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deformation from acoustic emission 
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Franz Lahaie and Jean Robert Grasso 
Laboratoire de G6ophysique Interne et Tectonophysique, Grenoble, France 

Abstract. We present experimental data of acoustic emission (AE) induced by dislocation 
motion during "pure" viscoplastic (ductile) deformation of singlecrystals and polycrystals of ice 
which provide opportunity to revisit collective dislocation dynamics as a critical phenomenon, as 
recently proposed for brittle fracturing. The data were recorded during compression and torsion 
creep experiments. AE statistics of power law type were systematically obtained under different 
experimental conditions. Among the possible candidates for such a system with threshold 
dynamics exhibiting power law statistics, critical points, disordered first-order transitions, and 
self-organized criticality should be considered. The revisitation of dislocation dynamics as a 
critical phenomenon allows rationalization of collective effects as well as of the heterogeneity 
and complexity of viscoplastic deformation of crystalline materials. Such critical behavior 
implies that dislocation avalanches and strain localizations are unpredictible, in a deterministic 
sense, in space, time, and energy domains and that large plastic instabilities account for most of 
the viscoplastic deformation. 

1. Introduction 

Within a material-dependent range of temperature and 
stress [Ashby, 1972], the viscoplastic deformation of crystalline 
materials involves the motion of a large number of dislocations. 
Dislocations are linear defects which interact through their associated 
stress fields. The interaction can be attractive or repulsive, and mutual 
annihilation is possible [see, e.g., Friedel, 1964]. The nature of the 
dynamics of an individual dislocation [Weertmann and Weertmann, 
1980], as well as the interaction between a couple of dislocations 
[Friedel, 1964] are well established. However, the global dynamics 
of a system containing a large number of interacting dislocations, as 
during the viscoplastic deformation of crystalline materials, ispoorly 
understood [Neuhauser, 1983]. Under conditions where dislocation 
motion is the dominant mechanism for viscoplastic deformation, when 
a material is deformed under constant load (creep test), a constant 
global strain rate regime usually appears after a transient stage. One 
traditionally explains this so-called secondary creep or viscoplastic 
steady state behavior by an equilibrium between the production (at 
dislocation sources like Frank-Read sources [Friedel, 1964]) and the 
elimination (at dislocation sinks like free surface or grain boundaries, 
or by mutual annihilation) of dislocations [Poirier, 1976]. In such a 
situation, the OrowanV s relation predicts a constant strain-rate for the 
involved system: 

a• dt - Pm b V 
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where b is the Burger s vector, Pm is the density of mobile dislocations, 
and v is the stress-dependent dislocation velocity. Relation (1), as well 
as the term "steady state," implicitely neglects a possible spatial and 
temporal variability of'both dislocation velocity and dislocation density. 
However, the heterogeneous nature of dislocation slip process has 
been recognized [Neuhauser, 1983; Hahnet et al., 1998]. As a result 
o ftheir interaœtions, dislocations tend to mo v e co op erativ ely in gro up s 
to form slip lines rather than individually and independently. Moreover, 
moving dislocations can pile up against stable dislocation walls or 
boundaries. During the breakaway of a pileup or the activation of a 
source, theoretical calculations [Campbell and Taylor, 1963; 
Neuhauser, 1983] show that dislocation velocities vary by orders of 
magnitude through time and space. More generally, Neuhauser 
[ 1983] stressed the fact that at any moment, only a very small fraction 
of the potentially mobile dislocationspro is indeed moving. Therefore 
(1), which is based on a mean field approach, strongly underestimates 
the genuine dislocation velocities. In some alloys, under specific 
loading-temperature conditions, strainlocalization is strong enough to 
be measurable as stress drops on a loading curve [Estrin et al., 1993; 
Hahnet, 1993]. This phenomenon is traced back to the diffusion of 
solute atoms, which act as moving obstacles to slip bandpropagation, 
leading to "macroscopic" plastic instabilities. This is the well- 
documented Portevin-Le Chatelier (PLC) effect [Estrin et al., 1993; 
Hahnet, 1993]. Therefore viscoplastic deformation driven by 
dislocation motion appears as heteregeneous in size, space and time 
domains, which is not accounted for in the mean field description of 
(1). Here we reveal further the heterogeneous character of collective 
dislocation dynamics by using experimental data from acoustic 
emission (AE) recorded during pure viscoplastic deformation of ice. 
The so-called steady state viscoplastic deformation is, in fact, shown 
to occur in bursts of relaxation following a power law distribution of 
energy and time separation. Such power law behavior is suggestive 
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434 WEISS ET AL.: DISLOCATION DYNAMICS 

of a critical dynamics of dislocations, similar to those argued for 
microfracturing [Petri et al., 1994; Guarino et al., 1998]. 

Attempts have been made to simulate the collective 
behavior of dislocations [Ldpinoux and Kubin, 1987; Kubin and 
Canova, 1992; Groma andPawley ,1994]. However, these numerical 
approaches, which succeeded in capturing some aspects of the 
collective behavior of dislocations, especially the spatialpatteming of 
dislocations, did not rely on a general framework to explain the 
ob served hetero g eneous dynamics. In the present paper, we propose 
to embed these earlier results in the more general framework of 
critical systems. Such a critical framework has been recently 
proposed to describe brittle fracturing [e.g.,Hermann and Roux, 
1990;Andersen et al., 1997], fromthe laboratory sample scale [Petri 
et al., 1994; Guarino et al., 1998] to the earth crust scale [Main, 
1996]. 

2. Experimental Procedure 

As a model material to study dislocation dynamics from 
acoustic emission, ice provides the following advantages: single 
crystals or polycrystals with various microstructures can be easily 
grown in the laboratory; transparency allows verification that AE 
activity is not related to microcracking; and an excellent coupling 
between the ice and the AE transducer can be obtained by 
fusion/freezing. Within the range of temperature and stress 
corresponding to our experimental conditions, diffusional flowis not 
a significant mechanism of deformation in ice, and viscoplastic 
deformation of hexagonal ice Ih occurs by dislocation motion [Duval 
et al., 1983]. Hexagonal ice Ih presents a very strong plastic 
anisotropy of the single crystal [Duval et al., 1983]. The resistance 
to shear on nonbasal planes is at least 60 times larger than that on the 
basal plane. Therefore viscoplastic deformation of single crystals 
occurs essentially by basal glide. In polycrystals, basal glide within 
neighboring grainswith different crystallographic orientations leads to 
strain incompatibilities. By accomodation of these incompatibilities, 
dislo cation climb on prismatic planes and po ssib le glide on nonb asal 
planes [Castelnau et al., 1996], allow extensive viscoplasticity ofthe 
polycrystals. 

Uniaxial compression creep tests, each ofthem constituted 
by several step s of stress, were performed at- 10 oc on different types 
of artificial ice samples, including single crystals, one bicrystal, and 
polycrystals with different grain sizes. One torsion creep test, with 
steps o fconstant momentum, was also performed on a single crystal. 
Note that the duration of the stress steps varied arbitrarily from step 
to step and test to test, ranging from 10 min to -• 2 hours. The 
characteristics of each test, including the type of loading, the type of 
ice, the c axis orientation (for single crystals) or the mean grain size 
(for polycrystals), are summarized in table 1. Ice samples were 
prepared from distilled, deionized, and degassedwater. Single crystals 
grew in about 1 month, within a cylindrical mold frozen from the 
bottom, from a unique seed selected for the desiredc axis orientation. 
For our artificial polycrystals the mold was filled with presieved 
fragments of ice, allowing us to control the grain size, then pumped 
down to 0.1 torr to avoid bubbles, filled withwater, and œmally, frozen 
in- 24 hours. The c axes orientations, on the contrary, were not 
controlled and so were isotropically distributed, leading to anisotropic 
macroscopic mechanical behavior for polycrystals. 

During each mechanical test apiezoelectric transducer with 
a frequency band width of 0.1-1 Mhz was fixed by fusion/freezing to 
the side of the cylindrical samples. The amplitudes of AE eventswere 
recorded during each loading step. With the transducer fixed to an ice 
sample, without any loading, we recorded significant acoustic emission 
up to an amplitude threshold of 25 dB. During an experiment the event 
amplitude thresholdwas a4justed to 30 dB, or 3 x 10 -3 Volts, i.e. about 
5 dB above the noise level, and the envelope "dead time" (the 
minimum time seperation between two successive events to be 
recorded as individual events) was 50 ps. The dynamic range between 
the amplitude threshold (3x10 '3 V) and the maximum recordable 
amplitude (10 V, or 100 dB) was 70 dB, i.e., 3.5 orders of magnitude. 
The calibration of the experimental device was performed previously 
using the Nielsen test. A linear relationship between the input and the 
output signals was verified [Amitrano, 1999]. 

Two different mechanisms can account for microseismic 

activity during the creep deformation of ice: high-velocity motion of 
dislocations (plastic instab ilities) and crack nucl eation and propagation. 
Thanks to the perfect transparency, it was easily verified that no 
cracks nucleated within any of the ice single crystals for all the creep 
stresses we applied. Rigorously, an absence of visual detection 

Table 1. Characteristics of the Experimental Tests 

Test Type of Ice Type of Test c Axis Orientation Mean Grain Size, 

(Relative to Loading Axis) mm 

Number of Loading 

Steps 

1 single compression 
crystal 

2 sing le c ompre ssion 

crystal 

3 single torsion 

crystal 

4 bi cry stal compression 

5 poly cry stal compression 

6 p oly cry stal c ompre ssion 

7 polycry stal compression 

2 ø compression axis 

45 ø compression axis 

parallel torsion axis 

3 ø compression axis 

1.5 

0.5 

0.5 
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ensures that no femures are present with an opening > 0.3 [tm, i.e., 
the lower bound for natural light wavelength. Owing to this very small 
detection limit (about 650 atomic spacings), crack nucleation is easily 
detected in fresh water ice. For polycrystals, depending on grain size 
and ice samples, micro cracking was ob served above athreshold load. 
Occurence of microcracking was clearly visible to the eye and 
correlated with the change of the shape of the AE amplitude 
distribution (breaking slope; see Weiss et al. [1996]). Since we only 
focused on dislocation dynamics as a source of AE, the loading steps 
during which cracking was observed were discarded for the present 
analysis. Moreover, experimental evidence for the recordedAE to be, 
indeed, related to dislocation motion in our experimentswas provided 
as follows. By varying the orientation of the single-crystalc axis 
relative to the compression axis in the case ofuniaxial compression 
tests on single crystals, for the same uniaxial compression creep 
stress, we observed an ̂E activity (defined in section 3 as ,4) at least 
2 orders of magnitude larger for a single crystal with the c axis 
inclined at 45 o (test 2) to the compression axis than for a crystal with 
a quasi-vertical c axis (test 1). This agrees with an AE activity that 
highlights dislocation motion driven by the shear stress acting on the 
basal planes [Weiss and Grasso, 1997]. 

3. AE Source Model and Validation 

One difficulty with AE is in relating the characteristics of 
the generated AE wave to physical processes. Usually, for AE 
induced by microcracking the assumption is made that the squared 
amplitude A 2 of the wave is proportional to the inelastic energyE 
liberated during the acoustic event [see, e.g., Locknet et al., 1991; 
Petri et al., 1994]. Here we base our analysis on a specific AE 
source model developed for dislocation dynamics, which relates the 
wave' s characteristics to the characteristics of the plastic instability. 
This model has been proposed and detailed by Weiss and Grasso 
[ 1997] and validated from a comparison between globalAE activity 
and global strain rate. We will summarize here the main features of 
this model and its validation. 

In solid materials, sudden local changes of inelastic strain 
generate AE waves [Mlalen and Bolin, 1974]. In our experiments, 
given the amplitude threshold and the IYequency range of our 
transducer, the detected AE are unlikely to be the result of a single 
moving dislocation but most probably are related to synchronized 
accelerations of dislocations, such as the activation of a dislocation 

source or a pileup breakaway [Weiss and Grasso, 1997]. From the 
theoretical analysis of Rouby et al. [1983] one can relate the 
maximum amplitude of the acoustic waveA resulting from a plastic 
instability, to the number of involved dislocations n and their velocity 
v [Weiss and Grasso, 1997]: 

A - k nLbvtø (2) 
d 

where k is a coefficient related to material properties and the 
piezoelectric constant of the transducer, b is the Burger' s vector, L 
is the length of then moving dislocations, to isthe travel time of the 
acoustic wave thro ugh the transducer (considered to be constant ), and 
d is the source/transducer distance (supposed to be large compared 
to L). In this crude model, L andv are supposed to be identical for all 
the involved moving dislocations. The dislocation velocity v is 
considered to be zero before and after the event and constant during 

the event. The term 1/d represents the geometrical attenuation of the 
acoustic waves. 

By comparing (1) and (2), Weiss and Grasso [1997] 
showed that the AE amplitude A is a measure of the local strain 
associated with the plastic instability. Therefore the rate ofglobal^E 
activity ,4, defined as the summation of the amplitudes of all the 
acoustic events recorded during a given time interval divided by this 
duration, should be proportional to the global strain rate of the sample, 
provided that (1) the nonrecordab le part o fAE (below the amplitude 
threshold of 3x10 -3 V) is negligible or at least proportional to the 
recordeab le part and (2) the dislocation dynamics within the volume 
o fmatter sampled b y our single AE transducer is representative o fthe 
response of the full sample. The proportionality between global AE 
activity ,4 and global strain rate has been verified on single crystals 
for uniaxial compression tests as well as for a torsion test, each of 
them containing several steps of stress [see Weiss andGrasso, 1997, 
Figure 3], thereby validating our ̂ E source model (relation (2)) as 
well as points (1) and (2). Note that an independent validation of point 
(1) is given in the appendix and discussed further in section 4. 

4. Statistical Distributions of AE Amplitudes 
and Time Intervals Between Events 

As shown above, the AE amplitude A depends on the 
number of dislocations involved in the plastic instability, their length, 
and their velocity. The AE energy radiated by the acoustic wave is 
proportional to A 2. According to Kiesewitter and Schiller [ 1976], the 
energy dissipated by viscoplastic deformation during an event also 
scales with A 2. This results from an expression given by Eshelby 
[1962] for the energy dissipated at the source by a single screw 
dislocation of length L moving at a velocity v: 

E- KL2b 2v2 (3) 

whereKis a coefficient depending on material constants, including the 
shear modulus and the velocity of acou•ic transverse waves. A 
comparison of (2) and (3) withn=l shows thatE ,-,A 2. This scaling 
between E and A 2 is similar to that assumed byLockner et al. [1991 ] 
orPetri etal. [1994] for AE related to microcracking. In otherwords, 
A 2 expresses the energy liberated during an avalanche of dislocations. 
Therefore ̂ E allows to study during deformation the dislocation 
dynamics in energy, time, and, possibly, space (ifAE sources locations 
are determined with the help o fmultiple transducers) domains. In the 
present study, only one transducerwas used, and so source locations 
were not accessible. 

For each loading step of each test the distribution of ̂ E 
amplitudes was recorded. Figures 1-3 show, for two compression 
tests (tests 1 and 2, see Table 1) and one torsion test (test 3) on 
single crystals, respectively the cumulative distributions of ^E 
amplitudes for different resolved shear stresses on the basal planes. 
Reported distributions correspond to allthe events recorded during a 
given loading step. Figure 4 shows a similar distribution for a 
polycrystal under uniaxial compression (test 7), for which only one 
loading step without microcracking was available. Figure 5 
corresponds to one loading step of a bicrystal under uniaxial 
compression (test 4). The two distributions displayed in Figure 5 were 
recorded during the same loading step but for completely separated 
time intervals. Note that the large number of events recorded for the 
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Figure 1. AE amplitude cumulative distributions for a uniaxial compression creep test (T=-I 0øC) on a quasi-verticalc 
axis single crystal of ice (test 1; see Table 1 ). The different sets of data correspond to different loading steps resulting in 
different resolved shear stresses on the glide (basal) plane. 

bicrystal (Figure 5) comparedwith single crystals (Figures 1 and 2) is 
very likely the result of the grain boundary as a very active dislocation 
source. Power law statistics N(A'>A) NA'* are systematically 
o b served for the different stress step s o fthe different tests, whatever 
the kind of ice (single crystals, bicrystal, or polycrystals) orthe type 
o f 1 o ading (torsion or compression). For some distributions the power 
law seems to be affected by a cutoff at high amplitudes which 
possibly depends on the shear stress (see Figure 1). However, this 
cutoff is far from being systematic (see, e.g., Figure 1,x=0.165 MPa; 
and Figures 2-5) and has to be taken with caution owing to the limited 
number of recorded high amplitudes events. For all the tests 
performed, • ranged between 0.2 and 1.2, with most ofthe• values 
close to 0.6-0.7 (Figure 6). The error in the estimation of b ranged 
between =•-0.17 for large b values and less than +0.07 for lowb values. 
The b values were estimated by a least squares fit on the linear part 
of the distributions below the cutoff (if any). Standard deviations of 
the b values were estimated by using an empirical formula derived by 
Pickering et al. [1995] from a Monte Carlo simulation of the 

sampling effect on the exponent of a power law distribution. 
Considering that .42 scales with the energy of the dislocation 
avalanche, N(A'>A) -•A '• is equivalent to N•'>E) --•E,• with [•=$/2. 
Therefore 8=0.6-0.7 implies [•=0.3-0.35. From the source to the 
transducer the acoustic waves are attenuated (term 1/d in (2)). 
Because we used a single transducer, we were unable to correct this 
attenuation of the amplitudes. However, Weiss [1997] showed that for 
b values < 3, as observed for all the present experiments, this 
attenuation modifies neither the shape of the distributions nor the b 
values. Here b decreased with increasing shear stress (Figure 6), 
except for one test (1) for which b remained constant and equal to 
0.6. A general tendency for decreasing b with increasing shear stress 
is also observed when the b values for all the experiments are 
compiled (Figure 6). During a given loading step the statistical 
properties o fthe system remained stationary through time, i.e. b was 
constant (see, e.g., Figure 5). 

For one loading step of one test (2; shear stress: 0.581 
MPa) the time intervals t between two successive events of any 

0.001 0.01 0.1 1 10 

A (V) 

Figure 2. Similar to Figure 1, for a single crystal with an inclined (45 ø) c axis (test 2; see Table 1). 
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Figure 3. Similar to Figure 1, for a torsion creep test (test 3). 

amplitude were recorded. The corresponding cumulative distribution 
is shown on Figure 7. A power lawN(t'> 0 N t'r is observed with 
?=1.0+0.34. 

An important question concerns the contribution of the 
recordableplastic instabilities to the global viscoplastic strain (as noted 
above, under the applied testing conditions, dislocation creep is the 
unique mechanism which accounts for viscoplastic deformation of 
ice). Our investigation is experimentally limited toward small 
amplitudes by the detection threshold, and one can wonder whether 
the contribution of the nonrecordable part of the process is negligible 
or at least proportional to the recordable part. The proportionality 
observed between the rate of global AE activity,'f and the global 
strainrate [Weiss andGrasso, 1997] not only implies that the volume 
of matter sampled by the transducer is "representative" of the whole 
system (see above) but also that the viscoplastic strain corresponding 
to the recorded plastic instabilities is proportional to the global 
viscoplastic strain. The knowledge of the analytical form of the AE 
amplitude distribution (power law), supposing that smaller undetected 
events followthe same distribution, allows one to estimate the relative 

contribution of recordable and nonrecordable events. Calculations 

detailed in the appendix strongly suggest that the nonrecordable part 
is, indeed, negligible in terms o f strain, as well as in terms of dissipated 
energy. 

5. Discussion 

We report here AE measurements that give insight into the 
collective dynamics of dislocations. Previous attempts to study 
dislocation dynamics fromAEmainly focussed on continuous acoustic 
emission, i.e., the gross background noise level of AE during the 
loading of metallic samples [see, e.g., Kiesewitter and Schiller, 
1976]. Here we examine the statistics ofindividualAE bursts, which 
showpower law distributions for the amplitudes (Figures 1-5), aswell 
as the time separation (Figure 7) of acoustic emissions. This pattern 
is recurrent, whatever the type of test (compression or torsion), the 
type of ice (single crystals or polycrystals), and the applied stress on 
the basal plane. This reveals a strong heterogeneity of dislocation 

lOOO 

lOO 

lO 

• i i i i--•qc33 

0.001 0.01 0.1 1 

A (V) 

Figure 4. AE amplitude cumulative distribution for a uniaxial compression creep test (T=-I 0øC;%=1.75 MPa) on a 
polycrystal of ice (test 7). 
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Figure 5. AE amplitude cumulative distributions recorded during the same loading step of test 4 but corresponding to two 
completely separated time intervals. The two distributions give the same • value of 0.70+0.12. 

dynamics in time and energy domains. Such scale-invariant behavior 
is strongly suggestive of a system near (or in) a critical state, i.e., in 
a situation where correlations between different parts of the system 
become long ranged, such that any small perturbation may cascade 
into large events. Other positive evidences for a critical state of 
crystalline solids during dislocation-driven viscoplastic deformation 
exist. First, a common feature of systems displaying criticality is to 
contain many interacting entities and to be ruled by threshold 
dynamics [e.g.,Lesne, 1996]. Dislocations are known to benumerous 
and to interact through their associated stress fields, which decreases 
in 1/r [Friedel, 1964]. The activation of a dislocation source or any 

plastic instability is triggered above a threshold stress [Friedel, 1964; 
Weiss and Grasso, 1997]. For the smallest possible event, i.e., a 
single dislocation kink moving by a single atomic spacing, this 
threshold stress is the Peierls stress. Second, although an analysis of 
dislocation activation in the space domain was not accessible, other 
studies have documented a fractalpatterning o f dislocations that attest 
for scale invariance of dislocation dynamics in the space domain. 
Sprusil andHnilica [ 1992] showed that slip line patterns of Cd single 
crystals were fractal. More recently, Hiihner et al. [ 1998] reported 
fractal cellular dislocationpatterning during plastic deformation of Cu 
single crystals. Third, in the energy domain, power law statisticswere 

1.2 

0.8 

0.6 

0.4 

0.2 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 

shear stress (MPa) 

Figure 6. Evolution of the exponentb with the resolved shear stress on the basal plane. The error on the estimation of 
• ranged between +0.17 (for large b values, or low shear stresses) and less than +0.07 (for lowb values, i.e., large shear 
stresses).The resolved shear stress reported for polycrystals was taken to be half the compression stress, implicitely 
assuming that most of the AE activity arose from crystals well oriented for basal glide. Crossed squares, test 1; Open 
squares, test 2; Circles, test 3; Closed squares, test 4; Opentriangles, test 5; Closed triangles, test 6; Cross, test 7. Although 
a large amount of literature reports possibleb value change withmechanicalparameters, to our knowledge, no definitive 
explanation of such anticorrelation between the exponent • and the shear stress can be proposed so far. 
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Figure 7. Cumulative distribution of the time intervalt between two successive events of any amplitude for a uniaxial 
compression creep test on a single crystal of ice (test 2; T=-I 0øC; resolved shear stress on the glide plane: 0.581 MPa). 
For technical reasons it was impossible to record similar time distributions for each test performed. 

also reported for the stress drops resulting from "macroscopic" 
instabilities associated with the PLC effect during strain rate 
controlled tests on A1-Mg alloys [Lebyodkin et al., 1995]. 

From this evidence of scale invariance in space, time, and 
energy domains, coupled with the intrinsic properties of dislocations, 
we argue for the collective dislocation dynamics to display criticality 
not only in ice but more generally in crystalline materials experiencing 
dislocation-driven viscoplastic deformation. 

One o fthe consequences 0 fthe critical state o f dislocation- 
driven viscoplastic deformation is that dislocation avalanches and 
strain localizations are unpredictible, in a deterministic sense, in space, 
time, and energy domains; that is, one single event is not predictible. 
However, the power law scaling of time intervals (Figure 7) implies 
some kind of statistical predictability. The longer(shorter) it has been 
since the last event, the longer (shorter) the expected time till the next 
[Davis et al., 1989; Sornette and Knopoff , 1997]. This comes from 
the correlation between events. Note that random dislocation 

dynamics would not lead to any kind of predictability, either 
deterministic or statistical [Sornette and Knopoff, 1997]. Another 
consequence of criticality is that most of the energy dissipated bythe 
system is dissipated through major events/avalanches (see appendix). 
In the present situation this means that large plastic instabilities 
account for most of the viscoplastic deformation rather than 
independent movements of individual dislocations. 

The next question remains the origin of such criticality. 
Different recognized mechanisms can lead to critical behavior. 
Among these, second-order (continuous) phase transitions and the 
self-organized criticality (SOC) concept [Bak et al., 1987, 1988; 
Vespignani andZapperi, 1998] should be considered. To def'mitively 
identify one ofthesepo ssible mechanisms is beyond the scope of this 
paper. Moreover, observable standards for each of these critical 
processes remain partly unidentified, and the theoretical frameworks 
themselves are not comp letely "quenched" so far, especially for S OC 
[Vespignani and Zapperi, 1998; Grasso and Sornette, 1998]. Here 

we just review the observables that argue for (or disagree with) each 
critical mechanism. We also discuss alternative mechanisms which 

are proposed to display power law distributions, without strict 
reference to criticality, including disordered first-order transition 
[Sethna et al., 1993; Zapperi et al., 1997a], multiplicative noise 
[Sornette and Cont, 1997; Sornette, 1998], and the sweeping of an 
instability [Sornette, 1994]. 

The usual route toward criticality is second-order, or 
continuous, phase transitions, illustrated by the Ising model for 
ferromagnetic transition [e.g.,Goldenfeld, 1993]. For the fracturing 
process, this mechanism is usually rejected [Zapperi et al., 1997a] 
because of the final breakdown of the system. Such discontinuity is 
typical of a first-order phase transition. For dislocation dynamics 
during viscoplastic deformation, fmal breakdown never occurs. This 
allows us to consider second-order phase transition as a possible 
process to describe our observations. For second-order phase 
transition, criticality is obtained by f'me tuning a control parameter 
(e.g., temperature). The system exhibits power law size distributions 
with an upper cutoff that is rejected toward larger values as the 
criticalpoint is approached. The cutoffs on Figure 1, which apparently 
depend on the applied stress, are possible signatures of such a 
progressive approach to criticality, with the applied stress as the 
control parameter. Considering the relevance of self-organized 
criticality for dislocation dynamics, one positive argument is that the 
statistical properties of the system appear stationary through time, 
with a constant power law exponent • (see Figure 5). As noted by 
many authors [e.g., Grasso and Sornette, 1998; Zapperi et al., 
1997b], this is an essential ingredient for SOC identification. One can 
also notice that the7 exponent(equal to 1; see above) observed for the 
distribution of time intervals between successive events is equalto the 
mean field exponent for SOC derived by Sornette and Sornette 
[ 1989] for earthquakes dynamics, while the theoretical mean field 
exponent for energy distribution is 0.5 [Vespignani and Zapperi, 
1998], a value slightly larger than the [• exponent of-• 0.3-0.35 
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observed for most of the present experiments. In terms of atomic- 
scale physical mechanisms, dislocations display instantaneous healing 
and reversibility, which favor the stationnarity condition for SOC. 
However, if the upper cutoffs on energy (or amplitude) distributions 
were confmned (far from clear on the present experimental basis), 
they would contradict the completely scale-free behavior admitted to 
characterize SOC below the finite length of the system. Moreover, 
one could notice that in numerical models o fmicro fracturing, constant 
stress (creep) boundary conditions are not compatible with SOC, 
whereas constant strain rate conditions could be [Zapperi et al., 
1997b]. 

Altemative mechanisms to strict critical processes, which 
display power laws andtruncated power laws, exist. First, some types 
of first-order phase transitions were recently shown to exhibit power 
law distributions, provided that a given amount of disorder is 
introduced in the system [Sethna et al., 1993]. One central property 
of first-order phase transitions is the presence of a macroscopic 
instability (discontinuity ofthe order parameter) atthe transitionpoint. 
This framework was thus proposed to describe the global breakdown 
of a system in fracturing phenomena [Andersen et al., 1997; Zapperi 
et al., 1997a]. However, dislocation-driven viscoplastic deformation 
during viscoplastic steady state behavior does not lead to a breakdown 
(ormacroscopic instability) of the system. This lack of breakdown is 
anegative argument for a disordered first-order transition to drive the 
power law dynamics of dislocations. Second, the mechanism of 
sweeping of an instability also provides robust power laws [Sornette, 
1994]. This corresponds to an ordinary phase transition (first or 
second order) in which the control parameter is swept toward the 
transition point. In the case of a second-order phase transition this 
modelpredicts apparent nontruncated power law distributions. This is 
not supported by the possible truncations observed on Figure 1. 
Moreover, if we identify the applied stress as the control parameter 
for dislocation dynamics (see previous discussion), our experimental 
creep conditions (i.e., constant applied stress)preclude the sweeping 
of this control parameter during a given loading phase. Third, 
multiplicative noise generates power law distributions by product of 
random variables [Sornette and Cont, 1997]. In the case of 
dislocation dynamics we are unable to properly identify the possible 
relevant variables for such a process. 

Therefore a definitive identification of the critical process 
implied in dislocation dynamics during creep of materials cannot be 
proposed at this stage. This stresses the need tbr more experimental 
as well as theoretical work, in order to determine the very nature of 
critical dislocation dynamics, to compare it withthe critical fracturing 
behavior of materials, and to ex7)lain the ev o lution o f8 with increasing 
shear stress (Figure 6). 

6. Conclusion 

In 1983, as a conclusion of his review on collective 
dislocation motion, Neuhauser [1983] stressed that at that time, it 
was not yet possible to explain all the collective effects of dislocations 
and the associated global deformation dynamics from the basic 
principles ofdislocationtheory, e.g. the knowledge of the dynamics of 
a single dislocation. A decade later, Kubin and Canova [1992] 
pointed out that understanding how dislocation dynamics and 
interactions could lead to an heterogeneous, constantly evolving but 
"organized" distribution of dislocations was one of the most 
fundamental challenges in dislocation theory. 

Here we reported ex7)erimental resxtlts of acoustic emission 
(AE) generatedby dislocationmotions during viscoplastic deformation 
in crystalline materials. The data were recorded during compression 
and torsion creep experiments on single crystals, bicrystal and 
polycrystals of ice Ih. AE statistics of power law type were 
systematically obtained under different loading conditions, arguing for 
criticality. The revisitation of dislocation dynamics as a critical 
phenomenon allows the rationalization o f co 11ective effects as well as 
the heterogeneity and the complexity ofviscoplastic deformation of 
crystalline materials, especially in terms of predictability and strain 
localization. 

Appendix: Contribution of the Recordable Plastic Instabilities 
to the Global Viscoplastic Deformation 

Power law distributions, N(A '>A) NA-a, of AE amplitudes 
have been ob served above a detection threshold ofAth--3 x 10 -3 V, with 
8 centered around 0.6-0.7. The question is, Whatportion ofthe global 
viscoplastic deformation corresponds to the plastic instabilities 
detected by AE events above 

First, we assume that the power law distribution of AE 
amplitudes holds below Ath , down to infinitely low amplitudes, without 
lower cutoff. Because A is a measure of the local strain associated 

with the plastic instability, one can estimate the relative portion of the 
global viscoplastic deformation related to amplitudes larger thanAth 
(the recordable part%), and the portion related to amplitudes smaller 
than At• (the nonrecordable part %). 

2'< •I)'( A + dA > A'> A ) A dA 
•f4•a• A' 2% OA•(A + dA > > A)A dA, 

(A1) 

(A2) 

where N(A+dA>A '>A) is the number of AE events with amplitudes 
between A and A+dA. During our experiments, the maximum 
recorded amplitude Ama x ranged between 0.7 and 10 V (see Figures 
1-5). Because N(A '>A) scales withA -a, N(A+dA>A '>A) scales with 
8xA -a-•. Therefore 

2'<Nl•thA-'•dA - 1 (A-a+l)Ath (A3) -G+I o 

?>•f4.ax 1 ( _•-+• (A4) A-a dA -• A t '4max 
" 4•, -G + 1 / 4h 

For 8 values < 1, as observed in most of the experiments (see Figure 
6), % is finite, and the relative portion of recordable viscoplastic 
deformation is given by 

_ •= -*max (as) 
A-8+l 2'< + 2'> '*max 

For typical values Amax=10 V, Ath=3X10 -3 V, and 8=0.6, one finds 
R=96%. 

For 8 values > 1, a situation observed twice under low applied shear 
stress (Figure 6), % calculated from (A3) diverges. However, this 
results from the assumption of the absence of lower cutoff, which is 
physically wrong. Indeed, a lower cutoffforAE amplitude distribution 
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exists, which would correspond to the most elementary step in the 
process of dislocation glide, i.e., the motion of a kink along a 
dislocation by one lattice •acing. In (2), this would be expressed by 
n=l and L=b. Note, however, that this lower cutoffAmen, which also 
depends on the distance between the source and the transducer, d, 
cannot be quantitatively estimated (k and to are unkown constants). 
For 8 values < 1 a lower cutoff implies that (A5) gives a lower 
estimate of R. Relation (A5) could overestimate R only if the AE 
amplitude distribution decays faster below Ath than above, for 
instance, like a power law distribution with an exponent 8'>8. 
However, such a distributionbelow the detection threshold has neither 

experimental nor physical basis and would contradict with the linear 
relationship observed between the rate ofglobalAE activityA and the 
global strain rate [Weiss and Grasso, 1997]. 

In terms of dissipated energy the negligibility of the 
nonrec ordable part is even more obvious. Because this energy scales 
withA 2 (see section 4), the energy dissipated by the nonrecordable 
part E< and the recordable partE> are given by (neglecting a lower 
cutoff): 

E< • I••N(A + dA > A'> A)A2dA• •o • A-•+ldA 
-r5+2 •0 

E> • N(A + dA > A'> A)A2dA• 4•axA-6+•dA 
i 

-rS+ 2 :A• 

E< estimated in such a way (no lower cutoff) is f'mite for 8 values < 
2, i.e., for all the experiments of the present work, and for the typical 
values Amax=l 0 V,Ath=3 x 10 '3 V, and 8=0.6 the recordable energy E> 
represents > 99.99% of the total dissipated energy. For the most 
unfavorable case (Amax=0.7 V; 8=1.2) a lower estimate is 98.7%. 
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