(O) = f•s(O),•(O) 
Fs•(O) = fs•(O),•(O) 
Fss,(©) = fss,(0)74(0) 
Fss•©) = fss•0)74(0). 

Except for a constant prefactor, the terms Pij, where 
i,j E [1, 5] of the matrix P, read 

Pll 4 2 - ksF•s(O) (C6) 
c• 4 2 

P•2 = •k•,F•s(O) cos 2 il (C7) 
c• 4 2 

P13 = •kpFsp(©)sin 2 il (C8) 
"•F•.O) s•n 2• (CO) P14 = 2• 

• - 0 (c10) 

P21 • 4 2 = -ksFps(O) cos 2 i2 (Cll) 

•a - • (c12) 
r - Fss•(0) sin il sin i2 - Fsst (0) cos i• cos i2 

•23 - •}s 2 (c13) 
s -- Fss. (0) cos il sin i2 + Fs& (0) sin i• cos i2 

P24 -- -•}•8 (C14) 
• = 0 (ClS) 

• 4 2 = -ksF•s(O)sin 2 i2 (C16) 

- •}t • (c1•) 

P31 

P32 
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t = Fss• (•) sin i • cos i• + Fss, (•) cos i • sin i• 
p• - k•u 2 (C18) 

u - F$$. (O) cos ix cos i• - Fss, (O) sin ix sin i• 
P34 -- k•v (C19) 

v • Fss, (O) sinix sini• - Fss• (O) cosix cosi• 
• = o (c•o) 

P41 • 4 2 (C21) = --ksF•s(O) sin2i• 

•4• - ••t (c•) 
P4• - 2}• (c23) 
•44 - •(•v- •t) (c•4) 
P4• = 0 (c2•) 
P• = 0 (c•c) 
P• = 0 (c2•) 
P• = 0 (c•s) 
P•4 = 0 (c•9) 
P• - }•Fss.e)•ss, (e) (c•o) 

One may check that this matrix has all the symme- 
try properties discussed by $½kcra [1966] and Turner 
and Weaver [1994a]. 

Appendix D: Scattering Cross Sections 
in the Rayleigh Regime 

The scattering cross section are defined by 

4 daMN Z•v- • •-• df•, (D1) 

where 4•r denotes the whole sphere of space directions 
and dfi is an element of solid angle. After straightfor- 
ward calculations, we find 

Y'SP 
2 5p 2 
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