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Abstract

We report measurements performed during two complete flow seasons on the Urumqi
River, a proglacial mountain stream in the northeastern ank of the Tianshan, an active
mountain range in Central Asia. This survey of flow dynamics and sediment trans-
port (dissolved, suspended and bed loads), together with a 25-year record of daily
discharge, enables the assessment of secular denudation rates on this high mountain
catchment of Central Asia. Our results show that chemical weathering accounts for
more than one third of the total denudation rate. Sediment transported as bed load
cannot be neglected in the balance given that sand and gravel transport accounts for
one third of the solid load of the river. Overall, the mean denudation rates are low,
averaging 461t x km™2 x yr‘1(17—18 m Myr'1). We furthermore analyse the hydrologic
record to show that the long-term sediment budget is not dominated by extreme and
rare events but by the total amount of rainfall or annual runoff. The rates we obtain
are in agreement with rates obtained from the mass balance reconstruction of the Plio-
Quaternary gravely deposits of the foreland but signicantly lower than the rates recently
obtained from cosmogenic dating of river sand. We show that the resolution of this
incompatibility has an important consequence for our understanding of the interplay
between erosion and tectonics in the semi-humid ranges of Central Asia.

1 Introduction

Sediment transport in rivers remains an essential topic of research in earth sciences.
Hydrographic networks shape landscapes and transport up to 90 % of eroded materials
(Goudie, 1995). Knowledge of the dynamics of how matter is transferred is therefore
essential for understanding the evolution of landscapes (Paola et al., 1992; Howard
et al., 1994; Dietrich et al., 2003), especially mountainous landscapes in active tec-
tonics regions (Métivier and Gaudemer, 1999; Lague et al., 2003). The potential role
of erosion on the dynamics of a mountain range, has gained increasing attention in
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recent years from the study of active mountain belts such as the Himalayas and Tai-
wan (e.g. Avouac and Burov, 1996; Whipple, 2009, and references therein). Therefore,
it has become a key issue to assess rates of denudation at different time and space
scales through the comparison between present day denudation rates and indirect es-
timates obtained from the study of sedimentary basin records or measurements of in
situ-produced cosmogenic nuclides.

Here we use mass balance and hydrologic measurements to tackle two problems
concerning erosion rates in mountainous environments: the relative importance of
chemical versus mechanical weathering (Prestrud Anderson et al., 1997; Caine, 1992;
Sharp et al., 1995; Smith, 1992; West et al., 2002; Schiefer et al., 2010), and the impor-
tance of the coarse fraction (bed load) in the estimate of mass budgets and mechanical
denudation rates (Galy and France-Lanord, 2001; Gabet et al., 2008; Lenzi et al., 2003;
Métivier et al., 2004; Meunier et al., 2006a; Pratt-Sitaula et al., 2007; Schiefer et al.,
2010; Turowski et al., 2010).

The partitioning between solid and solute loads remains an issue in mountainous
areas (West et al., 2002). In the Haut Glacier d’Arolla in the Swiss Alps mechani-
cal erosion seems more important then chemical denudation by orders of magnitude
(Sharp et al., 1995). The exact contrary has been shown for the Green Lakes catch-
ment in the Colorado Front Range by Caine (1992). There chemical denudation rates,
although low, are an order of magnitude larger mechanical denudation rates. In the
Canadian Rockies, Smith (1992) also found that chemical denudation rates could be
much more important than other mechanisms such as solifluction on the slopes. Fur-
thermore, in mountainous settings the importance of chemical weathering depends on
the influence of the glacial cover, when present. Glacierized catchments have been
shown to have significant weathering rates (Prestrud Anderson et al., 1997), yet these
catchments are also often the place of a significant mechanical denudation.

Mechanical denudation in itself is still a matter of concern because the solid load is
mostly restricted to the fraction of matter carried in suspension. The relative importance
of the coarse fraction, also called bed load as the grains roll and saltate on the rough
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river bed, compared to the fine suspended fraction transported by mountainous rivers
often remains obscure. Recent assessments have shown that bed load, which is sel-
dom measured, could amount to a non negligible fraction of the total load transported
in active mountain ranges (Galy and France-Lanord, 2001; Lenzi et al., 2003; Métivier
et al., 2004; Meunier et al., 2006a; Pelpola and Hickin, 2004; Pratt-Sitaula et al., 2007;
Schiefer et al., 2010; Wulf et al., 2010). Despite this, bed load is often simply assumed
to be a given fraction of the suspended load without any further discussion.

We hereafter report a two year survey on a braided stream in the Chinese Tianshan
mountain range: the Urumqi River. We use this survey together with a 25-year record
of discharge to perform a mass balance, derive erosion rates in a glacial catchment
and discuss the respective contribution of mechanical and chemical weathering to de-
nudation. We first describe the data acquisition (the complete dataset is available as
Supplement), and discuss measurement issues. We then present the daily pattern
of sediment transport during two consecutive summers (2005 and 2006). The results
are then used to derive a daily mass budget. We show that the concentration of both
dissolved and solid loads are highly correlated to discharge. Rating curves are then
derived and used together with a 25-year record of daily discharge to estimate yearly
fluxes of dissolved and solid material and the corresponding weathering rates. Finally,
the results obtained are discussed and compared to existing longer-term measure-
ments of denudation rates.

The mountains of Central Asia present an interesting counterpoint to the Himalayan
orogeny or Taiwan accretion for the study of erosion and sediment transport. Although
the elevation is high, the climate does not produce such intense events as monsoons
or yearly typhoons. Precipitation is essentially orogenic and of limited amplitude (Zhao
et al., 2008). On average, only 450 mm yr‘1 of rain falls over the Chinese Tianshan
compared to the 2500 mm yr‘1 of rain that falls over Taiwan. Glacial retreat is well on
its way (Aizen et al., 1997; Ye et al., 2005) and the size and depth of the remaining
Tianshan glaciers is much smaller than their Himalayan counter part. Yet, this region
is the place of significant and active tectonics. Convergence between the Tarim block
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(Taklamakan Desert) and the Dzunggar block (Dzunggar or Junggar Desert) accounts
for a non negligible fraction of the India-Asia convergence (Avouac et al., 1993; Avouac
and Tapponnier, 1993; Wang et al., 2001; Yang et al., 2008). The Tianshan mountain
range is therefore a place where it is possible to survey sediment transport both, dis-
solved, suspended and bed load using conventional equipment (Métivier et al., 2004;
Meunier et al., 2006a), while tackling questions of geodynamic significance (Avouac
et al., 1993; Molnar et al., 1994; Metivier and Gaudemer, 1997; Charreau et al., 2011;
Poisson and Avouac, 2004).

2 The Urumgqi River

The dataset was acquired on the Urumqi River, a mountain stream located in the north-
eastern part of the Tianshan mountain range in China (Fig. 1, a GoogleEarth kml file
is enclosed as Supplement). The river flows from south to north and ends in a small
reservoir in the Dzunggar Basin. Tianshan is an intracontinental range that was reacti-
vated during the Cenozoic in response to the India-Asia collision (Avouac et al., 1993;
Molnar et al., 1994; Metivier and Gaudemer, 1997). It is located both in Khazakhstan
and China, 2000 km north of the collision front. The range experiences north-south
compressive shortening and accommodates approximately 40 % of the convergence
(Avouac et al., 1993; Yang et al., 2008). The range extends for more then 2500 km
and is bordered to the south and north by two internally drained sedimentary basins:
the Tarim and Dzunggar Basins respectively. The Dzungbar Basin covers an area of
130000km®. The sedimentary infill is of alluvial and lacustrine type. Water comes
from the adjacent mountain ranges: Tianshan to the south and Altai to the north. The
Dzunggar Basin records approximately 250 million years of sedimentary history. De-
posits in front of the Tianshan range have experienced folding in the late Tertiary and
Quaternary due to the northward propagation of deformation. Incision and entrench-
ment of all streams flowing to the basin is one of the main features of late glacial
morphology (Molnar et al., 1994; Poisson and Avouac, 2004). The Urumaq;i, like other
rivers, has incised deeply into its alluvial fan and created well defined terraces.
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The headwaters of the Urumqi River originate at 3600 ma.s.l. The river originates
from a glacier known as Glacier No. 1 that flows from Tangger peak (Fig. 2). The
stream flows for 60 km before it leaves the high range and enters its alluvial piedmont.
The drainage of the Urumqi at the range front is 925 km?. Hydrology is controled by
both orographic summer precipitation and glacial melting (Li et al., 2010; Ye et al.,
2005).

The survey reported herein took place along a high mountain reach of the river
(3200ma.s.l.) in a U shaped glacial valley at a distance of 8 km from the headwa-
ter glaciers (Figs. 1,2 and 3). This alpine landscape consist of meadows, glacial tills
and rock exposures. Rock outcrops consist of diorite, augen gneiss, schists and small
outcrops of granite near the headwaters (Yi et al., 2002). There seems to be no lime-
stone outcrop upstream of the survey site. Eventually permafrost is present in the
valley.

One of the advantages of surveying the Urumgqi River lies in the existence of a large
body of publications and studies on hydrology in this river due to the presence of the
Tianshan Glaciological Station of the Chinese Academy of Sciences (e.g. Han et al.,
2006; Lee et al., 2002; Li et al., 2006, 2010; Ye et al., 2003, 2005; Yi et al., 2002; Zhang
et al., 2005; Zhao et al., 2008).

The river morphology at the sampling site varies from a wandering to a weakly
braided gravel bed stream (Fig. 2). The median grain size is on the order of D5y ~ 20 mm
and Dy, ~ 160 mm (Métivier et al., 2004). The bed is organized into patches and there
is no developed armour (Figs. 2a—c). The mean annual temperature and precipitation
measured at the Daxigou meteorological station near the sampling site are —5.1°C and
450 mm, respectively (Ye et al., 2005). At this location the river flows for approximately
a five month period between mid-May to mid-October, corresponding to the melt pe-
riod. Flow is surveyed by the Tianshan Glaciological Station of the Chinese Academy
of Sciences from May to September. About 90 % to 95 % of the annual runnoff occurs
during these five months (Li et al., 2010). Based on the glacial runoff measured at
the Number 1 glacier by the Chinese Academy of Sciences and on the total surface
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of the glaciers in the catchment, it is possible to estimate that about 40 % of the dis-
charge at the sampling site comes from glaciers whereas the remaining 60 % comes
from precipitation.

The measurements reported hereafter were performed at two different subsites ap-
proximately 130 m apart (Figs. 1, 2 and 3) and located approximately 2.5 km down-
stream of the Total Control Station site of the Tianshan Glaciological Station (see Fig. 1
for location). Site 1-1, where measurements were made during the three years of sur-
vey, is located downstream of a confluence scour (Fig. 3). Site 1-2 is located under
a small iron bridge that was constructed in 2006 on a straight reach of the river just
upstream of site 1—1 (Fig. 3). We therefore have a double series of measurements in
this area in 2006.

3 Data acquisition
3.1 Water sampling

Water samples were taken with a depth integrating USDH48 sediment sampler. Each
sample was taken in the centre of the channel by an operator who manually lowered
and raised the sampler at a constant velocity.

Samples were filtered though NalgeneR filtration units using 0.45 pm filters within a
couple of hours after being collected. The collection of samples for solute analyses
started after 250 ml of river water was passed through the filter. Two vials were col-
lected: one was acifided to pH = 2 for cation analysis and the other one was kept
non-acidified for anion and silicic acid measurements. Solute concentrations were
measured in Paris by DionexR ion chromatography. For all cations and anions, the
precision is better than 5 %. The concentration of bicarbonate ion HCO, was deduced
from cation and anion concentrations by electrical mass balance.

Filters were dried in a oven at 60 °C and weighted to determine the solid mass of the
suspended matter.
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3.2 Bedload

Bed load measurements were made using a hand held pressure difference sampler.
The opening of the sampler measured 0.3 by 0.15m, the expansion ratio was 1.4,
and the sampler was equipped with a 0.25mm mesh bag. Given these dimensions,
our sampler should have the same properties as a Toutle river sampler (Diplas et al.,
2008). These samplers were devised following discussions on the problems associated
with using samplers with large pressure differences such as the Helley-Smith sampler
(Hubbell, 1987; Thomas and Lewis, 1993; Diplas et al., 2008). Sampling efficiency
of the Toutle river sampler ranges between 80-116 % (Diplas et al., 2008) so that the
measurements obtained are on average likely to be good estimates of the true fluxes.
On average, the sampling duration was 120s per sample. Each individual sample
was weighed. We did not follow the cross-section average sampling procedure for the
reasons discussed by Liu et al. (2008), yet it is possible to integrate the local transport
rates in order to calculate the bed load flux passing through the section. We adopt this
procedure here. Bed load catches were then dried and sieved in order to study the
fractional transport of sediment (Liu et al., 2011). The average ratio between the dry
and wet mass was found to be 0.86 for the Urumqi River.

There has been much debate on bed load sampling techniques especially using
portable samplers (Bunte and Abt, 2005; Vericat et al., 2006; Bunte et al., 2008; Diplas
et al., 2008). We therefore found it interesting to compare measurements performed
at two subsites separated by 200 m. The measurements were not concurrent but were
made sulfficiently close to one another so that the discharge did not change significantly
(see discussion on velocity measurements). Individual local transport rates were inte-
grated over the wetted perimeter to obtain the mass flux passing the section at each
subsite. The measurements where then compared. Figure 5 shows this result. A clear
trend is observed and the majority of the measurements are comparable within a factor
of two. Almost all bed load rates are comparable within a factor of 5.

548

SED
3, 541-589, 2011

Seasonal Mass
balance in Tianshan

Y. Liu et al.

L

Title Page
Abstract Introduction
Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

() ®

il


http://www.solid-earth-discuss.net
http://www.solid-earth-discuss.net/3/541/2011/sed-3-541-2011-print.pdf
http://www.solid-earth-discuss.net/3/541/2011/sed-3-541-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

The observed variations can be related to the sampling technique, the inherent
stochastic nature of individual grain movement or local degradation or aggradation
waves. Nevertheless, it is interesting to note that the majority of our measurements
of bed load rates collapse within a factor of 2. This indicates that the sampling tech-
nique, within its limitations (Ryan and Porth, 1999; Bunte and Abt, 2005; Vericat et al.,
2006; Diplas et al., 2008), seems both robust and reproducible. It also suggests that,
on average, bed load transport remains constant along the reach.

3.3 Flow velocity and discharge

For each bed load measurement a velocity profile was made at the same location. Ve-
locity was measured with an OTT C20 mechanical velocimeter (Métivier et al., 2004;
Meunier et al., 2006b; Liu et al., 2008, 2010). Between one and five individual mea-
surements of the velocity were made depending on flow depth. Each individual mea-
surements gives the velocity averaged over 60 s.

Average flow velocity was calculated by simple discrete integration following:

h 1 i=n-1
u= —/ v(z)dz = 0.5(Vjq +Vi)(Zis1-2)) (1)

-~
1]
e

where v;(z) is the individual measure of the velocity (in ms") of the i point taken at
depth z; where the flow depth is 4. Based on continuity assumption we assume that
the velocity at the bed, is zero. Discharge is then calculated by transverse integration
of the velocity hence

W rh w j=m-1
O=/O /0 V(y;Z)d}/dZ=/o U(Y)dy = g O.5(U/-+1 +U/-)(y/-+1 _y/) (2)

where u;(y;) is the average velocity of the jth point taken at a distance y; from the bank
of the stream with width W. Here again continuity implies that the average velocity u
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is zero at the banks. This technique was successfully used by Meunier et al. (2006a)
to study the dynamics of flow in a proglacial mountain stream in the French Alps. This
technique, although time consuming, has advantages compared to other gaging tech-
niques (see Sanders, 1998). First, it does not necessitate any assumption about the
form of the velocity profiles to derive the average flow velocity and discharges. Second,
it can be used to derive shear stress distributions on the bed and friction coefficients.

3.4 Relevance of data acquisition

To summarize, the survey of the Urumqi River was performed using acquisition and
processing procedures that are comparable to classical procedures used by other re-
searchers (Ashworth et al., 1992; Meunier et al., 2006a; Habersack et al., 2008) on
several field sites. Our dataset, spans several flood seasons and includes both hydrol-
ogy and flow velocity measurements, sediment information (bed load and suspended
load) and chemical composition. Altogether, 194 gagings and coeval sediment sam-
pling were performed on the river during 2005 and 2006. The dataset is freely available
as Supplement.

Repeated sampling at two geographically close subsites in 2006 allows for a direct
estimate of the reproducibility of our measurements. As expected dissolved concen-
trations are the most reproducible measurement. Concentrations measured at the two
subsites are equivalent within 5 %. Discharge and suspended concentrations are found
to be consistent within 20 %. The larger uncertainty maybe related to effects such as
section topography, sampling time (it takes approximately 30 to 45min to perform a
gaging) and spacing between points (density of the measurements). Sampling time is
probably the most important factor. Given the uncertainty related to using mechanical
propellers and the fact that discharge varies on a diurnal basis due to glacial melting,
Fig. 6 clearly validates the measurements peformed.

Bed load, as discussed above, is the least reproducible quantity measured. Most
rates are consistent within a factor of 5 and a little more than half within a factor of 2.
Again, this is perhaps due to the sampling procedure, bed composition and the fact
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that bed load is by essence a local phenomenon that is very difficult to sample and
integrate over a section (Liu et al., 2008).

In order to simplify the analysis a composite series was made for 2006. For the days
on which concurrent measurements were performed at the two subsites, we averaged
the resulting values. For the days on which only one section was surveyed, we used
the available data. Thus, unless explicitly mentioned in what follows, the 2006 dataset
is a composite sample of the measurements performed at the two subsites.

4 Analysis of the results

Figure 7 shows the evolution of the total load measured in the Urumqi River together
with the repartition of this load into solute, suspended and bed loads. The first strik-
ing feature of mass transport in the Urumqi River is the importance of dissolved load.
Solute transport accounts for more than 80 % of total mass transport during low flows.
During the summer, its contribution diminishes but remains of primary importance oscil-
lating between 20 and 60 % of the total mass carried by the stream. The total dissolved
flux measured in 2005 and 2006 respectively accounts for 41 and 54 % of the total flux
carried by the river during the summer months.

The second striking feature is the relative importance of bed load rates. Bed load
is of the same order of magnitude as suspended load. Suspended load seems to
become predominant only during the largest floods. In the next two paragraphs we
will first analyse solid transport at the measurement site then we will try to assess the
fraction of the dissolved contribution to the weathering of the catchment.

4.1 Solid transport

Figure 8 shows daily discharge measurements together with daily bed load and sus-
pended load fluxes. Local bed load measurements made with a hand held sampler
were integrated over the section to obtain the bed load flux passing through the section.
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The average concentration of suspended load obtained from depth integration at the
section centre was multiplied by the discharge to calculate the flux of suspended mat-
ter.

Bed load movement is not marginal in the Urumqi River. Significant transport occurs
throughout the flow season. Bed load accounts for 29 and 38 % of the total solid load
in 2005 and 2006, respectively. It is of the same order of magnitude as suspended
load during high flows and cannot be neglected. The main difference comes from
the existence of suspended sediment transport throughout the flow season whereas
the increase of bed load rates is correlated to the increase of discharge during the
summer months.

Measurements made at sites 1-1 and 1-2 during the summer of 2006 clearly ex-
hibit the same history of sediment transport. Measurements during the highest floods
were particularly challenging. During theses high flows bed load could not be sampled
at positions where flow was the fastest but only near the banks in lower flow velocity
zones. This most probably leads to a severe underestimation of true fluxes and prob-
ably explains why the highest levels are not correlated to the highest bed load rates.
Figure 9 shows the percentage of daily fluxes above a given value (inverse CDF) for
the years 2005 and 2006. Daily rates of more than 2t are recorded during half of the
season. Values of 10t are exceeded between 13 and 25 % of the time, i.e. between 7
and 12 days during the summer.

During the years 2005 and 2006, a remarkable and unexplained picture emerges.
The flow season is marked by an initial flood peak that occurs during the first ten days
of July. During this initial period flooding reaches its maximum. The hydrograph then
decays a bit and goes back up again with several flood peaks until the end of August
when the flow goes below 1m®s™'. The bed load exhibits the same trend but the
magnitude of sediment transport is not significantly larger than the following transport
events that occur during mid-July until the end of August, as if larger flows were needed
to remobilize the bed at the beginning of the season.
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4.2 Dissolved load

Table 1 reports the volume-weighted average concentrations in the Urumgi River in
both the rainfall (Zhao et al., 2008) and the snowpack (Liu et al., 1995; Williams et al.,
1995). Table 2 reports the minimum and maximum values of the chloride normalized
ratios X/Cl where X is a given element. Figure 10 shows the chloride normalized ra-
tios Ca®*/Cl versus Na*/ClI for the two years of measurements. Examination of the
data shows that the dissolved load of the Urumqi River is dominated by three chemical
species, Ca2+, SOi‘and HCO; . Bicarbonate is responsible for half of the total load.

The total dissolved load fluctuates from 50 mg 1" t0 135 mg 1”1, with the higher concen-
trations associated to the lowest water discharges. Ca®*concentrations are particularly
well correlated with the total solute load. The concentrations reported in this study are
consistent with previous analyses from Williams et al. (1995) in river samples from
the snowmelt period. Rainwater and snow (from snowpacks) were also reported by
Williams et al. (1995), Liu et al. (1995) and Zhao et al. (2008). While the former have
shown that the chemistry of the snowpack has little influence on the water chemistry
during the first days of river flow in May, the latter have shown that the atmospheric
contribution to the river chemistry could not be neglected. The assessment of rain con-
tribution to the river is important and can be estimated based on the CI” concentration.
The geology of the basin does not indicate the occurrence of evaporite rocks and there-
fore it is reasonable to assume that the CI”in the dissolved load is derived entirely from
the atmosphere. This is consistent with the average Cl™ concentration in the rain (Zhao
et al., 2008) and an evapotranspiration factor of 2 (estimated by Zhang et al., 2005). It
is therefore possible to use the chemical composition of the rainwater and the snow-
pack to correct the riverine concentrations from atmospheric inputs. It is important to
note that the rainwater from the Tianshan mountains is highly concentrated compared
to the world average (Berner and Berner, 1996). This feature is attributed by Zhao
et al. (2008) to the leaching of atmospheric dust derived from the Takimakan desert.
The origin of chloride is probably desertic evaporite formations. Zhao et al. (2008) have
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shown that, in the glacial valley, winds could carry a large amount of dusts from the Tak-
limakan Desert, south of the range, and that this desert was probably the main source
of NaCl present in the summer orographic precipitation. The dissolved load of the river
is thus expected to be a mixing between solutes derived from the rocks between the
drainage basin and rainwater. In Table 2, we show the minimum and maximum values
of the ClI”normalized ratios in the rainwater and Urumqi River for all cations and silica.

Na*, Ca®*, Mg®*and K*are enriched in the river compared to the rain and most
probably derive from silicates (Na*, Mg?*, K*) and carbonates (Ca®*). In Fig. 10,
Ca®*/Cl"and Na*/Cl”have been plotted for the two years of measurements, the straight
line indicates a mixing between two main endmembers, which are likely to be the atmo-
pheric input on one hand and a rock weathering endmember on the other hand. The
relative enrichment in Ca with respect to Na for this latter endmember clearly indicates
a carbonate weathering source (Negrel et al., 1993). Similar binary mixing relationships
can be found using the different elemental ratios. The Urumgi River Basin is essen-
tially a silicate-dominated basin according to the geology, and it would be surprising
to find a significant contribution of carbonate weathering. We attribute this significant
carbonate contribution either to the contribution of carbonate dust derived from dry at-
mospheric deposits or to the contribution of disseminated carbonate minerals present
in the bedrocks. Outcrops of carbonate rocks are described nearby by Williams et al.
(1995), though apparently not upstream of the survey point (Yi et al., 2002), and a num-
ber of papers describing river water composition in high physical erosion regimes have
noticed that even silicate draining waters can be influenced by carbonate dissolution
(e.g. Anderson et al., 2003; Jacobson and Blum, 2000). This peculiarity is attributed
by these authors to the contribution of disseminated calcite in the granitic rocks whose
weathering is facilitated by glacial abrasion and the rapid production of fresh mineral
surfaces by glaciers.

The SOi_/CI‘ratio of the river samples is much higher in the river than in the rainfall.
This clearly suggests that a source of sulphate is present in the drainage and that
sulphate ions have to be included in the erosion budget. Sulfur oxidation could probably
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be a good candidate for this. This internal (rather than anthropogenic pollution) origin
of sulphate is confirmed by the 534S values found by Williams et al. (1995) in the river
waters. In particular, it seems that the possibility of the transport of dust particles from
the steel mill located in the town of Houxia or from Urumgi is low. Oxidative weathering
of pyrite has been described in many places to be a significant source of sulphuric acid
and thus of acidity. For example, Anderson et al. (2003) have shown that in glacierized
catchments from Alaska, oxidative weathering of pyrite and carbonate weathering are
the two over-riding mechanisms explaining the water chemistry. The global importance
of carbonate weathering by sulphuric acid is a global feature that has also been recently
documented in southern China, Taiwan or the Mackenzie River Basin by Calmels et al.
(2007, 2011). The NO,/CI  ratio presents an interesting case. This ratio is higher in the
river compared to the rainfall, but NHZ is also present in the rainfall. If we calculate the
ratio (NO;+NHZ)/CI‘and compare it to the NO;/CI”measured in the river, the values
become comparable. It is therefore possible that bulk nitrogen has an atmospheric
origin and that nitrification occurs in the soil that transforms NH:{into NO;. This reaction
provides an additional source of acidity available for chemical weathering. Finally, the
rest of acidity is provided by carbonic acid and can be calculated based on the excess
of bicarbonate in the river samples. On average, in the upper Urumgi River, the amount
of protons derived from sulphuric acid is equivalent to that provided by soil carbonic
acid. In a weathering mass budget perspective, bicarbonate, that is of atmospheric
origin does not have to be taken into account. In order to calculate the contribution of
atmospheric inputs to the river chemistry, the volume-weighted mean annual chemistry
of rainfall collection in the glacial valley, 2km upstream from our measurements by
Zhao et al. (2008), was used.

[X]cyclic =[Cl Tiver- (%) i 3)

where [X]qyqic is the contribution of rainfall for a given element X (Millot et al., 2002;
Calmels et al., 2011). Atmospheric contribution was calculated for all the cations plus
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SOi_(oxygen is not taken into account in the final balance as it comes from atmo-
spheric CO,). Half of the corresponding HCO, content comes from the weathering of
carbonates and was eventually taken into account (under the form Cog')

We assume that all Cl is of atmospheric origin and we therefore apply the mean
annual chemistry of the rainfall correction to the 2005 and 2006 river samples. A signif-
icant atmospheric contribution is found for the CI~, Na*and Mg?®*ions whereas Ca®",
Si, K*and SOi_are essentially derived from chemical weathering. The proportion of
HCO,derived from the bedrock was calculated based on the electrical balance:

HCO; =0.5 (20a2+* +Nat, +K* + 2Mgz+*—280‘21_*> , (4)

where x denotes atmospheric correction. In the rest of the paper, dissolved concentra-
tions, unless specifically stated, correspond to the fraction that comes from weathering
in the catchment.

5 Mass balance and erosion rates
5.1 Rating curves for dissolved and solid concentrations

From our measurements it is possible to look for a relationship between discharge
and concentrations both dissolved and solid. Figure 11 shows these results. Fig-
ure 11a shows the evolution of the chemical weathering, suspended and bed load
concentrations, respectively. Together with the raw data we show the binned averages
(larger points). Binning is a simple averaging technique used to reduce noise from
raw datasets (Kuhnle, 1992). The bed load concentration is calculated by the ratio of
measured bed load fluxes (Q,), to their measured discharge (Q,,),

Cp=—. (%)
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The average value for bed load transport at high flows is low and probably irrelevant
because at high flows we were not able to sample the section evenly. The place of
the highest flow (hence highest load) could not be sampled leading to a severe un-
derestimation of the fluxes. Apart from this bad value for bedload at high discharges,
the picture that emerges is coherent. There is some scatter in the raw data points.
Scatter is expected due to the measurement uncertainties discussed above and it is
expected to be much larger for bed load than for suspended load and dissolved load.
Despite this scatter, the average values exhibit clear trends. The bed load concentra-
tion rises from a threshold at around 0.6 m>s™" to a constant value of around 50 mg 1.
Hence bed load fluxes become proportional to discharge. This type of evolution has al-
ready been noted by Mueller and Pitlick (2005) and Pitlick (2010) for rivers in Colorado.
Suspended and chemical loads exhibit opposite power law trends with a chemical con-
centration that slowly diminishes with increasing discharge whereas the suspended
concentration increases with discharge. As noted earlier, for a significant range of dis-
charges, all three loads are of the same order of magnitude. For small discharges,
the chemical load becomes the dominant form of mass transport whereas the sus-
pended load becomes the dominant form of mass movement for large floods. The bed
load evolves from a minimal contribution at low discharges to a median contribution at
high flows. For a characteristic discharge of about 1 m° 3‘1, all the concentrations are
approximately equal.

Given these correlations and the related measurement uncertainties and in order to
simplify the analysis and the mass balance presented herein, we added the bed load
and the suspended load together to calculate a total solid load concentration

Coolig =Cs+Cp, (6)

that can be compared to the chemical concentrations (Fig. 11b). As for Fig. 11a, the
correlations are evident and can be fitted using simple power laws according to

Cdissolved =40 0_0'2: Rz =0.76 (7)
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and
Cooiig =37 Q*° R?=0.96 (8)

The prefactors in Egs. (7) and (8) correspond to the concentration at the characteristic
discharge of 1 m3s~'. This discharge therefore corresponds approximately to an inver-
sion in the relative importance of the loads. below 1 m®s~! chemical weathering makes
up the dominant component of mass transport whereas above 1 m? 3'1, the solid load
becomes the dominant mass transport mechanism.

Finally, it is interesting to note that the correlation obtained for the Urumqi River com-
pares closely to the correlations found by Godsey et al. (2009) for rivers in the United
States. The reasons for this nearly chemo-static (the concentration does not depend
on discharge) behaviour where the concentration follows a power law dependence on
discharge with a small negative (~0.2-0.25) exponent are still debated (Godsey et al.,
2009; Devauchelle et al., 2011). However, at least in the case of the Urumqi River, the
relatively low value of the exponent shows that the chemical composition is not diluted
at high discharge.

5.2 Return period of floods in the Urumgqi River

Recently Schiefer et al. (2010) studied the pattern of sediment yield in a montane
catchment of British Columbia. They showed that extrapolation of short-term surveys
to estimate long-term denudation rates could be biased if the hydrologic regime, es-
pecially its variability, was not properly considered. This question was also raised by
Wulf et al. (2010) in an analysis of the magnitude frequency distribution of rainfall in
the north west Himalays and the correlative importance of rare extreme events on the
sedimentary budget of the Baspa River. We address this problem here by studying the
magnitude frequency distribution of the discharges measured along the Urumqi River.

Upstream of our survey site, the Glaciological station of the Academy of Sciences
maintains a hydrologic station where daily discharge is being measured four times a
day during five months each year, from May to September (Li et al., 2010). Although
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there may be some small flow after September (more rarely before May), these daily
measurements (Fig. 12a) catch most of the discharge of the river. Our record extends
from 1983 until 2007; only the year 1996 is characterized by a strong lack of data.

On 15 July 2005, the largest flood recorded in the valley occurred with a discharge
of 9.56m®s™". This flood has a Weibull return period of 25 years, i.e. the length of
the record. In order to assess its possibly larger return period, we performed a classi-
cal return period assessment using both lognormal and Gumbel distributions (Bennis,
2007). The results are shown in Fig. 12b—c. Both distributions predict all the maximum
yearly discharges well except for the largest. The Gumbel distribution predicts that the
flood observed in 2005 should occur once every 125 years whereas the lognormal dis-
tribution predicts a return period of 377 years. Even if these return frequencies may be
overestimated this analysis shows that the 2005 flood most probably has a large return
period, on the order of a century.

We could not sample this flood because the road was dangerous due to the rainfall
but we sampled floods of more than 7 m?3s~" which is obviously not orders of magnitude
different from 10m®s™"'. Hence, there is no grounded reason why the concentration of
material should exhibit a special trend for this special flood. Therefore, we can safely
argue that the correlation obtained with our survey is robust in the sense that it holds
for the entire range of possible discharges at the centennial time scale.

5.3 Influence of daily fluctuations

In order to derive daily denudation rates, we couple the discharge-concentration rela-
tionships (7) and (8) together with the daily mean discharge. One can argue that be-
cause of glacial melting the Urumgqi River experiences a significant variation in terms
of the discharge during each 24 h cycle. Because of the exponents of (7) and (8), this
influence can be shown to be negligible. For simplicity’s sake, let us assume that the
hydrograph presents a symmetrical triangular shape with a rising and a falling limb of
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T =12 hours each. The instantaneous discharge is defined according to

Qmax - Qmin
T
Omax - Omin
T

where Q(t) is the instantaneous discharge as a function of time , Q. and Qnn
the maximum and minimum daily discharges. The average daily discharge is then
(@) = 0.5(Qmax + Qmin)- Assuming that the minimum discharge (at sunset) is negligible
compared to the maximum discharge, Egs. (9 and 10) become

Q(t) = ( ) t+Qmin t<T, 9)

Q(t) = ( )(2T—1‘)+Qmin t>T, (10)

Omax
Q(t) = ( - )t t<T, (11)
Q(t) = (@) @T-t) t>T. (12)

We then have (Q) ~ 0.5 Q.- Using the relationships (7) and (8) between the con-
centration and discharge together with (11), we can then calculate the volumes of
mass transported during the rising limb of the hydrograph (the same can be performed
for the falling limb using (12)). For the solid load the volume of sediment computed
during a period T is V¢, = O:ﬁgXT/Z.Q. The same estimate performed using the av-
erage discharge leads to V ,, = (Qmax/2)' °T. The ratios of these two volumes is
independent of both the period 7 and the maximum discharge Q.. It is approxi-
mately V5 t1/Vs.av ~ 1.3. In the case of dissolved budgets the ratio of these volumes is
|/s,fuII/Vs,av ~0.96.

Therefore, in the case of the Urumqi River, we conclude that the use of average daily
discharge to calculate the solute and solid transport is relevant.
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5.4 Denudation rates

Figure 13 show the “weathering” budget for the 25-year period. The 25-year average
values are ~17t x km™2 x yr‘1 for chemical weathering and =291t x km™2 x yr‘1 for me-
chanical erosion. This gives a total of 46t km™2 yr'1 of erosion on the upper catchment
of the Urumqi River. The catchment of the upper reach is mainly composed of diorites,
granodiorites, and schists. Assuming an overall density of 2.651 x m'3, our estimate of
the mechanical and chemical weathering corresponds to an average denudation rate
of approximately 17-18 m Myr‘1. As discussed earlier, the chemistry of the cations is
dominated by the presence of Ca®*and hence, by the weathering of carbonates. The
source inside the basin is still a problem. Available geologic maps such as the one pro-
vided by Yi et al. (2002), mention carbonate outcrops but not inside the area drained
by our samples. It is therefore possible that the weathering of carbonates comes from
the weathering of trace amounts of bedrock carbonates as shown by Blum et al. (1998)
for the Raikhot catchment in the Himalayas.

Recent hydrological analyses all lead to the conclusion that, due to global change,
runoff is increasing together with temperature and rainfall. The average rise in air tem-
perature was 0.018°C yr'1 over the range, with slightly lower values below an elevation
of 2000 m. The precipitation in the Tien Shan increased 1.2 mm yr‘1 over the past half-
century. The precipitation increase is larger at low altitudes in the northern and western
regions than at altitudes above 2000 m (Aizen et al., 1997). Along the Urumqi River,
there is a 19 % increase in the total annual precipitation but because of a significant
increase in T, the glacial mass budget is negative and significant glacier retreat has
occurred. Together with the increase in precipitation, this has induced a significant
increase (62 %) in the total runoff in the valley (Ye et al., 2005). In agreement with
the hydrologic evolution, rates calculated during 1996-2006 are higher than then those
of the preceding decade, yet there is a large amount of variance from one season to
another.
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From the integration of daily rates, it is also possible see whether the sediment bud-
get is controlled by the largest events recorded or by the total runoff. Figure 13c—d
are unambiguous. The correlation between mechanical or chemical weathering and
yearly discharge is evident. By contrast the correlation with maximum yearly discharge
is weak. It is then possible to derive a yearly correlation between both dissolved and
mechanical weathering as follows:

W, =1067 Q+3,R?=0.99 (13)
for yearly chemical denudation W, and
W, =3966 Q-23,R? = 0.91 (14)

for the yearly mechanical denudation.

It is therefore possible to conclude that in the case of the Urumqi River, the yearly
sediment transport budget (hence denudation) is essentially controlled by the total
amount of runoff and not by the largest floods.

6 Discussion

The most striking features of our survey on sediment transport along the Urumqi River
are that (1) chemical weathering is not negligible. It accounts for a significant portion
of the total weathering balance and carbonate weathering and atmospheric inputs are
important controls on water chemistry. (2) The denudation rates we obtain are modest
for such a high and tectonically active mountain range,

6.1 Chemical and mechanical weathering

Chemical weathering is both consistent with the estimate of global average weathering

rates (Goudie, 1995) and with other measurements of weathering fluxes in glacier-

covered catchments (Prestrud Anderson et al.,, 1997). It lies well above the aver-

age fluxes of catchments underlain by granitoid rocks (Millot et al., 2002) but within
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the range of carbonate weathering fluxes (Calmels et al., 2011).In the Haut Glacier
d’Arolla chemical denudation is on the order of 40t x km ™2 x yr'1 (Sharp et al., 1995)
whereas silicate cation denudation rates were recently estimated to be approximately
18t x km™2 x yr'1 in Taiwan(Calmels et al., 2011) . Finally West et al. (2002) stud-
ied the weathering fluxes of four small Himalayan catchments. These catchments
present a variety of settings from agricultural and forested to high Himalayan glacial
catchments. Weathering fluxes vary from 13 to almost 40t x km™2 x yr_1. Chemical
weathering in the Urumqi River therefore seems at pace with known observations of
weathering in glacial environments. Carbonate weathering and sulphate oxidation are
probably important because the headwater glaciers, although retreating, are still able
to continuously refresh bedrock surfaces thereby exposing these highly weatherable
minerals.

On the contrary, the solid load (suspended and bed) is very low compared to other
mountain settings. The denudation rate we obtain from our mass balance is small for
an active mountain range. In the Karakoram, Bhutiyani (2000) studied the hydrology
and sediment flux from the proglacial stream of the Siachen Glacier and found de-
nudation rates of 300 to almost 1300t x km™ x yr'1, i.e. between one and two orders
of magnitude higher than in the Urumqi River. From a less constrained survey, Ga-
bet et al. (2008) obtained rates of the same order of magnitude for the streams in the
Anapurna watershed in Nepal. In the Swiss Alps, the study (Sharp et al., 1995) on the
Haut Glacier d’Arolla reports suspended loads as high as 63001 x km™2 x yr'1 reports
suspended loads. Finally the rates we report here are orders of magnitude less than
the ~10000t x km ™2 x yr'1 reported for Taiwan (Dadson et al., 2003).

6.2 Present day rates of denudation

Thus, the mean denudation rate we estimate here is modest for a mountain range with
peaks above 6000 m. It is also much smaller than the “present day” denudation rate of
~500m Myr_1 obtained from river sand by Charreau et al. (2011) in the Kuitun River,
a river that runs parallel and to the west of the Urumqi River.
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The Kuitun River has more discharge than the Urumqi River and stands in a region
where the amount of shortening is probably higher (Avouac et al., 1993; Charreau et al.,
2011; Metivier and Gaudemer, 1997; Poisson and Avouac, 2004; Yang et al., 2008).
Yet the difference between the present day denudation rates of the upper drainage of
the Urumagqi River and the rates obtained from the analysis of river sands on the Kuitun
River is very large and remains to be explained.

One probable reason the rates found in the piedmont are higher is the reworking of
glacial sediments stored in the floodplain. It has been shown by Church and Slaymaker
(1989) that the increase of sediment fluxes with the drainage area within a glaciated
catchment could be attributed to the reworking of sediments accumulated during the
Holocene in the river network. In northern Tianshan there is ample evidence attest-
ing to a recent reworking of the sediment. First the rivers (both Urumqi and Kuitun)
are deeply entrenched in their Quaternary fans. Second, in the case of the Urumqi
River, this entrenchment goes back inside the drainage, as attested by fill-cut terraces
in gorges upstream from the outlet of the range. Thus, although a proper mass bal-
ance remains to be performed in the case of the Urumqi River, it is probable that the
supposed higher rates of denudation found elsewhere at the front of the northern Tian-
shan are not representative of the present-day catchment scale denudation but of the
reworking of past deposits (Church and Slaymaker, 1989).

6.3 Erosion and tectonics

The rate found by Charreau et al. (2011) is of the same order of magnitude or even
higher, during the Quaternary. The reworking of sediments is more difficult to call to ex-
plain such rates. Metivier and Gaudemer (1997) performed a mass balance estimate of
the fluxes accumulated in the sedimentary basins of Central Asia. The volumes recon-
structed allow for a rough assessment of the denudation rates. The volume of coarse
gravel, known as the Xiyu Formation, accumulated in the Dzunggar Basin amounts to
6+4x10°km°. The age of the base of this formation was traditionally assumed to
be Quaternary (Metivier and Gaudemer, 1997) but as pointed out by Charreau et al.
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(2009), the formation is highly diachronous with ages ranging from 1 to 15Ma. In the
Dzunggar Basin, the ages reported by Charreau et al. (2009) to the west on the Kuitun
River are on the order of 4.8-7.6 Ma. The drainage area of the northern Tianshan
mountain that feeds the Dzunggar Basin is on the order of 25000 km?. Assuming that
all the sediments come from this area this leads to long-term denudation rates on the
order of 39 (+43/-18) m Myr'1. Metivier and Gaudemer (1997) also estimated the vol-
ume of Pliocene accumulation to be on the order of 48 + 18 x 10° km®. These deposits
are generally attributed to the upper Dushanzi Formation (e.g. Charreau et al., 2009;
Metivier and Gaudemer, 1997) and can most often, but probably not always, be dis-
tinguished from the Xiyu gravel. We can therefore use this volume to derive an upper
bound to the denudation rates in northern Tianshan during the Upper-Pliocene and
Quaternary. By assuming that the entire volume corresponds to the Xiyu Formation we
then obtain a maximum denudation rate on the order of 348 (+285/-180) m Myr'1.

To conclude, long-term denudation rates found from a mass balance are in closer
agreement with our short-term denudation rate than the rates found by Charreau et al.
(2011). However, by using the largest possible volume accumulated in the Dzunggar
Basin, we show that these latter rates of denudation of several hundreds of meters per
million year are still possible.

Solving for the integration time scale of the denudation rates in Tianshan is important
because it has geodynamic implications. Avouac and Burov (1996) have shown that,
depending on the strain rate and erosion rates inside a mountain range like Tianshan,
several scenarios could be imagined. For a given strain rate, the range will undergo
subsurface collapse if erosion rates are small. The range will grow and develop some
form of dynamic equilibrium if rates of erosion are balanced by inward flux of material
and isostatic compensation. Finally an erosional collapse should develop if conver-
gence and inward flux cannot balance the erosion rates. Most of the attention has
focused on the mountain growth regime (e.g. Whipple, 2009) because the interplay be-
tween tectonics and erosion has been studied in regions of both rapid convergence and
high erosion rate due to very humid conditions. In regions such as Central Asia where
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rainfall is essentially orogenic and much lower than in the Himalayas for instance, our
study and long-term denudation rates would indicate that the Tianshan mountain range
is much more probably in a regime where there is no dynamic equilibrium between de-
nudation and uplift. Hence if shortening continues, subsurface collapse, which has
yet not been observed, should occur. On the contrary, high rates such as the one
Charreau et al. (2011) presented, would probably be enough to keep the range in a
mountain growth regime, as already stated by Avouac and Burov (1996, figure 12,
p. 17761).

7 Conclusions

Our survey of the Urumgqi River enables us to draw several conclusions regarding the
dynamics of erosion and sediment transport in the high mountains of Tianshan. (1) Ro-
bust estimates of denudation rates can be performed using classical procedures. Rat-
ing curves can be obtained that, when coupled to long-term surveys of discharge,
enable to assess long secular denudation rates. (2) We have shown that dissolved
load accounted for almost half of the total load. Chemical weathering reactions in the
Urumgqi River are caused by the cation of carbonic and sulphuric acids (with about
the same contribution). Due to the heavy ion concentration of Central Asian rainfalls,
chemical weathering is of less importance but still accounts for one third of the total
denudation of this glacierized catchment. It is important to outline the importance of
atmospheric inputs in basins such as the upper Urumqi River. These atmospheric
inputs are derived from the weathering of mineral present in the atmopshere and not
produced locally. Future studies should focus on dry deposition, which may represent a
significant role, particularly in low weathering regimes. Estimating the weathering rate
in such an environment requires the knowledge of the precipitation input that is likely
to change with time. (3) Significant bed load occurs during the entire flow season. Bed
load amounts to 30—40 % of the solid load and is therefore important to quantify. Fur-
ther study of bed load is needed, as, by virtue of the sizes in movement, it may bring
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some more insight into local transport and erosion mechanisms. It is also important to
study bed load dynamics given that river sand in the Urumgqi River moves as bedload
and not as suspended load. Therefore the assumptions used to derive denudation
rates from the cosmogenic dating of river sand heavily relies on the poorly constrained
dynamics of bed load transport. (4) Analysis of the hydrology shows that denudation
is not driven by large unfrequent events but controlled by the total yearly amount of
rainfall in contrast to what has been found in much more humid settings. (5) These
results show that the erosionaly-driven evolution of mountain ranges that has gained
wide acceptance in recent years based on studies performed in the Himalayas, Tai-
wan and other highly humid ranges may not apply to arid or semi-arid settings such as
those that prevail in the mountains of Central Asia. Further work is especially needed
to explain why present-day rates are in agreement with Plio-Quaternary rates and at
more than an order of magnitude lower than rates inferred from cosmogenic isotopes;
our results clearly show the importance of studying sediment transport dynamics at
different space and time scales as well as in different climate settings.

Supplementary material related to this article is available online at:
http://www.solid-earth-discuss.net/3/541/2011/sed-3-541-2011-supplement.zip.
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Fig. 1. Location map: (a) Location of Tianshan and survey site, (b) Satellite image and map
of the Urumqi River drainage showing the sampling reach (Google Earth kml file available as
Supplement), (¢) Kinematic GPS along the stream profile of the Urumgi River.
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Fig. 2. Channel morphology of the Urumqi River. The Urumqi River originates from the Tangger
Glacier located on the northern flanks of the Tianshan range: (a) Site 1-2, view upstream on
16 May 2006 when the channel is dry. (b) Site 1-2 during the rise of the water level on 17
May 2006, (c) Site 1-1 on 16 May 2006, looking downstream, (d) Site 1-1 during the flood of 3
July 20086, (e) General view of the Urumgqi glacial valley towards Tangger peak (in the back) (f),
Source glaciers of the Urumgqi River with moraines in the front.
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the dotted-dashed lines represent 5 % deviation from 1:1 agreement for the dissolved load and
20 % deviation for the suspended load.
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Fig. 7. Mass flux balance: (a) Total flux of mass both dissolved and solid measured in the
Urumgi River during the summer of 2005 together with the proportion of dissolved load, sus-
pended load and bed load (coloured cumulative histograms). (b) Same for 2006.
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Fig. 8. Daily measurement of discharge, suspended load and bed load transport rates along
the Urumqi River in its glacial valley. (a) site 1-1 in 2005, (b) site 1-1 in 2006, (c) site 1-2 in

2006.
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Fig. 10. Mixing diagram showing that the water samples from Urumqui River can been seen
as a mixing between two endmembers: precipitation and water derived from a water/rock inter-
action within the drainage basin. Elemental ratios are not sensitive to evaporation processes.
Note that 3 unexplained outlying points out of 134 are not shown on the figure but are available
in the dataset.
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Fig. 11. Weathering and erosion: (a) correlation between the concentration and discharge for
the weathering load, suspended load and bedload. (b) Correlation between chemical weather-
ing concentrations and total solid concentrations versus discharge in the Urumgqi River. Small
points represent individual measurements, squares represent binned averages and dashed
lines correspond to fitted trends.
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Fig. 12. River hydrology (a) Daily hydrograph of the Urumaqi River during 25 years. (b) Compar-
ison between the measured (Weibull empirical) and the predicted discharge using a lognormal
or a Gumbel probability distribution. (¢) Comparison between the Weibull empirical return pe-
riod and the lognormal or Gumbel return periods for the Urumgqi River.
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