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[1] This paper is a follow up on Bernabé et al.’s (2010) study of the effect of pore
connectivity and pore size heterogeneity on permeability. In the permeability model
initially proposed, pore connectivity was characterized by means of the average
coordination number z, a parameter rarely included in experimental investigations of the
transport properties and microstructure of porous rocks. Obviously, lack of information
on z makes it difficult to apply the model. One way around this problem is to
eliminate z from the model by introducing the resistivity formation factor, an approach
previously used by Paterson (1983), Walsh and Brace (1984), and many others. Using
the network simulation approach of Bernabé et al. (2010), we extended the model to
include the electrical formation factor. The new joint permeability‐formation factor model
consists of three equations, the first two expressing the relation of permeability and
formation factor to z and the last one, obtained by elimination of z, linking permeability
and formation with each other. We satisfactorily tested the model by comparison with
published experimental data on a variety of granular materials and rocks. Furthermore,
we show that, although our model does not explicitly include porosity, it is consistent
with Archie’s law.

Citation: Bernabé, Y., M. Zamora, M. Li, A. Maineult, and Y. B. Tang (2011), Pore connectivity, permeability, and electrical
formation factor: A new model and comparison to experimental data, J. Geophys. Res., 116, B11204, doi:10.1029/2011JB008543.

1. Introduction

[2] Owing to mechanical and/or chemical interactions
with rocks, interstitial fluids are central to many geologic
processes as well as geotechnical applications such as oil
and gas production or geothermal energy recovery. Hence,
we need the best possible understanding of the material
property controlling interstitial fluid motion: permeability
(denoted k and measured in 10−12 m2 or D). However, k is
particularly challenging to model. In the Earth, it varies well
over 11 orders of magnitude [e.g., Brace, 1980]. Even for a
single rock type, the range of variation of k can cover many
orders of magnitude. One reason for this extreme variability
is that permeability strongly depends on pore connectivity
[e.g., Guéguen and Dienes, 1989] and all degrees of con-
nectivity exist in rocks. For example, consider enormously
porous but impermeable pumice stones (zero connectivity)
and highly permeable sand beds (very high connectivity).
[3] Bernabé, Li, and Maineult (BLM) recently proposed a

permeability model focused on quantifying the effect of

connectivity [Bernabé et al., 2010]. In this model, pore
connectivity is measured by means of the average coordi-
nation number z (i.e., mean number of conduits or throats
attached to a nodal pore). Using network simulations, BLM
found that the permeability of networks is well approxi-
mated by the power law, k = � (z‐zc)

b, where zc is the critical
coordination number at the percolation threshold (zc = 1.5
for three‐dimensional pipe networks), and where the expo-
nent b and pre‐factor � are functions of the width of the
pore radius distribution, or, in other words, of pore size
heterogeneity. One important result is that this power law
holds in the entire range of z, except very near the perco-
lation threshold zc. Thus, the model should be applicable
to rocks with widely different permeabilities. Unfortunately,
z is not a parameter frequently measured in rocks. In fact,
BLM were able to test their model on only one rock,
Fontainebleau sandstone. One way to enhance the applica-
bility of the model is to introduce the resistivity formation
factor F, an approach previously used by Paterson [1983],
Walsh and Brace [1984], and many others to get rid of
tortuosity, a poorly constrained parameter that is impossible
to measure independently. The relation of F to porosity
(i.e., Archie’s law) was used by Revil and Cathles [1999] to
construct a model of the permeability of sand‐clay mixtures
(see also Glover [2009] for a discussion of Archie’s law in
terms of pore connectivity). F is measurable in any porous
rock but its simple, commonly applied definition as the
ratio of the rock electrical resistivity to the fluid resistivity
is only valid in electrically uncharged materials (note that
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the formation factor concept only applies to rocks that do
not contain electrically conductive mineral components). In
general, the pore walls in contact with an ionic solution are
electrically charged and a more complex definition must be
used [e.g., Revil and Glover, 1997, 1998; Revil, 1999, 2002].
The model derived in section 3 requires F to be properly
measured, using a range of saturating fluids with different
saline concentrations and a nonlinear inversion method such
as that of Bernard et al. [2007]. However, accurate values
of F can be obtained with a single saturating fluid in
materials with low surface conduction (e.g., clayless sands),
provided the saline concentration used is sufficiently high
(this condition was met for essentially all the experimental
data used in section 4).
[4] In this paper, we extend the BLM network simulations

to electrical conduction through saturated porous media.
The main result is that, just like permeability, the inverse
formation factor can be modeled by a power law function,
1/F / (z‐zc)

g. We then derive a joint model of k and F,
consisting of three equations, the first two expressing the
relation of k and 1/F to z‐zc and the last one, obtained by
elimination of z‐zc, linking k to 1/F. We test the model
against experimental data on several materials, for which
the model parameters either were actually measured or could
be reliably inferred. Finally, we discuss some features of
the model, in particular its connection to Archie’s law.

2. Network Simulations of Electrical Conduction
Through Saturated Porous Media

2.1. Background

[5] The main concept used by BLM is that permeability is
the product of a squared length scale L2 by a dimensionless,
scale‐invariant function H [Berryman, 1992a, 1992b, 1993].
Note that here “scale‐invariant” means invariant under
application of a transform such that the physical distance
separating any pair of points in the medium is scaled by a
constant factor. This term should not be confused with
“zoom‐invariant,” an expression referring to fractal struc-
tures. In order to separate scale‐variant and scale‐invariant
effects, BLM defined L as a purely geometric quantity.
Following a long tradition in rock physics, they used the
hydraulic radius rH (i.e., rH = 2Vp/Ap, where Vp is the pore
volume and Ap the surface area of the pore‐solid interface;
note that the hydraulic radius is sometimes defined as
Vp/Ap = rH/2). Since it is impossible to list all possible
scale‐invariant effects, BLM limited their analysis to the
effect of connectivity (measured by the mean coordination
number z) and pore size heterogeneity (measured by sr, the
standard deviation of the pore radii normalized to the mean
pore radius). These two effects were investigated using
numerical simulations of fluid flow through networks of
pipes. In order to isolate the function H, BLM constructed
network realizations with a fixed value of the hydraulic
radius, namely, rH = 40 mm.
[6] The BLM network simulation approach was largely

inspired by early works on percolation theory. The main
goal was to search for “universal” relationships among the
network parameters (i.e., relationships valid for all lattice
types [e.g., Stauffer and Aharony, 1992; Sahimi, 1995, and
references therein]). Indeed, although networks of pipes

cannot be taken as realistic representations of porous rocks,
“universal” network properties (i.e., independent of lattice
type) can reasonably be generalized to real porous rocks,
especially to those in which a medial axis can be determined
(i.e., reduction of the pore space to its underlying topolog-
ical skeleton [Thovert et al., 2001; Spanne et al., 1994;
Lindquist et al., 1996; Baldwin et al., 1996; Fredrich and
Lindquist, 1997; Lindquist and Venkatarangan, 1999;
Fredrich, 1999; Lindquist et al., 2000; Petford et al., 2001;
Sok et al., 2002]). For this purpose, BLM simulated fluid
flow through three different, three‐dimensional, regular
lattices, namely, simple cubic (SC), body‐centered cubic
(BCC), and face‐centered cubic (FCC). For each value of
sr and z, porosity � and permeability k were measured. In
order to identify “universal” relationships, BLM considered
various combinations of � and k (e.g., k/�, k, k�, and
so forth) and plotted the corresponding numerical results
for each value of sr against z‐zc in log‐log scale. It turns
out that the combination of � and k producing the straightest
lines with least scatter, was simply k alone (note that, for
two‐dimensional lattices, the product k� was the optimal
combination). BLM concluded that k obeys the following
“universal” power law:

k ¼ wk�

8

rH
l

� �2
z� zcð Þ�r2H; ð1Þ

where wk and b depend on sr (the factor p/8(rH/l)
2 in

equation (1) is a consequence of Poiseuille formula).
[7] In the present paper, the BLM method is applied to

electrical conduction through networks of infinitely resistive
pipes saturated with an electrolyte of conductivity sf. Sur-
face conduction can also be accounted for [e.g., Bernabé,
1998]. However, since our main purpose is to investigate
F, we simply assumed that surface conduction was absent in
the networks. In this case, F is equal to the ratio of the fluid
conductivity to the calculated network conductivity s (i.e.,
F = sf /s).

2.2. Numerical Procedures

[8] In the BLM network simulations, pore size heteroge-
neity was generated by randomly assigning the radius ri of
each pipe i in the network. The pipe radii were assumed to
be independent stochastic variables, obeying the same
probability density function (thus producing nominally
isotropic network realizations). Since strongly skewed pore
radii distributions are usually observed in rocks [e.g.,
Fredrich and Lindquist, 1997; Lindquist et al., 2000], BLM
used log‐uniform distributions with different values of sr,
the standard deviation normalized to the mean radius. The
pore radii distributions used by BLM were also designed to
produce a constant value rH = 40 mm in all network reali-
zations (the specific rules used by BLM can be found in the
work of Bernabé et al. [2010]). Since k is much less affected
by the variations of pore length than of pore radius, BLM
restricted the simulations to regular lattices, for which the
pipe length l is a constant (l = 300 mm was used in all
network realizations). Note that sr is equivalently defined as
the normalized standard deviation of the hydraulic radii of
individual pores, a quantity that can be measured in real
materials using quantitative two‐ or three‐dimensional
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microstructure analysis (e.g., stereological measurements of
local pore volume and surface area).
[9] Variations in coordination number were produced by

randomly selecting a number of pipes according to a prob-
ability 1‐p and assigning them a radius equal to zero. It is
important to note that the critical value pc of the occupancy
probability p at the percolation threshold is lattice‐specific
(i.e., not “universal”). For example, pc = 0.249, 0.180, and
0.120 have been determined for the SC, BCC, and FCC
networks, respectively [e.g., Sahimi, 1995]. On the other
hand, the critical mean coordination number zc is very nearly
“universal” (zc ≈ 2 and 1.5, in two‐ and three‐dimensional
lattices, respectively [e.g., Sahimi, 1995]). The “universality”
of zc is a crucial property that may explain the “universality”
of the k / (z‐zc)

b power laws observed by BLM.
[10] In order to simulate fluid flow through a network

realization, periodic boundary conditions were applied and
the values of fluid pressure at the nodes were calculated by
solving Kirchoff laws (see Bernabé et al. [2010, and refer-
ences therein] for more details). For an individual pipe i, the
volumetric fluid flux qi

(h) is given by

q hð Þ
i ¼ �g hð Þ

i
Dpi
�

; ð2Þ

where gi
(h) is the hydraulic conductance, Dpi is the pore

pressure difference across the pipe, and h is the fluid vis-
cosity. For pipes with circular cross‐sections, Poiseuille
formula yields

g hð Þ
i ¼ �r4i

8l
: ð3Þ

By definition, the local hydraulic radius is equal to ri, the
pipe radius. In the case of pipes with elliptic cross‐sections,
this expression becomes

g hð Þ
i ¼ �a3i b

3
i

4l a2i þ b2ið Þ ; ð4Þ

where ai and bi are the major and minor dimensions,
respectively. The local hydraulic radius (simply denoted ri)
can be obtained from the cross‐sectional area (Ai = p aibi)
and perimeter (Pi ≈ p [3(ai + bi) − (3ai

2 + 10aibi + 3bi
2)1/2],

from Ramanujan formula). Equation (4) can then be
rewritten as

g hð Þ
i ¼ �r4i 3 1þ "ð Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3"2 þ 10"þ 3
p� �4

64l" 1þ "2ð Þ ¼ f "ð Þ�r
4
i

8l
; ð5Þ

where " = bi/ai is the cross‐section aspect ratio. BLM only
considered pipes with circular cross‐sections (i.e., " = 1).
But the permeability k of any of their network realizations
can be transformed into that of a network of elliptic pipes
with constant aspect ratio " by multiplying k by f(") as
defined in equation (5). It is, in principle, possible to con-
sider the more general case of a distribution of aspect ratios
but this will lead to an even more complex model, in which
at least one additional heterogeneity parameter must be
introduced. We applied the BLM numerical method (see

Bernabé et al. [2010] for the details) to electrical conduction
by replacing equations (2), (3), and (5), respectively by

q eð Þ
i ¼ �g eð Þ

i Dui; ð6Þ

g eð Þ
i ¼ �f

�r2i
l

; ð7Þ

g eð Þ
i ¼ �f

�r2i 3 1þ "ð Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3"2 þ 10"þ 3

p� �2
4l"

; ð8Þ

where qi
(e) is the electric current, gi

(e) is the electrical con-
ductance, and Dui is the electrical potential difference. As
in the BLM study, we used 15 × 15 × 15, 12 × 12 × 12, and
14 × 14 × 14 networks for SC, FCC, and BCC, respectively,
and the numerical results reported in the next sections are
ensemble averages over at least 200 realizations. The sta-
tistical relative fluctuations of 1/F were much lower than 1%
in general (they were always smaller than the fluctuations of
k), although relative fluctuations as large as 20% did occur
for highly heterogeneous networks near the percolation
threshold (i.e., sr = 1.05 and z‐zc < 0.4). However, large
uncertainties near the percolation threshold are not really a
problem because the vicinity of zc (i.e., z‐zc < 0.4) is
excluded from this study. Indeed, in a very small domain
near the percolation threshold, the critical power law 1/F /
(p‐pc)

n of percolation theory must hold, implying that the
power law 1/F / (z‐zc)

g observed in our simulations should
not be valid near zc.

2.3. Analysis of the Numerical Results

[11] Having performed the network simulations described
in the previous section, we followed the BLM analysis and
examined the relationships of various combinations of � and
1/F to z‐zc and arrived at the same conclusion as for k,
namely that 1/F obeyed the following “universal” power law
(see Figure 1a):

1=F ¼ wF�
rH
l

� �2
z� zcð Þ�; ð9Þ

where g and wF are functions of sr (see Table 1). This result
may appear to be a direct consequence of the fact that
hydraulic flow and electrical conduction simulation obey the
same formal set of linear equations, the only difference
being that local hydraulic and electrical conductances are
proportional to ri

4 and ri
2, respectively. However, the

response to a random distribution of pipe radii is very dif-
ferent in both cases. For example, David [1993] showed that
the (very complex) spatial distributions of local fluid flow
and electrical current in two‐dimensional heterogeneous
networks were quite dissimilar (in particular, hydraulic and
electrical tortuosities were not equal). Similarly, we note
here that the exponents b and g did not take simple values
and were not related to each other in any simple way.
Combining equations (1) and (9) yields

k ¼ w�1�	

8

rH
l

� �2 1�	ð Þ
1=Fð Þ	r2H; ð10Þ

where a = b/g and w = wk wF
−a. Indeed, plotting k against 1/F

in log‐log scale yields a set of very well defined straight lines
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(see Figure 1b), with exponents and pre‐factors values con-
sistent with the relationships mentioned above (see Table 1).
[12] Notice that the power law lines for different values of

sr shown in Figure 1b overlap significantly for high values
of z and only spread apart in the low z domain. In other
words, the relationship between k and 1/F is strongly sen-
sitive to pore scale heterogeneity only in poorly connected
networks.

3. Inferred Model

[13] Although networks of pipes are not realistic repre-
sentations of porous rocks, they can provide helpful insight

for identifying “universal” relations such as equations (1),
(9), and (10), among the transport properties and micro-
structure attributes of porous media. These equations can be
rewritten as

k ¼ Ck
rH
l

� �2
z� zcð Þ�r2H; ð11Þ

1=F ¼ CF
rH
l

� �2
z� zcð Þ�; ð12Þ

k ¼ C
rH
l

� �2 1�	ð Þ
1=Fð Þ	r2H; ð13Þ

where the pre‐factors Ck, CF, and C were explicitly given in
the previous sections for pipes with circular cross‐sections.
In order to simplify our notations, equations (11), (12), and
(13) will be hereafter called the kz‐, Fz‐, and kF‐equations,
respectively, and the subscripts kz, Fz, and kF will be corre-
spondingly applied to quantities related to them. Examining
the values given in Table 1, we found that b, g, log10(Ck),
and log10(CF) could be well approximated by second degree
polynomials in sr. The dependence on " is easily included
using equations (5) and (8). We thus have analytical expres-
sions giving the constants of the model for sr varying
from 0.1 to 1 and for any value of " between 0 and 1 (see
Appendix A). Note that the formulas in Appendix A
expressing the dependence on sr were derived empirically.
They may have to be modified if another range of sr is
considered.
[14] In summary, this model contains four scale‐invariant

parameters: (1) z the mean coordination number, (2) sr the
normalized standard deviation of the pore hydraulic radii
distribution, (3) the ratio rH/l, and (4) the aspect ratio " of
the pore cross‐sections. One scale‐invariant parameter
notably absent is porosity. Although surprising at first sight,
the absence of porosity is not illogical. Indeed, it is well
known that poorly connected pores (for example, dead‐end
pores) can be arbitrarily added to or removed from the pore
space without significantly affecting k and F. This precludes
the existence of a general �‐k relationship [e.g., Bernabé
et al., 2003]. It may be noticed that (rH/l)

2 = �/3p in a
perfectly homogeneous SC network but this expression is
not “universal” (i.e., it is different for BCC and FCC net-
works), implying that the ratio rH/l cannot be replaced by
porosity.

4. Testing the Model: Comparison
With Experimental Data

[15] Ideally, testing the model entails selecting a broad
variety of rocks, measuring all the needed quantities on each

Table 1. Observed Values of the Exponents and Pre‐Factors of
the Power Laws of Equations (1), (9), and (10)

sr a b g w wk wF

0.05 1.01 1.31 1.29 0.997 0.139 0.143
0.30 1.17 1.60 1.38 0.934 0.0666 0.103
0.55 1.41 2.19 1.57 0.919 0.0139 0.0493
0.80 1.60 2.94 1.87 1.023 0.00169 0.0171
1.05 1.70 3.79 2.26 1.176 0.000137 0.00459

Figure 1. Illustrations of the “universal” power laws satis-
fied for various values of sr (namely, 0.05, 0.30, 0.55, 0.80,
and 1.05, indicated in black, blue, purple, red, and orange,
respectively) by (a) the inverse formation factor 1/F with
respect to z‐zc, and (b) permeability k as a function of 1/F.
Results obtained using SC, BCC, and FCC lattices are inter-
mixed in the diagram.
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one of them, and comparing the measured values of k and F
with those predicted by the model. But this endeavor requires
a large amount of time and, although we plan to make the
attempt in the future, we decided first to carry out a prelimi-
nary assessment of the model using data sets from the liter-
ature. One severe problem, however, was that we could not
find any instance of a rock or material for which all needed
quantities had been measured. As already mentioned, the
coordination number z has very rarely been measured to date.
Even, a much simpler parameter such as the pore length l is
usually not included in microstructure studies. The closest to
the ideal we could come up with was Fontainebleau sand-
stone. But, even in this case, three separate data sets had to be
merged, increasing the modeling uncertainty (see section 4.3
and Bernabé et al. [2010]). Furthermore, the merged data set
still did not include sr and ".
[16] We must therefore devise methods using additional,

independent information to estimate the parameters missing
in the data sets considered. For example, observed statistics
of various microstructural attributes such as pore length or
throat size helped constrain sr in Fontainebleau sandstone
(see section 4.3). Unfortunately, there may still be some very
poorly constrained parameters. In such cases, we tried to
determine the input values or ranges of input values pro-
ducing the best fit to the experimental data and verified a
posteriori that the optimized parameters were plausible.
Note that the optimization scheme had to be applied to the
three kz‐, Fz‐, and kF‐equations simultaneously. We per-
formed it on a sample‐by‐sample basis but, owing to the
statistical fluctuations likely to occur among small rock
samples, the optimized parameters usually presented sig-
nificant fluctuations that had to be smoothed out statisti-
cally. Given the wide differences in materials and parameters
considered in sections 4.1–4.4, we had to use a different
treatment in each case (in fact, many different techniques
could be used equally well; they should all lead to very similar
sets of input parameters).
[17] For the sake of consistency, we used a unique misfit

measure to assess the fit quality in all cases. Owing to the
large range of permeability covered (see sections 4.1–4.4),
we defined the misfit for an individual permeability data
point as xk = ∣log(kcalculated) − log(kmeasured)∣. Notice that
using the L1 norm has the advantage of preserving the
properties of logs and exponentials to transform products
into sums and vice versa. Thus, the above definition is
equivalent to stating that the calculated and measured k are
in agreement with each other within a factor xk = exp[xk].
When considering a group of data points, the representative
misfit measure and misfit factor are simply given by the
arithmetic and geometric averages of the individual xk’s and
xk’s, respectively. Although the range of F in the data sets
considered is much smaller than the one covered by k, we
used the same definitions of misfit as described above.
Finally, to simplify the description of our results, we will
hereafter denote xkz, xFz, xkF, xkz, xFz, and xkF the misfit
measures and misfit factors corresponding to the kz‐, Fz‐,
and kF‐equations, respectively.

4.1. Well‐Sorted, Unconsolidated Granular Media

[18] We first considered unconsolidated, very well sorted,
granular materials. Glover and Walker [2009] and Glover
and Déry [2010] packed extremely well sorted glass beads

with a mean grain radius R ranging from 0.5 to 3000 mm.
The measured porosity � and formation factor F were nearly
constant (� = 39.1 ± 1.1%, F = 4.1 ± 0.3) whereas perme-
ability k increased approximately as R2 (samples “G” to “M”
from Glover and Walker [2009, Table 1] have misprinted
permeability values, too high by a factor of 10). Biella and
Tabacco [1981] and Biella et al. [1983] washed, sieved, and
packed natural sands collected from two alluvial deposits.
The mean grain radius ranged from 75 to 3575 mm. The
sand samples prepared by Biella et al. [1983] had � = 39.5 ±
2.7% and F = 4.4 ± 0.3, and, furthermore showed a weak
dependence of � and F with R. These sands were described
as consisting of rounded grains, except the sample labeled
“a” [Biella et al., 1983, Table 1], which partly contained
platy grains. No such description was given in Biella and
Tabacco [1981] but micrographs of the sand grains sug-
gest that moderately angular and/or elongated grains were
common. In contrast with the sands prepared by Biella
et al.’s [1983], the Biella and Tabacco’s [1981] sands
had a rather large porosity and small formation factor (� =
47.9 ± 1.1%, F = 3.3 ± 0.2). Note that Biella and Tabacco
[1981] used two different packing procedures, one of which,
for unknown reasons, yielded significantly outlying data
points in their Figures 6 and 8. These outliers were not
included in our analysis. Hereafter, we call Biella 1 the data
set containing the data from Biella et al. [1983] except
sample “a,” which together with the Biella and Tabacco’s
[1981] data form the Biella 2 data set. The Glover and
Walker [2009] and Glover and Déry [2010] data are
grouped into the Glover data set.
[19] In order to test our model, we must estimate five

parameters, namely, z, l, rH, sr, and ". We reasoned as follows:
[20] 1. There are no reasons to assume that the pore aspect

ratio " should be anything but equal to one.
[21] 2. In unconsolidated, monodisperse sphere packs,

z has been determined to be very close to six [e.g., Doyen,
1988, and references therein; Petford et al., 2001].
[22] 3. We are not aware of a detailed study of pore length

in unconsolidated, monodisperse sphere packs. However,
for this ideal material, we expect the pore length to have a
relatively narrow distribution and the average pore length
l to be comparable in magnitude to the grain radius R. A
more precise value can be obtained by examining the pore
structure of FCC sphere packing. The conductive pores
connect the octahedral and tetrahedral nodal holes. Their
length is approximately equal to 1.2 R. In absence of more
specific information, we simply assumed l = 1.2 R for both
the Glover glass beads and Biella sands.
[23] 4. BLM assigned a conservatively low value, sr ≈

0.45, for Fontainebleau sandstone. As will be shown in
section 4.3, this value is not unreasonable for the high
porosity samples but higher values may be more appropriate
for low porosity Fontainebleau sandstone varieties. We
surmise that unconsolidated granular materials should be
quite similar to highly porous, clean sandstones, so sr =
0.45 seems an adequate choice. Furthermore, we note that
this value (sr = 0.45) is consistent with the widths of the
pore throat diameter distributions graphically reported by
Glover and Déry [2010, Figure 6]. Finally, we point out
that sr has a rather weak effect on the modeled values of
k and F (at least in the range of sr considered here).
For example, increasing sr from 0.4 to 0.5 in the kz‐ and
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Fz‐equations produces a decrease of k by a factor of 1.3
and an increase of F by a factor of 1.2, while the kF‐
equation is nearly unaffected.
[24] 5. As mentioned earlier, the hydraulic radius is

defined as rH = 2Vp/Ap. We can calculate approximate
values of Vp and Ap, assuming that the grains are all iden-
tical, non‐intersecting spheres with radius R. Let us consider
n spheres having a total volume Vs = n(4/3)pR3 and a total
surface area Ap = n4pR2. Since � = Vp/(Vs + Vp), we obtain
rH = 2R�/(3(1‐�)). Of course, the assumption of perfectly
spherical grains cannot be expected to be accurate. Clearly,
sand grains and even glass beads are not spherical. Given
that R is defined as the radius of a sphere of equal volume to
that of the actual grain, the expression mentioned above
under‐estimates the pore surface area Ap by a factor fs > 1
and a more precise approximation of rH is given by

rH ¼ 2R�

3fs 1� �ð Þ : ð14Þ

We emphasize that fs is not a model parameter but merely a
correcting factor intended to take care of the systematic error
caused by assuming perfectly spherical grains. Obviously,
there would be no need for it if direct measurements of rH
were available. fs should evidently be very close to 1 for the
Glover glass beads. It should also be insensitive to grain size.
Indeed, examination of the Glover data set shows that k varied
almost exactly as R2, whereas F and � were nearly constant,
relationships that can actually be derived from our model,
the linear relation of l to R posited in parameter 3 and
equation (14) with a R‐independent fs. For natural sand grains,
on the other hand, fs should be significantly greater than one
and increase with decreasing R, since the sphericity of natural
sand grains was observed to decrease with decreasing grain size
[e.g., Rogers and Head, 1961; Friedman, 1962]. As a matter
of fact, the Biella 1 data set did yield k / R1.9, F / R0.1 and
� / R‐0.1, relationships consistent with the R‐dependence of
fs described above. In order to estimate a plausible range of
variation for fs, we examined two‐dimensional micrographs
of sand grains from Beard and Weyl [1973]. Based on the
description of the Biella sands, we ignored highly angular
and/or elongated grains. Because of the very poor resolution
of the printed micrographs, we only considered large grains.
We used standard stereology techniques to measure the area
A and perimeter P of two‐dimensional grain sections. We
estimated an equivalent grain radius R from A and found that
Pwas greater than 2pR by a factor of around 1.1–1.2 for fairly
equi‐dimensional rounded grains, and up to 1.4 for relatively
angular and elongated grains (i.e., with an aspect ratio of
about 0.6). The surface area of the (three‐dimensional) grains
must then be greater than 4pR2 by a factor between 1.2 and 2,
hence defining the expected range of variation of fs.
[25] To determine the input values of rH, we compared the

results of two hypotheses: (1) we assumed a perfectly
spherical shape of the grains (i.e., fs = 1), and, (2) we
allowed fs > 1 to vary and estimated its value by optimi-
zation. Applying hypothesis 2 to the Glover data set, we
found that the optimized fs was constant and equal to 1.15 ±
0.1, a value sufficiently close to one to be considered rea-
sonable in the case of glass beads. For the Biella 1 sands, the
estimated fs values tended to increase with decreasing R,
although they displayed large relative fluctuations (±0.3)

about the general trend. We ascertained that the trend was
satisfactorily approximated by fs = 2.0 R‐0.06 (with R in mm).
Given the values of R used, fs varied from 1.2–1.5 as expected
for rounded sand grains. Finally, fs values of 1.8 and 1.9 were
needed for the Biella 2 sands, consistent with their lower grain
sphericity. Assumption 2 improved the fit for all three kz‐,
Fz‐, and kF‐equations. The gain in fit quality can be visually
assessed in each case in Figures 2a–2c. The average numer-
ical values of xkz, xFz, and xkF are given in Table 2, showing
that the best fit is obtained for the Fz‐ and the worst for the
Fk‐equation.

4.2. Mixed, Unconsolidated Granular Media

[26] Biella and Tabacco [1981] and Biella et al. [1983] also
studied binary mixtures of some of the monodisperse sands
discussed above. Let us denote R1 and R2 the grain sizes of a
binary mixture (R1 < R2 by convention), and m1 and m2 the
corresponding weight‐fractions. It is well known that the
porosity of a binary sand mixture describes a V‐shaped curve
as illustrated in Figure 3, with the minimum corresponding to
a weight‐fraction of fine sand around 30% [e.g., Biella et al.,
1983, and references therein]. Note that the preparedmixtures
were all located on the right‐hand branch of the V (Figure 3).
Six groups of mixtures having the same grain sizes but dif-
ferent weight fractions were fabricated by Biella and co‐
authors. Inspection of the Biella data shows that, within each
group, � and 1/F linearly increased with increasing m1, while
k only displayed a moderate and rather irregular rise. On the
other hand, the average permeability of each group strongly
increased with R1 while � and F did not significantly depend
on grain size. We set the input parameters as follows:
[27] 1. In the case of a binary sand mixture, equation (14)

becomes

rH ¼ 2�

3 1� �ð Þ m1 f1
R1

þ m2f2
R2

� � ; ð15Þ

where f1 and f2 are the sphericity correction factors previ-
ously determined for the corresponding monodisperse sands
(see section 4.1). Within each mixture group, we obtained
values of rH modestly decreasing with increasing fine sand
weight‐fraction m1, somewhat contradictory with the
increase of k mentioned earlier.
[28] 2. As illustrated in Figure 3, l varies from l ≈ l2 =

1.2 R2 when m1 = 0 to l ≈ l1 = 1.2 R1 when m1 = 1, probably
following some kind of S‐shaped curve. In absence of any
information, we simply assumed a step‐function (in other
words, l = 1.2 R1 in all the cases considered).
[29] 3. As before, we set the pore aspect ratio " equal to one.
[30] 4. It is likely that sr varies with the fraction of fine

sand. Obviously, sr should be taken equal to 0.45 at the
end‐points (i.e., m1 = 0 and m1 = 1) but it is not intuitively
clear whether it should increase (as illustrated in Figure 3) or
decrease for m1 approaching 30%. In any event, excessively
large variations of sr should be rejected.
[31] 5. We know that z ≈ 6 at the end‐points. In between,

the coordination number can only decrease (or stay con-
stant) and it seems logical that it would reach a minimum at
the same position as porosity does. Clearly, this minimum
must be significantly higher than the percolation threshold
(i.e., zc = 1.5), but the precise value is unknown.
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Figure 2. Comparison of calculated and measured permeability k and inverse formation factor 1/F for
the monodisperse Glover glass beads, and the Biella 1 and Biella 2 sands (in black, blue, and red, respec-
tively). The calculated values were obtained using (a) the kz‐equation, (b) the Fz‐equation, and (c) the kF‐
equation. The open circles correspond to assumption 1, i.e., fs = 1, whereas the solid dots represent results
obtained with assumption 2, i.e., fs > 1, as described in the text. In the case of assumption 1, the colored
dotted lines highlight the relationship between the misfit factor and R (constant misfit for Glover and
increasing misfit with decreasing R for Biella 1).

Table 2. Average Fit Factors for Monodisperse Glass Beads and Sandsa

xkz xFz xkF
Assumption 1 Assumption 2 Assumption 1 Assumption 2 Assumption 1 Assumption 2

Glover 2.3 ± 0.8 1.6 ± 0.5 1.1 ± 0.1 1.1 ± 0.04 1.9 ± 0.6 1.7 ± 0.6
Biella 1 3.7 ± 0.9 1.5 ± 0.4 1.3 ± 0.2 1.3 ± 0.10 2.9 ± 0.6 2.1 ± 0.5
Biella 2 17.0 ± 4.0 2.4 ± 0.7 1.8 ± 0.2 1.5 ± 0.20 7.8 ± 1.4 3.8 ± 0.7

aAssumption 1, fs = 1; assumption 2, fs > 1. Namely, fs does not depend on grain size for the Glover data set and is given by fs = 2.0 R‐0.06 for Biella 1,
whereas Biella 2 requires values on the order of 1.8 or 1.9; see text for details.
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[32] As in section 4.1, we compared different assump-
tions: (1) we assumed that the mixtures behaved exactly like
monodisperse sands and assigned the constant input values
z = 6 and sr = 0.45, (2) we allowed z to vary while keeping
sr equal to 0.45, and (3) we conversely allowed sr to vary
while keeping z equal to 6. We found that the optimized
values of z and sr could be adequately approximated by z =
1.754 + 7.889 m1 − 3.620 m1

2 and sr = 1.110–1.210 m1 +
0.561 m1

2 for (2) and (3), respectively. These functions give
quite credible values of z (i.e., 6–3.8) and sr (i.e., 0.46–0.80),
well within the plausible ranges.
[33] Assumptions 2 and 3 produced a major improvement

in fit quality for the kz‐equation, which more than compen-
sated the small quality decline observed for the Fz‐equation
(see Figures 4a–4c and Table 3). Assumption 3 also amelio-
rated the fit for the kF‐equation (in this case assumptions
1 and 2 are undistinguishable). Notice that, although assump-
tion 1 yielded the best fit for the Fz‐equation, it produced a
somewhat regular increase of the individual misfit factors
with m1 (see Figure 4b). This trend suggests that the micro-
structure of the binary sand mixtures evolved with the fine
sand weight‐fraction m1 in a way that was not accounted for
by assumption 1. Assumptions 2 and 3 both removed this
trend. In fact, the results of assumptions 2 and 3 were very
similar not only overall but also for each individual sample (the
similarity was such that we found it redundant to plot
the results of assumption 3 in Figures 4a and 4b). It is therefore
likely that sand mixing produced changes in either z or sr
(or both), although we cannot determine which parameter
was most important without additional information.

4.3. Fontainebleau Sandstone

[34] There is one rock, Fontainebleau sandstone, for which
z and most of the other quantities needed here are available
in the literature. Fontainebleau sandstone was considered in
many past studies because its porosity varies over a very wide

range (i.e., 3–30%) while other characteristics such as min-
eralogical composition (∼100% quartz) and grain size remain
nearly constant [e.g., Bourbié and Zinszner, 1985]. As a
consequence, the physical properties of Fontainebleau sand-
stone display very distinctive trends when plotted against
porosity [e.g., Bourbié and Zinszner, 1985]. For example, the
k and 1/F data of Doyen [1988] and Fredrich et al. [1993]
plotted in Figure 5 clearly reveal well‐defined trends, even
though considerable fluctuations occurred for individual
samples. BLM used these trends to merge the data sets of
Doyen [1988], Fredrich et al. [1993], and Lindquist et al.
[2000] into a single data set containing directly measured or
inferred quantities (details on the merging methods can be
found in the work of Bernabé et al. [2010]). In the merged
data set, the values of k and F are the results of actual mea-
surements, while the microstructure parameters rH, l and z
are partly measured and partly inferred. It is important to
remark that the natural variability of Fontainebleau sand-
stone, in addition to the uncertainty of the merging methods,
substantially limits the modeling precision that can be
expected. The BLM Fontainebleau data set contains two
different estimates of z, one based on two‐dimensional
microstructure analysis [Doyen, 1988] and the other obtained
from the medial axis analysis of three‐dimensional images of
the pore space [Lindquist et al., 2000]. BLM tested both
versions and found that Lindquist et al.’s coordination num-
ber appeared to be considerably underestimated (probably
because the medial axis method introduces a strong bias
toward the low value of 3 whereas Doyen’s gave very good
results (probably because Doyen’s z was calibrated to be
equal to 6 in the most porous samples). Here, we only used
Doyen’s coordination number.
[35] Thus, two unconstrained parameters remain, namely

sr and ". We are not aware of any study of the statistics of
pore scale values of the hydraulic radius, from which sr
could be inferred, but the statistics of a number of other
microstructure attributes, such as throat and nodal pore size,
were reported by Doyen [1988], Fredrich et al. [1993], and
Lindquist et al. [2000]. The corresponding normalized
standard deviations varied from about 0.4 to as high as 1.2,
depending on the attribute considered and the porosity of the
sample (in general, normalized standard deviations increased
with decreasing porosity). BLM selected a value near the
lower limit, sr = 0.45, and found that, in conjunction with
" = 1 (i.e., pores with equi‐dimensional cross‐sections), this
input value produced a satisfactory fit for the kz‐equation
(xkz = 2.0 ± 0.9; see Figure 6a). Applying the same values,
sr = 0.45 and " = 1, to the Fz‐ and kF‐equations, we dis-
covered, however, that the good fit observed by BLMwas not
a robust result. For each data point, the individual misfit
factors xFz and xkF were relatively small for the high porosity
samples but grew to unacceptable levels at low porosities
(e.g., nearly two orders of magnitude for k when porosity
reaches 5%; see Figures 6b and 6c). One way to reconcile the
k and F data is to take into account the pore shape variations
observed in Fontainebleau sandstone. Micrographs of dif-
ferent varieties of Fontainebleau sandstone by Bourbié and
Zinszner [1985] show that porosity reduction was associ-
ated with an evolution of the pore cross‐section from
approximately equi‐dimensional to thin and elongated. In
particular, thin inter‐granular crack‐like pores are prevailing
in the pore casts of very low porosity samples [see Bourbié

Figure 3. Porosity of the Biella binary sandmixtures plotted
versus fine sand weight‐faction m1 (black dots; the black line
highlights the linear best fit relation, � ≈ 0.16 + 0.25m1). The
expected variations of pore length l, coordination number z,
and pore size heterogeneity sr are indicated by green, yellow,
and red lines, respectively.

BERNABÉ ET AL.: CONNECTIVITY, PERMEABILITY B11204B11204

8 of 15



Figure 4. Comparison of calculated and measured k and 1/F for the Biella binary sand mixtures (the
various groups of mixtures are represented with different colors). The calculated values were obtained
using (a) the kz‐equation, (b) the Fz‐equation, and (c) the kF‐equation. For Figures 4a and 4b, the open
circles correspond to assumption 1, i.e., constant z = 6 and sr = 0.45, and the solid dots to assumption 2,
i.e., variable z (see text). The dotted line in Figure 4b highlights the dependence of the misfit factor on F
(and therefore m1), when assumption 1 is used (see text). For Figure 4c, open circles and solid dots respec-
tively represent the results obtained using assumption 1 and assumption 3, i.e., variable sr (see text). In
order to avoid impairing visibility the open symbols are all plotted in black.

Table 3. Average Fit Factors for Binary Mixtures of Sandsa

xkz xFz xkF
Assumption 1 Assumption 2 Assumption 3 Assumption 1 Assumption 2 Assumption 3 Assumption 1 Assumption 2 Assumption 3

2.3 ± 1.1 1.2 ± 0.2 1.2 ± 0.2 1.4 ± 0.4 1.6 ± 0.3 1.5 ± 0.2 2.1 ± 0.7 2.1 ± 0.7 1.7 ± 0.3

aAssumption 1, z = 6 and sr = 0.45; assumption 2, z = 1.754 + 7.889 m1 − 3.620 m1
2 and sr = 0.45; assumption 3, sr = 1.110–1.210 m1 + 0.561 m1

2 and
z = 6. See text for details.
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and Zinszner, 1985, Figure 20]. The predominance of flat-
tened pores in low porosity Fontainebleau sandstone is also
supported by an observed large pressure‐sensitivity of k and
F [e.g., Fredrich et al., 1993; Gomez et al., 2010]. Adjusting
the pore aspect ratio " alone is not sufficient, however, since
it would destroy the good fit observed by BLM for the
kz‐equation. The only solution allowed by the model is to
couple a decrease of " with a simultaneous increase of sr, a
plausible option since an increase of pore scale heteroge-
neity was generally observed to accompany porosity loss in
Fontainebleau sandstone [see, e.g., Bourbié and Zinszner,
1985, Figure 2].
[36] We therefore tried to optimize sr and " jointly. We

considered 4 groups of 2 or 3 samples of similar porosities
(i.e., 22–19.5%, 18–15% 11–7.5%, and 5%). For each
group, we explored the variations of the global misfit factor
(i.e., the geometric average of xkz, xFz, and xkF) in the entire
[sr, "] plane. Because of the variability/uncertainty issue
mentioned earlier, we did not expect the location in [sr, "]
space of the minimum of the misfit factor to be truly rep-
resentative. Instead, we plotted the iso‐x contour lines cor-
responding to misfit factors of 1.8, 1.5, 1.7, and 2.4 for the
20%, 16%, 9%, and 5% groups, respectively (see Figure 7).
These lines delimit zones in the [sr, "] plane where a rea-
sonable fit can be found. They were constructed to be nei-
ther too large (i.e., insufficiently discriminating) nor too
small (i.e., too sensitive to experimental errors and uncer-
tainties). For each sample, we then selected values of sr and
" falling within the appropriate fitting zones (see Figure 7)
and consistent with the microstructure evolution of Fontai-

nebleau sandstone described in the preceding paragraph. For
the sample with the highest porosity, sr = 0.45 is a rea-
sonable value, as already discussed, while " = 0.4 is com-
patible with the moderately low pressure dependence of k
and F observed in highly porous Fontainebleau sandstone
(elliptical, infinitely thick‐walled pipes have negligible
pressure sensitivities for aspect ratios from about 0.6–1, but
become too compressible for " < 0.1) [e.g., Bernabé et al.,
1982]. With decreasing porosity, we assumed that pore
size heterogeneity regularly increased while the pore aspect
ratio simultaneously decreased (toward the low porosity
end‐values of sr = 0.85 and " = 0.02). Using the input
parameters shown in Figure 7 preserved the fit obtained by
BLM for the kz‐equation (xkz = 1.8 ± 0.7; see Figure 6a)
and, furthermore, greatly improved it for the Fz‐ and kF‐
equations (xFz = 1.3 ± 0.4 and xkF = 2.1 ± 1.1; see Figures 6b
and 6c), although discrepancies of up to half of an order of
magnitude still occurred. Most importantly, the fit quality
was roughly the same for all samples, regardless of their
permeability.

4.4. Fused Glass Beads and Various Sandstones

[37] Although z is essentially unknown for rocks other
than Fontainebleau sandstone, the kF‐equation can still be
tested in rocks for which enough data on k, F, and the most
important microstructure attributes are available. For
example, Blair et al. [1996] measured �, k, F, the mean
grain radius R (yielding l ≈ 1.2 R as for unconsolidated
granular media), and the specific surface area of the pores,
from which rH can be calculated, in samples of fused glass
beads with porosity varying from 17 to 39%, and in natural
sandstones with � between 11 and 22% (namely, Berea,
Frontier, Tensleep, Navajo, and Flathead sandstones). Zhan
et al. [2010] made similar measurements on a sample of
Berea sandstone with porosity of 23.6%. Furthermore, they
acquired three‐dimensional images of the sample pore space
using X‐ray microtomography. These images were analyzed
to determine the local values of the microstructure attributes
and were also used to run numerical simulations of
hydraulic flow and electrical conduction (assuming zero
surface conduction), allowing estimation of the corre-
sponding values of k and F. Zhan et al.’s [2010] simula-
tions yielded slight overestimates of both k and F with
respect to the experimental measurements. They did not
report values of mean pore length (or of mean grain radius),
and we decided to use R = 65 mm, a value corresponding to
the middle of the range covered by the Berea sandstone
samples used by Blair et al. [1996]. As in the Fontainebleau
sandstone case, we lack specific, precise information on sr
and ". Therefore, we systematically explored the [sr, "]
plane as explained in the preceding section. The contour
lines corresponding to xkF = 1.24 and 1.4 determined for
various groups of samples (Figure 8) suggest that the natural
sandstones and the fused glass beads with � > 20% have
relatively similar behaviors, while the fused glass beads
sample with � = 17% comes out as an anomaly. The natural
sandstones data are consistent with sr around 0.6, a value in
the middle of the range previously found for Fontainebleau
sandstone, and tend to favor high aspect ratios. The data for
the high‐porosity fused glass beads samples are not
incompatible with these values, although higher sr’s and

Figure 5. Illustration of the merged Fontainebleau sand-
stone data set. Permeability (solid dots) and inverse forma-
tion factor (open circles) are plotted versus porosity. The
data originate from Fredrich et al. [1993] (black) and
Doyen [1988] (blue). The general, well‐defined trends are
highlighted by the solid and dotted lines.
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lower "’s would yield a slightly better fit. The data corre-
sponding to the fused glass beads sample with � = 17%
appears to be rather insensitive to sr but needs " near 0.1 to
achieve the same level of fit as the other samples. The
microstructure image of Blair et al. [1996, Figure 3b] shows
pores with aspect ratios as low as 0.1, apparently supporting
this last observation. But it can be objected that, in a two‐
dimensional micrograph, cross and longitudinal sections of
pores cannot be distinguished, and, the measured pore

aspect ratio " is therefore underestimated. Alternatively, the
anomalous behavior of this sample may have simply been
caused by experimental errors. In order to simplify the
analysis, we finally assumed a single pair of values, sr = 0.6
and " = 0.7, for all the samples in the Blair and Zhan data
sets (see Figure 8). We found that the kF‐equation produced
generally good results over 4 orders of magnitude of mea-
sured permeability (xkF = 1.3 ± 0.4; see Figure 9), giving

Figure 6. Comparison of calculated and measured k and 1/F for Fontainebleau sandstone (black sym-
bols, Fredrich et al. [1993]; blue symbols, Doyen [1988]). The calculated values were obtained using
(a) the kz‐equation, (b) the Fz‐equation, and (c) the kF‐equation. The open circles correspond to the
assumption of constant " = 1 and sr = 0.45 (the large increase of the misfit factors with decreasing
permeability is highlighted by the dotted lines) and the solid dots to coupled variations of " and sr as
described in the text.
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credence to the idea that F can effectively be used to make
up for a lack of information on z.

5. Discussion

[38] How successful is the model? There are a number
of positive arguments: We obtained satisfactory results,
(1) over about seven orders of magnitude of permeability,
(2) for a broad variety of granular materials and rocks (of
course, other important types of rocks, e.g., carbonates, still
need to be tested), and (3) while always maintaining the
poorly constrained input parameters within tightly defined,
plausible bounds. Given the fact that poorly constrained
parameters were unavoidable, we paid particular attention
to this last issue. We carefully proceeded in two stages:
(1) starting with the simplest assumptions and, therefore,
selecting relatively crude estimates of the unknown input
parameters, then (2) refining the input parameters based on
additional, independent information. For example, in the
case of well‐sorted granular media, we first assumed a
perfect spherical shape of the grains, and then introduced a
correction factor for the sphericity imperfections expected in
glass beads and natural sand grains. In support for the
model, the more credible and realistic hypotheses used in the
second stage improved the fit quality in all cases considered.
[39] Considering the kF‐equation in isolation, the satis-

factory fit generally found in all materials, indicates that F
can effectively make up for a lack of quantitative informa-

tion on z. Furthermore, the kF‐equation performed better
than its counterpart in the equivalent channel model (EMC)
of Paterson [1983] and Walsh and Brace [1984] (i.e., k =
rH
2 /bF, where b is a geometric factor equal to 8 for cylin-
drical pipes and 12 for cracks). Our model yielded a sig-
nificant gain in fit quality with respect to EMC for the Blair
and Zhan rocks and fused glass beads (xkF = 1.3 ± 0.3
compared to xEMC = 2.0 ± 0.8) and the binary sand mixtures
(xkF = 1.7 ± 0.3 compared to xEMC = 2.6 ± 0.9), while both
models worked equally well for the well‐sorted glass beads
and sands. The case of Fontainebleau sandstone was par-
ticularly illuminating. We obtained an approximately con-
stant fit corresponding to xkF = 2.8 ± 2.6 in the entire
porosity range, whereas EMC overestimated permeability in
all samples by factors that gradually increased with decreas-
ing �, up to nearly 100 for the sample with the lowest porosity
(the average misfit factor xEMCwas much larger than xkF, i.e.,
xEMC = 16 ± 30 and 11 ± 20 for b = 8 and 12, respectively).
[40] Another important characteristic of the model is that

its physical basis requires all three constituent equations to
be satisfied simultaneously. Owing to this powerful princi-
ple, the model can be applied even in cases where some
input parameters are essentially unknown. For example, in
the case of Fontainebleau sandstone, we were able to fit the
kz‐, Fz‐, and kF‐equations all together, by replacing the
unrealistically simple assumptions used by BLM (i.e., equi‐
dimensional pores and low pore size heterogeneity for all
porosities) by a set of coupled values of sr and ", qualita-
tively consistent with the evolution of the microstructure of
Fontainebleau sandstone observed in previous studies

Figure 7. Regions in [sr, "] parameter space where a rea-
sonably good fit with the Fontainebleau sandstone data can
be found. These regions are limited by contour lines corre-
sponding to misfit factors equal to 1.8 (gray), 1.5 (blue), 1.7
(purple), and 2.4 (red) for the 20%, 16%, 9%, and 5% poros-
ity groups, respectively. The input values of sr and " corre-
sponding to the solid dots in Figure 6 are indicated by solid
dots in colors matching that of the group. For comparison,
the BLM input values, sr = 0.45 and " = 1, are also
represented by the black dot labeled BLM.

Figure 8. Regions in [sr, "] parameter space where a rea-
sonably good fit with the Blair and Zhan data can be found.
These regions are limited by contour lines corresponding to
misfit factors equal to 1.4 (lighter colors) and 1.24 (darker
colors). The natural sandstones are represented in gray, the
fused glass beads with � > 20% in blue, and the anomalous
fused glass beads sample with � = 17% in red. Our choice of
input parameters is indicated by the black solid dot.
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[Bourbié and Zinszner, 1985; Doyen, 1988; Fredrich et al.,
1993; Lindquist et al., 2000].
[41] As pointed out in section 3, porosity does not appear

explicitly in our model. Nevertheless, it is worthwhile to
check if the model is consistent with Archie’s law, F = �−m,
where m is called the cementation exponent and ranges
between one and four for most soils and rocks. Incorporating
Archie’s law into the Fz‐equation yields

m ¼
logCF þ 2 log

rH
l

� �
þ � log z� zcð Þ

log�
: ð16Þ

Examination of equation (16) shows that the predicted
cementation exponent tends to increase with decreasing
connectivity and/or increasing heterogeneity (CF decreases
with increasing sr). The effect of � and rH/l cannot be
assessed easily because they are not independent quantities.
Applying equation (16) to Fontainebleau sandstone, we found
that the experimental and predicted values of m were very
similar, both increasing from ∼1.6 to ∼2.3 with decreasing �.
Of course, this good agreement merely reflects the fact,
already discussed, that our model adequately predicted F.
[42] In the case of the unconsolidated granular media of

sections 4.1 and 4.2, rH/l can be expressed as a function
of �:

rH
l
¼ �

1:8 1� �ð Þ m1f1 þ m2f2
R2

R1

� � : ð17Þ

Equation (17) reduces to �/1.8fs(1‐�) for monodisperse
sands. In good agreement with the prediction of Sen et al.
[1981] (i.e., m = 1.5), the observed cementation exponents
were 1.51 ± 0.03, 1.59 ± 0.06, and 1.60 ± 0.09 for the Glover
glass beads, the Biella 1, and Biella 2 sands, respectively
(note that m showed a slight increase with decreasing R for
the Biella 1 sands, consistent with the trends mentioned in
previous sections). Our model underestimated m when fs = 1
was assumed (1.46 ± 0.06 for Glover, 1.43 ± 0.15 for
Biella 1, and 0.89 ± 0.09 for Biella 2) but yielded significant
overestimates when fs > 1 was used (1.76 ± 0.05 for Glover,
2.12 ± 0.17 for Biella 1, and 2.56 ± 0.10 for Biella 2). This
suggests that our attempt to model k and F simultaneously
led to an overcorrection of grain sphericity (i.e., a too large
fs). One way to reconcile the k and F data is to reconsider
our assumption that pores can be modeled as cylindrical
pipes. In reality, pores in granular media have relatively
wide cross‐sections at their extremities, where they connect
to nodal pores, and become substantially narrower at mid‐
length (often called “throat”). For a given value of the local
hydraulic radius, this shape corresponds to hydraulic and
electric conductances, gi

(h) and gi
(e), lower than predicted by

equations (3) and (7). Most importantly, the effect is more
pronounced for gi

(h) than gi
(e), thus reducing the discrepancy

described above. For example, let’s consider a pore in the
form of a double conical frustum with radii rnode ≈ 0.15l at
the ends and rthroat ≈ 0.6rnode at the center. This idealized
pore geometry yields a reduction of gi

(h) by a factor of about
0.75 and gi

(e) by 0.9 with respect to the gi
(h) and gi

(e) values
for a cylindrical pore with an identical hydraulic radius. As a
test, we incorporated the products 0.75Ck, 0.9CF, and the
appropriate value for C0 in the kz‐, Fz‐, and kF‐equations.
We found that it was, indeed, much easier to fit the modified
equations to the Glover and Biella data than the original
ones, the misfit factors were all reduced and smaller sphe-
ricity correction factors fs were generally required. Notice
that, unlike the correction factor fs, the ratios rnode/l and
rthroat/rnode are genuine scale‐invariant quantities that may
ultimately have be included in models of k and F, especially
if very accurate predictions are sought. It must be recog-
nized, however, that such minor effects are taken into
account at the price of augmenting the model degrees of
freedom, thus reducing its practical usefulness.
[43] Finally, we applied equations (16) and (17) to the

Biella binary sand mixtures, for which � and F strongly
depend on the fine sand weight‐fraction m1 (the empirical
relations are� ≈ 0.16 + 0.25m1 andF ≈ 14–21m1 + 12m1

2, see
Figure 3). As shown in Figure 10, the experimentally mea-
sured m slightly increased with m1 from ∼1.5 for m1 = 0.3 to
∼1.6 for the monodisperse fine sands. In order to analyze our
model response, we plugged the empirical � ‐ m1 transform
mentioned above into equations (16) and (17).We considered
the same cases as in section 4.2, namely, (1) constant values
z = 6 and sr = 0.45, (2) variable z and sr = 0.45, and (3) z = 6
and variable sr (note that, for simplicity sake, we used con-
stant f1 = f2 = 1.2 in all cases). Case 1 produced an overly steep
decrease of m with decreasing m1. On the other hand, cases 2
and 3 showed that a significant improvement was obtained
by using m1‐dependent parameters. Thus, it seems likely
that other scale‐invariant parameters such as rnode/l and

Figure 9. Comparison of calculated and measured k for the
Blair and Zhan data sets (natural sandstones from Blair et al.
[1996], black solid dots; fused glass beads from Blair et al.
[1996], blue solid dots, anomalous sample highlighted with
a red X; Berea sandstone from Zhan et al. [2010], experi-
mental data, red solid dot; numerical simulations, orange
solid dots). The calculated values were obtained using the
kF‐equation with the input values of " and sr shown in
Figure 8.

BERNABÉ ET AL.: CONNECTIVITY, PERMEABILITY B11204B11204

13 of 15



rthroat/rnode may have to be added to the model to generate
more accurate predictions for binary sand mixtures.

6. Conclusions

[44] 1. In three‐dimensional networks, permeability and
formation factor obey “universal” power laws of z‐zc in the
entire domain of variation of z except very near the perco-
lation threshold zc. The exponents of these power laws as
well as the pre‐factors are strongly dependent on pore size
heterogeneity.
[45] 2. A joint permeability‐formation factor model was

inferred from these power laws, using the hydraulic radius rH
as length scale and containing four scale‐invariant param-
eters; namely, z the mean coordination number, sr the nor-
malized standard deviation of the pore hydraulic radii
distribution, the ratio rH/l and the aspect ratio " of the pore
cross‐sections. This model consists of three equations, the
first two expressing the relationships of k and Fwith z‐zc, and
the third one, obtained by elimination of z‐zc, linking k to F.
[46] 3. The model was satisfactorily tested on a variety of

granular materials and rocks, for which the model param-
eters either were actually measured or could be reliably
inferred.
[47] 4. Although it does not explicitly include porosity,

the model is not inconsistent with Archie’s law. With our
choice of input parameters, the cementation exponent was
generally over‐predicted but it seems that more accurate

values can be obtained if more realistic pore geometries are
considered.

Appendix A

[48] The following empirically established formulas pro-
vide approximate expressions of the exponents and pre‐
factors of the kz‐, Fz‐ and kF‐equations as functions of sr
and ".

� ¼ 1:2343þ 0:93462�r þ 1:4755�2
r ðA1Þ

� ¼ 1:2903þ 0:045527�r þ 0:82390�2
r ðA2Þ

	 ¼ �

�
ðA3Þ

Ck ¼
3 1þ "ð Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3"2 þ 10"þ 3
p� �4

8" 1þ "2ð Þ 10:� 1:1950þ0:82190�rþ2:0459�2rð Þ

ðA4Þ

CF ¼ 3 1þ "ð Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3"2 þ 10"þ 3

p� �2
4"

10:� 0:32894þ0:23339�rþ1:1423�2rð Þ

ðA5Þ

C ¼ CkC
�	
F ðA6Þ
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