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SUMMARY

Recent studies have shown that interference plays an important role in various
phenomena observed for waves propagating through random media. Among these
phenomena, the so-called cone of coherent backscattering has received much attention
in optics. In this paper, we study analytically and numerically the coherent back-
scattering of acoustic waves in a seismological context. In particular, we focus on the
near-field detection of scattered waves and the effect of transient sources. We show that
interference results in an increase of the coda intensity as compared to the prediction of
radiative transfer theory. After a transient regime, a spot of backscattering enhancement
stabilizes in a sphere of radius half a wavelength centred at the source of seismic waves.
Several effects such as absorption, boundary conditions and scattering anisotropy are
investigated. Our study demonstrates the robustness of coherent backscattering and
may offer a possible means of discriminating single versus multiple scattering in the
observed coda.

Key words: multiple scattering, seismic coda.

1 I N T R O D U C T I O N

Coherent backscattering of waves was first observed in electromagnetic wave propagation more than a decade ago by Kuga &

Ishimaru (1984). Since then, several experiments conducted in the laboratory have confirmed this phenomenon and clarified its origin

(e.g. van Albada & Lagendijk 1985; Maret & Wolf 1985). We briefly describe these studies and refer to Corey et al. (1995) for a clear

and detailed introduction to coherent backscattering. In optics, experiments are usually performed in the Fourier domain. The source

consists of a monochromatic plane wave with wavevector ki that illuminates a disordered sample, and the backscattered waves are

detected in the far field in direction ksc. In this case, the backscattered intensity, I(h), is measured as a function of the angle h between

xki and ksc. When h is large, the backscattered intensity varies smoothly with h and is predicted extremely well by diffusion theory.

When h is less than a few milliradians, one observes a sharp increase of the intensity that culminates in the exact backscattering

direction. This observation is now well understood as the constructive interference between two waves that follow reciprocal paths in

a random medium. Ideally, the interference results in an enhancement of the intensity by a factor of 2, as compared to the prediction

of diffusion theory.

In the conventional physical picture for wave propagation in random media, multiple scattering of light is analogous to a

classical random walk. The average wave intensity in a disordered medium is described by the radiative transfer equation, analogous

to the Boltzmann equation of the kinetic theory of gases. The observation of coherent backscattering shows that phase and

interference are crucial to understanding the propagation of classical waves in random media. Coherent backscattering appears in a

variety of physical situations such as light scattering by cold atoms (Labeyrie et al. 1999), or propagation of pulsed acoustic waves in

2-D random media (Tourin et al. 1997). For an interdisciplinary review on the importance of interference effects in disordered media,

we refer to the proceedings of the NATO Advanced Study Institute on diffuse waves in complex media (Fouque 1999).

In this paper, we investigate coherent backscattering in a seismological context. Contrary to the experiments in optics and in

acoustics, seismic sources are embedded in the medium, and the detectors sit on the surface of the Earth. Moreover, seismic sources

radiate energy during a short lapse time and thus the problem is intrinsically time-dependent. Schutz & Toksöz (1993, 1994) have

studied numerically the backscattering of elastic waves from a rough interface and found an enhancement of intensity in the
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backwards direction. Their results suggest the possibility of an increase of the coda energy resulting from waves diffracted at

the Moho. In this paper, we consider scalar wave propagation in an acoustic medium and focus on the near-field detection around

point-like sources. The full elastic problem will be addressed in a separate publication.

2 L A R G E L A P S E T I M E A N A L Y S I S

We illustrate the principle of coherent backscattering enhancement in Fig. 1, where two realizations of an ensemble of random media

containing point scatterers are shown. For simplicity, only four scatterers are represented, denoted by letters A, B, C and D. A wave

packet (solid line) is radiated from the source, S, and undergoes several scatterings before it is detected at the receiver, R. Its

reciprocal counterpart (dashed line) visits the same scatterers in reverse order. The complex amplitudes of the direct and reciprocal

waves are denoted by Ad and Ar, respectively. Because these two waves encounter the same scatterers in reverse order, the angles of

scattering and the total propagation distances are identical, ensuring that these waves have the same phase, geometrical spreading

factor and scattering amplitude, so that Ad=Ar, in agreement with the reciprocity theorem. Conventional radiative transfer theory

assumes that the mean intensity is equal to n|Ad|
2+|Ar|

2m, where n . m denotes ensemble averaging. This expression is correct when the

phases of the waves are uncorrelated. However, when source and receiver coincide, the two reciprocal wave packets are in phase and

interfere constructively, independent of the particular realization of the random medium. Interferences will thus persist after

ensemble averaging and the true intensity becomes n|Ad|
2+|Ar|

2+2Re(AdAr
!)m, where the last term accounts for interference and

Re(z) denotes the real part of z. Since Ad=Ar, the true intensity is exactly twice as large as the intensity predicted by conventional

radiative transfer theory. If source and receiver do not coincide, the phases of the two reciprocal waves are not necessarily equal and

will depend on the particular realization of the random medium. The coherent backscattering effect is thus expected to decrease with

source–receiver distance. Coherent backscattering goes beyond the classical transport theory, which considers the two reciprocal

wave paths but not the interference effect between them. We conclude this discussion with two important remarks.

(i) No matter how complex the scattering path of the wave, the phase difference between the reciprocal waves will depend only

on the position of the first and last scatterings with respect to the source and receiver. This will be helpful in understanding the

theoretical expressions below.

(ii) If only one scattering event is involved, no backscattering enhancement is possible since the direct and reciprocal paths

cannot be distinguished. Coherent backscattering can therefore be observed only if multiple scattering is dominant.

Our approach to coherent backscattering is based on the theoretical studies by Akkermans et al. (1988) and van der Mark et al.

(1988). These authors showed that the total intensity in a random medium is the sum of two contributions: an incoherent intensity,

Iinc, that is simply the solution of the radiative transfer equation, plus a coherent intensity, Icoh, that takes interference effects into

account. To find the expressions for both terms, we need to introduce some notation. R0, R, R1 and Rn are the position vectors of the

source, receiver, first scatterer and last scatterer respectively. G(R2, R1) is the mean Green function for a source at R1 and a detector at

R2 at frequency v, and G!(R2, R1) denotes its complex conjugate. P(R2, R1, t), the propagator of the intensity in the random

Figure 1. Illustration of the enhanced backscattering effect. The path of a wave packet and its reciprocal counterpart are depicted by solid and

dashed lines respectively. Scatterers are denoted by letters A, B, C and D. The source is located at S and the energy is detected at the receiver R.

Configurations 1 and 2 correspond to two realizations of an ensemble of random media. When source and receiver coincide, the phases of both waves

are equal, independent of the particular realization. This results in complete constructive interference.
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medium, is proportional to the Green function of the radiative transfer equation for a source at R1 and a detector at R2; t is the time

elapsed since the energy release at R1. For simplicity, we consider an isotropic point source of energy embedded in the medium. For

the moment, we neglect the presence of interfaces such as the free surface or the Moho. According to Akkermans et al. (1988), the

incoherent and coherent components of the intensity can be expressed as

IincðR, R0, tÞ&
ðð

d3R1d3RnGðR, RnÞG?ðR, RnÞPðRn, R1, tÞGðR1, R0ÞG?ðR1, R0Þ , (1)

IcohðR, R0, tÞ&
ðð

d3R1d3RnGðR, RnÞG?ðR, R1ÞPðRn, R1, tÞGðR1, R0ÞG?ðRn, R0Þ : (2)

These formulae can be given a physical interpretation by reading the integrands from right to left. Eq. (1) corresponds to the

following physical picture. The source emits a wave packet that travels to point R1, where it is scattered for the first time. Its energy

is then transported through the random medium to point Rn according to radiative transfer theory. At Rn, it is scattered for the

last time and emits a wave packet to the detector. Similarly, expression (2) represents the interference term between two waves

travelling in opposite directions, the direct and reciprocal paths being represented by the Green function and its complex conjugate

respectively. The presence of scatterers causes any wave packet to lose energy while propagating through the random medium. As a

consequence, the Green’s function G decays spatially as exp(xr/l), where l is the scattering mean free path and r is the propagation

length (see Sato & Fehler 1998 for further details).

Formulae (1) and (2) neglect the propagation times from the source and receiver to the first and last scatterings and are

therefore valid only when t&t, where t=l/o is the scattering mean free time, and o is the wave velocity. For large lapse times,

the Green function of the radiative transfer equation P(R, Rk, t) can be approximated by the solution of a diffusion equation

(Lagendijk & van Tiggelen 1996). In that case, the propagators take a simple form and the integrals (1) and (2) can be solved

analytically. A detailed analysis is given in Appendix A and the final results are

IincðR, R0, t??Þ*t{3=2 , (3)

ðIcoh þ IincÞðR, R0, t??Þ&Iinc 1þ sin2 ðkjRÿ R0jÞ
ðkjRÿ R0jÞ2

eÿjRÿR0 j=l

 !
, (4)

where k is the wavenumber. For crustal propagation in the 1–15 Hz frequency band, the mean free path roughly ranges from 20 to

200 km (Sato & Fehler 1998) and is therefore much larger than the wavelength of the probing wave. Our analysis is limited to the case

kl&1, a priori valid in the crust. Recent theoretical and experimental studies (Sheng 1995; Wiersma et al. 1997) suggest that for kly1,

interferences can completely block the transport of energy in the medium, a phenomenon known as wave localization.

In Fig. 2, we show the theoretical ratio (Icoh+Iinc)/Iinc as a function of source–station distance, assuming that l#10l. From

eq. (3), we conclude that the distribution of incoherent energy around the source eventually becomes homogeneous as a consequence

of energy diffusion. However, Fig. 2 illustrates that interference effects play an important role within a sphere of radius half a

wavelength centred at the source. The terminology ‘cone’, widely used in optics, is rather inappropriate for seismology and we will

define a ‘spot of coherent backscattering’ or simply a ‘spot’ instead. Because l is assumed to be much larger than l, the dependence of

coherent backscattering on the mean free path, as predicted by eq. (4), is rather weak.

The asymptotic analysis can be generalized to the case of a slightly anelastic medium by introducing a phenomenological

absorption length la and a slightly different wavenumber, ka, due to dispersion. We show in Appendix A that eq. (4) still holds true

provided one substitutes 1/l with 1/l+1/la, and k with ka. The factor of 2 enhancement at the source still applies because the two

reciprocal waves are identically attenuated by anelasticity. We note that our results differ markedly from those obtained in acoustics

and optics. For example, Tourin et al. (1997) have shown that when the source and receivers are located far outside the scattering

medium, the width of the zone of backscattering enhancement varies as 1=k
ffiffiffiffiffi
olt
p

(tp?), in sharp contrast with eq. (4), which predicts

a stabilization in time. In the next sections, we address in more detail the convergence time of the spot of coherent backscattering

towards its asymptotic shape.

3 M O N T E C A R L O S I M U L A T I O N O F C O H E R E N T B A C K S C A T T E R I N G

In this section, we study numerically coherent backscattering using a Monte Carlo method that can cope with various effects such as

boundary reflections, scattering anisotropy and time dependence. Our numerical scheme is basically identical to that presented in

other papers (Hoshiba 1995, 1997; Margerin et al. 1998). We briefly recall the ingredients of the simulation and address in more detail

the calculation of the coherent intensity in Appendix B.

A wave packet or particle is launched at the source and walks randomly in the medium (see Fig. 3). The step length between two

scattering events is determined by an exponential probability law 1/l exp(xr/l). At each scattering event, the particle changes its

direction. The new propagation direction is selected from the differential scattering cross-section, ds(h, w)/dV, which represents the
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amount of energy radiated by the scatterer in the direction (h, w) per unit solid angle and unit incident flux. The angles h and w refer to

latitude and longitude in a spherical coordinate system whose polar axis points in the direction of propagation before scattering. Once

these two angles have been selected in the local coordinate system, a rotation allows us to keep track of the motion of the particle in a

global coordinate system.

At each scattering, the energy contribution of the particle at the receiver has to be estimated. Usually this is done by calculating

the probability of the particle reaching a small area surrounding the detector. However, this approach cannot be generalized to

interference effects because one has to estimate a quantity that is not necessarily positive. To cope with this problem, we adopt a point

of view that considers the particles as real wave packets, capable of interfering. Appendix B discusses this approach and provides

expressions for the estimate of the total intensity, E [It], which can be expressed as a product of the classical estimate of the incoherent

intensity, E [Ii], times an interference factor,

E½It�~E½Ii� 1z
jR1{R0jjR{Rnj f ðh01Þ f ðh0nÞ exp½iðkzi=2lÞðjR1{RjzjRn{R0jÞ�
jR1{RjjRn{R0j f ðh1Þ f ðhnÞ exp½iðkzi=2lÞðjR1{R0jzjR{RnjÞ�

� �
: (5)

The geometry and notations are illustrated in Fig. 3. The interference term is a function of the position of the first and last scatterings

(denoted by R1 and Rn) and the corresponding scattering angles for the direct wave (denoted by h1, hn) and for the reciprocal wave

(denoted by hk1, hkn); f (h) is a weighting function for the scattered amplitude as a function of the scattering angle h. Because we assume

that the medium is statistically isotropic, the scattering amplitude does not depend on the longitude w. The function f (h) is easily

obtained from the solution of the single-scattering problem and is simply related to the differential scattering cross-section, as

explained below. The interference factor gives an enhancement of the intensity by a factor of 2 at the source. However, when the

receiver is located a few wavelengths away from the source, the interference factor starts to oscillate with R1 and Rn, indicating that

constructive interference disappears in this configuration. The final step of the simulation consists of averaging the results of many

independent random walks.

In the numerical simulation, we consider a point-like, isotropic, and instantaneous source embedded at R0=0 in a uniform

random medium. The receiver is located at R. The anisotropy of scattering is described by the normalized phase function, which is

related to the differential scattering cross-section by

’ðh,�Þ~ dpðh, �Þ=d)ð
4n

dpðh, �Þ
d)

d)
(6)

Figure 2. Comparison of the shape of coherent backscattering

predicted by diffusion theory and numerical experiments. The back-

scattering enhancement (Icoh+Iinc)/Iinc is plotted as a function of the

source–station distance in terms of the wavelength. The Monte Carlo

simulation results have been averaged in a time window extending from

17 to 20 mean free times.
Figure 3. Schematic explanation of the Monte Carlo simulation. The

particle leaves the source R0 and walks randomly in the medium. At the

receiver R we must take into account the interference between the direct

path (solid line) and the reciprocal path (dashed line). This requires

knowledge of the first and last scattering positions R1, Rn, as well as the

first and last scattering angles h1, hn, h1k, hnk .
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(van de Hulst 1981). In an acoustic medium with velocity fluctuations described by a Gaussian correlation function, the phase

function is independent of w and assumes the form

’ðhÞ~ k
4nð1{e{kÞ e

{k sin2 ðh=2Þ (7)

(Rytov et al. 1989). The parameter m is related to the wavenumber k and the correlation length of fluctuations a through the equation

m=2k2a2. We choose this particular function because it depends on only one parameter, m, and is convenient to simulate. The

weighting function f introduced in eq. (5) is related to the phase function W by f 2(h)=W(h). For m=0, scattering is isotropic and

for m>0, scattering is predominantly forward. The strength of the anisotropy can be determined from the anisotropy factor,

Scos hT~

ð
4n

’ðhÞ cosðhÞd) (8)

(van de Hulst 1981). The simulations have been performed for m=0 (isotropic scattering), m=3 (ncos hm=0.43), m=6 (ncos hm=0.67)

and m=10 (ncos hm=0.80), which corresponds to increasing scattering anisotropy. Unless explicitly stated, we assume a wavelength

of 3 km and a scattering mean free path of 30 km, which are realistic values for seismology. In Fig. 2, we show the shape of the spot

of coherent backscattering obtained numerically at large lapse times in the case of anisotropic scatterers (m=3), together with the

predictions of formula (4). To get rid of numerical fluctuations, the results of the simulation have been averaged in a time window

running from 17 to 20 mean free times. The difference between the analytical and numerical results is a few per cent only, showing

consistency between the two approaches.

4 T I M E D E P E N D E N C E O F C O H E R E N T B A C K S C A T T E R I N G

Fig. 4 illustrates the evolution of coherent backscattering with time for isotropic scatterers. The incoherent background intensity Iinc

and the total intensity (Icoh+Iinc) are shown at different lapse times in terms of the mean free time as a function of the source–station

distance in terms of the wavelength. As is clear from Fig. 4, the intensity predicted by conventional radiative transfer theory is almost

constant within a distance of two wavelengths from the source. This is in contrast to the true intensity, which exhibits an interference

pattern that grows in time and eventually stabilizes around the source, as expected from eq. (4). Although the intensity decays in time

by three orders of magnitude, the enhancement effect persists near the source, which may enable a possible observation of coherent

backscattering in the coda of local earthquakes.

In Figs 5 and 6, the backscattering enhancement (Icoh+Iinc)/Iinc is plotted as a function of time for five receivers spread within

one wavelength around the source. Scattering is isotropic in Fig. 5 and moderately anisotropic (m=3) in Fig. 6. The wiggles on the

curves have no physical origin and are caused by an incomplete averaging in the Monte Carlo simulations. The time dependence of

the enhancement effect is not simple. In particular, curves in Fig. 6 exhibit an overshoot. Except at R=0, the enhancement level

rapidly increases, reaches a maximum and then slowly decreases toward an asymptotic value. The position of the maximum moves

towards shorter lapse times as the source–receiver distance increases. Very close to the source, the position of the maximum becomes

difficult to evaluate. To define a characteristic time of stabilization of the spot as a function of the scattering properties in the medium,

we need to understand the origin of the time dependence shown in Fig. 6 .

As explained earlier in this paper, singly scattered waves have no reciprocal counterpart and therefore do not contribute to the

coherent intensity. However, they do contribute to the incoherent intensity for lapse times shorter than a few mean free times (see e.g.

Hoshiba 1991), and therefore the maximum enhancement at the source can be reached only after the energy of the singly scattered

waves has become negligible. To understand the role played by single scattering, it is convenient to subtract its contribution from the

incoherent intensity. The results are shown in Fig. 7, where the backscattering enhancement obtained for m=3 is plotted as a function

of time. At the source (R=0), we observe that the maximum enhancement factor is reached almost immediately. This shows that the

time evolution at R=0 is mostly governed by the single-scattering term. This property could be used to measure the backscattering

coefficient introduced by Aki & Chouet (1975). When the source and receiver coincide, the single-scattering intensity, I1(t), can be

expressed as

I1ðtÞ~
gðnÞ
2not2

eð{ot=lÞ , (9)

where g(p) is the backscattering coefficient, and a unit energy release is assumed. In our notation, we have

gðnÞ~ 4n’ðnÞ
l

: (10)

Apart from the wave velocity (which is usually known), g(p) is the only free parameter governing the single-scattering intensity.

Therefore, a measurement of the time dependence of the enhancement factor exactly at the source could in principle provide g(p). In

optics, the influence of single scattering on coherent backscattering has also been investigated theoretically by Mischenko (1992) and

experimentally by Wiersma et al. (1995).
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When source and receiver do not coincide (Rl0), the time dependence is more complicated. The position of the maximum

enhancement shown in Fig. 7 is now shifted towards shorter lapse times as compared to Fig. 6. Beyond this maximum, the

enhancement curves exhibit a monotonic decay towards their asymptotic value. The comparison of Figs 7 and 6 also shows that the

spot stabilizes after about 15 mean free times, whether the single-scattering term is subtracted or not. This leads to the conclusion that

the stabilization time of coherent backscattering has no relation to single scattering, except at exactly R=0.

We expect our simulations to match the result of the long lapse time analysis only when the diffusive regime is reached.

Therefore, it is important to understand how the diffusion constant D influences the stabilization time. D is related to the anisotropy

factor ncos hm and to the wave velocity o through D=ol ! /3, where l !=l/(1xncos hm). The diffusion constant is thus fully determined

by the wave velocity, the scattering mean free path and the anisotropy factor. l ! is often termed the transport mean free path and

physically represents the length beyond which a ‘random walker’ has lost memory of its initial direction of propagation. We refer to

Sheng (1995) and Margerin et al. (1998) for further details.

Figure 5. Backscattering enhancement (Icoh+ Iinc)/Iinc as a function

of time for isotropic scattering. The different curves correspond to

different source–station distances R in terms of the central wave-

length l. The time unit is the mean free time of the waves. The spot

of coherent backscattering is seen to stabilize after about 15 mean

free times.

Figure 6. Same as Fig. 5 for anisotropic scattering (m=3).

Figure 4. Snapshot of coherent backscattering at different lapse times.

The total intensity, which includes interference effects (solid lines), and

the incoherent intensity (dash-dotted lines) are shown as a function of the

source–receiver distance for different lapse times T (in terms of the mean

free time t). The unit distance on the horizontal axis is the wavelength.
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In Fig. 8 we show the time dependence of the backscattering enhancement at R=0, l/2 and l for three different values of the

diffusion constant. The three cases correspond to the same value of the scattering mean free path but increasing values of the constant

m defined in eq. (7). As m increases, the scattering becomes more and more strongly peaked in the forward direction and ncos hm
increases. Accordingly, the diffusion constant D also increases with m. Recall that at R=l/2 and l, the asymptotic value of the

backscattering enhancement is exactly 1. We observe that (except for R=0) the speed of stabilization of coherent backscattering

increases with m. This can be physically understood by the fact that the characteristic time to achieve complete isotropy of the

wavefield, and thus complete diffusion, increases with the scattering anisotropy. We can roughly estimate this characteristic time as a

function of the transport mean free time t!=l !/o. Our simulations suggest that the spot has become stable after five to 10 transport

mean free times.

5 E F F E C T O F T H E C R U S T

In this section, we briefly discuss the effect of geometry on coherent backscattering. We consider a simplified crustal model with a

wave speed jump at the Moho with usual values for S waves in the crust (3.5 km sx1) and mantle (4.7 km sx1). The mantle is

assumed to be perfectly transparent, whereas the crust is assumed to be 20 km thick and very heterogeneous with a scattering mean

free path l=20 km. This set of physical parameters is suggested by previous studies of the coda (Margerin et al. 1999) and gives rise to

a strong leakage of energy into the mantle. The numerical method to solve the radiative transfer equation in a waveguide geometry

was published previously (Hoshiba 1997; Margerin et al. 1998). The calculation of the coherent intensity requires one to take into

account all the reciprocal paths corresponding to multiple reflections at the boundaries of the medium. The simulation is therefore

more complex but the modifications are straightforward to incorporate. In Fig. 9, we show the shape of the spot of coherent

backscattering for a lapse time roughly equal to 20 mean free times and isotropic scatterers. It compares fairly well with the analytical

solution for the full-space case. This means that the shape of the spot of coherent backscattering is very robust to changes in the

boundary conditions. This reduces the number of free variables considerably and favours a possible observation in seismically active

regions.

6 C O N C L U S I O N S

We have studied numerically and theoretically the coherent backscattering of waves in a seismological context. Although our

investigation is limited to acoustic waves, some important effects such as near-field detection and point-like sources have been taken

into account. Our analytical theory provides an exact asymptotic description of coherent backscattering and predicts a coherent

intensity that oscillates and decays rapidly with distance from source to receiver. The enhancement persists in time and should be

observable as long as a coda is measurable. Coherent backscattering affects a sphere centred at the source of radius half a wavelength,

typically 500 m for 3 Hz waves.

Our numerical study gives access to the time dependence of the coherent backscattering effect. For large lapse times, the

spot stabilizes as predicted by diffusion theory. This stabilization is a specific feature of near-field detection. In media with a

Figure 7. Effect of single scattering on the stabilization of coherent backscattering. This figure is similar to Fig. 6, except that the single-scattering

term has been subtracted from the total intensity. At the source, the asymptotic value is reached immediately. The convergence time is unchanged

elsewhere.
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constant-scattering mean free path but with increasing scattering anisotropy, the convergence time tends to increase. The estimated

time from the simulation is about five to 10 transport mean free times. In the ideal case where detection takes place at the source, the

time dependence is influenced by single scattering only. The coherent backscattering effect is stable against changes in the boundary

conditions and is preserved in a waveguide geometry.

We finally comment on the possibility of revealing experimentally the existence of coherent backscattering in seismology. Since

this effect is measurable only in the multiple-scattering regime and in the vicinity of the source, experiments should be set up in

very heterogeneous regions with very shallow earthquakes. Volcanoes seem to be good candidates to fulfil these requirements.

Seismologists only have access to one realization of the random medium. Because our calculations are valid in an ensemble average

sense only, the measurement of the spot of coherent backscattering requires the ensemble average to be replaced by a time average.

The observation of the spot of coherent backscattering would provide direct experimental proof that the coda of earthquakes is

caused by multiple scattering of elastic waves.
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Figure 9. Effect of strong energy leakage on the spot of coherent

backscattering. The thickness of the crust and the scattering mean

free path both equal 20 km. We assume a usual crust (3.5 km sx1)/

mantle (4.7 km sx1) velocity contrast at the Moho. Note the

robustness of coherent backscattering to changes in the boundary

conditions.

Figure 8. Time evolution of the spot of coherent backscattering for

strong (solid lines), moderate (dash-dotted lines) and weak (dotted

lines) scattering anisotropy. One observes that except at the source, a

strong forward anisotropy delays the stabilization of the spot.
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Schutz, C.A. & Toksöz, M.N., 1993. Enhanced backscattering of

seismic waves from a highly irregular, random interface: SH case,

Geophys. J. Int., 114, 91–102.
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A P P E N D I X A : E V A L U A T I O N O F T H E C O H E R E N T A N D I N C O H E R E N T I N T E N S I T I E S

We begin with the simple case of a non-dissipative infinite medium. The Green functions and intensity propagators defined in

eqs (1) and (2) read

GðR2, R1Þ~{
expðikjR2{R1j{jR2{R1j=2lÞffiffiffiffiffiffi

4n
p
jR2{R1j

, (A1)

PðR2, R1, tÞ ¼ o expðÿjR2 ÿ R1j=4Dt2Þ
l2ð4nDtÞ3=2

: (A2)

The Green function in eq. (A1) represents the mean wavefield emitted by a source of unit energy. D is the diffusion constant of the

waves related to the transport mean free path through the relation D=ol ! /3 as explained in the text. Each wave packet is assumed to

be slowly modulated in phase and amplitude, implying a finite frequency band Dv, with central frequency v&Dv and central

wavenumber k. The corresponding coherence time of the wave packet 1/Dv will be large compared to the oscillation time 1/v so that

the interference term will be well approximated by considering monochromatic waves only. We refer to Born & Wolf (1970) and

Goodman (1985) for a discussion of interference properties of finite bandwidth signals. When Dt&l 2, eq. (1) can be approximated by

IincðR, R0, tÞ& o

l2ð4nDtÞ3=2

ðð
e{jR{Rnj=l e{jR0{R1 j=l

4njR0{R1j24njR{Rnj2
d3Rnd3R1 : (A3)

After integration, we find

IincðR, R0, tÞ~ o

ð4nDtÞ3=2
, (A4)
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as expected for diffuse propagation near the source. Again for Dt&l 2, the coherent intensity reads

IcohðR, R0, tÞ& o

l2ð4nDtÞ3=2

ðð
d3Rnd3R1

expð{jR1{R0j=2lzikjR1{R0jÞ expð{jR0{Rnj=2l{ikjR0{RnjÞ
4njR1{R0jjR0{Rnj

|
expðÿjRÿ Rnj=2l þ ikjRÿ RnjÞ expðÿjRÿ R1j=2l ÿ ikjRÿ R1jÞ

4njRÿ RnjjRÿ R1j
, (A5)

&
o

l2ð4nDtÞ3=2
jJj2 , (A6)

where we have introduced

J~

ð
d3R1

exp½{ðjR1{R0jzjR{R1jÞ=2lzikðjR1{R0j{jR{R1jÞ�
4njR{R1jjR1{R0j

: (A7)

This last integral is most easily computed by expressing the two Green functions in terms of their Fourier transforms,

GðR, R0Þffiffiffiffiffiffi
4n
p ~{

expðikjR{R0j{jR{R0j=2lÞ
4njR{R0j

(A8)

¼ 1

8n3

ð
d3Œ

exp½iŒ . ðRÿ R0Þ�
k2 ÿ Œ2 þ ik=l

: (A9)

Inserting this last expression into eq. (A7), we obtain

J~
1

24n5

ð
d3R1

ðð
d3Œd3Œ0

exp½iŒ . ðR1{R0Þ� exp½{iŒ0 . ðR{R1Þ�
ðk2{Œ2zik=lÞðk2{Œ02{ik=lÞ : (A10)

Now assuming that the order of integration can be interchanged, we can easily integrate over R1, leaving us with

J~
1

2n2

ðð
d3Œd3Œ0

dðŒzŒ0Þ exp½{iðŒ0 .RzŒ .R0Þ�
ðk2{Œ2zik=lÞðk2{Œ02{ik=lÞ (A11)

¼ 1

2n2

ð
d3Œ

exp½iŒ . ðRÿ R0Þ�
ðk2 ÿ Œ2Þ2 þ k2=l2

: (A12)

Making use of the symmetry of the integrand, we perform the integration over k in spherical coordinates with the polar axis oriented

along R–R0. After integration over the two polar angles, we obtain

J~{
i

n

ðz?

{?
di

ieiijR{R0 j

ði2{k2Þ2zk2=l2
: (A13)

To evaluate this last integral, we close the contour of integration in the upper sheet of the complex plane with a semi-circle of infinite

radius, and apply the residue theorem. The poles k1 and k2 of the integrand are located at

i1~kð1zi=klÞ1=2 , i2~{kð1{i=klÞ1=2 : (A14)

In this last equation, the branch of the square root is chosen such that Im(k1), Im(k2)>0, where Im(z) denotes the imaginary

part of z. For weak scattering (kl&1), the poles can be approximated by

i1~kzi=2l, i2~{kzi=2l : (A15)

Since the integral over the semi-circle does not give any contribution, the final result reads

J~l
sinðkjR{R0jÞ

kjR{R0j
e{jR{R0j=2l : (A16)

Collecting together the results of eqs (A4), (A6) and (A16), we finally obtain the formula quoted in the text,

IcohzIinc

Iinc
&1z

sin2 ðkjR{R0jÞ
ðkjR{R0jÞ2

e{jR{R0 j=l ðt??Þ : (A17)

These computations can easily be extended to the case where absorption is present in the medium. We introduce phenomenologically

an absorption length la, such as the mean Green functions decay spatially at the rate 1/l+1/la. The dispersion due to anelastic

absorption also changes k into ka. We then see that the new poles are k1=ka+i(1/l+1/la) and k2=ka+i(1/l +1/la). Therefore, we just

need to substitute k with ka and 1/l with 1/l+1/la in eq. (4).
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A P P E N D I X B : M O N T E C A R L O E S T I M A T E O F T H E C O H E R E N T I N T E N S I T Y

Let us consider the interference between two reciprocal wave packets such as those represented in Fig. 3. However, now, instead of

one configuration, we consider the ensemble average response. As before we call Ad the direct path and Ar its reciprocal counterpart.

The ith scattering occurs at Ri, f (hi) is a weighting function for the scattered amplitude in the case of anisotropic scattering, and hi

denotes the scattering angle of the ith scattering. For the reciprocal wave, we introduce hki as shown in Fig. 3. This is necessary since

the first and last scattering angles are not exactly the same for the two waves. The direct and reciprocal amplitudes at the receiver are,

respectively,

Ad~C
f ðh1Þ f ðh2Þ � � � f ðhn{1Þ f ðhnÞ exp½iðkzi=2lÞðjR1{R0jzjR2{R1jz � � �zjRn{Rn{1jzjR{RnjÞ�

jR1{R0jjR2{R1j � � � jRn{Rn{1jjR{Rnj
, (B1)

Ar ¼ C
f ðh01Þ f ðh02Þ � � � f ðh0nÿ1Þ f ðh0nÞ exp½iðk þ i=2lÞðjRÿ R1j þ jR2 ÿ R1j þ � � � þ jRn ÿ Rnÿ1j þ jR0 ÿ RnjÞ�

jRÿ R1jjR2 ÿ R1j � � � jRn ÿ Rnÿ1jjR0 ÿ Rnj
: (B2)

C is an unimportant normalization constant introduced to account for the product of terms such as 1/4p. Now we express the total

intensity as

jAdzArj2~jAdj2zjArj2zAdA?
rzA?

dAr : (B3)

The first two terms on the right-hand side of this equation are the incoherent intensities. These terms are accounted for by the

radiative transfer theory and can be computed with the standard Monte Carlo method. The last two terms correspond to the

interference effect. Note that in the simulation, |Ad|
2 and |Ar|

2 correspond to two different paths that will be simulated independently.

Since the Monte Carlo scheme is assumed to exhaust all possible random walks, each path will eventually find its reciprocal

counterpart in the simulation. In other words, to estimate the total intensity (that is, the sum of coherent and incoherent

contributions), one should not evaluate the whole expression |Ad+Ar|
2 because this would be equivalent to erroneously including the

same scattering path twice. Instead one needs just to calculate the incoherent intensity |Ad|
2 plus the real part of the interference term

AdAr
! (or Ad

!Ar). The estimate of the total intensity at the receiver E [It] can therefore be expressed as the product of the classical

estimate of the incoherent intensity E [Ii ] times an interference term,

E½It�~E½Ii� 1z
Ad

Ar

� �
, (B4)

E½It� ¼ E½Ii� 1þ jR1 ÿ R0jjRÿ Rnj f ðh01Þ f ðh
0
nÞ exp½iðk þ i=2lÞðjR1 ÿ Rj þ jRn ÿ R0jÞ�

jR1 ÿ RjjRn ÿ R0j f ðh1Þ f ðhnÞ exp½iðk þ i=2lÞðjR1 ÿ R0j þ jRÿ RnjÞ�

� �
: (B5)

We can check that when the source and receiver coincide, the estimated intensity equals exactly twice the classical intensity. When the

source and receiver are more than a few wavelengths apart, the interference term strongly oscillates and will finally average 1.
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