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S U M M A R Y
With the advent of satellite gravity, large gravity data sets of unprecedented quality at low
and medium resolution become available. For local, high resolution field modelling, they
need to be combined with the surface gravity data. Such models are then used for various
applications, from the study of the Earth interior to the determination of oceanic currents.
Here we show how to realize such a combination in a flexible way using spherical wavelets
and applying a domain decomposition approach. This iterative method, based on the Schwarz
algorithms, allows to split a large problem into smaller ones, and avoids the calculation of
the entire normal system, which may be huge if high resolution is sought over wide areas. A
subdomain is defined as the harmonic space spanned by a subset of the wavelet family. Based
on the localization properties of the wavelets in space and frequency, we define hierarchical
subdomains of wavelets at different scales. On each scale, blocks of subdomains are defined by
using a tailored spatial splitting of the area. The data weighting and regularization are iteratively
adjusted for the subdomains, which allows to handle heterogeneity in the data quality or the
gravity variations. Different levels of approximations of the subdomains normals are also
introduced, corresponding to building local averages of the data at different resolution levels.

We first provide the theoretical background on domain decomposition methods. Then, we
validate the method with synthetic data, considering two kinds of noise: white noise and
coloured noise. We then apply the method to data over Japan, where we combine a satellite-
based geopotential model, EIGEN-GL04S, and a local gravity model from a combination
of land and marine gravity data and an altimetry-derived marine gravity model. A hybrid
spherical harmonics/wavelet model of the geoid is obtained at about 15 km resolution and a
corrector grid for the surface model is derived.

Key words: Wavelet transform; Satellite geodesy; Geopotential theory.

1 I N T RO D U C T I O N

Knowing the Earth’s geoid and gravity field at regional scales is
essential for many applications. First, the conversion between GPS-
derived and levelled heights becomes possible with the knowledge
of the geoid. It allows us to monitor crustal movements over long
periods of time beyond the advent of GPS, and thus to better under-
stand crustal activities during the seismic cycle in active areas, such
as subduction zones. Moreover, the geoid gives us the reference sur-
face for ocean dynamics. An absolute geoid model with a sufficient
accuracy can yield the absolute ocean currents, leading to a better
understanding of the oceanic circulation and of the Western Bound-
ary Currents (Gulf Stream, Kuroshio, for instance). Finally, a fine

knowledge of the gravity field gives insights into the structure of the
lithosphere in areas of interest, such as rift basins, subduction zones,
areas of intraplate volcanism and combined with other geophysical
and geodetical observations, contributes to a better understanding
of the geodynamic processes at stake.

The geoid is defined as the equipotential surface of the gravity
field corresponding to the mean sea surface and an accurate gravity
model, if available, can be used to determine the geoid accurately.
In this paper, we focus on geoid and gravity field modelling over
Japan. Because of the tectonic settings in and around Japan, located
in a trench and island arc region where four tectonic plates converge,
significant undulations of the gravity field and accordingly the geoid
occur in a wide range of spatial scales. Consequently, Japan is one of
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the most challenging areas in the world for gravity modelling, which
also makes it an excellent zone for testing new methodologies.

The emergence of dedicated-gravity satellite missions such as
GRACE (launched in 2002) and GOCE (launched in 2009) highly
improves the accuracy of the Earth’s gravity field and geoid at long
and medium wavelengths. These missions provide a global coverage
of gravity field information with a high absolute accuracy in uniform
fashion, to spatial resolutions of about 200 km for GRACE and about
110 km for GOCE.

Merging the data obtained by these missions with dense surface
gravity data (land, marine and altimetric data) in an optimal way,
in consideration of their respective error characteristics, is essential
in order to derive the geoid and gravity models that will be used
for geodetical and geophysical purposes. Such combination allows
to highlight possible biases of the surface data at larger scales and
thus to improve the quality of the surface data and consequently
of a resulting geoid/gravity model. Different types of gravity field
data sets, with various spatial distributions and spectral contents,
can be combined by using a functional representation of the grav-
ity field based on spherical wavelets, as shown by previous work
(Freeden et al. 1998; Kusche et al. 1998; Panet et al. 2004, 2006;
Schmidt et al. 2005, 2007; Klees & Wittwer 2007; Tenzer & Klees
2008). However, the ever increasing number of data on the one hand,
and the large number of wavelets needed to derive high resolution
models over wide areas on the other hand, stress the need for numer-
ically efficient methods to compute a wavelet model of the gravity
field. Moreover, the heterogeneous characteristics of both the grav-
ity field, rugged in mountainous areas, smoother in the plains, and
the data sets, affected by non-stationnary errors, require flexible
modelling approaches. For instance, splines models with different
parametrizations of the calculations for different areas have been
developed by Eicker et al. (2006).

Here, we extend the Poisson wavelet modelling approach devel-
oped by Holschneider et al. (2003), Chambodut et al. (2005) and
Panet et al. (2006), by introducing the theoretical framework of iter-
ative domain decomposition approaches, that allow to solve a large
problem by splitting it into smaller parts, and by applying these
approaches to the case of regional wavelet modelling of the gravity
field at higher spatial resolution than previously done. We explain
how the use of subdomains, corresponding to the linear spans of
subsets of wavelets at different scales and in different areas, allows
to define data sets and regularization weights in a flexible way.

The structure of the paper is as follows. We first recall how to
compute a wavelet model of the gravity field from various data sets.
We then focus on the use of iterative domain decomposition meth-
ods. Then, we validate our approach with synthetic data. Finally, we
apply the method to data over Japan.

2 WAV E L E T R E P R E S E N TAT I O N O F T H E
G R AV I T Y F I E L D

2.1 Wavelet frames

Wavelets are functions localized in both space and frequency. They
have been extensively described in the literature (for instance,
Holschneider (1995) and Mallat (1999)). The wavelet theory has
been extended to the spherical geometry for Earth sciences applica-
tions (Freeden et al. 1998; Holschneider et al. 2003). Here we use
3-D Poisson multipole wavelets, defined in spherical geometry. The
wavelet ψa,m,�e calculated at the point �x on or outside the sphere of

Figure 1. Two Poisson multipole wavelets of order 3 on the sphere.

radius R is expressed as (Holschneider et al. 2003)
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where a is the scale, �e is the centre of the multipole inside the Earth,
m is its order and Na is the normalization
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and Q� = (2� + 1) · P�, with P� the Legendre polynomial of degree
�. This expression can be rewritten in terms of multipoles located in
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et al. 2003):

ψm
a,�e = (−1)m+1 am

[
2

a
(λ∂λ)m+1 − (λ∂λ)m

]
1∣∣∣�x − λ �e

‖�e‖

∣∣∣ .

Because those wavelets can be identified as equivalent multipolar
sources of gravity within the Earth, they are well suited to repre-
sent the potential field of the Earth’s gravity. A wavelet family is
constructed with two parameters: a scale parameter (defining the
spatial extent), and a position parameter (defining the location).
Fig. 1 shows two examples of such wavelets on the sphere hav-
ing large and small scale parameters. The good localization of the
functions makes them appropriate for local gravity field modelling.

The Earth’s gravity potential can be arbitrarily well approximated
by a linear combination of wavelets properly sampled in scale and
position. We construct a family of multipole wavelets of order 3,
following Chambodut et al. (2005) and Panet et al. (2006). This
order offers a good compromise between localization in space and in
frequency. A selection of scales should be made in order to provide a
regular coverage of spectrum. This is obtained for a dyadic sequence
of scales. Because the sphere is bounded, the wavelets at different
scales are not truly dilated versions of each other. However, they
asymptotically behave so when the scale becomes small. On a given
scale, all wavelets are rotated copies of each other.

Regarding the position parameter, wavelets are sampled with their
central locations at the vertices of a spherical mesh. The number of
wavelets must increase as the scale decreases, because the number of
degrees of freedom of the modelled spaces increases (see below).
When the scale is divided by a factor of two, this dimension is
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roughly multiplied by a factor of 4. Therefore, the spherical meshes
are roughly four times finer as the scale decreases. The mesh on
each scale should be chosen so that the wavelets have a coverage of
the sphere as regular as possible. For local modelling application,
the target area is limited and we may build simple meshes whose
vertices are sampled regularly in longitude and latitude.

A family of wavelets thus sampled forms a frame. A frame is
a complete set of functions which, contrary to a basis, may be re-
dundant (i.e. overcomplete). The redundancy may be quantified in
terms of the so-called frame bounds. An approximate procedure
consists in dimension counting. The spectrum of the wavelets is
peaked around its maximum, and most of its energy is contained
in a limited spectral band around the maximum, comprised be-
tween degrees l1 and l2. Consequently, the wavelets can be approx-
imated with band-limited functions by truncating their spectra to
the spectral band between l1 and l2. These truncated wavelets can
be represented with surface spherical harmonics with degrees be-
tween l1 and l2. The dimension D of the linear span of the surface
spherical harmonics with degrees between l1 and l2, denoted W , is
finite. The frame (over-) completeness is estimated by comparing
the number of truncated wavelets with the dimensions of the cor-
responding W spaces (Holschneider et al. 2003). If the sampling
of scales and positions is too dense, there are too many truncated
wavelets as compared to the dimension of the band-limited space
W and this leads to overcompleteness. In contrast, if the sampling
is too sparse, the wavelet set may be uncomplete and is no longer
a frame. Panet et al. (2004) and Chambodut et al. (2005) discuss
the spectral coverage of this family of wavelets and show that our
selection (described in detail later in Section 4.1) is overcomplete
at an estimated redundancy of 1.4 to a spatial resolution of 10 km.
Note that, because of the overcompleteness of such representations,
the spherical harmonics basis remains the most compact represen-
tation of the gravity field at a global scale. However, even if they are
less compact, representations using local functions such as wavelets
are of a great interest not only for regional modelling but also for
global modelling, because they allow more easily to avoid local data
errors to contaminate the estimation of the gravity field in other
areas.

2.2 Consideration for application to local gravity
field modelling

For the application to local gravity field modelling, we should make
some special consideration. Different kinds of data, with differ-
ent spatial coverage and error characteristics, are to be combined.
Among them are gravity anomalies measured locally on the Earth
surface and on board satellite measurements at the altitude of the
satellite orbits. In the following, we presuppose that there are two
data sets available: a set of local high-resolution gravity anomalies
and a global geopotential model expanded in spherical harmonics
up to degree 120, from dedicated-gravity satellite missions. From
the latter we compute and use as a second set of data geopoten-
tial values at the ground level in the area considered. They contain
much more reliable signals at longer wavelengths than local gravity
anomaly data. In order to avoid the leakage inside the target area of
possible edge effects related to the geopotential data modelling, we
extend the data area of geopotential values by two degrees in each
direction (north, south, east and west) as compared to the gravity
anomaly data coverage. The width of the extension area is slightly
larger than the resolution of the geopotential model. This empirical
choice leads to satisfactory results in the target area.

Wavelength longer than the extent of the data coverage shall not
be reliably recovered from local data and we use purely the global
geopotential model at its lower frequency parts in the resulting
model. Then, in the gravity field modelling, we take data residuals
from the lower order parts of the geopotential model and combine
them by the wavelet-based method, finally deriving a hybrid spher-
ical harmonics/wavelet model. In the representation of the residual
gravity field, therefore, we should include wavelets at scales no
larger than a half of the computation area size. To better constrain
the wavelet coefficients from local data, we limit wavelets to scales
no larger than about a fourth of the area width.

2.3 Computation of wavelet coefficients

A least-squares inversion of the data sets is applied to the computa-
tion of the wavelet coefficients. Since the gravity potential is written
as a linear combination of wavelets, the observation equations for
each dataset, p, are derived from the functional relation between the
data type and the gravity potential. In matrix notations, this reads
Ap · x = bp+ ep + sp, where bp is the measurement vector, Ap the
design matrix, ep the data errors, sp the projection error and x the
coefficients to be determined. The projection error is the component
of the signal that cannot be modelled by a linear combination of the
wavelets. It should be made as small as possible by a proper selec-
tion of the wavelets given the signal characteristics, or by a data
pre-processing step. If the wavelet model resolution is smoother
than the data resolution, neglecting si leads to large residuals and to
an aliasing of the higher frequencies of the data in the model. In what
follows, we will suppose that the adequacy between the wavelets
and the signal characteristics is good, and neglect this term. From
the observation equations, we derive the normal equations: for each
data set p, we have Np · x = fp, where Np = At

p · Wp · Ap is the normal
matrix, Wp is the weight matrix based on the supposed measurement
noise, and fp = At

p · Wp · bp is the associated right-hand side. The
normal equations are summed up for all data sets to form the global
system and a regularization matrix K is added with a parameter λ

(N + λK ) · x = f (1)

with N = ∑
p Np and f = ∑

p fp. The size of the normal equation
system is nw × nw, where nw is the total number of wavelets. We
denote G = N + λK the regularized normal matrix.

The regularization is introduced for two reasons. First, the char-
acteristics of the measurements, in terms of noise and spatial dis-
tribution, may lead to an ill-posed problem. In this case, a physical
a priori information is needed to define the regularization matrix,
which plays the role of filling the data gaps with a priori values
and/or filtering out the data noise by assessing the expected am-
plitude of the physical signal. Usually, a condition expressing the
spectral decrease of the field’s energy is used (Panet et al. 2004;
Chambodut et al. 2005). In the case of satellite data handling, the
ill-posedness in the downward continuation may be regularized by
the use of a surface data set, and the physical a priori is not always
necessary. Second, if the wavelets frame is overcomplete, which is
the case in our constructions with Poisson wavelets, there exists no
unique solution x to the problem, at least in the limit of infinitely
many wavelets. For a finite number of wavelets, this non-uniqueness
is mirrored by an ill-conditioning of the normal equations. In such
cases, one has to add a purely numerical regularization.

In the Bayesian interpretation, the vector of wavelet coefficients
x is a random variable and the probability of a model x follows a
Gaussian distribution with covariance matrix K−1. If the wavelet
frame is overcomplete, K is singular and the non-definite inverse
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K−1 should be replaced by a generalized inverse K + obtained
by pseudo-inversion of K (Härdle & Simar 2003). However, the
pseudo-inversion involves the calculation of a singular values de-
composition of K, which is time-consuming for large matrices. Con-
sequently, from a practical point of view, a Tikhonov regularization
of K is used to impose a unique solution. This numerical regulariza-
tion allows the optimal numerical calculation of the physical system
by optimizing the trade-off between changing slightly the system
to solve and improving its condition number. As the Kaula’s rule
(Kaula 1966) imposes an important spectral decrease of the gravity
field’s energy, a numerical Tikhonov regularization of the entire ma-
trix K may mask the physical regularization for the smaller scales
components. Indeed, its effect is equivalent to a reduction of the
a priori spectral decrease of the field’s energy over the scales, by flat-
tening the spectrum at the smallest scales. When we split the global
problem into smaller, rather decorrelated subproblems, as done in a
subdomain approach, we reduce the numerical ill-posedness due to
the frame overcompleteness. In each subdomain, the regularization
can be locally adjusted and if a physical regularization is needed, it
is not hidden by the numerical one.

2.4 Interest of domain decomposition approaches

These considerations, together with the numerical challenge of han-
dling the large normal systems that arise when a high-resolution
model is sought over a wide area, lead us to develop domain de-
composition approaches for the calculation of the wavelet models
of the gravity field. The principle of such approaches, widely used
for solving partial differential equations over large domains, is to
restrict the global problem to smaller subspaces, hereafter called
subdomains, solve locally the subproblems, and iterate until the lo-
cal solutions diffuse to the whole space and the global solution is
stable. This methods avoids the computation of the entire normal
system, which may be time-consuming. Only small matrices need
to be loaded in memory and inverted, which allows to solve large
problems in an economic way. Another interest is that the restric-
tion of the normal system to the different subdomains allows to
reweight the data sets in a flexible way, taking into account their
respective quality in the different wavebands and in the different
areas. A subdomain problem may also need considerably less regu-
larization, if no regularization at all, than the global problem. Thus,
a subdomain-based parametrization of the regularization allows to
extract a maximum of information from the data sets by avoiding
a global physical regularization that may be locally inadapted or
degraded by the numerical one.

The approach we present in this paper is closely related to another
iterative method named ‘multigrid’, which is an example of domain
decomposition approach. Multigrid methods (Wesseling 1991) are
based on the resolution of successive projections of the normal sys-
tem on subdomains defined as coarse or fine grids. On the finer grids,
the projected system is solved iteratively, whereas it can be solved
exactly on the coarser grids. Multigrid techniques have been applied
by Kusche (2001) to the case of gravity field modelling from simu-
lated satellite gravity data. Successively solving the same problem
approximated at different resolutions on the different grids, allows
to considerably increase the convergence rate as compared to many
iterative solvers, which may be slow because of long-wavelengths
features in the modelled field. In contrast, the coarse grids allow to
efficiently model these large scale components. As the hierarchi-
cal resolution of the grids clearly reminds the multiscale resolution
of the wavelets, wavelets techniques have been used to construct
multigrid iterations in the planar case by identifying the grids with

approximation spaces at different resolutions in the wavelet repre-
sentation (Keller 2001). Here, we extend Keller’s work on the plane
to the spherical geometry and relate the iterative multilevel ap-
proach to the more general framework of domain decomposition al-
gorithms. The presented approach works ‘top/down/top’, first com-
puting the lower resolution components of the gravity field (top),
progressively refining the spatial resolution of the model (down),
and then re-estimating the lower resolution components (top). Data
compression at different resolution levels is used in the process, in
order to adjust the spectral content of the data to the calculated scale.
This is in contrast with usual multiresolution approaches, such as
developed by Schmidt et al. (2007), where the gravity components
at progressively coarser resolutions are estimated and the calcula-
tion is not iterated. If the wavelets at different scales are orthogonal
with respect to the quadratic Kaula/Energy form, iterations are not
needed because the normal system is block-diagonal for proper
data distributions. However, in the non-orthogonal case, the normal
system is not perfectly block diagonal and iterations allow to pro-
gressively account for the correlations between wavelets at different
scales. The order of the calculated scales, from the coarsest to the
finest, with the corresponding data compression, allows to derive a
good first guess of the solution before refining it.

3 D O M A I N D E C O M P O S I T I O N
M E T H O D S

3.1 Definition of the subdomains

Here we describe the iterative domain decomposition approach we
apply to calculate a wavelet model of the gravity field over a wide
area. The interested reader may refer to Chan & Mathew (1994)
and Xu (1992) for a detailed presentation of domain decomposition
algorithms. We recall here the main principles.

Let us introduce the space H of the linear span of the wavelets,
where

∑
is the mean Earth sphere. When we compute a wavelet

model by the least-squares adjustment of data, we actually project
the data on the image spaces of the design matrices Ap, which union
is equal to H for the ideal case of an infinitely dense sampling of
the gravity potential at the data points. In the case of a discrete data
distribution, these image spaces are samplings of H . Let us now
partition this space H into smaller subspaces {Hi,; i = 1, . . . , q},
called subdomains, so that we have: H = ∑

i=1
q Hi. The subdomain

Hi is the space of all linear combinations of the wavelets in a subset
i of the total wavelet family, and the different subdomains may be
overlapping or not. By taking advantage of the good localization of
the wavelets in space and frequency we define our subdomains in
the following way.

We first split H into subspaces {H {ai,0}; i = 1, . . . , nscales} corre-
sponding to non-overlapping sets of wavelet scale indices i, where
H {ai,0} is made by all wavelets on scale ai; we refer to them as
scale subdomains. If subdomain H {ai,0} is still composed of a large
number of wavelets, we split it again into subdomains of smaller
size {H {ai,0}{j,0}; j = 1, . . . , nblocks(i)}, again corresponding to non-
overlapping sets of wavelets scale/position indices i/j. These sub-
domains are generated by subsets of wavelets at scale ai, and verify

H{ai ,0} =
nblocks(i)∑

j=1

H{ai ,0}{ j,0}.

They are referred to as block subdomains, and the sum is direct for
wavelets with a spectrum that is not band-limited. To be general,
let us assume that all scale subdomains have a block subdomain
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Figure 2. Definition of the scale and blocks subdomains.

splitting. We regard nblocks(i) = 1 if there is only one block. The
number of blocks may vary depending on the scale and, in practice,
one partitions the space H so that subspace H {ai,0}{j,0} is generated by
a not too large number of wavelets (no more than a few thousands).
Fig. 2 shows a typical example of scale and block subdomains
definitions. In the following, we will call “non-overlapping spaces”
the spaces generated by subsets of wavelets with non-overlapping
sets of scale/position indices—the obtained spaces being in general
not orthogonal with Poisson wavelets—and “overlapping spaces”
the spaces generated by subsets of wavelets with overlapping sets
of scale or position indices.

We now define an overlapping splitting of subspace H {ai,0} as
made of a set of overlapping blocks {H {ai,0}{j,δ(i)}; j = 1, . . . ,
nblocks(i)}. Overlapping blocks H {ai,0}{j,δ(i)} are obtained by augment-
ing the non-overlapping blocks H {ai,0}{j,0} with wavelets located in
overlap areas of width δ(i). The size of the overlap area δ(i) obvi-
ously depends on the scale ai. However, for simplicity of notation,
we will refer to it as δ here. It would also be possible to define
a set of overlapping scale subdomains (although not done here),
by extending the subdomains H {ai,0} with the wavelets on adjacent
scales ai−1 or ai+1. Let us note n{ai,0}{j,δ } the number of wavelets that
generate H {ai,0}{j,δ }.

Let us now introduce the restriction and extension operators be-
tween H and the subdomains. In the following, we will work in the
space of wavelet coefficients l2(�), where � is the coefficients index
set and l2(�) = {x; ‖x2‖ = ∑

n∈�|xn|2 < +∞} and identify the sub-
domains H {ai,0}{j,δ } with subsets of wavelet coefficients. With each
subdomain, we associate a rectangular matrix Rt{ai,0}{j,δ} of size nw

× n{ai,0}{j,δ }. This matrix is the extension by nw–n{ai,0}{j,δ } counts of
zeros of a vector x of size n{ai,0}{j,δ } that belongs to H {ai,0}{j,δ }. Its el-
ements are thus 1 or 0. The transpose of this matrix is the restriction
matrix to the subdomain H {ai,0}{j,δ }. It acts on a vector of size nw,
and restricts it on H {ai,0}{j,δ } by holding only the entries that belong
to H {ai,0}{j,δ }. We also define restricted extension operators by

R̂t
{ai ,0},{j,δ}= Rt

{ai ,0}{j,0} · R{ai ,0}{j,0} · Rt
{ai ,0}{j,δ}

Matrix R̂t{ai,0}{j,δ} acts on a vector x{ai,0}{j,δ } of size n{ai,0}{j,δ } that
belongs to H {ai,0}{j,δ }, restricts it to the non-overlapping subdomain
H {ai,0}{j,0} by eliminating all elements in the overlap area, and extends
it by adding zeros to a vector x of size nw. Thus, in contrast with
the simple extension operator Rt{ai,0}{j,δ}, elements in the overlap
area are replaced with zeroes in the case of the restricted extension
operator. Finally, we apply weights when extending vectors from
H {ai,0}{j,δ } to H , leading to a weighted, restricted extension operator:

R̃t
{ai ,0}{j,δ}= w · Rt

{ai ,0}{j,0} · R{ai ,0}{j,0} · Rt
{ai ,0}{j,δ},

where w(p) is the inverse of the number of overlapping blocks
to which the pth entry of x{ai,0}{j,δ } belongs (it corresponds to the
redundancy of the computation due to overlap). Now, instead of
solving the whole normal system directly, we will restrict it to the
subdomains, derive partial subdomain solutions involving a part of
the wavelet coefficient vector x, and progressively build the global
solution x by iterating the process. Such iterative algorithms are
known as Schwarz algorithms (Xu 1992; Chan & Mathew 1994).

3.2 Principle of the Schwarz algorithms

Let us start with the non-regularized case, where the normal system
to solve is: N · x = f .

The restriction of the normal matrix N to the subdomain H {ai,0}{j,δ }
reads

N{ai ,0}{j,δ} = R{ai ,0}{j,δ} · N · Rt
{ai ,0}{j,δ}.

It is actually a block of N , comprising the entries related to the
wavelets which linear span is the subspace H {ai,0}{j,δ }.

Starting from an initial guess of the solution, we build a sequence
of estimate xk+1 = xk + M · (f –N · xk). In the parallel (additive)
version of the algorithm, matrix M is

M=
∑
i=1

nscales∑
j=1

nblocks(i)
R̃t

{ai ,0}{j,δ} · N−1
{ai ,0}{ j,δ} · R{ai ,0}{ j,δ}.
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208 I. Panet, Y. Kuroishi and M. Holschneider

In other words, we first restrict the right-hand side to H {ai,0}{j,δ } and
update it from previous estimates of solution

f k
{ai ,0}{ j,δ} = R{ai ,0}{ j,δ} · (

f − R{ai ,0}{ j,δ} · N · xk
)
.

Note that the update matrix R{ai,0}{j,δ } · N is actually a band of N .
Then, we solve locally the problem

N{ai ,0}{ j,δ} · xk+1
{ai ,0}{ j,δ} = f k

{ai ,0}{ j,δ}.

The last step is to extend the obtained coefficient vector x{ai,0}{j,δ }k+1

to the full size nw

Ext
[
xk+1

{ai ,0}{ j,δ}
] = R̃t

{ai ,0}{ j,δ} · xk+1
{ai ,0}{ j,δ},

where Ext [.] denotes the extension of a vector to a vector of size
nw. At the end of iteration k+1, we add all extended subdomain
solutions Ext [xk+1{ai,0}{j,δ}] to derive the global vector xk+1, and we
iterate the process.

In this version of the algorithm, all subdomains are computed
simultaneously, the global solution xk+1 being updated only after all
(k+1)th iterations of local solution end. This parallel (also called
additive) version of the algorithm converges slower than the se-
quential version (also called multiplicative), in which the global
solution xk+1 is updated immediately after a subdomain solution
xk+1{ai,0}{j,δ} becomes available, and the (k+1)th iteration of the next
subdomain solution is computed only after the global solution has
been updated.

We mix parallel iterations with sequential ones for finding a
hybrid algorithm with good convergence and parallelization prop-
erties, that is illustrated on Fig. 3. We thus carry out sequential
iterations over the scale subdomains and on a given scale, we carry
out parallel iterations over the blocks. This is the reason why we
do not use overlapping scale subdomains, but make use of overlap-
ping blocks. The overlap speeds up the convergence in the parallel
iterations, which converge more slowly, whereas the sequential iter-

ations over scales, which converge faster, can be carried out without
overlap.

Such method will converge quickly if the subdomains are not too
much correlated, reflecting the sparse structure of the normal matrix.
In the case of wavelets that are well localized in both space and
frequency, matrix N is sparse and the definition of the subdomains
reflects its structure. Therefore, it it quite appropriate for a hybrid
algorithm to be used.

3.3 Approximations of the subdomain normals

As we progressively refine our solution during the iteration process,
we do not need to use exact subdomain normal matrices at the
beginning of the process, but apply adequat approximations to the
subdomains normals. For that, we follow the approach by Minchev
et al. (2009). We construct a 3-D, spherical tiling of the space on
and outside of the Earth’s sphere and approximate locally the values
of the wavelets within each elementary tile, also called a ‘cell’ in
the following. The 3-D tiling is based on a spherical mesh and
its radial extension. The 3-D space is divided into radial layers of
triangular prism cells sectioned by this mesh, so that the heights
of the cells is similar to their width. The spherical mesh is derived
by subdividing the facets of a regular icosahedron with respect to
the sphere. For more details about this construction, the reader is
referred to Chambodut et al. (2005). We obtain a regular tiling
with no singularity at the poles. The deviation of mesh lengths is
between –25 and +10 per cent of the mean length, with most of
lengths within 10 per cent deviation. Depending on the level of
subdivision, one obtains deferent level of fineness of the mesh.

There are different ways to approximate the wavelets locally
within the cells. Here we use the average value of the wavelet
inside the cell, but more generally, one may also consider 3-D
Taylor series development at varying orders, leading to different
precisions of approximation. The use of order-0 development or

Figure 3. Iteration schemes over the subdomains.
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Wavelet modelling of the gravity field 209

averaging actually projects the normal system on a 3-D-grid and
is equivalent to data filtering in the cell. Then, the precision of
approximation must be adjusted depending on the wavelet scale to
be computed. On each scale, we associate a mesh at a resolution
similar to the wavelet scale.

As we carry out the iterations from the coarsest wavelet scales
to the finest ones, compressing the data at the resolution of each
calculated scale allows to derive a good first guess of the solution.
Indeed, this process leads, at each step, to a bandpass filtering of
the data in the spectral band roughly corresponding to the spectral
coverage of the calculated wavelet scale, thus allowing to avoid the
leakage of higher or lower resolution signal that may arise due to
the spectral overlap of the wavelets at consecutive scales. Then,
as we progress in iteration, we gradually refine the approximations
of the subdomain normals at all scales. Namely, as the subdomain
solutions at finer and finer scales become available, the solutions at
the coarser scales have to be updated on a precision level compatible
with the desired precision of the overall solution.

3.4 Data reweighting per subdomain

The quality of the wavelet model depends on the choice of an appro-
priate weighting of the different data sets, introduced in the matrices
Wp. In the Bayesian interpretation, the data set p provides a real-
ization of a gaussian random variable with covariance Wp

−1 and
mean bp. If the observations bp are exact, then the covariance tends
to zero. If they are degraded by a white noise, with rms (αp)−0.5,
the weight matrix Wp is diagonal and equal to αpI . However, in
addition to purely random errors, real data sets are often affected by
unmodelled systematic biases and correlated errors. For instance,
altimetry-derived gravity anomalies are known to show local bi-
ases close to the coastlines. Around Japan, the presence of such
correlated errors has been stressed by Kuroishi & Keller (2005).
Moreover, the amplitude of the errors is not perfectly known in gen-
eral, and a calibration process is required. To deal with these errors,
it has been suggested to add parameters to the model (Schaffrin &
Iz 2001; van Loon & Kusche 2005), and to use fully populated co-
variance matrices reflecting the correlated structure of the errors. A
simple approach to approximately compensate for the non-random
character of the unmodelled errors and recalibrate the errors is to
downweight the data sets (Lerch et al. 1991).

To handle properly the data sets errors, it is useful to search for a
basis B in which the covariance matrix Wp is diagonal. Such discrete
basis is made of sampled functions at the data points, with as many
functions as data points, and is orthonormal. The noise coefficients
covariances in the space domain (Dirac basis), in Wp, are related to
the noise coefficients covariances Dp in the basis B as follows:

Wp = Ft
p · Dp · Fp,

where Fp and Dp are square matrices of size the number of data np

in the data set p. Fp is an orthogonal matrix containing the basis B
functions sampled at the data points, and verifying Fp

t · Fp = I. The
inverse of Wp thus verifies

W −1
p = Ft

p · D−1
p · Fp.

If the error corresponds to a stationary process, then it is known that
Dp is diagonal when B is the discrete Fourier basis. If the error is
locally stationary, that is to say, without any abrupt transition inside
the different intervals of stationnarity, then Dp will be close to a
diagonal matrix if the basis B is made of local Fourier bases over
these intervals of stationnarity (Mallat 1999). More generally, the
diagonalization of Wp may be obtained through its principal compo-
nents analysis. In the case of a well chosen fully discrete orthogonal

wavelet basis B, associated to a discrete orthogonal wavelet trans-
form of the noise (DWT), Dp will be close to block-diagonal if the
error is actually made of a sum of not too correlated components
at different scales and in different areas. Note that a rather regular
data sampling is necessary in order to build such basis. One may
wonder how different such DWT basis B would be from the Poisson
multipole wavelets frame used in our modelling. To account for
the high-frequency (resp. low frequency) noise, it would include
smaller scales (resp. larger scale) wavelets than the Poisson mul-
tipole frame, which is at contrary oversampled at the data points.
If the scales and blocks subdomains introduced in Section 3.1 are
such that the errors are almost stationnary in each subdomain, and
not too correlated between different subdomains, one can reason-
ably assume that Dp should be almost block diagonal with blocks
corresponding to these subdomains.

Inserting Wp
−1 in the normal system then leads to computing the

discrete correlations between the Poisson multipole wavelets and the
orthogonal wavelets used to model the error, and it is a reasonable
approximation to neglect the products between wavelets at different
scales and in different blocks. Consequently, the subdomains normal
matrices for the data set p, Np,{ai,0}{j,δ }, verify

Np ,{ai ,0}{ j,δ} = At
p{ai ,0}{ j,δ} · Ft

p{ai ,0}{ j,δ} · D−1
p{ai ,0}{ j,δ}

·Fp{ai ,0}{ j,δ} · A{ai ,0}{ j,δ},

with Fp{ai,0}{j,δ } (resp. D−1
p{ai,0}{j,δ}) the restriction of Fp (resp.

D−1
p ) to the subdomain H {ai,0}{j,δ }. Approximating Dp{ai,0}{j,δ } with

a constant diagonal matrix, and with the product Ft
p{ai,0}{j,δ}·

Fp{ai,0}{j,δ } ∼ Id{ai,0}{j,δ }, we obtain the following expression for the
subdomain normals

Np{ai ,0}{ j,δ} = σp{ai ,0}{ j,δ} · At
p{ai ,0}{ j,δ} · Ap{ai ,0}{ j,δ},

where σ p{ai,0}{j,δ } is the approximate variance of the error for the
data set p and the subdomain H {ai,0}{j,δ }.

Estimates of σ p{ai,0}{j,δ } for the different subdomains and data sets
are obtained by variance components analysis of the DWT of the
residuals of the data sets. If we note vp the residuals to the data set
p of size np, we have (Koch 1986; Kusche 2003):

vt
p · W −1

p · vp = n p − Trace
[
N−1 · Np

]
.

This may also be written: (Fp · vp)t · Dp
−1· (Fp · vp) = np –

Trace[N−1 · Np], where Fp · vp contains the DWT of the residuals. If
we select the components of Fp · vp corresponding to the scale and
blocks subdomains, denoted vp{ai,0}{j,δ }, by application of a matrix
Fp{ai,0}{j,δ } of size np x np which entries are the entries of Fp for scales
and positions roughly corresponding to the domain H {ai,0}{j,δ }, and
0 otherwise, we have

σp{ai ,0}{ j,δ} ≈ vt
p{ai ,0}{ j,δ} · vp{ai ,0}{ j,δ}/(

n p,{ai ,0}{ j,δ} − Trace
[
N−1

{ai ,0}{ j,δ} · Np,{ai ,0}{ j,δ}
])

,

where np,{ai,0}{j,δ } = Trace[(Fp{ai,0}{j,δ })t · Fp{ai,0}{j,δ }], and
Np,{ai,0}{j,δ } is the subdomain normal matrix for data set p.

Such weighting naturally leads to assess a larger influence to the
satellite gravity derived information at the largest wavelet scales,
and to the surface gravity data for the smaller scales wavelets.
With this choice of parameters, the iterative algorithm will lead
to a combined wavelet model that cannot perfectly adjust partially
inconsistent data sets. The discrepancies between the wavelet model
and the data sets reflect how tightly the model is adjusted to these
data sets for the different subdomains. They can be used to define
corrector models to the data sets, accounting for their systematic
errors. Then, the method is applied again to the corrected data sets
to derive an improved wavelet model.

C© 2010 The Authors, GJI, 184, 203–219

Geophysical Journal International C© 2010 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/184/1/203/604393 by guest on 11 M

arch 2022



210 I. Panet, Y. Kuroishi and M. Holschneider

3.5 The regularization

The algorithm may be directly applied to the regularized normal
system. However, in the case of handling a large number of blocks
and wavelet coefficients, the condition number of the normal matrix
should be small enough in order for the solution to converge rapidly.
This requires to increase the weight of the regularization matrix es-
pecially for high-resolution surface data sets, more than what one
expects. Consequently, we choose to apply an iterated regulariza-
tion approach (Engl 1987). In such an approach, the regularized
normals G · x = f are solved for the subdomains, but the right hand
side is updated by using the non-regularized normals N . This is
equivalent to a progressive removal of the initial regularization as
the iteration continues, the regularization being finally controlled by
the number of iterations. This approach is applied for the iterations
over the scales subdomains, whereas we applied a full update of the
right hand side, using the regularized blocks normals, in the blocks
iterations.

The number of iterations over the scales is chosen as follows.
We applied a simple approach, using fixed iteration cycles over
the scales and stopping the iterations when the calculations have
converged to a wavelet model that fits the data within the noise
level. Iterating too much destabilizes the solution and degrades
the wavelet model quality. Indeed, as we progress in the iterations,
the amount of signal to fit decreases, whereas the noise is still there,
leading to a decrease of the signal-to-noise ratio. This may destabi-
lize the computations, and it becomes necessary, either to increase
the regularization parameter, or to stop the iterations. Although not

done here, it would also be possible to define the stopping criterium
more precisely, for instance by using adaptative iteration cycles,
where the order of scales is not fixed in advance but depends on
intermediate computational results (Wesseling 1991), and applying
through the iterations the L-curve or generalized cross-validation
methods on the subdomains.

3.6 Discussion of the parameters choice

The performance of the method depends on an appropriate choice
of the following parameters: subdomains definition, size of the over-
lap areas, weighting of the extension/restriction operators, approx-
imation of the subdomains normals, condition number, iteration
scheme over the scales and stopping criterium for the iterations.
Sections 4 and 5 provide a typical parametrization as an example
for practical applications. Here we provide some elements to explain
these choices.

With the notations of Section 3.2, the error εn on the solution x
verifies after n iterations

‖εn‖ ≤ ∥∥(I d − M · N )n
∥∥ · ∥∥ε0

∥∥ ,

where ε0 is the initial error. Thus, a reduction of the initial er-
ror by a factor 10−d is obtained for n ≈ d

log10[ρ(I d−M ·N )] , where
ρ(I d − M · N ) is the spectral radius of the matrix. It predicts the
worst-case error reduction over the iterations and must be smaller
than 1. Higher convergence rates are obtained for small positive
values of ρ, corresponding to a case where M is a good approx-
imate inverse of N , and the convergence rate decreases when ρ

Figure 4. Geographic distribution of the synthetic data. Left-hand panel: potential data. Right-hand panel: gravity anomaly data.
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Wavelet modelling of the gravity field 211

approaches 1. Consequently, in order to ensure good convergence,
and as mentioned above, the definition of the subdomains must be
done in order to follow as closely as possible the structure of the
normal system, and the local approximations should not degrade
too much the local normals.

Whereas the scale subdomains appear naturally, the definition
of the spatial blocks may be done in different ways. In this paper,
we show a simple parametrization where the blocks are limited by
meridians and parallels, but a more flexible spatial splitting can
be used. We noticed here that during the iterations, the residuals
are located all around the blocks edges, and they are smaller at
the centre of the blocks. As a consequence of this heterogeneous
distribution, a definition of the blocks that respects the structure of
the gravity signal, should improve the convergence rate by avoiding
the blocks edges to cross large gravity anomalies. In contrast, we
also considered fully entangled spatial domains. We observed in this
case a more homogeneous distribution of the iteration residuals, but
a worse convergence rate as compared to the geographical blocks.

Overlap between blocks introduces a coupling between the lo-

cal solves and allows a faster diffusion of the local solutions be-
tween subdomains: the larger the overlap, the faster the convergence
(Frommer & Szyld 2000). To be efficient, at a given wavelet scale,
this coupling is done on an area of width a few times the wavelet
scale. In the examples we show, we extend the non-overlapping
blocks with an area of width δ equal to four times the wavelet scale
a, leading to a total overlap between blocks equal to 8a. This cou-
pling also introduces a redundancy q in the determination of the
wavelet coefficients for wavelets centred in the overlap areas, and it
has been observed heuristically that the abovementioned choice of
weight w = q−1 in the definition of the weighted restricted extension
operator R̃ is particularly efficient (Cai & Sarkis 1999; Frommer &
Szyld 2000). We thus follow this choice in all our tests.

Another parameter of the method is the level of approximation of
the subdomains normals, that actually allows to filter the data at the
spatial resolution of the used spatial mesh. If the level of approxi-
mation is too crude, then the iterations will not converge because
M provides a too bad approximation of the inverse of N . This is
the reason why the size of the 3-D mesh used in approximating

Table 1. Scales of wavelets in wavelet frames used in local modelling.

Level Scale (dimensionless) Spatial scale (km) Number of wavelets Area covered

6 0.046875 300 380 25/49◦N, 129/153◦E
7 0.023438 150 1406 25/49◦N, 129/153◦E
8 0.011719 75 2401 29/45◦N, 133/149◦E
9 0.005859 38 9604 29/45◦N, 133/149◦E
10 0.0029297 20 38220 29/45◦N, 133/149◦E

Figure 5. Geographic distribution of residuals of the synthetic data. Left-hand panel: potential residuals to degree 120. Right-hand panel: gravity anomalies
residuals at 15 km resolution.
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212 I. Panet, Y. Kuroishi and M. Holschneider

the subdomain normals must be sufficiently refined as the iterations
progress. In the examples presented in this paper, the last iterations
are carried out on the exact subdomains normals. However, when
the number of data is orders of magnitude larger than the number of
wavelet coefficients, replacing the exact normals with approximated
ones, such as ρ(I d − M · N ) remains smaller than 1, leads to an
approximation of the exact solution at a level of precision that can
be kept under control and is fixed by a trade-off between the number
of iterations and the data compression rate (Minchev et al. 2009).

The order of the iterations over the wavelet scales, can be fixed
in advance, as done in this study, or adapted as we progress in the
calculation. Multiscale wavelet representations are very close to
multilevel approaches such as multigrids, where Schwarz iterations
are applied between the different grid subdomains. We can identify
the sum of subdomains for all the wavelet scales coarser than aI ,
namely

∑I
i=0 H{ai ,0}, with the grid of resolution aI . The iteration

schemes between grids of varying resolutions are numerous, and
they have been widely studied and compared in the multigrid litera-
ture (see for instance Wesseling 1991). Consequently, to design the
iteration cycles over the wavelet scales subdomains, we followed the
classical iterations schemes between grids. They are represented on
Fig. 3 that summarizes and illustrates the applied algorithm.

More generally, there is a trade-off between (i) the condition
number of the system N , (ii) how closely the restrictions to the local
subdomains approximate N and (iii) the number of iterations to be
carried out. An improved condition number allows to use smaller
blocks and/or to reduce the size of the overlap areas while keeping
fast convergency. On the other hand, if the condition number is too
bad, the iterations may never converge. A classical criterium for
stopping the iterations is to estimate the reduction factor, which is

equal, at the kth iterate for a given scale ai, to the ratio
‖xk

{ai ,0}−xk−1
{ai ,0}‖

‖xk−1
{ai ,0}−xk−2

{ai ,0}‖
,

and stop iterating when it gets smaller than a threshold. We apply
this criterium to find when to stop iterations between the spatial
blocks.

4 VA L I DAT I O N W I T H S Y N T H E T I C
DATA

4.1 White noise case

We first validate this approach with synthetic data over Japan. Two
sets of synthetic data are prepared for that purpose.

The first one is a set of gravity potential values as given
by EGM2008 (Pavlis et al. 2008), up to complete degree
120 (∼170 km resolution): 5448 synthetic data on the ground level
regularly distributed in the area between latitudes 27◦N to 47◦N and
longitudes 131◦E to 151◦E. White noise (rms = 1 m2 s−2) is added.
This noise level is a little lower than that of the satellite-only geopo-
tential models as given by their error spectra up to degree/order
120.

The second data set is a 3 × 3 min grid of 103 041 free-air gravity
anomalies on the ground level, also computed from EGM2008, over
the area between latitudes 29◦N to 45◦N, and longitudes 133◦E to
149◦E. The resolution of this grid (5.5 km) corresponds to typical
resolutions of surface gravity data and, accordingly, we can validate
the approach under realistic situations. However, in order to simplify
our test, the grid gravity anomalies are smoothed by truncating
EGM2008 to degree 1000, and by applying damping starting at
degree 730 with a half amplitude at degree 835. This corresponds
to a spatial resolution of about 24 km. Finally, white noises are
added to the data set. At the resolution of the computed wavelet

model (about 15 km), the amplitude of the noise is 0.35 mGal.
This value is chosen within the range of terrestrial gravity data
precision. As mentioned above, the low-frequency components of
EGM2008 have been removed from both data sets. Fig. 4 shows the
geographical distribution of the synthetic data.

The wavelet frame used is composed of five levels of scales
as given in Table 1. Scales of the wavelets are about 300, 150,
75, 38 and 20 km, corresponding to the depths of the equivalent
multipolar sources below a sphere of radius 6370 km, the average
Earth radius. Because of the ellipticity, the depths with respect to
the Earth’s ellipsoid varies by ±3 km in the studied area, modifying
slightly the wavelet scales on the ground level. Although the finest
scale of the wavelets is 20 km, the wavelets can capture signal
down to about 15 km resolution, because of the smooth decay of
their spectrum. Finally, let us underline that, in the preparation
of the synthetic potential data, we truncate EGM2008 at degree
120. Accordingly, we should also truncate the spherical harmonics
expansion of the wavelets at the same degree for consistency. On
the other hand, the anomaly data are treated as real observations
independent of the potential data (though we apply a damping at
the highest degrees to reduce the aliasing effects in the analysis).
Therefore, we do not need to truncate the harmonics expansion of
the wavelets in the construction of the gravity anomalies observation
equations.

On levels 8, 9 and 10, the area is divided into four, 16 and 36
blocks, respectively, and the computation of the wavelet coefficients

Figure 6. Histograms of residuals between the wavelet model and the syn-
thetic data. Top panel: potential residuals at degree 120. Bottom panel:
gravity anomalies residuals.
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Wavelet modelling of the gravity field 213

are made in each block. Regarding the iteration scheme, we first test
one FMG-cycle. At each step of the cycle the data are reduced in
cells at a resolution corresponding to the finest wavelet scale that
has been already computed. Next, we apply about 40 V-cycle with-
out any data reduction. On the finest scale, the total number of cells
exceeds slightly the number of data themselves and, consequently,
the reduction of the data in the cells becomes meaningless. On each
scale, the number of block iterations ranges from a few tens to a few
hundreds when there is more than one block. The number of itera-
tions for the blocks is controlled by the stopping criterium given in
Section 3.6, and we stopped iterating over the scales when the misfit
between the wavelet model and the synthetic data reached the syn-
thetic noise level. The weights to the data are given homogeneously
in space according to the noise level. In the spectral domain, larger
weights are assigned to the geopotential data at the largest scales
and to the free-air data at the smaller scales.

The residuals to the respective data sets are shown geographically
in Fig. 5 and their histograms are given in Fig. 6. The rms of residuals
as in Fig. 6 are well restored to the applied noise levels and indicate
a good performance in iteration: 1.02 m2 s−2 with an average of
0.03 m2 s−2 for the potential data, and 0.36 mGal with an average
of 0.01 mGal for the gravity anomaly data. The spatial pattern of
the residuals seems to be that of white noise in both the potential
and gravity anomalies data.

Only slightly noticeable is the feature with a larger amplitude
around east Hokkaido, where EGM2008 (and the actual gravity
field) contains strong signals at high frequencies. During the iter-
ation process we learn that the residuals there show a small, but
systematic trend of some 0.05 mGal in amplitude at earlier stages

of iteration, but which has been gradually disappeared as iteration
goes.

4.2 Coloured noise case

As a second validation of the method with synthetic data, we assume
the existence of realistic systematic errors as coloured noise in the
anomaly data, with a localized distribution in space. Such types of
errors may exist near the coasts in altimetry-derived gravity anoma-
lies or in ship-borne gravity surveys. Then, we additionally append
such errors as shown in Fig. 7 to the free-air gravity anomaly data,
but we do not modify the potential data, both obtained in the preced-
ing section. In particular, we do not use the full variance/covariance
matrix information for the EGM2008 model. This choice was made
in order for the test to follow the settings of the application pre-
sented in the next section, for which the variance/covariance ma-
trix of the geopotential model is not available. Finally, the same
analysis as that of the previous section is carried out to these
data.

After completion of the one FMG-cycle and two V-cycle itera-
tions, the residuals to the respective data are shown geographically
in Fig. 8. Same as for the white noise test, larger weights are assigned
to the geopotential data at the largest scales and to the free-air data
at the smaller scales in the spectral domain. In addition, to account
for the spatial variability of the systematic errors, the 300 km scale
subdomain has been split into four blocks of equal size (two blocks
in latitude and two blocks in longitude) and data weights at this scale
are computed for each block. Taking as a reference the northeastern
block, the gravity anomalies are downweighted by a factor of 1.5

Figure 7. Coloured noise added to the gravity anomaly data (left-hand panel). Spherical harmonics expansion of the noise up to degree/order 120 (right-hand
panel)
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214 I. Panet, Y. Kuroishi and M. Holschneider

Figure 8. Geographical distribution of residuals to the synthetic data. Left-hand panel: potential residuals up to degree 120. Right-hand panel: gravity anomalies
at 15 km resolution.

in the northwestern block, and by a factor of 3 in the two southern
blocks, where the data noise is the largest.

The result of the computation shows notorious patterns corre-
spondingly to the location of the coloured noise in the residuals to
the gravity anomaly data, whereas the residuals to the potential data
are rather uncorrelated. Small artefacts are observed in the vicinity
of the main patterns in the map of residuals to the gravity anomaly
data. This is due to the fact that the potential data allow to highlight
only a part of the total error: its spherical harmonics components up
to degree/order 120, leading to Gibbs oscillations (see Fig. 6). Part
of these artefacts may also arise from the approximations involved
in the estimation of constant noise variances per subdomain.

Applying a low-pass filter to the map of residuals to the gravity
anomalies in order to keep only the dominant patterns, we build a
corrector model for the anomaly data, represented on Fig. 9. By
using the corrected anomaly data thus obtained, we start again the
computations and derive an improved wavelet model. As a corrector
has been applied, in order to gain computational time, we do not
re-estimate different weights for the spatial blocks, but assign
spatially uniform weights for the different scales subdomains.
Fig. 10 displays the geographical distribution of the residuals to the
two data sets. We observe no clear pattern in the residuals to the
potential data, but a pattern of white noise. The rms of the residuals,
1.03 m2 s−2, is compatible to the level of the assumed white noise.
The residuals to the gravity anomaly data become also closer to
the white noise structure, with rms 0.39 mGal and slight correlated
patterns left. Even if the noise recovery is not perfect, we conclude
that our approach leads to a fairly good model given the synthetic

Figure 9. Corrector model to the gravity anomaly data set.
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Figure 10. Geographical distribution of residuals to the synthetic data after applying downweights to the anomaly data. Left-hand panel: potential residuals
up to degree 120. Right-hand panel: gravity anomalies at 15 km resolution.

data characteristics, and that the method developed is valid for local
gravity field modelling from different sets of data with different
error characteristics.

Note that increase in weights at intermediate scales of the po-
tential data would not improve the resulting model. At that scales
the anomaly data contain reliable signals, but would be assigned to
smaller weights, leading to worsen the anomaly data fitted to the
pattern, if any, of white noise in the potential data.

Finally, it is important to recognize the fact that the pattern of the
gravity anomaly residuals does not perfectly reproduce the coloured
noise by the applied wavelet method with constant weights per sub-
domain at one hand, and to keep in mind the difficulty in determining
proper relative weights to respective data on the other hand. In ad-
dition, we should remember the fact that it is not possible to fully
rely on the potential data at the large wavelet scales because they
also include their own imperfection.

5 A P P L I C AT I O N OV E R JA PA N

We finally apply the method to real data over Japan: a high-resolution
local gravity model from Kuroishi & Keller (2005) and a spherical-
harmonics model of the geopotential, EIGEN-GL04S, complete to
degree 150 (Biancale et al. 2005).

The geopotential model is developed only from GRACE and
LAGEOS measurements. Its cumulative error at degree 120, in
terms of rms, is estimated to about 0.8 m2 s−2, corresponding to

about 8 cm in geoid height error. We calculate 5448 potential values
from the model up to degree 120, regularly spaced on the ground
level in the same area as that of the synthetic validation.

The local gravity model is based on a combination of land and
marine gravity data and satellite altimetry derived gravity anomalies
from KMS2002 (Andersen & Knudsen 1998). We decimate it on a
grid of 3 × 3 min and take 103 041 Faye anomalies on the ground
level. The geographical distribution of Faye anomaly is shown in
Fig. 11. Highest frequency undulations below 10 km of wavelength
have been damped by a moving-average filter before applying
the wavelet analysis. We subtract low-degree components of
EIGEN-GL04S from both data sets and apply to those data sets the
method with the same parameter setting as those of the validation
tests. The iteration scheme here is one FMG-cycle, followed by two
V-cycles, and itis repeated three times on progressively corrected
data sets (see below). For each iteration scheme, we do not iterate
the variance components estimation of weights, because, in contrast
to the synthetic tests, iterations produce weights associated to an
overfitting of the potential data and underfitting of the surface
gravity data. Replacing the real surface gravity with the synthetic
gravity anomalies used in Section 4.2, for which we are sure that
there is a good adequacy between the data and the wavelet model,
leads to the same conclusion. A possible explanation might be
related to the fact that, when the noise belongs to the same three
dimensional wavelet space as the signal, it is more difficult to
distinguish it than when it is orthogonal to the signal. The first
variance components computation is considered to roughly provide
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Figure 11. Local gravity anomaly model for Japan from Kuroishi and Keller
(2005).

Table 2. Relative weighting of the data sets used in gravity field
modelling over Japan (first computation, on non-corrected data
sets).

Level EIGEN-GL04S data weights Surface gravity weights
(m2 s−2) (mGal)

6 2 30
7 1 3
8 0.7 2.6
9 0 (no data used) 1.3
10 0 (no data used) 1.5

a reasonable weighting scheme. At the very end of the computation,
we stopped the last V-cycle before it ends, to avoid a destabilization
of the calculation.

After a first run, the residuals to the respective data are shown
geographically in Fig. 12. The corresponding data weighting is given
in Table 2. The downweighting of the surface gravity is important
at the largest scales, mostly constrained by the EIGEN-GL04S data.
The rms of the residuals are 0.9 m2 s−2 with a bias of −0.1 m2 s−2

for the potential data, and 1.20 mGal with a bias of 0.70 mGal at
15 km resolution for the anomaly data. These rms are reasonable
in consideration of the data precision. Systematic residuals at large
scales are remarkable particularly south of the Japanese islands and
obvious along the coastal areas of the main island, Honshu as well.

These features at the ocean in the residuals are likely to reflect
the systematic errors in the anomaly data controlled by the alti-
metric model. Kuroishi (2009) shows similar results by comparing
GGM02C/EGM96 with the local gravity model and develops a

Figure 12. Geographical distribution of residuals. Left-hand panel: potential residuals to degree 120. Right-hand panel: gravity anomalies at 15 km resolution.
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Figure 13. Correctors to the local gravity anomaly model. Left-hand panel: corrector estimated after a first series of iteration, Right-hand panel: the final
corrector used.

Table 3 Relative weighting of the data sets used in gravity field
modelling over Japan (second computation, with corrected gravity
anomaly grid using the corrector from Fig. 12, left-hand panel).

Level EIGEN-GL04S data weights Surface gravity weights
(m2 s−2) (mGal)

6 2 10
7 1 3
8 0.5 2.3
9 0 (no data used) 1.3
10 0 (no data used) 1.5

highly improved gravimetric geoid model for Japan, JGEOID2008,
after removal of such errors from the local gravity model. This
demonstrates how the uniformity of accuracy of the GRACE-
derived static gravity model contributes much to the detection of
areas of degraded quality in the local gravity data.

Based on the discussion, we try to correct the anomaly data for
an improved combination. First, we exercise a low-pass filter to
the anomaly residuals at the resolution of EIGEN-GL04S. The left
panel in Fig. 13 shows the model corrector obtained, which is sub-
tracted from the anomaly data. Then we apply again the developed
method to the corrected data sets. The corresponding weights are
described in Table 3. This second computation allows to refine the
corrector model for the surface gravity, leading to a new corrector
model represented on the right panel of Fig. 13. A last computation
is carried out on the corrected data sets, with relative weighting
of 1.

The residuals to the geopotential data and to the corrected
anomaly data are represented geographically in Fig. 14. The rms
of residuals are 0.80 m2 s−2 for the potential data, and 0.50 mGal at
15 km resolution for the corrected anomaly data. We find that no sig-
nificant bias remains in both residuals and these rms are consistent
with the estimated levels of data noise.

In the plot of the residuals to the corrected anomaly data, on
the right-hand panel in Fig. 14, features only on quite small scales
are dominant. This indicates that the resolution of the combined
wavelet model is a little coarser than that of the anomaly data. In
addition, we observe some edge effects, especially in the northern
and southern boundaries in the case of the anomaly data. The same
tendency is also visible in the case of the potential data. This shows
that the inversion slightly lacks stability in these areas.

Finally, we note that constructing the corrector model by simple
low-pass filtering of the residuals of the surface data with respect to
the combined wavelet model is a very simple approach. As the er-
rors in the residuals patterns are not only coloured in spectrum, but
also localized in space, one may consider for instance using wavelet
analyses to construct the corrector model from the residuals maps,
in a similar fashion as done by Kuroishi & Keller (2005). In the fu-
ture, we will thus work on improvements of the construction of the
corrector models. Then, another interesting element is to take into
account the relative weights that finally come out of the last com-
putation. Indeed, at this stage, all or almost all longer wavelength
errors have been removed, thanks to progressively refined corrector
models, from the surface gravity data. Consequently, the weights
obtained should provide an estimate of the signal quality in the
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Figure 14. Geographic distribution of residuals in the final combination. Left-hand panel: potential residuals to degree 120. Right-hand panel: residuals of
corrected gravity anomalies at 15 km resolution.

corrected data. This will be particularly interesting when combin-
ing the future GOCE satellite gravity data with surface gravity data
sets—all the more than in the case of a combination of real measure-
ments, such weights can be better assessed than for a combination
with a harmonic geopotential model, as explained above.

6 C O N C LU S I O N

We have developed an iterative method to combine various kinds
of gravity data into a wavelet model of the geopotential, taking into
account the error characteristics of the different data sets in different
wavebands and locations. This method was validated with synthetic
data and then applied to real data over Japan: local high-resolution
gravity anomaly data and a GRACE-derived global model, EIGEN-
GL04S. We obtained a hybrid spherical harmonics/wavelet model
of the geopotential over Japan at about 15 km resolution and the
residuals to the respective data underlined biases on medium scales
between the two data sets, which suspected origin is errors in the
anomaly data. We then corrected the anomaly data by subtracting
the evidenced biases and repeated the method again to the corrected
data sets, resulting in an improved hybrid model of the gravity field
over Japan. The method may be improved in the future, for instance
by using a more flexible definition of the subdomains, depending
on the variability of the gravity signal and of the noise patterns.
Another improvement is needed to reach very high spatial resolu-
tions. The wavelet functions at a given scale, as they appear on the
topographic level, are indeed smoother than on the mean sphere due

to the upward continuation between the sphere and the topographic
surface. If the difference is small at low resolution, is becomes
quite large when reaching topographic scales and the design of the
wavelet frame must be refined to model gravity anomalies given on
the topography at resolutions below 15 km.

The method has broad perspectives of applications. First, it should
be used to combine directly the satellite gravity products from the
GRACE and GOCE missions with surface and airborne gravity
data. This should allow to improve the regional gravity models de-
rived, and contribute to the validation of the satellite gravity data
using ground measurements. Moreover, because we can handle any
functional of the gravity potential, the method should be very useful
to also combine locally or globally the GRACE and GOCE mea-
surements themselves, together with possible future data from pos-
sible future satellite gravity missions. Finally, the combined gravity
models thus obtained can be easily analysed using wavelets for geo-
dynamic purpose, as shown by Panet et al. (2006). Performing their
joint analysis together with other geophysical data such as magnetic
and seismology data, will allow to improve our understanding of
the inner structure of our planet and of the geodynamic processes
at stake, from local to regional and global scales.
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