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[1] The influence of normal and shear stress static perturbations on a strike-slip fault is
addressed on the basis of a two-dimensional continuous and quasi-dynamic model.
Friction along the fault plane is described using a rate-and-state friction law with depth
variable properties. Normal and shear stress perturbations result in similar effects in terms
of earthquake triggering if �t � m*�s is constant, �t and �s being the amplitude of the
shear and normal stress fluctuations, respectively, and m* being a constant which can be
interpreted as the static friction coefficient on the fault in a Coulomb failure model.
Therefore the Coulomb stress change �CFF = �t � m*�s is a useful tool to account
simultaneously for normal and shear stress variations in our model. We also show that
when estimating the clock advance or clock delay of an earthquake, the simple Coulomb
failure model is at first order in good agreement with our results during the first 90% of the
earthquake cycle. However, it differs significantly during the last 10% due to the sharp
velocity increase predicted by the rate-and-state friction law before rupture. This suggests
that as long as static variations of stress are concerned, realistic fault models using rich,
laboratory-based, friction laws like rate-and-state friction laws may lead to predictions fairly
close to the ones made using one of the simplest failure model, i.e., the Coulomb failure
model. This may explain why Coulomb stress change computations, although often based
on drastic approximations, have been able in many occasions to explain earthquake
triggering sequences. INDEX TERMS: 7209 Seismology: Earthquake dynamics and mechanics; 7215

Seismology: Earthquake parameters; 7260 Seismology: Theory and modeling; KEYWORDS: earthquake

triggering, static triggering, Coulomb stress change, rate and state friction laws, clock advance/delay

Citation: Perfettini, H., J. Schmittbuhl, and A. Cochard, Shear and normal load perturbations on a two-dimensional continuous fault:

1. Static triggering, J. Geophys. Res., 108(B9), 2408, doi:10.1029/2002JB001804, 2003.

1. Introduction

[2] Knowing the timing of an earthquake with accuracy
represents one of the most fundamental goals of earthquake
physics but seems for the moment like an impossible task.
However, a major advance would be to predict the locations
and timing of the aftershocks of a given main shock. For
this reason, earthquake triggering has been a widely studied
phenomenon in the last decade.
[3] Computation of the static Coulomb stress change [see

King et al., 1994] after a major earthquake appears as a useful
tool since it seems that an important percentage of the
aftershocks lies in areas where the Coulomb stress has

increased while seismicity seems to be reduced in the stress
shadows [Harris and Simpson, 1998] where Coulomb stress
decreases. Even though this static tool has been successful in
modeling the earthquake sequence of Landers [King et al.,
1994] and on the North Anatolian fault [Stein et al., 1997], it
fails to explain the existence of triggered seismicity at large
distances from the Landers epicenter [e.g., Gomberg et al.,
2001], where the static stress changes are negligible. The
physical mechanism that seems responsible for such a remote
triggering is the passage of seismic waves [see, e.g.,Gomberg
and Bodin, 1994;Gomberg and Davis, 1996;Gomberg et al.,
2000b], which induces significant but transient stress pertur-
bations at large distance from the main shock.
[4] In order to understand the triggering processes, we

propose to study the effect of permanent (static stress field)
as well as transient (dynamic stress field) variations of both
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shear and/or normal stresses on the triggering of earth-
quakes and link them to Coulomb stress changes. Static
triggering is studied in the present paper. Transient varia-
tions are addressed in the companion paper by Perfettini et
al. [2003]. Dieterich [1994] and Gomberg et al. [1998] have
considered permanent as well as transient perturbations of
the shear stress using the simple spring slider fault model in
absence of inertial effect. A similar study has been carried
on by Roy and Marone [1996] considering inertia by giving
a mass to the slider. We extend here these previous studies
to both shear and normal stress perturbations, and propose
to use a more realistic fault description that takes into
account long range elastic interactions. For this purpose,
we use a two-dimensional (2-D) continuous model of a
strike-slip fault with depth variable frictional properties (see
Figure 1a), analogous to the model of Rice [1993]. The
model is quasi-dynamic in the sense of Rice [1993] (stress
changes due to slip are static and propagate instantaneously;
an instantaneous radiation damping term is included, in
order to prevent infinite velocities during instabilities).
Instead of assigning a mass to the fault as in the work of
Roy and Marone [1996] in order to prevent instability, we
use the physically based radiation damping term that has
two advantages: (1) it damps the slip instability and (2) its
existence is derived from the laws of elastodynamics. Note
that in a spring slider model, the inertial term is proportional
to the time derivative of the velocity of the slider (term in
m _V (t), where V(t) is the sliding velocity) while the radiation
term is proportional to the fault velocity (term in GV(t)/2b,
where G is the shear modulus and b is the shear wave
velocity). This model has been compared to a full dynamic
model by Lapusta et al. [2000] and Lapusta and Rice
[2003] showing that both models are in good agreement.
The quasi-dynamic simulation preserves the main features
of the dynamic simulation. However, our goal is not to
study in detail earthquake rupture but rather to look at the
onset of instability where most, if not all, dynamic effects
may be neglected. In contrast with previous studies, the
model rigorously accounts for the simultaneous temporal
variations of the shear and normal stresses. Accordingly, the
total Coulomb stress change can be computed. Sensitivity to
normal stresses fluctuations has also been included in the
friction law along the fault. We use a laboratory-based, rate-
and-state friction law with a state variable that depends on
the normal stress fluctuations [Linker and Dieterich, 1992].

2. Rate-and-State Friction Laws

[5] Rate-and-state friction laws [Dieterich, 1979; Ruina,
1983] have been successfully used to model a wide range
of phenomena from rock friction experiment laboratory
measurements [Dieterich, 1979, 1981], to the entire earth-
quake cycle including earthquake afterslip [Tse and Rice,
1986; Marone et al., 1991; Lapusta and Rice, 2003].
[6] Under this formalism, the coefficient of friction

m = t/s, where t and s are the shear and normal stress,
respectively on the fault, may be expressed as

m V ; qð Þ ¼ m
*
þ a ln

V tð Þ
V*

� �
þ b ln

q tð Þ
q*

� �
; ð1Þ

where V(t) is the sliding velocity, q(t) is a state variable
which may be physically interpreted as the average age of

the population of contacts between the two bare surfaces
[Dieterich, 1981; Persson, 1998], and a and b are some
empirical constants, while V*, q*, and m* are reference
values such as m(V*, q*) = m*. The logarithmic terms in
equation (1) may be justified by a thermally activated
process [e.g., Baumberger et al., 1999].
[7] The evolution of the state variable with time is given

by the Dieterich evolution or ‘‘ageing’’ law

_q ¼ 1� V tð Þq tð Þ
Dc

; ð2Þ

where Dc, a characteristic length, may be understood as the
average length for the renewal of the population of contacts,
i.e., the average size of such a contact.
[8] When the sliding velocity reaches zero, the evolu-

tion law (2) shows, assuming a proper regularization of

Figure 1. (a) Sketch of the fault geometry used in this
model. The fault of friction coefficient m and rigidity G is
invariant along strike (2-D fault model) but has depth-
dependent frictional properties. Stress perturbations are
added to the loading due to the motion of the plates at
velocity Vpl. (b) Frictional parameters a (dashed line) and
a � b (solid line) as a function of depth. The shallow
(�2 km < z < 0) as well as the deepest part (z > �14.7 km)
of the fault show velocity strengthening (a > b) while at
intermediate depths (�14.7 km < z < �2 km), the fault has a
velocity weakening behavior.
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equation (1), that _q = 1 and q may be interpreted as the
time of contact. Other experimentally based evolution
laws exist such as the Ruina or ‘‘slip’’ law:

_q ¼ �V tð Þq tð Þ
Dc

ln
V tð Þq tð Þ

Dc

; ð3Þ

but we will not consider them since they lack a physical
interpretation and are more difficult to deal with analytically.
[9] A steady state exists that is reached when _q = 0, i.e.,

q = qss = Dc/V, where the subscript ss refers to steady state.
In this case, the coefficient of friction becomes

mss ¼ m
*
þ a� bð Þ ln V tð Þ

V*

� �
: ð4Þ

Examination of equation (4) shows that the coefficient of
friction at steady state is decreasing with increasing sliding
velocity when b > a while the opposite happens when a > b.
Therefore velocity weakening (b > a) surfaces are poten-
tially unstable and able to generate stick-slip instabilities or
earthquakes while velocity strengthening surfaces (a > b)
promote stable sliding or creep. The word potentially is
introduced since the fault surface is surrounded by an elastic
medium which may, in the velocity weakening case, stabi-
lize slip if stiff enough (see section 4).
[10] Linker and Dieterich [1992] and later Richardson

and Marone [1999] showed that the rate-and-state formal-
ism still holds in the case of variable normal stress, the
equation of the state variable evolution being changed to

_q ¼ 1� V q
Dc

� a
q _s
bs

; ð5Þ

where a new parameter a is introduced.
[11] The value of the frictional parameters a, b, m*, Dc and

a can be obtained from laboratory friction experiments.
However, it is not clear whether such values are relevant at
the fault scale. We now briefly discuss this issue.
[12] 1. The confinement of seismicity at intermediate

depths is consistent with the temperature dependence of
the quantity a � b as inferred from laboratory experiments
[Blanpied et al., 1991]. Therefore we believe that laboratory
estimates of a and b can be extrapolated at the fault scale
without any changes.
[13] 2. If rate-and-state effects were to be ignored (a =

b = 0), then m* would represent the constant coefficient of
friction of the fault in a simple Coulomb failure model. Such
a quantity is not well known at the fault scale. However, its
estimate by the mean of, say, Coulomb stress computations
(see the review of Harris [1998]) as well as deep well in situ
measurements [e.g., Brudy et al., 1997] are comparable with
values inferred from laboratory experiments.
[14] 3. Using a simple friction model based on the

Bowden-Tabor theory of friction (i.e., all the contacts
between the two surfaces are independent and identical,
and have reached the yield plastic stress) [Bowden and
Tabor, 1950, 1964], Perfettini [2000] found that a ’ m*/3.
Linker and Dieterich [1992] and Richardson and Marone
[1999] have measured the a parameter on granite surfaces
with gouge. They both found a ’ 0.2 and m* 0.6, which is
in agreement with the estimate a ’ m*/3.

[15] 4. The most delicate point concerns the parameter
Dc. When measured on bare rock surfaces in the laboratory,
Dc varies in the range 1–10 mm which is consistent with the
average size of the contacts as measured by Dieterich and
Kilgore [1994] by imaging surface contacts. When a gouge
zone is introduced, the value of Dc increases, and on the
basis of their laboratory measurements,Marone and Kilgore
[1993] propose that Dc = 1 mm for the San Andreas fault. A
recent experiment by Chambon et al. [2002] conducted in a
shear rotary apparatus with a wide gouge zone (of the order
of 0.1 m), even suggests that Dc could be of the order of
several decimeters, which is of the order of the estimate
obtained by inversion of teleseismic daa [Ide and Takeo,
1997; Bouchon et al., 1998]. The actual value of Dc for
faults is still the focus of many discussions and cannot yet
be accurately estimated (see Uenishi and Rice [2002,
section 5.2] for a discussion). Because of numerical con-
straints, we will choose Dc values of the order of a
centimeter, as discussed in section 4.

3. Model

[16] We consider a strike-slip fault invariant along strike
(see Figure 1a). Therefore we deal with a 2-D antiplane fault
with variable properties with depth. For the sake of sim-
plicity a quasi-dynamic approximation is used, i.e., dynamic
effects are only considered through the presence of a
radiation damping term (see below) that prevents infinite
velocities during instability. The existence of the free
surface is taken into account using a mirror image of the
fault. The model is therefore similar to the one described by
Rice [1993]. The numerical domain of width 2L (the factor
of 2 being due to the use of the mirror image) is divided into
n cells of length �x = 2L/n for which slip, slip velocity and
stress are computed at the center of each cell. Under the
rate-and-state formalism, the frictional stress at point i
depends on the slip velocity Vi(t), the state variable qi(t),
but also on the normal stress si(t):

ti Vi tð Þ; qi tð Þ;si tð Þ½ � ¼ si tð Þ mi Vi tð Þ; qi tð Þ½ � ; ð6Þ

where the coefficient of friction at point i can be expressed
as

mi Vi tð Þ; qi tð Þ½ � ¼ mi*þ ai ln Vi tð Þ=V*
� �

þ bi ln qi tð Þ=q*
� �

: ð7Þ

The state evolution of the ith cell is described by

_qi tð Þ ¼ yi Vi tð Þ; qi tð Þ; si tð Þ; _si tð Þ½ �; ð8Þ

where the functional yi[Vi(t), qi(t), si(t)] reads

yi Vi tð Þ; qi tð Þ;si tð Þ; _si tð Þ½ � ¼ 1� Vi tð Þ; qi tð Þ
Dci

� ai qi tð Þ
bi

_s tð Þ
s tð Þ ; ð9Þ

following Linker and Dieterich [1992].
[17] Considering the well-known relation between a slip

distribution d(x) over an antiplane fault and its associated
quasi-static shear stress variation �(G/(2p))

R
0
L(@d(x)/@x)/

(x � x) dx [e.g., Bilby and Eshelby 1968], where G is the
shear modulus, x an integration variable which covers the
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whole fault length L, i.e., 0 < x < L. In our particular model
the absolute shear stress on the fault can be written as

t x; tð Þ ¼ t0 x; tð Þ � G

2 b
V x; tð Þ � Vpl

� �
� G

2p

Z L

0

1

x� x

	 @ d x; tð Þ � V0 t½ �
@x

dxþ�t x; tð Þ ; ð10Þ

where b is the shear wave speed and Vpl is the plate velocity.
[18] The first term on the right-hand side represents the

initial stress on the fault t0(x), the second one is the
radiation damping term, and the third term represents
the above mentioned elastic interactions. Temporal varia-
tions of the shear stress are taken into account through the
�t(x, t) term. Now, assuming that all fields are constant over
each grid cell of length� x, which amounts to writing d(x, t) =
�jdj(t){H[x� ( j� 1/2)�x]�H[x� ( j + 1/2)�x]}, whereH
is the Heaviside function, the discretized version (10) reads

ti Vi tð Þ; qi tð Þ;si tð Þ½ � ¼ t0i �
G

2 b
Vi tð Þ � Vpl

� �
þ �n

j¼1Kij dj tð Þ � Vpl t
� �

þ�ti tð Þ; ð11Þ

where the spatial x dependence is replaced by the discrete i
dependence and the static kernel Kij is given by

Kij ¼
G

2p�x

1

i� jð Þ2�1=4

" #
: ð12Þ

[19] Describing the evolution of the system requires to
solve a system of n equations (one for each point of the
fault) such as equation (11). This may be done using an
implicit scheme [e.g., Dieterich, 1992; Rice, 1993]. Like
Stuart and Tullis [1995], we prefer to rearrange the set of
equations in order to use an explicit scheme. Deriving
equation (11) at cell i with respect to time reads

@ti=@Við Þ _Vi þ @ti=@qið Þ _qi þ @ti=@sið Þ _si

¼ � G

2 b
_Vi þ �n

j¼1Kij Vj � Vpl

� �
þ�_ti tð Þ: ð13Þ

Since _qi = yi and @ti/@si = mi, the system of 2 n first order
differential equations to be solved is

_Vi tð Þ ¼ �n
j¼1Kij Vj � Vpl

� �
� @ti=@qið Þyi

h
�mi _si þ _�ti tð Þ

i
= @ti=@Vi þ G

2 b

h i
_qi tð Þ ¼ yi Vi tð Þ; qi tð Þ;si tð Þ; _si tð Þ½ �;

8>>>><
>>>>:

ð14Þ

where i runs from 1 to n. This set of equations is integrated
using a Runge-Kutta algorithm [Press et al., 1992] with a
fifth-order adaptive step-size control. Such an explicit
procedure is much faster (and easier to implement) than
an implicit one. Also note that, due to the translational
invariance of the kernel K (i.e., the value of Kij only
depends on i � j), the summation in equation (14) reduces
to a convolution which can be computed using fast Fourier
transform methods.

[20] As mentioned above, fault properties are only depth-
dependent. The fault of length L = 20 km is loaded at
constant velocity Vpl = 35 mm/yr. The shear wave velocity
is b = 3 km/s and the shear modulus is G = 30 GPa. For
the sake of simplicity, normal stress is held constant to
s0 = 50 MPa throughout the depth. Such a case corresponds
to high fluid overpressurization at depth, as discussed by
Rice [1992]. The model includes a free surface boundary at
z = 0 km.
[21] The frictional parameters a and b are allowed to vary

with depth in agreement with Blanpied et al. [1991]. This
variation is mainly caused by the dependence on tempera-
ture (and so on depth) of the laboratory-inferred a and b
parameters at large depths, while it is likely to be due to a
transition from consolidated (z < �2 km) to unconsolidated
(z > �2 km) gouge at shallow depths [e.g., Marone, 1998].
The values of the a and a � b parameters versus depth
shown in Figure 1b were taken from Lapusta and Rice
[2003, and references therein]. Both the shallow and the
deep part of the fault show velocity strengthening (a > b),
while at intermediate depths, the fault has velocity weak-
ening properties (b > a). This intermediate part is the
seismogenic zone of our model.
[22] The a parameter of Linker and Dieterich [1992] is

set to a = 0.2 except when b = 0 (z < � 17km). Since the
derivative of q with respect to time given in equation (5) has
no meaning when b reaches 0, we set a = 0 when b = 0, in
order to eliminate this pathological case. The constant
term m*(z) in the coefficient of friction was held constant
at m*(z) = m* = 0.6 as well as the constant reference velocity
V* which was set to V* = 1 mm/s.

4. Stability and Nucleation Size

[23] Some of the features of the 2-D model can be
captured using a simplified 1-D model often referred to as
the spring block model. In this model, the elasticity of the
medium is reduced to a spring of stiffness k. The equations
of motion of the 1-D fault are (here the block is assumed
massless)

_V ¼ k Vpl � V
� �

� @t=@qð Þy� m _s
�
þ _�t tð Þ

i
= @t=@V½ �

_q ¼ y V tð Þ; q tð Þ;s tð Þ½ �:

8>>>><
>>>>:

ð15Þ

A comparison between the 1-D and 2-D model is given by
H. Perfettini et al. (manuscript in preparation, 2002). The
equivalent stiffness of the fault k per unit area, is defined in
our model by

k ¼ �G=L; ð16Þ

where L is the length of the fault. Equation (16) is a general
property of elastic systems (e.g., Dieterich [1992] or Rice
[1993]). The constant � is of the order of unity (we choose
� = 2/p as discussed by H. Perfettini et al. (manuscript in
preparation, 2002). [2002]) and depends on the geometry of
the fault and on the deformation mode. This scaling of the
fault stiffness has some fundamental consequences, as will
be discussed below.
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[24] Stability analysis performed by Rice and Ruina
[1983] using the spring block model shows that for a
velocity weakening friction (b > a), the slider exhibits stable
slip for k > kc and unstable slip for k < kc, the critical
stiffness being given by kc = s0(b � a)/Dc, with s0 the
normal load. Recalling the scaling k = � G/L where L is the
length of the fault, this implies that a fault of size L < Lc
shows stable slip while a fault of length L > Lc undergoes
unstable slip, i.e., stick-slip motion. The critical length Lc,
often called the nucleation length, is given by Lc = � G/kc =
� GDc/[s0(b � a)].
[25] According to this concept of nucleation size, the

minimum size of an earthquake is Lc since no instability can
occur for faults smaller than Lc. To study the effect of
temporal perturbations of the loading stress, two type of
faults have to be considered.
[26] The first type consists of faults smaller than the

nucleation size Lc. These faults do not produce earthquakes
since they slip in a stable way. The question to ask is: Are
perturbations of the loading stress able to destabilize
these faults? This point has been extensively discussed by
Perfettini et al. [2001] considering a spring slider model and
is extended to a 2-D continuous fault model by H. Perfettini
et al. (manuscript in preparation, 2002).
[27] The second type consists of faults bigger than the

nucleation size Lc. These faults are unstable and therefore
seismically active. The question to ask is: Will the pertur-
bations of the loading stress hasten or delay the occurrence
of the earthquake? This point will be discussed in section 6
and is the aim of this work.
[28] The characteristic length Dc of the friction law is set

in our model to Dc = 2 cm at all depths. The choice of this
value is mainly dictated by numerical reasons. As first
pointed out by Rice [1993], a proper discretization of a
continuous fault involves a grid spacing � x much smaller
than the nucleation size in order to properly account for the
nucleation process. Since we have Lc = (2/p)[GDc/s0(b� a)]
in our model, we find, taking b � a = 0.004 as in the
seismogenic zone, that Dc = 2 cm implies Lc ’ 2 km. Taking
Lc ^ 10�x for a proper discretization, this calls for about
100 elements to discretize the fault, hence about n
200
elements to discretize the whole numerical domain of length
2L. In most of our numerical runs, we choose n = 256 grid
points, thus insuring a correct resolution of the continuum at
minimum time consumption, allowing us to widely explore
the parameter space of our model.

5. Numerical Procedure

[29] We start all our numerical simulations with a fault at
the steady state, i.e., Vi = Vpl, si = s0, and qi = Dc/Vpl for all
points of the fault. At time t = 0, an earthquake is artificially
nucleated, the sliding velocity being suddenly increased by
a factor of 10 in the region [z0 � Lc/2; z0 + Lc/2] with z0 =
�10 km. We then let the fault evolve with time. The
maximum sliding velocity Vmax over the whole fault is
shown as a function of time in Figure 2 for n = 256 grid
points. The fault rapidly enters a stationary regime where
earthquakes occur periodically. This regime appears to be
independent of the particular choice of the artificial nucle-
ation procedure. With our choice of parameters, the inter-
seismic time is of the order of Tinter ’ 96.2 years. The slip

distribution for two events is shown in Figure 3 which
further emphasizes the similarity between events. The
events nucleate at 5 km, propagate, and finally rupture the
fault between the surface and about 16 km depth.
[30] Once the fault has reached a stationary regime, we

save the value of the velocity Vi and state variable qi at given
times of the earthquake cycle for all points of the fault.
These values are then used as initial conditions for runs that
include perturbations.
[31] Perturbations may change the duration of the rest of

the cycle, tp, which is denoted tf in the absence of perturba-

Figure 2. (a) Maximum sliding velocity on the fault as a
function of time. (b) Sketch defining the times used in this
study. Tinter is total duration of the earthquake cycle, tf is
unperturbated time to failure, tp is time to failure when
stress perturbations are considered, t0 is time of application
of the perturbation, and �t = tf � tp is the clock change.
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tions and is considered as a reference (Tinter = t0 + tf, see
Figure 2b). Clock advance or clock delay �t are estimates
of the difference between the duration after perturbation, tp,
and the reference duration tf : �t = tf � tp. A clock advance
corresponds to a positive �t and a clock delay to a negative
�t. The initiation time t0 is measured from the onset of the
cycle and the durations tf or tp are times to instability from
t0. Instability is declared when the maximum slip velocity
on the fault surpasses a prescribed threshold of 10�2 m/s.
This value is in agreement with the order of magnitude of
the velocity Vin at the transition from quasi-static to dynamic
slip inferred by Roy and Marone [1996] considering a
spring slider model and accounting for inertial effects.
Indeed, they found that 10�3 < Vin < 10�1 m/s, a value that
brackets our slip velocity threshold 10�2 m/s. Note, that due
to the abrupt increase of the sliding velocity at the end of the
earthquake cycle, the choice of this velocity threshold has
almost no effect in terms of predicted clock change.

6. Static Triggering (ST)

[32] When the transient change of the loading stress due
to the passage of the seismic wave has ceased, a static stress
perturbation is left on the fault. The object of this paper is
the effect of such a permanent change in the loading stress.
As in the work by Gomberg et al. [1998], we model these
variations as stress steps. A stress step is defined by its
amplitude and its time of application t0. We first consider
the effect of loading steps, that is, steps that promote failure.
[33] The model allows the use of shear and normal stress

perturbations. In order to describe perturbations with a
single parameter, we introduce the Coulomb failure func-
tion:

CFF t; sð Þ ¼ t� m
8
s; ð17Þ

where m8 is the reference friction coefficient introduced in
equation (1). We used m* = 0.6. Time derivability of the
stress step is obtained using a sine evolution over a time

interval of 10 s. Discussion of the friction coefficient choice
is included in section 7.
[34] Accordingly, stress perturbations are described as

�CFF (�t, �s) = �t � m8�s. We first consider only
normal stress perturbations: �CFF(0, �s). Complete per-
turbations of �CFF(�t, �s) of both shear and normal
stress are addressed in section 6.3.

6.1. Loading Steps (�CFF > 0)

6.1.1. Influence of Triggering Time t0
[35] We first consider the influence of the time t0 at which

the loading step is applied. Figure 4 shows the clock
advance due to normal loading steps applied at various
times t0 for two step magnitudes �CFF. The amplitude of
the normal stress steps are �s = �0.005 and �0.5 MPa
(10�4% and 10�2%, respectively, of the total normal load s0).
We see that the clock advance is roughly constant when t0
] 90 years. Small magnitude fluctuations of broad wave-
length (
20 years) are superimposed and their existence is
discussed in Appendix A. The later the triggering time t0, the
larger the departure from a constant approximation. For very
late perturbation triggering (t0^ 90 years), the clock advance
falls down and reaches the instantaneous triggering curve for
which �t = tf.
[36] The straight lines in Figure 4 represent the prediction

of the Coulomb failure model which predicts a clock
advance of

�tCFF ¼ �CFF= _t; ð18Þ

where _t is the loading stress rate. However, the clock
advance in our work is obtained using the formula �t =
min(�tCFF, Tinter � t0) where Tinter is the duration of the
earthquake cycle and t0 the time at which the static load is
applied. Indeed, the clock advance can not exceed the time
left until the next event tf = Tinter � t0 when no perturbations
are considered. We see in Figure 4 that the limit �t = Tinter
� t0 is strictly followed only for large stress fluctuations
(�s = �0.5 MPa). For smaller magnitude of the stress
perturbation (�s = �0.005 MPa), there is a departure from
the Coulomb failure approximation but also from the
instantaneous triggering curve �t = Tinter � t0 = tf.
[37] The loading stress rate _t is equal in the spring slider

model to _t = kVpl, where k is the equivalent stiffness of the
fault defined in equation (16). We see that during most of the
cycle, the prediction of the simple Coulomb failure model is
in good agreement with our results derived using a rate-and-
state friction law. However, the Coulomb failure model is
unable to explain the small oscillation of the clock advance
observed in Figure 4, which are discussed in Appendix A.
6.1.2. Influence of the Step Amplitude �CFF
[38] We now study the influence of the amplitude�CFF of

the loading stress steps for normal stress steps �s < 0.
Figure 5 presents the clock advance as a function of the
amplitude of the steps �CFF applied at three different times
t0 = 14, 54 and 94 years. The most important observation of
Figure 5 is that the clock advance is proportional to the
amplitude of the steps. The Coulomb failure model leads to
the clock advance �tCFF and this prediction (straight line in
Figure 5) is in good agreement with the 2-D continuous fault
model.
[39] The predictions of the Coulomb failure model differ

significantly from the numerical calculations when the steps

Figure 3. Slip as a function of depth. Each line represents
the slip distribution at a given time and corresponds to a
velocity change of 10%.
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are applied late in the cycle (t0 = 94 years) as may be seen in
Figure 5. At those times, the non linearities of the friction law
become important due to the rapid increase of the sliding
velocity. This effect is lacking in a Coulomb failure model
where the fault is always at rest (V= 0) during the interseismic
period. It explains the large discrepancy (in terms of predicted
clock change) between the prediction of the Coulomb failure
criterion and our results. The cutoff because of the maximum
clock advance also introduces a significant departure from
the Coulomb failure criterion. Subsequently, the clock ad-
vance due to a step applied very late in the cycle might be
smaller by several orders of magnitude than the clock
advance due a step applied early in the cycle. Unlike
transients variations of stress [see Perfettini et al., 2003],
static variations of stress have a higher triggering potential
when applied early in the cycle. As previously noted by
Gomberg et al. [1998], this is due to the fact that the earlier
the permanent perturbation is applied, the bigger its effect.
However, we emphasize that during most of the cycle (i.e.,
before the late departure from the Coulomb failure criterion,
that is, t0] 90 years), the clock advance is weakly sensitive to
the triggering time t0 since it shows a plateau with small
amplitude fluctuations (see Figure 4).

6.2. Unloading Steps (�cff < 0)

6.2.1. Influence of Triggering Time t0
[40] Unloading steps (�CFF(�t, �s) < 0) may delay

the occurrence of rupture. Figure 6 represents the clock delay
��t due to normal stress steps of amplitude �s = 0.5 MPa
and�s = 0.005 MPa applied at various times t0. It is crucial
to note that unlike clock advance, clock delay is unbounded.

There is no cutoff at late triggering time t0 since the clock
delay is not related to the duration tf. As for the loading steps
(see Figure 5), the clock delay is roughly constant as long as
t0 < 90 years. Small magnitude oscillations also exist with an
increasing magnitude with triggering time t0. Their origin is
discussed in Appendix A. The Coulomb failure model
(straight line in Figure 5) predicts a clock delay equal to

�tCFF ¼ ��CFF= _t; ð19Þ

which is independent of the triggering time t0. It is again in
good agreement with the numerical results for steps applied
early in the cycle (t0 ] 90 years) but differs for steps applied
late in the cycle (t0 ^ 90 years).
[41] The sensitivity of the clock advance and clock delay

to the triggering time t0 may also be understood from the
following equation (20) obtained from Appendix D2. It
gives an expression of the clock change due to a stress step
of small amplitude, i.e., �t � as0 applied at time t0:

�t ¼ �tCFF 1� exp gt0ð Þ
1þ ga

_d0H

" #
; ð20Þ

with g = _t0/(as0), H = b/Dc � k/s0 (k is the equivalent
stiffness of the fault), and _d0 is the initial sliding velocity.
This expression was obtained using the spring slider model.
Looking at equation (20), we see that the clock advance
differs from the Coulomb prediction (see equation (19)) by
a factor �t/�tCFF = 1 � {exp(gt0)/[1 + (g a_d0H)]}. The
bigger t0, the larger the discrepancy between the Coulomb

Figure 4. Clock advance due to loading steps in normal stress as a function of perturbation triggering
time t0. Estimates of the clock advance for two magnitudes of the normal stress perturbation: �CFF
(0, �s = 0.5 MPa) and �CFF(0, �s = 0.005 MPa) are plotted. The Coulomb failure model (straight
lines) appears as a good first order approximation of the continuous 2-D fault model. The dashed line
corresponds to the maximum possible clock advance �t = tf or instantaneous triggering. The earthquake
normally occurs at time t = 96.2 years in the absence of perturbations.
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failure model and the prediction of a 1-D model that obeys
rate-and-state friction.
6.2.2. Influence of the Step Amplitude
[42] Figure 7 presents the clock delay due to normal stress

steps of various amplitudes, all of them being applied either at
time t0 = 14 (early), or t0 = 54 (middle), or t0 = 94 years (late in

the cycle). We observe that the clock delay is proportional to
the amplitude of the steps. The prediction of the Coulomb
failure model (straight line) �tCFF (see equation (19)) is in
very good agreement with numerical simulations. We note
that the departure from the Coulomb failure model prediction
increases for late triggering. This is consistent with

Figure 5. Clock advance as a function of the amplitude of a loading step �CFF(0, �s < 0) applied at
three triggering times t0 = 14, t0 = 54, and t0 = 94 years. Prediction from the Coulomb failure model
(straight line) is in good agreement with our results for early triggering time t0. For late triggering (t0 =
94 years), the cutoff because of the maximum clock advance (�t � tf) becomes dominant.

Figure 6. Same as Figure 4 for unloading steps.
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equation (20) which shows that the above mentioned factor,
i.e., �t/�tCFF, decreases from one for late triggering.
[43] When stress steps are applied late in the cycle, the

predictions of the Coulomb failure model differ significantly
from numerical calculation results at low step amplitudes
(�CFF < 0.5 MPa) but are in good agreement at higher
amplitudes. This discrepancy may be understood in the
following way. At low amplitudes, the spring block approx-
imation leads to a clock delay of ��t where �t is given in
equation (20). Therefore the vertical downward shift in a log-
log diagram (Figure 7), of the clock delay��twith respect to
the Coulomb failure prediction (see equation (19)) is 1 �
exp(g t0)/[1 + (g a/_d0H)]. However, for unloading steps of
high amplitude, the clock delay can be obtained using
equation (D8), leading to

��t ¼ �tCFF þ
1

g
log 1� exp gt0ð Þ

1þ ga
_d0H

" #
: ð21Þ

At first order, the first term of the right hand (�tCFF) is
dominant. Accordingly, the ratio �t/�tCFF is close to one
and the shift, in a log-log diagram, is in this case zero, the
numerical results being in agreement with the Coulomb
failure model. Therefore we explain both behaviors for low
and high unloading amplitude steps and their different con-
sistency with the prediction of the Coulomb failure model.

6.3. Normal and/or Shear Stress Perturbations
(�T and/or �S)

[44] In the previous sections we considered permanent
variations of the normal stress (loading or unloading step).
In this section we extend our results to perturbations of the

shear stress. We show that a large combination of stress
perturbations are equivalent. They have to fulfill the fol-
lowing criterion:

�CFF �t;�sð Þ ¼ const : ð22Þ

[45] Figure 8 shows the clock advance �t for four cases
of stress perturbations at constant �CFF: only a shear stress
perturbation (0.1 MPa, 0), only a normal stress perturbation
(0, �0.1/m* MPa), and two mixed cases (0.025, �0.075/m*)
and (0.075, �0.025/m*). The four numerical curves perfectly
superimpose and show that the relevant description of static
stress perturbations has to be done using the Coulomb stress
perturbation �CFF. A similar conclusion can be drawn
from the clock delay estimate. This result is extended for
dynamic perturbations by Perfettini et al. [2003].
[46] A last result concerns the relationship between

advance and delay when changing the sign of the Coulomb
stress perturbation. At a given triggering time t0, we
computed the clock advance for a perturbation �CFF =
�0.5 MPa and the clock delay for �CFF = 0.5 MPa. The
ratio of the advance and the delay is plotted in Figure 9
with respect to the triggering time t0. We see from Figure 9
that the triggering of a loading or unloading stress step at a
given time t0 does not lead to a ‘‘symmetric’’ situation.
Delay and advance are not of the same magnitude. The later
the triggering, the larger the difference between advance
and delay might be. This result might have implications for
inhibition or enhancement of stress Coulomb modeling.
Indeed, a region with mixed conditions of Coulomb stress
perturbations might see a strong enhancement of the clock

Figure 7. Clock delay as a function of the amplitude of an unloading step (�s > 0) applied at three
different triggering times t0 = 14, t0 = 54, and t0 = 94 years for various normal stress steps. The prediction
of the Coulomb failure model �tCFF (straight line) is in agreement with the numerical calculations for not
too late triggering time t0.
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advance if other regions of clock delay are relatively
inhibited, i.e., large ratio advance/delay.

7. Discussion

[47] As discussed in section 1, the computation of the
static Coulomb stress changes has been successful in
explaining a large number of earthquake sequences (see
Harris [1998] for a review). We discuss this success in the
view of our results.
[48] First, we showed that for most types of perturbations,

normal and shear stress variations have the same effect in
terms of clock advance if their amplitudes satisfy �CFF =
�t � m*�s = Const.
[49] This observation may be justified using equation (B7)

which gives the relative change of velocity following steps in
normal and shear stress. As long as the normal stress varia-
tions are small, i.e., �s � s0, the influence of (s1/s0)

a/a is
negligible and the relative change of velocity is given by

�V

V0

’ exp �CFF0= as1ð Þ
� �

� 1; ð23Þ

where �CFF0 = �t � m0�s is the Coulomb stress
calculated using the coefficient of friction m(t0) = m0 at the
time t0 at which the stress step is applied.
[50] We now discuss the difference between �CFF0

computed using m0 (which evolves during the earthquake
cycle) and �CFF used all along the manuscript, that refer to
the constant value m*. The latter friction coefficient m* is the
reference friction coefficient (see equation (1)). The coeffi-
cient of friction m(V, q) is roughly constant during the
earthquake cycle but varies near the end of the cycle where
it drops to lower values. The mean value of the coefficient

of friction varies from 0.56 during seismic rupture to a peak
value of 0.6 at the onset of instability. Accordingly the
assumption m0’ m* is acceptable. Therefore the introduction
of the Coulomb failure function �CFF = �t � m*�s is a
relevant approximation which is confirmed by our results.
[51] As shown in section 6.3, the clock advance is

uniquely defined for a given value of �CFF, despite the
combinations of shear and normal stresses considered. This
means that the Coulomb failure function is an efficient tool
to account for simultaneous static variations of the shear and

Figure 8. Clock advance as a function of the triggering time t0 for different stress perturbations at
constant �CFF = 0.1 MPa.

Figure 9. Ratio of the clock advance and clock delay as a
function of the triggering time. Advance and delay are
computed for the same magnitude of the stress perturbation
j�CFFj = 0.5 MPa but changing its sign.
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normal load. The coefficient m* could be approximately
considered as the constant coefficient of friction in aCoulomb
failure model. We use the word ‘‘approximately’’ since m*
depends on the sliding velocity for which it was measured,
that is, V*. Using m*

0 = m* � alog(V*) � blog(Dc/V*) (with a
and b being values representative of the seismogenic
depths) might be more appropriate since it does not depend
on the reference velocity V*. However, since a and b are
small compared to m*, the difference between m*

0 and m* is
usually negligible (m*

0 ’ 0.62 instead of m* = 0.6 in our
work).
[52] In Appendix B we show that the Coulomb failure

function can be extended to include the sensitivity to normal
stress fluctuations of the state variable in the friction law.
Fromequation (B14) and as previously proposed byDieterich
[1994], we define the Coulomb failure function as

�CFFa ¼ �t� m0 � að Þ�s; ð24Þ

where a is the normal stress sensitivity (see equation (5)).
[53] The second point is whether or not the Coulomb

failure criterion is appropriate for earthquake mechanics.
Of course, the answer is negative when one deals with
transient stress perturbations or earthquake rupture. Howev-
er, in section 6 we showed that except at the very end of the
earthquake cycle (say the last 10% and for the case of
unloading steps), the prediction of the Coulomb failure
criterion in terms of clock advance or clock delay were in
agreement to first order (i.e., neglecting the small oscilla-
tions) with our results when static variations of the loading
stress were considered. The discrepancy between our results
and the predictions of the Coulomb model at the end of the
earthquake cycle comes from the fact that the coefficient of
friction shows significant variations at the end of the cycle.
We believe that the large period of agreement during the cycle
may explain the success of the Coulomb failure criterion in
modeling many earthquake sequences. In Appendix B we
show that a fault governed by rate-and-state friction laws is
Coulomb-like during the locked phase (i.e., whenVq/Dc�1).
This phase lasts for most of the cycle [Gomberg et al., 2000a].
Large positive �CFF reduces the duration of the locked
phase and therefore, the departure from a Coulomb-like
behavior occurs earlier in the cycle (see Figure 5). An
opposite conclusion is reached when large negative steps in
�CFF are considered. Indeed, large unloading steps increase
the duration of the locked phase since the fault is slowed
down. Therefore the departure from a Coulomb-like behavior
occurs later in the cycle (see the t0 = 94 year curve on Figure 7
at large amplitudes) in a phase called the self-accelerating
phase [Dieterich, 1992]. The transition from the locked to the
self-accelerating phase occurs when the state variable
becomes greater than its steady state value, i.e., when
q > qss = Dc/V. Using equation (1), this last inequality can
be expressed as m > mss, where mss is the coefficient of friction
at steady state described in equation (4). Therefore the fault is
in the locked phase as long as its coefficient of friction is
lower than its steady state value, and evolves otherwise in the
self-accelerating phase.
[54] However, one of the major differences between the

predictions of the Coulomb failure model and our results is
that at the end of the earthquake cycle, the clock delay due
to unloading steps drops to zero. Such a feature has been
previously noticed by Harris and Simpson [1998] consider-

ing the effect of the 1906 San Francisco earthquake on the
seismicity of the bay area. In particular, the 1911 M > 6.0
earthquake near Morgan Hill occurred in a stress shadow of
the 1906 event that is in an unloaded area (�CFF < 0).Harris
and Simpson [1998] found that rate-and-state time-to-failure
calculations are consistent with the occurrence of the 1911
earthquake if the Calaveras fault was already close to failure
before the 1906 event. In other words and in agreement with
our results, a fault at the end of the earthquake cycle seems to
be only slightly sensitive to external stress perturbations, the
nucleation process being underway.
[55] The last point we discuss is the possible existence of

a threshold amplitude for static triggering. A lower bound
for this threshold was found to be 0.01 MPa [King et al.,
1994; Harris, 1998] and corresponds to the onset of a
positive correlation between the presence of aftershocks
and an increase of the Coulomb stress (�CFF > 0).
However, a recent study by Ziv and Rubin [2000], consider-
ing 63 M � 4.5 earthquakes in central California, did not
exhibit a threshold in this region.
[56] The existence of such a threshold has to be regarded

as a lower cutoff for small stress perturbations in the use of
the Coulomb failure model. Indeed, no intrinsic threshold
exists for the Coulomb failure model. Considering rate-and-
state friction laws, our results show also that no triggering
threshold is present (see Figure 5 where the linear behavior
extends to very small stress magnitudes).
[57] Before ending this section, we insist on the fact that

the parameter as0 ± = 0.75 MPa in our model) does not
represent the triggering threshold mentioned in the literature
[e.g., King et al., 1994] but rather a natural cutoff between
small and large amplitudes.

8. Conclusions

[58] Looking at our results, it seems like the Coulomb
failure criterion is a good tool for static stress variations.
First, the Coulomb failure function �CFF = �t � m*�s is
the relevant parameter to account for stress perturbation. All
combinations of the normal or shear stress perturbations that
correspond to the same �CFF lead to the same behavior of
the fault. Second, the predictions in terms of clock advance
from the Coulomb failure criterion are in agreement to a
first order with our results during more than, say, 90% of the
earthquake cycle duration (the duration of the locked phase,
see Appendix B). We also showed that a triggering thresh-
old for static triggering does not exist in our model as
discussed in section 7. The Coulomb failure criterion fails to
estimate the clock advance or delay of faults at the end of
the seismic cycle (the last 10% of the cycle) when loading
(i.e., �CFF > 0) or unloading steps (i.e., �CFF < 0) are
considered, as illustrated by Figure 6. This discrepancy is
difficult to test in nature since, on the one hand, negative
Coulomb stress changes result in a decrease of the seismic-
ity rate, and are more difficult to observe statistically;
indeed, it is easier to detect shocks than ‘‘antishocks’’
[Harris and Simpson, 1998]. On the other hand, for clock
advance, departure from the Coulomb failure model is
hidden by the limit of maximum clock advance Tinter � t0.
[59] Nevertheless, and according to our results, a simple

failure criterion such as Coulomb, seems adapted to deter-
mine the areas where earthquake triggering is enhanced.
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However, it is unable to give an accurate timing of the
occurrence of an earthquakes since no evolution of the slip
velocity occurs during the cycle. Such an evolution seems to
be responsible for the existence of the Omori law as
illustrated by Dieterich [1994] or Ziv and Rubin [2003].
In particular, the aftershocks duration ta defined in the
model of Dieterich [1994] is equal to ta = as0/ _t and
depends on the frictional parameter a which is equal to
zero in a Coulomb failure model, leading to a zero after-
shocks duration [Gomberg et al., 2000a]. Therefore we
believe that the computation of the Coulomb stress change
is useful but has to be coupled to a more realistic fault
model such as done by Toda et al. [1998] considering rate-
and-state friction laws.

Appendix A: Cause of the Oscillations of the
Clock Advance During the Earthquake Cycle

[60] We previously noticed looking at Figures 4 and 6
that the clock advance or delay was oscillating throughout
the earthquake cycle. Here we analyze the roots of these
fluctuations.
[61] Figure A1 presents the mean sliding velocity hV i(t) =

1/(z2 � z1)
R z2
z1
V(z, t) dz along the fault (z1 = 0 km and z2 =

�20 km) and in the seismogenic zone (that is, for z1 =�15 km
and z2 = �2 km) as a function of time, in response to
loading (�CFF(0, �0.5) = 0.3 MPa) and unloading steps
(�CFF(0, 0.5) = �0.3 MPa) applied at time t0 = 14 years.
For the sake of comparison, the unperturbated case
�CFF(0, 0) = 0 MPa is also shown. Time is normalized
by a period Tosc which will be defined in equation (A2).
We see that in response to loading or unloading steps, the

mean velocity oscillates at a period close to Tosc. As can be
verified looking at Figure A1, these oscillations come
mainly from the velocity weakening (or seismogenic) region,
although we have also observed some small oscillations at
depths greater than 15 km (z >�15 km) in the deeper velocity
strengthening region.
[62] Considering a spring block model, Perfettini [2000]

performed a stability analysis around steady state, i.e., when
the block slides at the plate velocity Vpl. He showed that in
response to a small perturbation, the spring slider system
presents oscillations when the equivalent stiffness of the
fault verifiesk� < k < k+, where k� and k+ are given by

k� ¼ s0
ffiffiffi
b

p
�

ffiffiffi
a

p� �2

=Dc: ðA1Þ

The period of the oscillations is given by

Tosc ¼
4pas0

Vpl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ � kð Þ k � k�ð Þ

p ; ðA2Þ

which is used to normalize time in Figure A1. The period
Tosc represents an intrinsic period of oscillation of the
spring-slider system. As may be seen in Figure A1, the
amplitude of these oscillations is decreasing with the time
elapsed since the stress step. We believe that the oscillations
observed in Figures 4 and 6 are due to the oscillatory
response of the fault to stress perturbations displayed in
Figure A1. When a stress step is applied early in the cycle,
time to instability is long (i.e., long tp) and perturbations
have vanished at the onset of instability. Therefore no
oscillation are visible for early triggering (i.e., small t0). On
the contrary, for late triggering (i.e., t0 ’ Tinter), oscillations

Figure A1. Mean sliding velocity on the fault hV i/Vpl and in the seismogenic zone hV iseismo /Vpl for
various change of the Coulomb stress, i.e., �CFF(0, 0) = 0 MPa, �CFF(0, �0.5) = 0.3 MPa, and
�CFF(0, 0.5) = �0.3 MPa, applied at time t0 = 14 years. When the Coulomb stress change are different
from zero, the fault response oscillates at a period close to Tosc defined in equation (A2).
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in sliding velocity (with time) are still significant at the
instability onset. Accordingly, fluctuations of the clock
change with t0 are important for late triggering.
[63] Choosing a = 0.015 and b = 0.019 as representative

values in the seismogenic zone, taking L = 10 km as being
the width of this area, one finds Tosc ’ 18.1 years using the
expression of the stiffness of a fault given in equation (16).
This value is in agreement with the period of the oscillations
observed in Figure A1.

Appendix B: Effect of a Sudden Stress Change

B1. Velocity Change Due to a Sudden Stress Change

[64] We estimate the velocity change due to a step in
shear and normal stress. For the sake of simplicity, the
spring slider model will be used in the quasi-static limit:

t ¼ t0 þ _tt � kd; ðB1Þ

where t0 is the initial shear stress, _t = kVpl is the stressing
rate, Vpl is the plate velocity, and d is the accumulated slip.
[65] Suppose that at time t0, the shear and normal stress

jump instantaneously from t0 and s0 to t1 = t0 + �t and
s1 = s0 + �s. As previously noted by Dieterich [1994], a
change in normal stress from s0 to s1 results in an
immediate change of the state variable from q0 to q1 with

q1 ¼ q0
s1
s0

� ��a=b

; ðB2Þ

which directly arises from equation (5). The initial shear
stress t0, for a fault sliding at any velocity V0 is

t0 ¼ s0 m* þ a log V0=V*
� �

þ b log q0=q*
� �� �

ðB3Þ

and becomes t1 after the shear and normal stress steps:

t1 ¼ s1 m* þ a log V1=V*
� �

þ b log q1=q*
� �� �

ðB4Þ

where V1 is the velocity right after the application of the
steps. Subtracting equation (B3) from equation (B4) and
introducing equation (B2) leads to

�t ¼ t1 � t0

¼ s1a log V1=V0ð Þ þ m* þ a log V0=V*
� ��

þb log q0=q*
� ��

�s� as1 log s1=s0ð Þ: ðB5Þ

Introducing the Coulomb stress�CFF0 =�t � m0�s at the
onset of the steps, where m0 = t0/s0 is the initial coefficient
of friction, we obtain the sliding velocity immediately after
the steps:

V1 ¼ V0

s1
s0

� �a=a

exp �CFF0= as1ð Þ
� �

; ðB6Þ

which leads to a relative velocity change�V/V0 = (V1 � V0)/
V0:

�V

V0

¼ s1
s0

� �a=a

exp �CFF0= as1ð Þ
� �

� 1: ðB7Þ

For small stress perturbations, namely, �CFF0 � as0 and
�s� s0, equation (B7) becomes

�V

V0

’ �t� m0 � að Þ�s
as0

: ðB8Þ

B2. Rate and State Versus Coulomb

[66] We show here that the rate and state formalism
reduces to a Coulomb failure model during the phase where
the fault is at rest (_d ! 0). This phase is referred to as the
locked phase.
[67] Mathematically, the fault is defined as being locked

when Vq/Dc � 1 so that prior to the stress steps, equation (5)
reduces to _q ’ 1. This leads to q ’ q0 + t, where q0 is the
value of the state variable at the origin of time for which
there is no initial displacement (d(0) = 0). The accumulated
displacement during the locked phase is negligible since the
sliding velocities involved are extremely low compared to
the plate velocities. In this case, equation (B1) becomes

s m0
**
þ a log Vð Þ þ b log qð Þ

h i
¼ t0 þ _tt; ðB9Þ

with m0* = m* � a log(V*) � b log(q*). Introducing the initial
velocity V(0) = V0, equation (B9) reads, using q ’ q0 + t,

s a log V=V0ð Þ þ b log 1þ t=q0ð Þ½ � ¼ _tt; ðB10Þ

leading to

log V=V0ð Þ ¼ _tt= asð Þ � b=a log 1þ t=q0ð Þ: ðB11Þ

The second term on the right-hand side has a logarithmic
dependence with time and therefore is negligible compared
to the linear term _tt/(as). Therefore a relative change of
velocity from � V/V is approximately equal to

�V=V ¼ _t�t= asð Þ: ðB12Þ

Using equation (B8), we find that for Coulomb stress
changes of small amplitudes (�CFF � as0 and �s � s0):

_t�t= asð Þ ¼ �t� m0 � að Þ�s
as0

; ðB13Þ

leading to

�t ¼ �t� m0 � að Þ�s
_t

: ðB14Þ

This prediction is in agreement with the prediction of a
Coulomb failure model considering a static coefficient of
friction ms = m0 � a. In our model where the steps are not
applied abruptly but over a time interval of order 10 s, the
influence of the a term is negligible (see Perfettini et al.
[2003] for a discussion of the influence of a). Therefore we
expect equation (B14) to transform in our study in

�t ¼ �t� m0�s
_t

: ðB15Þ

[68] As previously demonstrated by Gomberg et al.
[2000a] but considering only shear stress variations, a fault
governed by rate and state friction laws is Coulomb-like
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during the locked phase. Since the fault is only accelerating
at the very end of the earthquake cycle, we can consider that
during most of its life the fault is essentially locked,
behaving like in a Coulomb failure model. This explains
why during more than 90% of the earthquake cycle, the
predictions of the Coulomb failure model are fairly close to
the results of our model.

Appendix C: Analytical Derivation of the Time to
Instability for Shear Stress Perturbations

C1. General Derivation

[69] The derivation of the time to instability we present
here extend the one presented originally byDieterich [1992].
We consider a fault of stiffness k loaded at a constant rate _t =
kVpl where Vpl is the plate velocity. In addition to this
constant loading rate, we add an arbitrary change in shear
stress�t(t). To estimate analytically the time to instability, it
is reasonable to neglect the effect of the radiation damping
term which becomes only active at high velocities (inertial
effects become significant only at velocities of the order or
higher than 10�3 m/s as discussed by Roy and Marone
[1996]). The error done neglecting this term is negligible
compared to the time to instability t. In that case, the quasi-
static equation governing the evolution of the fault is

tf ¼ t0 þ _tt � kdþ�t tð Þ; ðC1Þ

where t0 is the preexisting shear stress on the fault and tf is
the frictional stress tf which obeys

tf ¼ s0 m* þ a ln V=V*
� �

þ b ln q=q*
� �� �

: ðC2Þ

The evolution of the state variable q is governed by the
Dieterich evolution law:

dq
dt

¼ 1� Vq
Dc

: ðC3Þ

Equation (C3) can be integrated, giving

q tð Þ ¼ q0 1þ C tð Þ½ � exp �d tð Þ=Dcð Þ ðC4Þ

with C(t) being given by

C tð Þ ¼ 1

q0

Z t

0

exp d uð Þ=Dcð Þdu; ðC5Þ

and q0 is the value of the state variable at time t = 0.
[70] For V ! 0, the state variable can be identified as the

time of contact between the two sides of the faults, i.e., the
elapsed time since the last earthquake on this fault. There-
fore, for a fault late in the earthquake cycle, we can identify
q as the interseismic time. In this case, the ratio Vq/Dc is
much greater than one when the sliding velocity verifies
V � Dc/q. Taking q 100 years and Dc = 10�2 cm, the last
inequality leads to V � 3 10�10 m/s, and is verified at the
end of the earthquake cycle where the sliding velocity
becomes significant. If V q/Dc � 1, equation (C3) becomes

dq
dt

’ �V q
Dc

; ðC6Þ

which can easily be integrated, giving

q dð Þ ¼ q0 exp �d=Dcð Þ: ðC7Þ

This form was originally proposed by Dieterich [1992] and
is identical to the one given in equation (C4) providing
C(t)� 1. As discussed earlier, such an approximation is valid
for faults late in the earthquake cycle (large q0). It is to be noted
that the expression of the state variable given in equation
(C4) is the exact solution of equation (C3) and remains valid
throughout the whole earthquake cycle. Equation (C4) can be
combined with equations (C1) and (C2) yielding

s0 m* þ a ln V=V*
� �

þ b ln q0=q*
� �

� bd
Dc

þ b ln 1þ C tð Þ½ �
� �

¼ t0 þ _tt � kdþ�t tð Þ: ðC8Þ

In order to write equation (C8) in a more condensed way, we
introduce theH parameter ofDieterich [1992]:

H ¼ b

Dc

� k

s0
: ðC9Þ

Equation (C8) can now be written as

lnV ¼
t0=s0 � m0** � b ln q0 1þ C tð Þð Þ½ �

a
þ Hd

a
þ _tt þ�t tð Þ

as0
;

ðC10Þ

where the parameter m*
0 = m* � a lnV* � b lnq* has been

introduced. Noting that, assuming d(0) = 0,

ln _d0 ¼
t0=s0 � m0** � b ln q0

a
; ðC11Þ

where _d0 is the initial slip velocity, equation (C10) yields

_d ¼ _d0 exp Hd=a½ � exp _tt þ�t tð Þð Þ= as0ð Þ½ �

	 1þ C tð Þ½ ��b=a:

ðC12Þ

The integration can be then be carried on:

_d0

Z t

0

1þ C yð Þ½ ��b=a
exp _tyþ�t yð Þð Þ= as0ð Þ½ �dy

¼
Z d

0

exp �Hu=a½ �du: ðC13Þ

Let us introduce the function F(t) as

F tð Þ ¼ _d0

Z t

0

1þ C yð Þ½ ��b=a
exp _tyþ�t yð Þð Þ= as0ð Þ½ �dy:

ðC14Þ

The right-hand side of equation (C13) can be easily
integrated giving

d ¼ � a

H
ln 1� HF tð Þ

a

� �
: ðC15Þ

We can now easily determine the slip velocity _d:

_d ¼ dF=dt

1� HF tð Þ
a

: ðC16Þ
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The time to instability tp can be estimated as the time for
which the slip velocity becomes infinite or equivalently _d�1

! 0. Using equation (C16), this can be formulated as

F tp
� �

¼ a

H
: ðC17Þ

C2. General Comments on the Time to Instability tp
[71] Even though equation (C17) cannot be usually

solved analytically because F(t) does not have, in most
cases, an analytical expression, some general statements can
be expressed. First of all, the integrand in the expression of
F(t) given in equation (C14) is always positive. This states
that F(t) > 0 for t > 0 while it is trivial to see that F(0) = 0.
Therefore equation (C17) has a meaning (and an infinite
velocity is reached, hence an instability occurs) only for
H > 0. This condition is met when k < bs0/Dc as already
noted by Dieterich [1992]. For a sufficiently large fault
(h� hc or equivalently k� kc), the last condition is fulfilled.
[72] Furthermore, the function F is growing with time.

This can easily be checked by derivation of equation (C14)
with respect to time:

dF

dt
tð Þ ¼ _d0 1þ C tð Þ½ ��b=a

exp _tt þ�t tð Þð Þ= as0ð Þ½ � > 0: ðC18Þ

These last two remarks are useful to derive an important
property of the time to instability, as illustrated schemati-
cally in Figure C1. Let b be a parameter of the function F
such as a, s0, _t, etc. The fact that F(t) is a growing function
of time implies that tp(b1) > tp(b2) for F(b2) > F(b1).
Therefore, if F is an increasing (resp. decreasing) function
of b, the time to instability is a decreasing (respectively
increasing) function of b.

Appendix D: Applications

[73] In this appendix, we assume Vq/Dc � 1, i.e., C( y)
can be neglected in (C14), an assumption that is valid for a
fault late in the earthquake cycle (see Appendix C). We also
use the notation g = _t/(as0), which the inverse of the
aftershock duration ta = as0/ _t defined by Dieterich [1994].

D1. Case of No Stress Perturbations

[74] When there are no perturbations of the shear stress
(�t(t) = 0), equation (C14) gives

F tð Þ ¼
_d0
g

exp _tt= as0ð Þð Þ � 1½ �; ðD1Þ

and the time to instability tf can be obtained combining
equation (D1) together with equation (C17):

tf ¼
1

g
ln 1þ _t= s0H _d0

� �� �
; ðD2Þ

which is equivalent to the previous estimate of Dieterich
[1992].

D2. Case of a Shear Stress Step

[75] We now consider a shear stress step of constant
amplitude �t applied at time t0 (i.e., �t(t) = �t H(t � t0),
where H(t) is the Heaviside function). In this case we have

F tð Þ ¼
_d0
g

exp gt0ð Þ � 1þ exp½ �t= as0ð Þ½ � exp gtð Þ � exp gt0ð Þð Þ�;

ðD3Þ

so that the time to instability, tp, which satisfies F(tp) = a/H,
is given by

tp ¼ ��t
_t

þ 1

g
log 1þ ga

_d0H
� exp gt0ð Þ

�
1� exp �t= as0ð Þ½ �ð Þ

�
;

ðD4Þ

which leads, using equation (D2), to the clock advance:

�t ¼ tf � tp ¼
�t
_t

� 1

g
log 1� exp gt0ð Þ 1� exp �t= as0ð Þ½ �

1þ ga
_d0H

" #
:

ðD5Þ

This formula was previously obtained by Gomberg et al.
[1998].

D2.1. Limit of Small Amplitudes

[76] For steps of small amplitude, i.e., �t � as0,
equation (D5) becomes

�t ¼ �t
_t

1� exp gt0ð Þ
1þ ga

_d0H

" #
: ðD6Þ

D2.2. Limit of Large Amplitudes

[77] In the case where �t� as0, equation (D5) becomes

�t ¼ tf � t0 ðD7Þ

meaning that triggering is instantaneous.
[78] Using equation (D5), the case ��t � as0 leads to

�t ¼ �t
_t

� 1

g
log 1� exp gt0ð Þ

1þ ga
_d0H

" #
: ðD8Þ
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Figure C1. Graphic method to solve equation (C17). For a
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F(a1) is equivalent to tp(a1) > tp(a2).
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