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[1] We study the consequences of temporal stress perturbations on earthquake nucleation in
a continuous fault model. Using a two-dimensional (2-D) quasi-dynamic model of a strike-
slip fault governed by a rate-and-state friction law with depth variable properties, we show
that dynamic triggering (due to stress pulses or wave packets), although allowed by our
results, is an exception rather than a rule and should be limited to understressed areas such as
areas of high pore pressures or to faults at the very end of their earthquake cycle. When
periodic stress perturbations are sensitive, the response of the fault is frequency-independent
for periods lower than a period T 0 but strongly depends on the frequency for periods larger
than T 0. We demonstrate that the crossover period T 0 is equal to the time left until the
earthquake instability. According to our model, high frequencies are demonstrated to have a
higher triggering potential than low ones, which makes tidal triggering very unlikely before
the end of the cycle due to the very low amplitudes of the stress perturbations
involved. INDEX TERMS: 7209 Seismology: Earthquake dynamics and mechanics; 7215 Seismology:

Earthquake parameters; 7260 Seismology: Theory and modeling; KEYWORDS: earthquake triggering, dynamic

triggering, Coulomb stress change, rate and state friction laws, clock advance/delay

Citation: Perfettini, H., J. Schmittbuhl, and A. Cochard, Shear and normal load perturbations on a two-dimensional continuous fault:

2. Dynamic triggering, J. Geophys. Res., 108(B9), 2409, doi:10.1029/2002JB001805, 2003.

1. Introduction

[2] Although the evolution of a fault is mainly con-
trolled by its large scale tectonic environment, each fault
strongly interacts with the local surrounding faults. In
particular during the aftershocks sequence following a
main shock, stress transfers strongly influence the future
evolution of a seismic area. Indeed, the occurrence of an
earthquake induces a change in the stress field surrounding
the rupture plane. After a transient or dynamic change of
stress induced by the passage of seismic waves, a static or
permanent stress field is left around the ruptured fault. The
companion paper by Perfettini et al. [2003] studies the
influence of static variations in both the shear and/or
normal stress on the triggering of an earthquake. Consid-
ering a two-dimensional (2-D) quasi-dynamic model of a
continuous fault controlled by rate-and-state friction, we
have shown that the predictions of the Coulomb failure

model were reasonably close to the ones inferred using a
more realistic fault model. In particular, the clock change
(advance or delay) �t of an event roughly equals to
�t ¼ �CFF �t;�sð Þ= _t, where _t is the tectonic stressing
rate. Therefore the Coulomb stress change�CFF(�t,�s) =
�t � m*�s, where �t (respectively �s) is the shear
(respectively normal) stress change on a fault of constant
coefficient of friction m*, appears as a useful tool for dealing
with the static triggering of earthquakes. The fact that after-
shocks seem to concentrate in areas of increased Coulomb
stress (see Harris [1998] for a review) seems to confirm our
results.
[3] The Coulomb failure model predicts that the effect of a

transient change in the loading stress has no effect in terms of
triggering unless these variations are large enough to bring
the fault to the rupture threshold. However, many observa-
tions [e.g., Gomberg and Bodin, 1994; Gomberg and Davis,
1996; Brodsky et al., 2000; Gomberg et al., 2001] have
suggested the existence of a dynamic triggering, i.e., some
earthquakes may be triggered by the passage of seismic
waves generated by a previous event, and this, even hundreds
of kilometers away from themain shock. At a distance R from
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the main shock, the static stress field decreases as R�3 while
the dynamic stress field due to body waves is decaying as
R�2. It follows that at great distances (typically R > 100 km)
from the main shock, only the dynamic field is likely to
trigger earthquakes, while static triggering should be more
efficient closer to the hypocenter.We address in this paper the
dynamic triggering. The study of static triggering has been
discussed by Perfettini et al. [2003].
[4] We extend the work of Gomberg et al. [1998] by

studying the effect of two types of transients: pulses and
wave packets, in a 2-D continuous model. Moreover, pertur-
bations of the loading stress include not only variations of the
shear stress but also of the normal stress which allows an
exact estimate of the Coulomb stress failure function.
[5] We assume that the temporal perturbations of the

stress on the fault is due to the occurrence of a wave which
arrives with a normal incidence. Doing so, the whole fault
experiences the same stress variations with time. If the
incidence of the wave is not normal, the wave of period T
induces spatial modulations of the stress field of wavelength
l = cT, where c is the wave speed. Therefore it is impossible
in that case, to decouple the effect of spatial and temporal
variations of stress since both perturbations are linked due
to the relation l = cT. Here, we only focus on the response
of the fault to temporal variations of the loading stress and
neglect any spatial variations, which are beyond the scope
of our paper.

2. Summary of the Modeling

[6] An extended description of the model is presented by
Perfettini et al. [2003]. Here we introduce only a summary
of the main aspects of the numerical model of the fault.
[7] In this study, we use a 2-D continuous quasi-dynamic

fault model invariant along strike [see Perfettini et al., 2003,
Figure 1a]. The existence of a free surface is taken into
account by considering a mirror image of the fault. The
numerical domain of width 2L (the factor 2 arising from the
presence of the mirror image) is divided into n cells of
length �x = 2L/n with n = 256, in order to properly describe
the nucleation process. Slip, stress and velocity are com-
puted in each individual cell. The friction on the fault is
governed by rate-and-state friction [Dieterich, 1979; Ruina,
1983] and the frictional parameters are allowed to vary with
depth. This model which accounts for the presence of the
free surface is very similar to the model developed by Rice
[1993]. In the rate-and-state framework, the frictional stress
ti acting on the fault at cell i is given by

ti Vi tð Þ; qi tð Þ;si tð Þ½ � ¼ si tð Þmi Vi tð Þ; qi tð Þ½ �; ð1Þ

where si(t) = s0 = 50MPa is the normal stress at point i and is
held constant at all depths (see Perfettini et al. [2003] for a
justification). The coefficient of friction at point i can be
expressed as

mi Vi tð Þ; qi tð Þ½ �mi*þ ai ln Vi tð Þ=V*
� �

þ bi ln qi tð Þ=q*
� �

: ð2Þ

Therefore the evolution of friction at the ith cell requires the
knowledge of the sliding velocity Vi(t) and of the state
variable qi(t). Two fundamental parameters appear in
equation (2): ai, and bi. When ai > bi then the slip on the
cell tends to be stable and shows a velocity strengthening or

creep behavior. When ai < bi, the cell presents a velocity
weakening behavior and stick slip may be observed. In our
model, the parameters a and b vary with depth as inferred by
Blanpied et al. [1991] based on laboratory results. The
shallow (�2 km< z < 0 km) and deep (z <�15 km) part of the
fault are velocity strengthening regions showing a creep-like
behavior, while at intermediate depths (�15 km< z<�2 km),
the fault has a velocity weakening behavior [see Perfettini et
al., 2003, Figure 1b]. This last portion of the fault is the one
where earthquakes nucleate and we refer to it as the
seismogenic zone. The parameter m*i is held constant at all
depth, i.e., m*i = m* = 0.6 as well as the constant reference
velocity V* which was set to V* = 1 mm/s.
[8] The evolution of the state variable with time at variable

normal stress is given by [Linker and Dieterich, 1992]

dqi tð Þ
dt

¼ 1� Vi tð Þ; qi tð Þ
Dci

� ai qi tð Þ
bi

_s tð Þ
s tð Þ ; ð3Þ

where ai = a = 0.2 at all depths. This value was derived
from the laboratory measurements of Linker and Dieterich
[1992] and Richardson and Marone [1999]. The character-
istic length of evolution of friction is also constant at all
depths and set to Dc = 2 cm. As discussed by Perfettini et al.
[2003], this choice is dictated by numerical constraints but
does not rely on observations since the value of Dc is not yet
constrained at the fault scale.
[9] The continuity of traction across the fault implies that

ti Vi tð Þ; qi tð Þ;si tð Þ½ � ¼ t0i �
G

2 b
Vi tð Þ � Vpl

� �
þ �n

j¼1Kij dj tð Þ � Vpl t
� �

þ�ti tð Þ; ð4Þ

where ti
0 is the prestress on the fault, G = 30 GPa is the

shear modulus, Vpl = 35 mm/yr is the plate velocity, while
the kernel Kij is given by

Kij ¼
G

2p�x

1

i� jð Þ2�1=4

" #
ð5Þ

and accounts for the static elastic interactions along the
fault. Like in the work by Stuart and Tullis [1995], the
derivation of equation (4) with respect to time yields, after
the use of equation (3):

_Vi tð Þ ¼
�
�n

j¼1Kij Vj � Vpl

� �
� @ti=@qið Þyi:

�mi _si þ _�ti tð Þ
�
= @ti=@Vi þ

G

2 b

� �

_qi tð Þ ¼ 1� Vi tð Þ; qi tð Þ
Dci

� ai qi tð Þ
bi

_s tð Þ
s tð Þ :

8>>>>>>><
>>>>>>>:

ð6Þ

The advantage of such rearrangement is that this system of
2n differential equations can be solved explicitly using a
Runge-Kutta algorithm [Press et al., 1992] with a fifth-
order adaptative step-size control.
[10] With our choice of parameters, the fault rapidly

enters a periodic regime, independent of the initial con-
ditions, in which earthquakes occurs periodically with a
recurrence or interseismic time of Tinter = 96.2 years.
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Perturbations are introduced at time t0 after the last earth-
quake [see Perfettini et al., 2003, Figure 2b]. They may alter
the duration of the rest of the cycle, tp, which, without
perturbation, is denoted tf and is considered as a reference
duration (Tinter = t0 + tf). Clock advance or clock delay �t
are estimates of the difference between the duration after
perturbation, tp, and the reference duration tf: �t = tf � tp. A
clock advance corresponds to a positive �t and a clock
delay to a negative �t. The durations tf or tp are times to
instability from the initiation time t0. Instability is charac-
terized as an increase of the maximum slip velocity on the
fault above a prescribed threshold: 10�2 m/s (see Perfettini
et al. [2003] for a justification of this value). Before
considering the effect of shear and/or normal transient stress
perturbations on the timing of an earthquakes, we define the
Coulomb stress change as �CFF(�t, �s) = �t � m*�s.
As will be demonstrated in this paper, this quantity is, in
most cases, particularly useful to account for simultaneous
change in the shear and normal stress.

3. Stress Pulses

[11] We start our study by considering stress pulses. Even
though no seismic waves generate such idealistic stress
perturbations, they are of interest because of their simple
shape, and because a real wave pattern results in a super-
position of such pulses. Furthermore, as will be shown
below, they allow the derivation of analytical expressions
useful to predict the amplitude threshold for instantaneous
triggering (see section 5).
[12] As in the work by Gomberg et al. [1997], we use

pulses of the form

A tð Þ ¼ A0 exp � t � t0ð Þ=twð Þn½ �; ð7Þ

where A(t) represents either normal or shear stress
variations, A0 is the maximum amplitude of the pulse, t0
is the time at which the pulse reaches its maximum, and tw is
the width or half duration of the pulse. The even integer n
modifies the risetime of the pulse: the bigger it is, the
smaller the rise time. We decide to use n = 16, which
corresponds to a very small risetime. Doing so, the pulse is
very similar to a square wave, which is easier to use for
analytical derivations. Such a pulse can be seen in Figure 1.

3.1. Influence of the Amplitude of the Pulse

[13] Figure 2 presents the clock advance due to stress
pulses that promote failure (i.e., positive shear stress varia-
tions (�CFF(�t > 0,0)) and negative normal variations
(�CFF(0, �s < 0))) as a function of their amplitude. The
half duration of the pulse is fixed to tw = 500 s while the time
of application of the load is set to t0 = 94 years. The clock
advance has an upper limit �t = tf � t0 (i.e., tp = t0) which is
represented by the continuous line and corresponds to
instantaneous triggering. We see that the clock advance is
an increasing function of the amplitude.
[14] Shear and normal stress variations corresponding to a

fixed Coulomb stress change �CFF have qualitatively the
same effect in terms of clock advance since the
�CFF(�t, 0) (circles) and the �CFF(0, �s) (triangles)
curves are almost superimposed. This correspondence can
be inferred looking at equation (6). We see that normal and

shear stress variations contribute equally if �ti = �mi�si,
i = 1, n. The coefficient of friction mi varies during the
earthquake cycle due to its dependence on sliding velocity,
state variable and normal stress. However, it remains close
to the constant value m* which is the dominant part of m,
except during seismic rupture. Therefore it is reasonable to
expect that a normal stress perturbation of amplitude �s
should have the same effect on the fault as a shear stress
perturbation of amplitude �t ’ �m*�s. We also found
considering mixed perturbations in shear and normal stress,
that all shear and normal combinations corresponding to a
given Coulomb stress change �CFF(�t, �s), lead roughly
to the same clock advance.
[15] The last observation that can be drawn out from

examination of Figure 2 is that, except for small amplitudes
(lower than 1 MPa), the clock advance�t and the amplitude
A of the pulse obey the scaling A / ln (�t) which may also
be expressed as �t / exp (C A), where C is a positive
constant. In the case of shear stress perturbation, we verified
(see Figure 2) that the last scaling yields

�t / exp
�t
as0

� �
; ð8Þ

where a = 0.015 is the value of the a parameter in the
seismogenic zone. Equation (8) can also be obtained
estimating �t using the analytical expression (B3) which
gives the time to instability due to a square wave. Since any
combinations in shear or normal stress resulting in the same
Coulomb stress change lead to the same clock advance,
equation (8) may more generally be expressed as �t / exp
(�CFF/as0).

3.2. Influence of Duration tw
[16] We study in this section the influence of the

duration of the pulse on the clock advance. Figure 3
shows the clock advance as a function of the half duration
tw of the pulses which are all applied at time t0 = 94 years.
Normal and shear stress perturbations were chosen in order
to result in the same amplitude of the Coulomb stress

Figure 1. Pulse of amplitude A0 and duration 2tw .
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change, i.e., �CFF(�t, 0) = �CFF(0, �s) = 6 MPa.
Such a Coulomb stress change is a large value but is
needed in order to induce a noticable clock change. This
illustrates the lack of efficiency of dynamic triggering due
to its transient duration as will be discussed further in the
text. The most important result is that the clock advance
increases linearly with the duration of the pulse. As
expected, the longer the duration of pulse, the greater
the clock advance.
[17] This can also be checked analytically in the case of a

shear stress pulse using the results of Appendix B. The
clock advance �t = tf � tp can be obtained using equations
(B1) and (B3), giving

�t ¼ �1

g
ln 1þ 2 exp gt0ð Þ sinh gtwð Þ 1� exp �t= asð Þð Þð Þ

1þ ga

H _d0

2
64

3
75 ð9Þ

with g ¼ _t=as0, H = b/Dc � k/s0, _d0 being the initial mean
velocity on the fault. As may be checked in Figure 3, the
prediction of the analytical formula (9) is in qualitative
agreement with the full numerical calculations.
[18] It is worth noting that since in Figure 3 the shear

and normal stress pulses correspond to the same Coulomb
stress change, one might naively have expected, in view of
the static triggering results, to observe a comparable clock
advance for both perturbations [see Perfettini et al., 2003,
Figure 8]. Their effect on clock advance, as mentioned by
Perfettini et al. [2003], is all the more comparable when
the actual friction coefficient remains close to m8.

However, in the case of perturbations of limited duration,
tw , the characteristic time associated with a (defined in
equation (3)) may become significant in front of tw . We
further discuss this issue in the next section.

Figure 2. Clock advance (in years) as a function of the amplitude of the pulse. Pulses of normal stress
(triangles) and shear stress (circles) are considered. The half duration of the pulse is tw = 500 s, and the
pulse is applied at time t0 = 94 years (for a 96.2-yearlong unperturbed cycle). Note that the clock advance
due to a normal stress pulse of amplitude�s is roughly equal to a pulse of shear stress of amplitude�t if
�CFF is constant (see triangles). The solid line corresponding to a clock advance of �t ’ 2.2 years
represents instantaneous triggering.

Figure 3. Influence of the duration of the pulse on the
clock advance. Normal (circles) as well as shear (squares)
stress pulses applied at time t0 = 94 years are considered.
The clock advance increases linearly with the duration of
the pulse. An analytical expression (see text) for the clock
advance due to a shear stress (square) pulses is in rough
agreement with the full numerical calculations.
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3.3. Loading Versus Unloading Pulses

[19] We have studied so far the effect of loading pulses
(�CFF > 0), i.e., pulses that promote failure. It is worth
looking at unloading pulses, that is, pulses that inhibit the
occurrence of the earthquake. Figure 4 shows the clock
change as a function of the amplitude of the pulses applied
at time t0 = 94 years and of fixed duration tw = 200 s. Solid and
open symbols correspond respectively to unloading and
loading pulses. Shear stress pulse (circles) as well as normal
stress pulses with a = 0.2 (squares) and a = 0 (diamonds) are
considered. The effect of the parameter a is to diminish the
effect of normal stress perturbations: the larger a, the lower
the effect of the normal stress change on the sliding surface.
The existence of such a parameter has been demonstrated
experimentally by Linker and Dieterich [1992] for bare rock
surfaces and confirmed by Richardson and Marone [1999]
considering a gouge layer. We see from Figure 4 that
unloading and loading pulses have similar effects for low
magnitude. However, they do not have an equivalent influ-
ence on the fault for large magnitudes. Unloading pulses of
large magnitude induce a much lower clock change than
similar loading pulses. For instance, an unloading normal
stress pulse of amplitude�s = 10MPa leads to a clock delay
of ��t ’ 0.01 years while a loading normal stress pulse of
amplitude�s = 10MPa creates a clock advance of�t = 0.46
years. However, the difference between loading and unload-
ing pulses fails even for large magnitudes if the sensitivity to
normal stress perturbation is increased: a = 0.2.
[20] Let us propose a qualitative explanation of the ob-

served behaviors. As discussed in the previous section, for a
given value of �CFF, the different effects on, say, clock
change, of various combinations of �s and �t are compa-
rable if the actual friction coefficient remains close to m8. For
a = 0 or for shear-only stress perturbations, the second term,
�Vq/Dc, on the right-hand side in equation (3) is negative.
The actual coefficient m will thus ‘‘naturally’’ drift from m8.
We now suppose non zero normal load perturbations and
a 6¼ 0. For unloading pulses, the third term �aq _s= bisð Þ in
equation (3) is negative (since _s > 0 for unloading pulses).
Accordingly, its contribution is the same as that of the
previous term, resulting in enhancement of the drift. By
contrast, for loading pulses, the contribution is opposite to
the natural drift; hence the criterion �CFF = const is better
fulfilled, in agreement with what is observed in Figure 4.

4. Wave Packet

[21] The power spectrum of a seismic wave is more
complex since not only one period is represented. To
simplify the problem and to study the frequency effect of
the wave on the timing of the instability, we propose, as
done by Gomberg et al. [1997], to model a seismic train of
amplitude A(t) by the following function:

A tð Þ ¼ A0 sin
2pt
T

� �
expf� t � t0ð Þ=tw½ �ng; ð10Þ

where A0 is the maximum amplitude of the pulse, T the
period of the wave, t0 the time for which the wave amplitude
reaches its maximum value, tw the half width of the wave
pattern, and n = 16 an integer that controls the risetime. Such
a virtual seismogram consists of a pulse like envelope inside
which oscillations at period T occur (see Figure 5).

[22] In order to examine the period effect of the wave, we
estimated the clock advance due to the presence of a wave
train of infinite duration. The reason for this choice is that,
perturbation periods are not limited by tw for wave train of
infinite duration. We will study the effect of the duration
further in the text but as expected, the longer the wave train,
the larger the clock advance.

4.1. Influence of the Period

[23] We look at the clock advance due to a wave train of
infinite duration and of period T. The amplitude A(t) of this
wave is given by:

A tð Þ ¼ A0 R tð Þ sin 2pt
T

� �
; ð11Þ

where R(t) is a ramp function, i.e., R(t) = 0 for t < 0, R(t) = 1
for t > t1, and R(t) = (1 + sin [p(t � t1/2)/(t1)]/2 for 0 < t < t1.
The risetime t1 is set to t1 = 100 s and is considered in order
to apply the load not too abruptly.
[24] The response of the fault to periodic variations of the

loading stress is complex and depends on the amplitude and
frequency of the oscillations in a non trivial manner. This is
illustrated in Figure 6 which shows the relative clock
advance �t/tf as a function of the period of the perturbation
applied at time t0 = 94 years. Various Coulomb stress
changes are considered: �CFF(�t, 0) = 1 and 5 MPa,
and�CFF(0, �s) = 1 and 5 MPa. The numerical results are
compared to analytical derivations obtained using the for-
malism of Appendix A. To estimate these analytical forms
that are obtained by considering a 1-D model, the initial
velocity on the fault is needed and we use the mean velocity
around the nucleation point (located at 5 km depth) which is
of the order of _d0 ¼ 5:5 10�10 m=s at that time in the
earthquake cycle. The semianalytical derivations capture
the behavior of the relative clock advance as a function of
the period of the perturbations.
[25] A crucial point can bemade looking at Figure 6, which

shows that the fault response to normal stress perturbations is
different from the response to shear stress variations even
when the Coulomb stress change induced by these fluctua-
tions is the same. Normal stress fluctuations lead to a lower
clock advance than shear stress ones due to the effect of the
unloading part of the load variation. Such a feature has been
previously noticed and has been discussed in section 3.3
(Figure 4) when unloading pulses were considered.

4.2. A Crossover Period T 0

[26] Figure 6 shows a plateau at low periods and a complex
structure at higher periods. The period T 0 for which the
transition between these two regimes occurs has been derived
analytically in Appendix B3 and leads to

T0 ¼ 2pa
_d0Hg �tð Þ

ð12Þ

with H = b/Dc � k/s0, k being the equivalent stiffness of the
fault. The function g is given by

g �tð Þ ¼
Z 2p

0

exp �t sin yð Þ= as0ð Þ½ �dy; ð13Þ
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which can be estimated numerically. Since in the seismo-
genic zone b/Dc ’ 0.95 m�1 and k/s0 ’ 0.03 m�1, we find
that H ’ b/Dc, yielding:

T0 ’ 2paDc

_d0bg �tð Þ
: ð14Þ

At low periods (T ! 0) the time to instability tp(T ! 0) is
frequency-independent and is given by (see Appendix B3)

tp T ! 0ð Þ ¼ T0 ¼ 2pa
_d0Hg �tð Þ

: ð15Þ

Accordingly, T 0 = tp(T! 0) which means that the transition
period between the non sensitive and the sensitive domain is
nothing else than the time to instability. Using equation (12),
we found that T 0’ 1.9 107 s for�t = 1MPa, while T 0’ 2.2
105 s for �t = 5 MPa, both values being in agreement with
Figure 6. It is important to note that T0 = tp(T! 0) means that
the response of the fault is changing radically when the period
of the perturbations reaches the time to the next earthquake.
Such a feature has been observed by Beeler and Lockner
[2003], who measured experimentally the frictional response
of a fault to periodic variations of the loading stress and, in
particular, the degree of correlation between the occurrence
of the simulated earthquakes and permanent oscillations of
the external load. They found that above a given period
tn ¼ 2pas0= _t, themicroearthquakes were correlated with the
stress perturbations, if the perturbation was of significant
amplitude. Unlike the transition period tn of Beeler and
Lockner [2003], the period T 0 in our model given in equation
(14) depends on the time where the perturbation starts
(through the initial velocity _d0 which varies throughout the

earthquake cycle), the ratio a/b, the characteristic length Dc,
and the amplitude �t which appears in equation (13) via
the �t/as0 term. We believe that one major cause of the
difference between tn and T 0 comes from the fact that the
stress perturbations in the experiment of Beeler and Lockner
[2003] are permanent (in order to simulate Earth tides) and
may therefore, modify the properties of the earthquake cycle,
e.g., its duration.
[27] The existence of the transition period T 0 can also be

observed in Figure 7 which shows the relative clock advance

Figure 4. Clock delay due to unloading pulses (solid symbols) (�t < 0 or �s > 0) applied at time
t0 = 94 yrs and of half duration tw = 200 s. The influence of the normal stress is studied changing the a
parameter: a = 0.2 (squares) and a = 0 (diamonds). For the sake of comparison, the clock advance (open
symbols) due to a shear stress step (�t > 0) and to normal stress pulses (�s < 0) with a = 0.2 and a = 0
is also shown. Note that the clock delay becomes negligible compared to the clock advance at high
amplitudes (typically greater than as0).

Figure 5. Wave packet of amplitude A0, duration 2tw and
period T.
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due to shear stress perturbations �t(t) = �t sin (2pt/T ) of
amplitude�t = 1MPa as a function of the period of the wave
train, and considering various initial sliding velocities
_d0 ¼ 10�2, 10�4, 10�6, and 10�8 m/s. The period T is
normalized by the transition period T 0 given in equation
(12). The clock advance was derived using the semianalytical
formalism of Appendix A (see equation (A1)) to reduce
significantly the computational time and explore a larger
parameter space. After normalization of the period by T 0, all
the curves collapse in Figure 7, which illustrates the 1=_d0
dependence of the crossover period T 0 predicted by equation
(12). The transition period T 0 which is also equal to the time
left before the occurrence of the earthquake defines the limit
period between two regimes: For T < T 0 the response of the
fault is period-independent because the number of oscilla-
tions experienced by the fault before the instability is
extremely large. When the period T reaches T 0, the period
of the perturbation becomes important as can be seen in
Figure 7. For very large periods of the perturbations (T� T 0)
the clock advance tends to zero independently of the period.
Indeed, in that case, the earthquake occurs before any
significant change in the loading stress has occurred. In other
words, the rate of variation of the shear stress is very small
compared to the loading rate _t (i.e., w�t � _t) and the fault
becomes insensitive to the stress variations.
[28] The change in the fault behavior for T ^ T 0 makes

the fault highly sensitive to the envelope of the stress
perturbation, a dependence which vanishes for T < T 0. To
illustrate that point, we have computed the relative clock
advance due to shear stress perturbations of the type�t(t) =
�t sin (2pt/T) for various initial velocities and a shear stress
amplitude �t = �1 MPa (see Figure 7). Therefore the shear

stress perturbation is initially decreasing with time instead of
increasing. The results are shown in Figure 7 where again,
the period is normalized by the crossover period T 0. For
T < T 0, the clock advance is constant and equal to �t/tf ’
0.3, as in the case �t = 1 MPa. This illustrates again
the frequency independence of the load for low periods
(T < T 0). When T� T 0 the clock advance tends to 0 as in the
�t = 1 MPa case. In the intermediate regime T ^ T 0, the
fault is sensitive to the envelope of the shear stress variations
which are, in the case �t = �1 MPa, unloading the fault.
This is illustrated by a negative clock advance.
[29] The results shown in Figure 7 allow us to give a new

physical meaning to the transition period T 0. It is the period
above which the fault response becomes dependent on the
exact form of the perturbation applied. This interpretation is
consistent with the definition of Beeler and Lockner [2003],
who define T 0 as the period abovewhich their experimentally
simulated earthquake correlate with the external load fluctu-
ations. It is also important to note that the clock advance at
low periods (T � T 0) is much larger than at high periods
(T � T 0) for which the clock change tends to 0. Therefore
high frequencies have a higher triggering potential than low
frequencies in agreement with the seismological observation
of Gomberg and Davis [1996] and the theoretical work of
Roy and Marone [1996].

4.3. Influence of the Phase Lag

[30] Perturbations of magnitude �CFF(�t, 0) = 1 MPa
and �CFF(�t, 0) = �1 MPa differ only by their phase lag.
Accordingly, the influence of the phase lag is illustrated in
Figure 7. For very low periods, the clock advance is
significant but independent of the phase lag. At high

Figure 6. Relative clock advance �t/tf as a function of the period of the perturbation applied at time
t0 = 94 years and considering a wave train of infinite duration. Numerical results corresponding to
Coulomb stress changes of amplitude �CFF(�t, 0) = 1 MPa, �CFF(�t,0) = 5 MPa, and of amplitude
�CFF(0, �s) = 1 MPa are compared to semianalytical derivations which requires the knowledge of the
initial sliding velocity on the fault. Note that the semianalytical derivations capture the behavior of the
full numerical calculations.
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periods, there is no clock change of the fault. However, for
periods close to T 0, the phase lag has a strong influence: the
fault can be very significantly advanced or close to locked.
[31] However, the phase lag of the arriving wave train is

controlled by the focal mechanism of the remote earthquake.
Even if we consider in our model only normal incidences of
the wave train, we clearly see that there is a major difference
in the fault response according to the properties of the
remote earthquake. Two remote earthquakes with a similar
source function but different orientations of the focal planes,
located in the same region at a given distance of the fault
might either enhance or inhibit the fault. There is a strong
directivity effect. Moreover, we see from Figure 7 that the
phase lag induces ‘‘nonsymmetrical’’ effects. The maximal
clock advance from a perturbation of magnitude �CFF(�t,
0) = 1 MPa is more than two times smaller than the maximal
clock delay induced by a perturbation of magnitude
�CFF(�t, 0) = �1 MPa. This ‘‘nonsymmetric’’ influence
has also been observed for static loading or unloading steps
[see Perfettini et al., 2003].

4.4. Influence of the Amplitude

[32] We now look at the influence of the amplitude of the
shear stress perturbations on the clock advance of rupture.
Figure 8 presents the relative clock advance �t/tf for a shear

stress perturbation �t(t) = �t sin (2pt/T) for various
amplitudes �t = 0.1, 1, 2.5, 5, 10 MPa. The initial velocity
is _d0 ¼ 10�2 m=s (we use in this section the semianalytical
formula based on the formalism of Appendix A (see
equation (A1)) and for which time to instability has been
defined as the time for which the sliding velocity becomes
infinite) and is characteristic of faults at the very end of the
earthquake cycle. Also displayed on Figure 8 is the clock
advance at the transition period (diamonds) given in equa-
tion (12) and corresponding to the amplitudes considered.
The locations of the predicted crossover periods successfully
separate the frequency-independent with the frequency-
dependent regime. The main observation from Figure 8 is
that the transition period T 0 decreases with increasing
amplitude, and tends to zero at large amplitudes. The clock
advance is also increasingwith increasing�t, but this feature
is also due to the choice �t > 0. Considering �t < 0 would
have led to an opposite conclusion for T > T 0 since the
perturbation starts by unloading the fault.

4.5. Influence of the Duration

[33] We now look at the influence of the duration of the
wave train on the clock advance. Figure 9 shows the clock
advance as a function of the half duration tw of a wave
packet of normal stress amplitude �s = �10 MPa applied

Figure 7. Relative clock advance �t/tf as a function of the period of the perturbation assuming a wave
train of infinite duration of amplitude �CFF(�t, 0) = 1 MPa (thick lines) and �CFF(�t, 0) = �1 MPa
(thin lines). The period T is normalized by the transition period T 0 given in equation (12). The analytical
formalism of Appendix A (see equation (A1)) has been used. Various initial sliding velocities namely
_d0 ¼ 10�2, 10�4, 10�6, and 10�8 m/s are considered, corresponding to various time in the earthquake
cycle (the higher the sliding velocity, the later the time in the earthquake cycle). After normalization of
the period by T 0, all the curves for a given perturbation magnitude, perfectly superimposed, illustrating
the 1=_d0 dependence of the crossover period T 0. This figure illustrates the two regimes of the fault
response. At low periods, the response of the fault is frequency-independent but becomes highly sensitive
to the frequency of the load variations at higher periods (before becoming independent again at very high
periods, when there is effectively no perturbation at all).

ESE 2 - 8 PERFETTINI ET AL.: DYNAMIC TRIGGERING ON A CONTINUOUS FAULT



at time t0 = 94 years. The period of the wave train was set to
T = 10 s. As in the case of the pulse, the clock advance is
increasing linearly with the duration of the pulse. Again the
longer the perturbation is applied, the bigger its effect.

4.6. Comparison Between Pulses and Wave Packets

[34] Gomberg et al. [1998] proposed that the effect of a
wave packet and a squares wave were qualitatively equal in
terms of triggering as long as their duration, width and
amplitude were similar. We can discuss this statement in
the light of our results. For periods lower than T 0, we expect
the detailed shape of the perturbing signal not to be so
important, due to the frequency independence at low periods.
However, at long periods, namely greater than T 0, we showed
that the frictional response of the fault was highly dependent
on the frequency of the perturbing stress. In this case,
considering a square wave or a sine wave makes a significant
difference. Therefore we believe that before simplifying the
stress variations to a square wave, one should verify that the
maximum period of the wave train does not exceed T 0.

5. Instantaneous Triggering

[35] In this section, we examine the minimum amplitude
for instantaneous triggering. As will discussed in the next
two sections, our definition of instantaneous triggering is
rather arbitrary but choosing other definitions will lead to
the same qualitative conclusions.

5.1. Pulses

[36] When considering the effect of pulses in our model,
triggering is said to be instantaneous if it occurs during the

passage of the pulse (i.e., in the time interval [t0� tw; t0 + tw]).
We define the onset of triggering when the maximum
velocity on the fault exceeds 10�2 m/s.
[37] The minimum amplitude noted Ac (where Ac =

�CFF(�t, 0) for shear stress perturbations and Ac =
�CFF(0, �s) for normal stress perturbations) for instanta-

Figure 8. Relative clock advance �t/tf as a function of the period of the perturbation considering a
wave train of infinite duration applied on a fault of initial sliding velocity V0 = 10�2 m/s, i.e., a fault at the
end of its earthquake cycle. Various shear stress amplitudes are considered: �t = 0.1 MPa, �t = 1 MPa,
�t = 2.5 MPa, �t = 5 MPa, �t = 10 MPa. The relative clock advance at the transition period is also
displayed (diamonds) and separates the two regimes of the fault response.

Figure 9. Clock advance as a function of the half duration
tw of a wave packet of normal stress amplitude �s =
�10 MPa applied at time t0 = 94 years. The period of the
wave is T = 10 s.
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neous triggering is shown in Figure 10 as a function of the
time of application of the stress perturbation t0. The half
width of the pulse is held constant with tw = 200 s.
[38] The most important feature is that the threshold

amplitude Ac is decreasing with increasing t0. This is due to
two features. First, the clock advance is equal to�t = tf � t0
and is linearly decreasing with the time of application of
the load t0. Therefore a smaller amplitude is needed for
instantaneous triggering the later the load is applied.
Ultimately, at the very end of the cycle, instantaneous
triggering is related to a clock advance �t = tf � t0 that
tends to 0 since t0 ! tf. In this case, the least perturbation
can bring the fault to failure. The second feature is that the
later the transient load is applied, the bigger the clock
advance. This comes from the fact that the slip variation
due to the effect of a transient variation of the loading
stress on the fault is bigger at the end of the earthquake
cycle rather than at the beginning because the sliding
velocities involved are much higher. Therefore, for a given
duration of the pulse, the clock change is significantly
larger at the end than at the beginning of the earthquake
cycle.
[39] As noticed previously in the paper, normal and shear

stress variations have the same qualitative effect when �t
’ �m*�s, or in other words, when they result in the same
Coulomb stress change �CFF(�t, �s).
[40] We have been able in Appendix B2 to give an

analytical estimate of the amplitude for instantaneous trig-
gering considering shear stress pulses only. This approxi-
mation was obtained considering the 1-D equivalent model,
i.e., a spring block model and is in good agreement with the

numerical results (see Figure 10). The minimum amplitude
�tc for instantaneous triggering is given by:

�tc ¼ as0 ln 1þ ag

_d0H
exp �gt0ð Þ
2 sinh gtwð Þ

� �
; ð16Þ

where the parameters are defined in Appendix B2. The
equivalent stiffness of the fault has been taken as k = (2/p)
G/L [see Perfettini et al., 2003], where L = 20 km is the size
of the fault. The frictional parameters a and b for the
spring slider model are equal to their value in the
seismogenic zone of our 2-D model, i.e., a = 0.015 and
b = 0.019. The normal stress is s0 = 50 MPa and the
characteristic length of the friction law is Dc = 2 cm. The
initial velocity _d0 in the spring slider model was obtained
taking the initial velocity _d0 around the nucleation point in
our 2-D model. Equation (16) also contains the parameter
g ¼ _t= as0ð Þ, where the loading stress rate _t verifies
_t ¼ k Vpl.
[41] As discussed in Appendix B2, one can get rid of the

initial velocity _d0 by replacing it by the time to failure tf in
the absence of perturbations given by equation (B1).

5.2. Wave Packet of Infinite Duration

[42] The minimum amplitude �tc for instantaneous trig-
gering as a function of the frequency of a shear wave�t(t) =
j�tj sin (2pt/T) is presented in Figure 11 and was computed
using the semianalytical approximation given in Appendix B
(see equation (B6)). This type of perturbation promotes
rupture at low frequencies. As discussed in section 4.2, this
will not be the case for a shear stress change of the form

Figure 10. Minimum amplitude for instantaneous triggering as a function of the time t0 of application
of the pulse. All the pulses have a half duration of tw = 200 s. At the instantaneous triggering threshold,
normal stress pulses (circles) and shear stress pulses (squares) of same maximum Coulomb stress change
�CFF, have roughly the same triggering potential. An analytical derivation is in good agreement with the
numerical results.
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�t(t) =�j�tj sin (2pt/T), since at low frequencies (T� T 0),
such perturbations unload the fault.
[43] The stress perturbation of infinite duration was

applied considering various initial sliding velocities namely
_d0 ¼ 10�5 � 10�9 m=s and therefore corresponds to differ-
ent times in the earthquake cycle. Instantaneous triggering
was determined at a given frequency, by increasing the
amplitude until the relative clock advance exceeds 90%. This
definition is arbitrary but taking for instance a relative clock
advance of 99% leads qualitatively to the same results.
[44] Figure 11 shows that the fault response may be

divided in two regimes. At high frequencies, instantaneous
triggering occurs for an amplitude of �t ’ 3 MPa, a
threshold which is frequency-independent. At low frequen-
cies, the amplitude threshold �tc scales as �tc / 1/f. The
period for which this transition occurs depends on the initial
sliding velocities, in agreement with equation (12) and the
comments of section 4.2.
[45] Such a 1/f scaling has already been proposed by

Lockner and Beeler [1999]. They studied, using granite
samples, when the occurrence of their laboratory simulated
earthquakes was correlated with an externally periodic per-
turbation of the loading stress. For a given frequency, they
have been able to approximately determine the shear stress
amplitude over which correlation occurs. The correlation plot
they have made [see, e.g., Lockner and Beeler, 1999,
Figure 8] is very similar to our Figure 11, i.e., it exhibits a
1/f behavior as f! 0, and a plateau for f!1. Our results are
therefore in agreement with the work of Lockner and Beeler
[1999].
[46] Considering the triggered seismicity in The Geysers

due to the Landers seismic waves, Gomberg and Davis

[1996] found that the strain threshold function �T ( f ) for
dynamic triggering was

�T fð Þ ’ 0:1

f
mstrain; ð17Þ

which again, shows a 1/f scaling. Equation (17), which was
obtained considering frequencies in the range 10�3 – 10 Hz,
implies that for an antiplane problem, the shear stress
threshold is of the order of �tc( f ) ’ 2G�T ( f ), where G is
the shear modulus. The fact that Gomberg and Davis [1996]
observe a frequency dependence of the strain spectrum
suggest that 1/T 0 is lower than the maximum frequency
considered by these authors, i.e., 1/T 0 > 10 Hz or T 0 < 0.1
s When instantaneous triggering is considered, the transition
period is difficult to estimate using equation (12) since this
formula contains the amplitude of the perturbation which we
are looking for. However, a rough estimate can be given
noting that in the expression of the g function of (13), the
amplitude only shows up through the�t/as0 term. Therefore
an estimate can be obtained taking �t = as0. This leads to
T0 ’ 2pa=_d0Hg as0ð Þ. One can verify that with the param-
eters of the model (given by Perfettini et al. [2003, sections 3
and 4]), the inequality k/s0� b/Dc holds. SinceH’ b/Dc and
that usually a ’ b [Marone, 1998], and noting that g(as0) is
of the order of unity leads to T0 ’ Dc=_d0. We find that
one must have _d0 ¼ 10�5 m=s for Dc = 1 mm (lower bound
for laboratory values) and _d0 ¼ 0:1 m=s for Dc = 10 cm
(upper bound given by seismological observations), in order
to meet the requirement T 0 = 0.1 s. A sliding velocity of the
order of 10�5 m/s is significant in our model and is only
obtained at the very end of the earthquake cycle. We suggest

Figure 11. Minimum shear stress amplitude as a function of the frequency of the wave packet in order
for the wave train of infinite duration to clock advance the instability by 90%. Again, the fault response
shows two regimes: regime I, a frequency-independent regime at high frequencies and regime II, a
frequency-dependent regime where the threshold amplitude scales as 1/f.
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that the faults considered by Gomberg and Davis [1996] and
triggered by the seismic waves of the Landers sequence were
rather close to failure at the arrival of the wave train.

5.3. Wave Packet of Finite Duration

[47] In this section, we consider the minimum amplitude
for instantaneous triggering considering wave packets of
finite half duration tw = 500 s applied at various times t0
of the earthquake cycle. As mentioned previously, the use
of a finite duration limits the upper period to be considered
to T = tw.
[48] Figure 12 presents the amplitude threshold for in-

stantaneous triggering considering wave packets of period
T = 5 s (pluses), T = 50 s (squares), and T = 500 s (circles)
as a function of the time t0 when they are applied. Figure 12
is qualitatively similar to Figure 10 derived for pulses (note
that the duration of the perturbation is different between the
two cases). The first observation that can be made is that
the amplitude for instantaneous triggering is decreasing
with increasing time of application of the load t0 showing
again that for transient stress perturbations, the later the
load is applied the bigger its effect. We recall that this
results from the fact that the later the perturbation, the
closer the fault is to the velocity threshold corresponding to
the onset of instability.
[49] Finally, the minimum amplitude for dynamic trigger-

ing is constant at low periods (the T = 5 s and T = 50 s
curves are alike). At higher periods, namely, the case
T = 500 s of Figure 12, the amplitude �tc is bigger than
at low periods. This is consistent with the fact that high
frequencies have a higher triggering potential than low ones
but also that this effect saturates at very low periods as
illustrated by the similarity between the T = 5 and 50 s
curves in Figure 12 or the plateau as T ! 0 in Figures 6–8.

6. Discussion: Comparison With Existing
Observations

6.1. Dynamic Triggering (DT)

[50] Dynamic triggering has been recently considered as a
candidate for earthquake triggering. It is important to note
that DTseems to be an exception rather than a rule since only
very few studies have reported a positive effect. DT due to the
passage of the seismic waves generated by the Landers
earthquake are mentioned by Gomberg and Bodin [1994]
for the case of the M = 5.4 Little Skull Mountain event,
Anderson et al. [1994] for the Western Great Basin, while
Gomberg and Davis [1996] mention some triggered seismic-
ity in The Geysers geothermal field. In all these studies,
surface waves seem to be responsible for the triggering but a
crucial remark is that most of the areas where DT have been
reported following the Landers sequence involve magmatic,
volcanic or more generally geothermal areas where high fluid
pressure is expected. We will discuss this point later in the
section.
[51] Another case of DT concerns the Irpinia earthquake

sequence. Belardinelli et al. [1999] computed the dynamic
stress field generated by the rupture of the first segment of the
1980 (Ms = 6.9) Irpinia earthquake at the location of the
second subevent which was separated by a time interval of
20 s. The authors estimated, using an analytical expression of
the clock advance due to a step of shear stress (with �t ’

1.5 MPa) in the absence of tectonic loading, that the param-
eter as0 has to be of the order of as0 ’ 0.08 MPa to explain
the 20-s-long delay between the two subevents, a value of the
same order as the previous estimate of Toda et al. [1998]
(as0 ’ 0.035 MPa). Using the analytical formula given in
(B4) with a = 0.006, tw ’ 5 s, as0 = 0.035 MPa, the
parameters estimates of Belardinelli et al. [1999], we find
that the minimum amplitude for instantaneous triggering is
ofÂthe order of 1.2 MPa for an initial sliding velocity
of _d0 ¼ 10�10 m=s and of the order of 0.04 MPa for
_d0 ¼ 10�3 m=s. These two values are below the peak value
of �t = 1.5 MPa mentioned by Belardinelli et al. Therefore
our results are consistent with an explanation of this sequence
in terms of dynamic triggering.
[52] At remote distances from the hypocenter, the wave

train arriving on the fault is long, the wave pattern being
composed of body waves and surface waves. The dynamic
stress field roughly decays as 1/R2 for body waves and as
1/R3/2 for surface waves, where R is the distance between the
observation point and the earthquake hypocenter. Therefore,
in terms of the amplitude of the perturbations, surface waves
have a higher triggering potential than body waves. In
addition to this, the duration of the wave train of surface
waves is much longer than for body waves, meaning than
stress perturbations due to surface waves are applied longer
than in the case body waves. Our results seem to favor high
frequency waves for dynamic triggering although examina-
tion of Figure 12 shows that the triggering ‘‘potential’’ is
roughly constant for periods lower than T 0. Because of the
1=_d0 scaling of T 0, this frequency independence is less
pronounced for faults at the very end of the earthquake cycle
since T 0 ! 0 as _d0 ! 1. Despite the fact that our model
predicts that high frequencies are more destabilizing than low
ones, we expect surface waves to be much more efficient for
dynamic triggering than body waves. The main reasons for
this is that surface waves have a much higher amplitude and a
longer duration, both factors being fundamental for DTas we
showed previously.
[53] Assuming a wave train of infinite duration, we

showed in Figure 11 that the triggering threshold was of
the order of 3 MPa for the periods involved in the dynamic
wave pattern. This is twice bigger than the value reported in
the literature, i.e., �t = 1.5 MPa for the Irpinia sequence
[Belardinelli et al., 1999], and of the order of�t’ 0.1 MPa
for the Landers sequence [Gomberg and Bodin, 1994;
Anderson et al., 1994; Gomberg and Davis, 1996]. Our
results show that DT is easier if (1) the fault is at the end of
the earthquake cycle since the amplitude threshold for
instantaneous triggering drops to zero when the stress per-
turbation is applied at the very end of the earthquake cycle
and (2) the normal stress on the fault is very low. Indeed and
as showed by the analytical result given in equation (B4)
obtained for a pulse, the amplitude for instantaneous trigger-
ing scales as as0. This scaling can be easily inferred by
the following reasoning. When a perturbation is suddenly
applied, it results in a variation of the sliding velocity. If
V +(t) is the sliding velocity immediately after the shear stress
variation and V �(t) its value before, then [see Perfettini et
al., 2003, equation (B6)]

Vþ tð Þ
V� tð Þ ’ exp �t= as0ð Þ½ �: ð18Þ
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Equation (18) shows the importance of the parameter
p =�t/(as0). When p� 1, there is a sudden increase in the
slip velocity due to the perturbation which can result in
instantaneous triggering, while for p � 1, the viscous effect
arising from the existence of the a term in equation (2)
reduces the effect of the instability. One way of making DT
to occur for lower triggering amplitudes is to reduce the
normal stress. If the normal stress on the fault is reduced
from s0 to s0/const, where Const. is a constant greater than
1, then the amplitude for instantaneous triggering drops
from �tc to �tc/Const.. In our modeling, the value of as0
in the seismogenic zone is of the order of as0 = 0.75 MPa, a
value which seems one order of magnitude bigger than the
estimates of Toda et al. [1998] or Belardinelli et al. [1999].
This suggests either that the normal stress on these faults is
one order of magnitude lower than what we proposed or that
the parameter a is much smaller than what we suggested.
Since in most studies [Marone, 1998], a is of the order
of 10�2, we believe that a normal stress reduction is more
likely to be responsible for the DT reported. This remark is
in agreement with the fact that most of the areas where DT
has been reported following the Landers earthquake
involves geothermal areas where the effective normal stress
on the fault is expected to be low. An increase of seismicity
in a geothermal area has also been reported in the Yalova
cluster following the Izmit earthquake (H. Perfettini et al.,
Dynamic triggering following the Izmit earthquake, sub-
mitted to Geophysical Research Letters, 2002).
[54] To end this section, we refer to an example of late

dynamic triggering [Brodsky et al., 2000] reported DT in
Greece due to the surface waves of the 1999 Izmit earth-
quake. As noticed by these authors, the region of triggered
seismicity is a nonvolcanic area and no geothermal activity is
expected. Brodsky et al. [2000] propose that this DT case
could be explained by the faults being in a near-critical state,

which, in our model, would correspond to a fault close to
failure. Therefore this case is also consistent with our results.

6.2. Particular Case of Tidal Triggering

[55] Earth tides result from the gravitational attraction of
the sun and the moon and create periodic variations of the
stress acting on a fault of amplitude of the order of 0.001 to
0.004 MPa [Vidale et al., 1998]. Most of the existing studies
on this process have answer negatively to the existence of
tidal triggering. Vidale et al. [1998] discussed tidal triggering
by resolving the normal, shear and Coulomb stress on
earthquake fault planes of their catalog made of a large
number of events (13,042 earthquakes). They found a weak
(2%) correlation which was not considered as significant.
Recent experimental work by Lockner and Beeler [1999]
confirm this conclusion. A correlation between the occur-
rence of laboratory simulated earthquakes and a periodic
variations of the loading stress was only observed for
amplitudes at least two orders of magnitudes larger than tidal
triggering amplitudes. These observations are in agreement
with our results. Indeed, looking at Figure 11, we see that the
minimum amplitude for dynamic triggering with an infinite
wave train is of the order of 3 MPa. This result is not in favor
of tidal triggering because of the large amplitudes involved.
However, at the very end of the earthquake cycle, namely
when the time to failure tf is approaching the period T of the
wave train, the effect of the wave train is reduced to the effect
of a pulse. Accordingly, instantaneous triggering is likely for
very small stress perturbations. Therefore we expect tidal
triggering to be possibly efficient at the very last stage of the
earthquake cycle.
[56] Measuring the phase lag between earthquakes occur-

rence and tidal loading peaks, Tsuruoka et al. [1995]
considered a global catalog of 998 earthquakes with magni-
tude greater than 6. They observed no correlation for strike-

Figure 12. Minimum amplitude for instantaneous triggering as a function of the time t0 of application
of a wave packet of shear stress. All the wave trains have a half duration of tw = 500 s. Wave packets of
period T = 5, 50 and 500 s are considered. The triggering threshold for the low periods T = 5, 50 s are
similar while it is higher for the long-period case T = 500 s showing that low periods have a higher
triggering potential than high periods.
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slip and thrust-type earthquakes occurrence but a correlation
was noticed for normal-fault type earthquakes. This obser-
vation is very difficult to reconcile with our results or the
previous works mentioned earlier. However, it has to be
mentioned that Perfettini and Schmittbuhl [2001] showed
that the measure of the phase lag was not a good tool to
detect tidal triggering due to the non linearities off the
friction law we use.

7. Conclusions

[57] Using a 2-D continuous fault model with depth
variable frictional properties, we have studied the triggering
effect of dynamic stress changes in shear as well as in normal
stress. A first study had been carried on by Gomberg et al.
[1998], who studied the effect of transient stress changes in
terms of clock advance. However, that study was based on a
spring slider model hence implicitly with uniform frictional
properties and considered shear stress variations only.
[58] First of all, our results show that the spring slider

model seems to be adapted for such studies, as illustrated by
the agreement between the analytical derivations and the full
numerical results. This also suggests that the shallow and
deep part of the fault, which have a velocity strengthening
behavior and which do not exist in a 1-D model such as a
spring block system, do not affect qualitatively the fault
behavior. Creeping at a constant velocity Vpl during most
of the earthquake cycle, they increase the loading stress on
the velocity weakening (or seismogenic zone), shortening the
duration of the earthquake cycle. Therefore the spring block
model is a rather satisfying fault model in the quasi-dynamic
approximation but its range of validity remains limited since
it is unable to account for spatial heterogeneities and can thus
only model an homogeneous fault.
[59] An important result of this study is that normal and

shear stress variations have roughly (except for unloading
pulses, see Figure 4) the same triggering potential if they lead
to the same Coulomb stress change�CFF(�t,�s) =�t �
m*�s, in which the coefficient of friction is m* is constant and
represents the static and dominant part of the coefficient of
friction given in equation (2). Therefore estimating the
Coulomb stress changes is particularly useful to account for
simultaneous fluctuations in the shear and normal stress.
However, there are at least two circumstances for which
normal and shear stress perturbations of same Coulomb stress
change do not lead to the same clock advance. The first of
them is when the perturbation is applied at the very end of the
earthquake cycle when the coefficient of friction begins to
differ significantly from the value m* that we have used as the
reference coefficient of friction [see Perfettini et al., 2003].
The second circumstance is when the transient perturbation
are of very small periods and/or duration. In that case, the
presence of the a term in equation (3) and which character-
izes the instantaneous response of the fault to normal stress
variations, induces important differences between normal
and shear transient perturbations.
[60] We also showed that dynamic triggering by seismic

waves, although allowed by our model, is rather unlikely.
Indeed, it can only occur for faults under low normal stresses,
for instance due to high fluids pore pressure, and/or for faults
at the very end of the seismic cycle. We showed that an
amplitude threshold for instantaneous dynamic triggering

exists but depends on the time at which the perturbations is
applied as illustrated by equation (B4) in the case of shear
stress pulses.
[61] Before ending this discussion, we want to insist on the

fact that in our model, the whole fault experiences the same
stress variations, which corresponds, in the dynamic case, to a
seismic wave arriving with normal incidence. If the incidence
of the wave is not normal, the wave of period T induces
spatial modulations of the stress field of wavelength l = cT,
where c is the wave speed. Owing to the concept of nucle-
ation size Lc [Dieterich, 1992; Rice, 1993], wavelengths with
l > Lc are unstable while the modes related to l < Lc are
stable. This means that when spatial modulations of stress are
considered, long wavelengths have a higher destabilizing
effect than short ones. This is illustrated in the results of
Voisin [2001], who found, using a linear slip weakening law,
that long wavelengths or periods where fastening the duration
of the nucleation phase. Ignoring spatial stress modulations,
we reached an opposite conclusion; that is, high frequencies
have a higher triggering potential. It is difficult to know
whether or not short of long periods are more able to trigger
earthquakes since in general stress variations occur both in
time and space. However, the laboratory results of Lockner
and Beeler [1999] and the data analysis of Gomberg and
Davis [1996] both suggest that short periods are more
efficient to trigger earthquakes than long ones. Therefore
we believe that our conclusions regarding the frequency
effect on triggering should be extended to the case of a
dynamic wave arriving with an oblique incidence.

Appendix A: General Comments on the Time to
Instability tp

[62] Perfettini et al. [2003] demonstrate that the time to
instability tp in the presence of shear stress perturbations
�t(t) can be obtained by solving

F tp
� �

¼ a

H
ðA1Þ

with

F tð Þ ¼ _d0

Z t

0

1þ C yð Þ½ ��b=a
exp _tyþ�t yð Þð Þ= a s0ð Þ½ �dy; ðA2Þ

where H = (b/Dc) � (k/s0). We recall that in the rest of this
appendix that g ¼ _t= as0ð Þ, this parameter being the inverse
of the aftershock duration ta ¼ as0= _t defined by Dieterich
[1994].
[63] Let � be the maximum amplitude of the shear stress

perturbations. Introducing g ¼ _t= as0ð Þ and b = �/(as0),
equation (A2) becomes:

F tð Þ ¼ _d0

Z t

0

1þ C yð Þ½ ��b=a
exp g yþ b g yð Þ½ �dy; ðA3Þ

where the function g incorporates all the time dependence of
the shear stress perturbations. Deriving equations (A3) with
respect to the parameters g and b, we find

@F

@g
¼ _d0

Z t

0

y 1þ C yð Þ½ ��b=a
exp g yþ b g yð Þ½ �dy ðA4Þ

@F

@b
¼ _d0

Z t

0

g yð Þ 1þ C yð Þ½ ��b=a
exp g yþ b g yð Þ½ �dy: ðA5Þ
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Since y > 0, equation (A4) implies that @F/@g > 0.
Following the comments of Perfettini et al. [2003,
Appendix C], we find that @tp/@g < 0. Recalling that
g ¼ _t= as0ð Þ, we find that (1) the time to instability is
decreasing with increasing stress rate _t, and (2) the time to
instability is increasing with increasing parameter a or mean
normal stress s0.
[64] The dependence of the time to instability tp with the

parameter b is not so trivial since it depends on the function
g. However, if g(y) is apositive function (g( y) > 0 for all y),
then @tp/@b > 0. In this case, the time to instability verifies
@tp/@g < 0. For a transient positive variation of the shear
stress, the time to instability is decreasing with increasing
amplitude of the perturbation. The opposite conclusion is
reached when a negative transient is considered. The case of
an oscillating signal such as g(u) = sin (wu) is more
complicated.
[65] Previous analytical works [Dieterich, 1992; Gomberg

et al., 1998] used the approximation C( y) = 0 to reach the
same conclusions. However, as noticed by these authors,
such an approximation was only valid at the end of the
earthquake cycle where Vq/Dc � 1. Our work uses equation
(A2) which is the exact solution of the state variable
evolution law. Therefore the conclusions of Dieterich
[1992] or Gomberg et al. [1998] can be extended to any
time of the earthquake cycle. It is crucial to note that our
conclusions are based on a very simple fault model, i.e., the
spring block model should not be extended to a real fault
without extreme cautious.

Appendix B: Applications

B1. Case of No Stress Perturbations

[66] The time to instability tf in absence of shear stress
perturbations was estimated by Perfettini et al. [2003],
yielding

tf ¼
as0
_t

ln 1þ _t= s0H _d0
� �� �

: ðB1Þ

B2. Case of a Stress Pulse

[67] We consider a shear square wave of half duration tw
applied at time t0 � tw: �t(t) = �t [H(t � t0 + tw) � H(t �
t0 � tw)], where H(t)is the Heaviside function. Let us first
calculate the function F(t) given by equation (A2) assuming
C( y) � 1, an assumption that is valid for a fault late in the
earthquake cycle (see the end of Appendix A). Using
equation (A2), we find

F tð Þ ¼
_d0
g

exp gtð Þ � 1� 2 exp gt0ð Þf sinh gtwð Þ

� 1� exp �t= as0ð Þð Þ½ �g; ðB2Þ

where g ¼ _t= as0ð Þ. The time to instability tp verifies F(tp) =
a/H and is therefore given by

tp ¼
1

g
ln 1þ ag

_d0H
þ 2 exp gt0ð Þ sinh gtwð Þ 1� exp �t= as0ð Þð Þ½ �

� �
:

ðB3Þ

Using equation (B3), we can derive an expression for the
minimum amplitude for instantaneous triggering. Noting

that equation (B3) is decreasing with increasing amplitude
�t, the time to instability reaches its minimum value when
the argument of the logarithm reaches 1 (and not 0 in order
for the time to instability to remain positive). Let us call�tc

the amplitude of the shear stress pulse for which it happens.
Using equation (B3), it is easy to find

�tc ¼ as0 ln 1þ ag

_d0H
exp �gt0ð Þ
2 sinh gtwð Þ

� �
: ðB4Þ

Therefore, knowing the initial velocity, it is possible to esti-
mate the minimum amplitude for instantaneous triggering.
If the initial velocity is unknown but the time to instability
tf without any perturbations is know, one can use equation
(B1) to replace the constant ag

_d0H
in B4 by exp (gtf) � 1.

In this case, equation (B4) can also be written as

�tc ¼ as0 ln 1þ exp gtf
� �

� 1
� � exp �gt0ð Þ

2 sinh gtwð Þ

� �
: ðB5Þ

Even though equation (B5) looks rather complicated, it
maybe used to qualitatively estimates if instantaneous
triggering is expected. Imagine that the interseismic time
Tinter is approximately known (because of historical records
or paleoseismological data). If no major surrounding
earthquakes have struck the area since the last major event
on the fault, then one can assume that the time left before
instability at time t0 verifies tf = Tinter � t0. If at time t0 a
train wave of half duration tw and of maximum amplitude
�t hits the fault, then it may be useful to compare �t with
�tc given in equation (B5). If �t � �tc then
instantaneous triggering is expected, while the train wave
should not have much affected the fault dynamic if �t �
�tc.

B3. Case of Periodic Variations of the Loading Stress

[68] Let us consider the effect of a wave train of infinite
duration such as �t(t) = �t f (wt), where f (t) is a periodic
function of period 2p. The function F(t) in equation (A2)
can be written in the case where C( y) � 1:

F tð Þ ¼ _d0

Z t

0

exp gyþ�tf wyð Þ= as0ð Þ½ �dy ðB6Þ

or alternatively, after the change of variable y ! wy:

F tð Þ¼
_d0
w

Z wt

0

exp gy=wþ�tf yð Þ= as0ð Þ½ �dy: ðB7Þ

[69] At low periods (w ! 1) the integral of equation
(B7) becomes

F tð Þ ’
_d0
w

Z wt

0

exp �tf yð Þ= as0ð Þ½ �dy: ðB8Þ

Let us write when T ! 0, n = int(t/T), where int(..) means
integer part, n � 1 being an integer. The function F(t) reads
in this case

F tð Þ ’
_d0
w

n g �tð Þ ðB9Þ

with

g �tð Þ ¼
Z 2p

0

exp �tf yð Þ= as0ð Þ½ �dy; ðB10Þ
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where implicitly, we have neglected in the expression of
F(t) a term which cannot exceed g(�t). This is justified if
n � 1. Remembering that n ’ t/T, equation (B9) becomes

F tð Þ ’ t _d0g �tð Þ
2p

: ðB11Þ

The time to instability tp(T ! 0) is obtained writing F(tp) =
a/H giving

tp T ! 0ð Þ ¼ 2pa
_d0Hg �tð Þ

: ðB12Þ

Equation (B12) gives the time to instability when extremely
low periods are considered. This time is not depending on
the frequency of the perturbations.
[70] The period T 0 = 2p/w0 above which the period

dependence starts may be roughly estimated writing
w0tp(T ! 0) ’ 2p. This corresponds to the case where
the upper limit of the integral (B7) corresponds to one
period of oscillation. This leads to T0 = tp(T ! 0) so that

T0 ¼ 2pa
_d0Hg �tð Þ

: ðB13Þ

The fact that T0 = tp(T ! 0) means that the transition period
between high and low frequencies is equal to the time to
instability, i.e., the time left before the earthquake. Therefore
the period T0 varies throughout the earthquake cycle,
decreasing with increasing time. At the very end of the cycle
_d0 ! 1

� �
, T0 is near 0 meaning that the fault response

strongly depends on the frequency of the stress perturbations.
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