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[1] A method for measuring seismicity rate changes caused by the occurrence of major
earthquakes in the surrounding crust is proposed. It is based on a nonstationary Poisson
modeling of earthquake activity. An estimate of the seismicity rate change and a
probability measure of seismicity triggering following a large shock are derived, and the
removal of the influence of independent aftershock sequences of other nearby, previous
earthquakes is attempted, without using more traditional declustering techniques. The
seismicity rate change estimator is corrected for its natural bias in favor of positive
changes, at short timescales, that has so far strongly hindered measures of seismicity
quiescences. Three Californian earthquakes are examined using this method: the 1989
M7.1 Loma Prieta, the 1992 M7.3 Landers, and the 1994 M6.7 Northridge earthquakes.
Positive triggering is very commonly observed, as expected, but quiescence is, however,
more seldomly obtained, for timescales up to 100 days after the main shock. This relative
absence of quiescence, as compared to typical predictions of Coulomb modeling, for
example, is also independently observed through direct correlation analyses of Californian
seismicity. The possibility that the stresses caused by the main shock are spatially highly
variable may explain these observations. INDEX TERMS: 7209 Seismology: Earthquake dynamics

and mechanics; 7223 Seismology: Seismic hazard assessment and prediction; 8123 Tectonophysics:

Dynamics, seismotectonics; KEYWORDS: earthquake triggering, quiescence, fault interaction, seismicity

Citation: Marsan, D., Triggering of seismicity at short timescales following Californian earthquakes, J. Geophys. Res., 108(B5),

2266, doi:10.1029/2002JB001946, 2003.

1. Introduction

[2] Triggering and modulations of seismicity activity by
earthquakes are an ubiquitous phenomenon: aftershock
sequences and clustered series of large magnitude events
are common observations. How such changes in seismicity
depend on both the relative locations of the faults and the
time between the earthquake occurrences is still a widely
open question. Spatial distribution of triggered activity
strongly depends on the local fault network geometry, the
slip distribution of the triggering shock, and more generally
on the variability in the mechanical properties of the crustal
volume surrounding the causative fault. Knowledge of the
recent seismic history of the region is of great help in
constraining this variability by imaging the locally active
faults but can also be misleading as was for example
illustrated by the 1994 Northridge earthquake which
occurred on a concealed fault that was not recognized until
the event struck [Scientists of the U.S. Geological Survey
and the Southern California Earthquake Center, 1994].
[3] Nonetheless, the difficulty in predicting or modeling

the spatial distribution of triggered sequences is not quite as
great as our recurrent inability in understanding their
temporal structure. Delays between apparently triggering

events and their offsprings can extend from seconds to tens
of years, as is the case of long aftershock production.
Temporal correlations between large earthquakes also
develop over wide timescales [e.g., Kagan and Jackson,
1991]. Quite generally, an earthquake accommodates some
of the local elastic strain, but also loads on-fault patches,
neighboring and remote faults, that will in turn fail even-
tually. Relaxation of the tectonic strain is therefore a
structured, complex phenomenon that involves large sets
of earthquakes of different sizes, over spatial scales and
timescales that can be much larger than the rupture length
and duration of the initial, triggering earthquake.
[4] Ideally, one would like to estimate what are the

changes in earthquake production that have been caused
by a given earthquake (hereinafter referred to as main
shock), and how those changes vary in space and time.
The difficulty is here to make sure whether a given modu-
lation in seismicity is effectively due to the main shock or
not: while this can sometimes be trivial, as in the case of
short timescales (i.e., with clear activity increases related to
aftershock production), the problem becomes much more
difficult at longer timescales. It corresponds to estimating the
probability that a given earthquake would not have happened
had the earlier main shock not occurred either. Computation
of such a probability of triggering over various space and
timescales should help our understanding of how earth-
quakes interact with each other, particularly in relation to
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the predicted seismic response of a given crustal volume
subject to stress changes, as given by friction models.
[5] In the past few years, several attempts have been

made at determining, i.e., mapping, the spatial distribution
of triggered activity following historical earthquakes [Rea-
senberg and Simpson, 1992; Toda et al., 1998; Stein, 1999;
Wyss and Wiemer, 2000; Kilb et al., 2000; Gomberg et al.,
2001]. Regions of increased or decreased activity have thus
been observed, and sometimes correlated to Coulomb
triggering models (see Harris [1998] for a review on
Coulomb modeling). However, such attempts generally
suffer from one or several drawbacks, in particular:
[6] 1. Changes are calculated over arbitrary time periods,

generally months to years before/after the main shock. The
underlying assumption could be that such changes, or at
least their spatial distribution, are more or less stationary
over long (seconds/minutes to months/years) time periods.
Such a hypothesis needs to be tested, especially as triggered
events occurring within the chosen time period can play a
significant role in locally modulating future activity (e.g.,
the 1999 Hector Mine, California, earthquake being trig-
gered by aftershocks of the Landers earthquake as proposed
by Felzer et al. [2003]; more generally, see also ‘‘epidemic
type aftershock sequence’’ (ETAS), or branching models,
for which cascading generation of earthquakes are modeled
and analyzed [cf. Ogata, 1988]). Substantial alteration of
the stress changes with time after the main shock, e.g.,
through further aftershock occurrences, should therefore
lead to related changes in terms of seismicity triggering.
[7] 2. Spurious effects due to large earthquakes that

occurred before the main shock are sometimes overlooked,
or even totally ignored. Observed changes in seismicity
rates can be artificially shifted toward one direction (mostly
toward activity decreases).
[8] 3. Measures of the seismicity activity changes are not

always appropriate; their significance is generally not com-
puted, or it is done by assuming Gaussianity of the activity
time series, even though they are clearly not Gaussian (large
departures from the mean, well above the standard devia-
tion, are common observations for such time series, and
cannot be explained by Gaussian distributions). This prob-
lem is particularly severe when one wants to measure
seismicity rate changes at small spatial scales, e.g., in order
to obtain detailed rate change maps, or for regions that were
weakly active before the main shock. Poisson rather than
Gaussian statistics then need to be considered.
[9] 4. Usual measures of seismicity rate changes (Z, b

statistics, ratio of seismicity rates) are not equally sensitive
to increases and decreases of seismicity. Quiescences are
difficult to observe, especially in weakly active regions and
at short timescales, since one needs to wait several typical
return times to correctly estimate the change. This can
explain why so-called stress shadows are obvious for great
earthquakes (e.g., following the 1857 Fort Tejon and the
1906 San Francisco earthquakes [see Ellsworth et al., 1981;
Harris and Simpson, 1996, 1998; Jaumé and Sykes, 1996;
Stein, 1999]) and for creeping segments that generally
experience high rates of small earthquakes [Reasenberg
and Simpson, 1992; Lienkaemper et al., 1997], but not so
much in other cases.
[10] As an illustration to the first two points, Figure 1

show how previously reported activity decreases [Stein,

1999] can be ambiguous. In this example, the Northridge
earthquake is seen to trigger aftershocks in the analyzed
region (a ’500 km2 area about 40 km south of Northridge
epicenter), this activation taking place in a rather silent
interval that started several months prior to Northridge. The
interpretation is made difficult by the fact that transient
activity modulation activated by the 1989 M5 Malibu
earthquake was still ongoing at the time of the Northridge
earthquake. The graph shows a clear decrease of activity
following Northridge, albeit a smaller one than the one
reported by Stein [1999] for which the aftershock sequence
of the 1989 Malibu earthquake was not accounted for. The
mean rate does not recover its pre-Malibu state more than
6 years after Northridge. The close-up at shorter timescales
(1992.5 to 1996) shows that large-scale observation is partly
misleading: a better linear fit along with a burst of activity

Figure 1. Cumulative number of M2+ earthquakes (SCSN
catalogue) occurring (top) between 1981 and 2001 and
(bottom) between 1992.5 and 1996 in a 25 � 22 km2 area
(latitude between 33.85� and 34.05�, longitude between
�118.8� and �118.5�) about 40 km south of Northridge
epicenter. This area has been found by Stein [1999, Figure
2] to experience a decrease of activity following the 1994
Northridge earthquake. Thick horizontal bars indicate time
intervals used by Stein [1999] in order to compute the
seismicity rate change. Linear fits (black lines) are
computed at large (�5 years) scale. Figure 1 (bottom)
shows a close-up at shorter timescales, along with a better
linear fit (dashed line) for this time interval.
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just prior to Northridge indicates that the quiescence
observed after 1994 is perhaps uncorrelated with Northridge
as its origin can be tracked back several months before
Northridge (also see Dieterich and Okubo [1996] for a
similar observation and tentative interpretation in the case of
Hawaiian seismicity), the latter main shock actually trigger-
ing seismicity in the region at the very short (i.e., days)
timescale.
[11] This paper aims at examining these issues, by pro-

posing a method for calculating less ambiguous, fine-scale
maps of seismicity rate changes. It is structured as follows:
the methodology is detailed in section 2. A model for
investigating triggering/inhibition effects is described. A
methodology is developed for taking previous aftershock
sequences and preseismicity clusters into account, without
resorting to traditional declustering methods that are not
suited for this purpose. Appropriate Poissonian statistics are
then proposed in order to measure rate changes, that are
equally ‘‘fair’’ to both activation and deactivation. In section
3, the method is applied to three Californian earthquakes:
the Loma Prieta, Northridge, and Landers earthquakes. The
dependence of the triggered activity distribution with time is
explored, for timescales up to 200 days. Longer timescales
can prove to be difficult to analyze because of the difficulty
of causally linking two events separated by several months/
years. The main result of this study is that, contrary to
previous observations and stress transfer modeling, activity
decreases are too rarely observed for timescales up to 100
days. Direct correlation measures of Californian seismicity
are given in section 4, and independently confirm this
phenomenon. A possible scenario, based on rate-and-state
friction combined with a strongly heterogeneous crust, is
proposed in section 5 to explain these observations.

2. Estimating the Probability of Triggering and
the Seismicity Rate Change: Method

[12] The problem of estimating seismicity rate changes
can be summarized as follows. Consider a given crustal
volume experiencing seismic activity, measured between
T0 � tB and T0 + tA, where T0 is the occurrence time of the
specific event (e.g., main shock) under study. It is assumed
that no changes in detection level, magnitude scale, or
monitoring coverage affects the volume.
[13] Activity occurring between T0 � tB and T0 (‘‘pre-

activity’’) and between T0 and T0 + tA (‘‘postactivity’’) can
be modeled as two Poisson random variables, with param-
eters lBtB and lAtA; the rates lB and lA are the two
unknowns. The difficulty lies in finding reliable probability
distributions of their estimates l̂B and l̂A. Then, knowing
the probability density functions fB(l̂B) and fA(l̂A), it is
straightforward to compute (1) a probability density f (̂r) for
the estimate of the seismicity rate change r̂ ¼ l̂A=l̂B, which
can be used to compute the mean log ratio E{log r̂}, and (2)
the probability P = Pr(l̂A � l̂B) that triggering has taken
place. P is constructed to measure how significant the
seismicity rate change is, i.e., whether this change can be
due to ‘‘pure luck’’ or to an actual change in the seismo-
genic process. E{log r̂} estimates the mean log rate change,
and differs from the logarithm of the sample ratio r = nAtA/
nBtB by fully accounting for natural variations in r also due
to pure chance; this is especially important as we look at

short durations and small spatial scales, at which there is
typically little seismicity. I detail in this section how to
estimate these various quantities.

2.1. Poisson Process Modeling of Seismicity

[14] The number of earthquakes n[t;t+�t] above a given
threshold magnitude, occurring within a given time interval
(t; t + �t) and in a given volume (r; r + �r), can be
modeled as a Poisson random variable of mean l. The latter
depends on both (t; t + �t) and (r; r + �r), and is in effect
the only parameter controlling n. More generally, earth-
quake activity in (r; r + �r) is an integer infinitely divisible
random variable (regarding to both volume and time inter-
val), and the Poisson distribution provides the simplest such
random variable. One can therefore reduces the temporal
evolution of n[t;t+�t] to a nonstationary Poisson process, and
thus to the evolution of l(t) such that

Pr n t;tþ�t½ 
 ¼ n
� �

¼ e�l t;tþ�tð Þ l t; t þ�tð Þn

n!
ð1Þ

l t; t þ�tð Þ ¼
Ztþ�t

t

ds l sð Þ ð2Þ

where l(t) is the rate of earthquakes at time t in the
considered volume, i.e., l(t) = lim�t ! 0[l(t;t + �t)/�t].
Interaction models can be built on deriving the changes,
over space and time, of l. Various works have explored this
type of modeling; see Ogata [1999] for a recent review on
ETAS models, and see also the use of nonstationary
Poissonian models for predicting seismic hazard related to
aftershock sequences [Reasenberg and Jones, 1989;
Wiemer, 2000].

2.2. Stationary Model

[15] The simplest model assumes constant rates lB and lA
over the two time intervals [T0 � tB, T0] and [T0, T0 + tA].
The conditional density f (l̂tjn) that the n observed earth-
quakes are due to a Poisson random variable with mean l̂t is
simply f (l̂tjn) = Pr(njl̂t) = exp(�l̂t) (l̂t)n/n! since the a
priori probability on l̂ is uniform. This yields that

f l̂jn
� �

¼ t e�l̂t
l̂t

� �n

n!
ð3Þ

i.e., f (l̂jn) is the gamma density ft,n+ 1. As an example, let
assume that nB = 28 earthquakes occurred in the tB = 100
days prior to T0, and that we observe nA1

= 3, nA2
= 7 and

nA3
= 37 earthquakes within tA1

= 10, tA2
= 20 and tA3

= 100
days after T0, respectively. Figure 2 shows an example of
such a process, along with the probability density functions
associated to the estimates l̂B, l̂A1

, l̂A2
and l̂A3

as given by
equation (3). As the time interval tA of observation grows,
more earthquakes are counted, and the pdf gets more and
more peaked around the sample rate nA/tA. On the basis of
those distributions, estimate of the distribution of the seis-
micity rate change r̂ and the probability of triggering P can
be obtained, as described in section 2.4. Note that the fact
that f (l̂jt) is a gamma density implies that the comparison,
in the stationary case, of l̂A and l̂B, as independent random
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variables, is formally similar to the comparison of the
sample variance of two independent distributions. As such,
use of E{log r̂} has a measure of the rate change is
equivalent to using the mean of Fisher’s Z statistic.

2.3. Nonstationary Model

[16] As explained in section 1, stationarity cannot gen-
erally be assumed, the less so at long (months/years)
timescales. In particular, aftershock production decays with
time after the occurrence of an earthquake. A common
way to handle this issue is to decluster the catalogue; use
of Reasenberg’s [1985] method has, for example, been
made by Kilb et al. [2000] and Wyss and Wiemer [2000].
Several critics can be formulated against such a type of
procedure, at least for the present purpose of removing
nonstationarity in the catalogue: (1) it is heavily dependent

on several parameters that are either largely arbitrary (P, Q
of Reasenberg [1985]) or not always easy to confidently
estimate (a, C, t0 of Reasenberg [1985]); (2) it is not
adaptative, though latter versions have considered updating
the parameters as more data are obtained [e.g., Reasenberg
and Jones, 1989]; (3) the underlying physics is question-
able, in particular with regard to the boolean ‘‘B is an
aftershock/B is not an aftershock of A’’ representation, and
also to the choice that a cluster ‘‘propagates’’ only through
its largest and its latest members; and (4) it is not
appropriate to the present problem. Declustering techni-
ques are operational methods designed to roughly remove
what common sense sees as aftershock sequences. The
present problem involves keeping the triggered seismicity
clustered after T0 as it is its spatial and temporal distribu-
tion that is of interest. Overlapping of an ongoing past
aftershock sequence with the one starting at T0, resulting
in the merging of the two clusters, would have to be
avoided. Finally, Wyss and Wiemer [2000] commented that
their ‘‘results (did) not depend on the inclusion or exclu-
sion of clusters’’ singled out by this declustering techni-
que. This is a rather surprising statement, as the aftershock
sequences of several earthquakes (and most particularly of
the Joshua Tree earthquake) significantly perturb the
estimate of the seismicity rate change, in the same way
as shown in Figure 1 in the case of the Malibu and
Northridge earthquakes.
[17] An interesting alternative to traditional declustering

has recently been proposed by Zhuang et al. [2002]. A
thinning procedure based on the probability that a given
earthquake is triggered by a stationary background process
rather than by a preceding earthquake is computed, exploit-
ing the ETAS model. Use of a temporal ETAS models will
be evoked later.
[18] The approach taken here is the following. Given

some parameterized model of nonstationary seismicity, (1)
the optimal set of parameters is computed by fitting the
model to the data, (2) estimate of the distribution of
seismicity rate l̂B that would be expected between T0 and
T0+ tA if nothing special happens at T0 is then derived, and
(3) is compared to fA(l̂A) obtained from equation (3). The
algorithm then takes the following form:
[19] 1. The seismicity is spatially discretized in 2-D cells

of size L.
[20] 2. Then, for each cell the discretized time series of

activity n(i) is computed, at a given temporal resolution �t,
between T0 � tB and T0.
[21] 3. The best parameter set q* of a parameterized model

lq is searched for, by minimizing a cost function J(q) defined
from the Poissonian log likelihood function J(q) = �ilq(i) �
n(i)loglq(i). Note that in the continuous limit �t ! 0, this
yields the log likelihood function of Ogata [1988].
[22] 4. Extrapolation of lq* to T0 � t � T0 + tA is

performed. The probability density of l̂B is then obtained,
by perturbing q around q* according to the standard devia-
tion �q of the error on the parameters.
[23] 5. The parameter fB(l̂B) is then compared to fA(l̂A),

obtained from equation (3), and constrained by the observed
number of earthquakes nA that occurred in the cell between
T0 and T0 + tA. A probability of triggering P and the mean
E{log r̂} of the logarithm of the ratio estimate r̂ ¼ l̂A=l̂B

can finally be computed.

Figure 2. (top) Stationary model of seismicity with times
of occurrence of synthetic earthquakes relative to the
occurrence time of the main shock under study. (bottom)
Probability density functions f of the seismicity rate l̂B (thin
line), corresponding to t < 0, and the rates l̂A1

(dotted line),
l̂A2

(dashed line) and l̂A3
(thick line) related to 10, 20 and

100 day intervals following the main shock. Narrowing of
fA(l̂A) at long durations is due to the gain of information on
the process as more and more events are counted.
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[24] Choice of the cell length L is not innocuous. For too
small a L, most (if not all) cells will have at most one
earthquake, and no meaningful prediction on the future state
of the system can be made, outside the trivial stationary
scenario of section 2.2. Search for the best model requires
enough data; here L = 10 km was chosen, so to be larger
than the typical uncertainty on earthquake location. Influ-
ence of L on the calculated seismicity rate change maps will
be discussed in the case of the Northridge earthquake. Use
of full space-time models will be considered in a future
work as a way to remove this dependence on L.
[25] Several models lq were considered and tested in this

study. These more particularly included three linear models:
(1) an AR(P) model, (2) the discretized and continuous
temporal ETAS models, and (3) a sum of power law
relaxation curves.
2.3.1. AR(P) Model
[26] The AR(P) model gives

l ið Þ�t ¼ b0 þ
XP
j¼1

bj n i� jð Þ ð4Þ

For P = 0, one recovers the sample mean
P
i

n(i)/tB as the

best b*0; the estimate of l is then the sample rate commonly
used in seismicity rate change estimation. For P > 0, this
sample rate is corrected, the estimated rate increasing when
the local activity level increases.
[27] This model is computationally efficient, and repro-

duces the correlation existing in the time series n(i).
Experimenting with this model shows that the intermittency,
i.e., the existence of large peaks in the time series, corre-
sponding to the activity immediately following the occur-
rence of large earthquakes, is not well accommodated. A
variation of this model is obtained by imposing b0 = 0, with
the consequence that the fit is globally worse, but can
become locally better during periods outside aftershock
sequences, since the model provides a more fluctuating
moving average. Dependence on P is very weak as long
as P � tA/�t; this is due to the fact that the first coefficients
are generally strongly dominant.
2.3.2. Discretized/Continuous Temporal ETAS Model
[28] The previous model can be modified to account for

the magnitude m of the earthquakes in the time series n(i). A
discretized version of the ETAS model can then be
obtained, by assuming a power law decay bj � j�p of the
coefficients. The model takes the form

l ið Þ�t ¼ b0 þ A
X
j�1

j�p n a½ 
 i� jð Þ ð5Þ

where the time series is now n[a](i) =
P
m

nm(i) 10
am, i.e., the

sum over m of the number nm(i) of earthquakes of
magnitude m occurring at time step i weighted by a factor
10am. The time series n(i) used in the previous model then
corresponds to n(i) = n[0](i). The parameter set reduces to
q = {b0, A, p, a}. Note that the cutoff time usually
introduced in the power law t�p decay is here ignored, since
the resolution timescale �t used throughout this work is
much longer than typical values of this cutoff. Discretiza-
tion of the model allows for a much quicker numerical
treatment, especially for very active regions.

[29] The more computationally expensive continuous
ETAS model is also tested. Seismicity rate is then modeled
as

l tð Þ ¼ l0 þ A
X
i=ti t

t � ti þ cð Þ�p
10ami ð6Þ

where the sum is on all earthquakes (ti, mi) with occurrence
times ti < t.
2.3.3. Sum of Power Law Relaxations
[30] This model takes the form

l ið Þ�t ¼
XP
j¼1

Aj i� tj
� ��pj ð7Þ

i.e., a linear combination of P power law basis functions.
Each function is parameterized by three parameters {A, t, p}.
No ‘‘background’’ coefficient b0 is here needed as a constant
term can be accommodated by taking p = 0 and t � 0.
Dependence on P is weak, provided that it is larger than the
number of dominant aftershock sequences that occurred
between T0 � tB and T0. The best results using this model
were obtained by considering the cumulative time series
rather than the time series itself. Of the various models tested,
this one gives the best trade-off between short computation
times and goodness of fit.
[31] A rather illustrative example is given in Figure 3, in

the case of a slightly larger area than the one analyzed in
Figure 1 centered on the 1989 M5 Malibu earthquake.
Change in the seismicity rate is examined relative to the
occurrence of the Northridge earthquake. Time is discretized
at �t = 10 days, and (following Stein [1999]) the rate lA
characterizes the time period extending between 3 months
and 6 months after Northridge. An AR(P = 20) model, with
and without b0, a sum of P = 6 power laws, and the
continuous ETAS model are fitted against the data starting
in 1981 (Figure 3, top). All models predict more earthquakes
in the 3 to 6 months interval than the actual nA = 1 number.
Figure 3 (bottom) displays the corresponding probability
density functions of l̂A and l̂B. For simplicity, l̂A and l̂B

here refers to numbers rather than rates, i.e., they equal the
rate times 90 days. A burst of activity (8 earthquakes in 10
days) occurs prior to Northridge. This burst significantly
perturbs the AR models. The mean number of earthquakes
per 10 days in this cell, for the 13 years prior to Northridge,
is 0.891, hence 8.019 earthquakes for a 90 day interval. Use
of this sample rate, i.e., mimicking the estimate of Stein
[1999], would yield a mean E{log r̂} and a probability of
triggering P intermediate between the AR models and both
the continuous ETAS and the sum of power law models.

2.4. Estimate of the Seismicity Rate Change r̂ and
Probability of Triggering PPPP
[32] Given the probability density functions of the esti-

mates fA(l̂A) and fB(l̂B), the pdf f(r̂) of the estimate
r̂ ¼ l̂A=l̂B can be computed as

f r̂ð Þ ¼
Z1
0

dl̂B l̂B fB l̂B

� �
fA r̂l̂B

� �
ð8Þ

Calculations show that E{r̂} = (1 + na)Efðl̂BtAÞ�1g; in the
stationary case, for which fB(l̂B) is obtained from equation
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(3), this mean is E{r̂} = [(1 + nA)/nB](tB/tA). The asymmetry
between preparameters (B) and postparameters (A) makes
this estimator a biased one. Instead, E{log r̂} = E{log l̂A} �
E{log l̂B} is used to characterize the rate change.

[33] The probability of triggering P is defined as the
probability that lA > lB, i.e.,

P ¼
Z1
0

dl̂B fB l̂B

� � Z1
l̂B

dl̂A fA l̂A

� �
ð9Þ

It corresponds to the probability that the estimated seis-
micity process is more active after the main shock than
before. Given that fA(l̂A) follows equation (3), it comes
that P = 1 � E{P(nA + 1,l̂BtA)} where P is the
incomplete Gamma function. This probability is estimated
numerically. Computation of E{log r̂} and P in the case
of Figure 3 gives that E{log r̂} = �0.957, �1.072,
�0.353, �0.554, and P = 0, 0, 0.227 and 0.084 for
the AR, the AR with b0 = 0, the continuous ETAS, and
the sum of power law models, respectively. Such values
correspond to a case of quiescence. This quiescence is
however not observed at shorter time intervals. Similar
calculations, based on the sum of power law model, yield
E{log r̂} = 0.176 and 0.165 for the first and the first two
months after Northridge, respectively, and only indicate a
quiescence when considering the first three months
(E{log r̂} = �0.139).

2.5. Detectability of Quiescence Phenomena

[34] Detection of quiescence/activation phenomena can
become a problem when looking at weakly active regions
and short timescales. For example, when looking at a
weakly active region that becomes even less active than it
was before the main shock, the estimator E{log r̂} can be
shown to be biased in favor of positive triggering, i.e., it can
give positive values when a negative one is expected. This
bias is documented in Appendix A, and a practical correc-
tion is proposed in order to unbias the estimator. Applying
this correction to, e.g., E{log r̂} = �0.353 found for the
continuous ETAS model of Figure 3 yield an estimated
E{log r̂} = �0.405. P is also biased; for example, taking
lA = lB, P is found to be larger than 0.5 for tA < tB, and
smaller than 0.5 for tA > tB. However, this estimator can be
used with tA = tB and is then unbiased for detecting
triggering/quiescence.

3. Triggering Following the Loma Prieta, the
Landers, and the Northridge Earthquakes

[35] The method is now applied to three California earth-
quakes: the 1989 M7.1 Loma Prieta, the 1992 M7.3 Land-
ers, and the 1994 M6.7 Northridge earthquakes. For each
event, a region is selected, with a size a few times larger
than the main shock rupture length. Earthquakes of magni-
tude larger than a magnitude threshold Mc were counted,
and discretized on a grid with resolution length L: cells are
separated by a distance L, but overlap as all the events
occurring within a radius L of the cell center are counted for
this cell. This results in all earthquakes to be counted for
several cells. L = 10 km was chosen, so that it is larger than
typical location errors; this value allows for a compromise
between detailed enough triggering maps and active enough
cells. Maps with L = 5 and 20 km were also computed for
Northridge. For each cell, a number of ‘‘after events’’ nA
occurring within a time tA following the main shock is then

Figure 3. (top) Seismicity time series (thick line) around
the 1989M5 Malibu earthquake, in a ’625 km2 area, before
and after the occurrence of the Northridge earthquake.
Predictions for 90 < tA < 180 days, given by the AR, the
continuous ETAS, and the sum of power law models, are
shown. The discretization time step is �t = 10 days. The
mean number of earthquakes per 10 days occurring between
90 days and 180 days after Northridge is 1/9 = 0.11 (thick
segment, bottom right corner). The maximum likelihood
rate (per 10 days) for the ETAS model is also shown (r) for
this interval. (bottom) Probability density functions of l̂A �
90 days and l̂B � 90 days, for the various models. These
pdf are obtained by Monte Carlo perturbing the best
parameter sets q*, with perturbations scaled by the standard
deviation �q corresponding to the uncertainty on the best
parameter set (inversion error).
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compared, as detailed in section 2, to the predicted seis-
micity rate. Several time intervals for tA were analyzed, in
order to study how the triggering evolves with time. The
following parameters were considered:
[36] 1. The magnitude threshold Mc was fixed to 2.3, 1.9

and 1.0 for the Landers, Northridge (SCSN catalogue) and
Loma Prieta (NCSN catalogue) data sets, respectively.
This threshold was made according to a magnitude-fre-
quency analysis for the selected areas, as documented in
Appendix B.
[37] 2. The inversion was performed using a Levenberg-

Marquardt algorithm, the model consisting of a linear
combination of P power laws. P is dependent on the total
number of earthquakes occurring in the cell before T0.
The inversion was done in two steps: (1) all the param-
eters were first inverted and (2) a second inversion was
then performed after keeping the starting times ti constant.
This method significantly improved the selection of the
scaling factors Ai and the exponents pi, compared to a
one-step inversion. The seismicity in cells that experience
significant bursts of preactivity just prior to the main
shock are generally badly modeled with this method.
For such cells, the discretized ETAS model was used
instead.
[38] 3. Cells with too few earthquakes, and cells for

which the inversion error is found to be too large, were
given a triggering probability P = 0.5 and a mean log ratio
E{log r̂} = 0. Such a choice is justified by the fact that, if
too little is known of the seismogenic process of the cell

(i.e., not enough data), then no decision can be made in
favor of either triggering or inhibition, hence a neutral value
representing a neutral belief is taken.

3.1. Northridge

[39] The changes in seismicity following the 1994 North-
ridge earthquake are shown in Figure 4, at various time
intervals and for different discretizing lengths L. No sig-
nificant alteration of the image is obtained by changing L
(Figure 4, top), for the 0–100 day interval after Northridge:
clear triggering is observed at and around the epicenter,
within the rupture zone, and some limited zones of quies-
cence are seen to emerge from a background of low positive
changes at L = 5 km. The quiescence zone becomes
however dominant in the southernmost third of the studied
area, at L = 10 km and 20 km. This dependence on L can be
removed by considering full space-time seismicity models,
in place of the present, purely temporal models that treat
each cell separately from the others.
[40] Dependence of the seismicity changes on the time

interval under study is very significant, as shown in
Figure 4 (bottom). Intense triggering is seen at 0–10
days, over most of the region, while quiescence appears
south of the epicenter after 1 month following the main
shock, to become dominant between 100 and 200 days.
This change in pattern is not due to a less ‘‘unfair’’
estimator that would be incapable of measuring negative
changes at short timescales, since the present estimator has
been defined to yield unbiased estimates. The emergence

Figure 4. Unbiased seismicity rate change estimator E{log r̂} for the Northridge earthquake (top) for
the time interval 0–100 days following the main shock (with a varying discretization length L = 5, 10 and
20 km, from left to right) and (bottom) for 0–10 days, 30–60 days and 100–200 days, all with L = 10
km. M5+ earthquakes that occurred between year 1983 and 200 days after Northridge are shown with
circles (radii arbitrarily increasing with M).
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at longer timescales of quiescence, from positively trig-
gered (at short timescales) regions, can be explained by
either the existence of two distinct triggering mechanisms,
or by a fundamental change in the seismic response of the
crust with time. The two explanations are discussed in
section 5.

3.2. Landers

[41] Seismicity rate changes for Landers were estimated
byWyss and Wiemer [2000], Kilb et al. [2000], andGomberg
et al. [2001], at rather long timescales (12.5 years before
versus 7 years after, and about 8 years before versus 9
months after Landers, for the first two studies, respectively),
except for Gomberg et al. [2001], who examined the first 2
weeks after Landers.Wyss and Wiemer [2000] and Kilb et al.
[2000] declustered the catalogue, but very different results
were obtained: two large lobes of quiescence were seen (one
east of Landers, south of the forthcoming Hector Mine
earthquake, and one northwest of Big Bear [cf. Wyss and
Wiemer, 2000, Figure 2]) byWyss and Wiemer [2000], while
Kilb et al. [2000] report negative changes restricted to a
small set of places (mostly south and southwest of Landers,
[cf. Kilb et al., 2000, Figure 2]). Such a departure between
the two analyses might be due to the difference in the length
of the time interval used to estimate the triggering after the

main shock (9 months compared to 7 years), and probably
also to a lack of robustness in the declustering procedure.
Gomberg et al. [2001] only show positive values of the b
statistics, but this comes from the choice of the color range
made by the authors as negative values were not considered
as being reliable, for such a short time interval of between
zero and two weeks following the main shock (J. Gomberg,
personal communication, 2003).
[42] The present method was applied to this sequence,

using L = 10 km and for the 0–100 day interval immedi-
ately following the Landers earthquake (Figure 5, top left).
Triggering is observed in most places, with the exception of
some quiescence east of the Joshua Tree rupture zone/south
of the future site of the Hector Mine earthquake, and along
parts of the San Andreas fault. Compared to prediction
based on Coulomb stress modeling [Jaumé and Sykes,
1992; King et al., 1994], quiescence is relatively lacking.
Along the San Andreas, stress calculations by Jaumé and
Sykes [1992] show small, negative Coulomb stress changes
north of the projection of the Big Bear epicenter (at about
34� and 243�), which correlates relatively well with the
present observations with mixed positive and negative
seismicity changes in this region. The San Gorgiono Pass
region, as defined by Jaumé and Sykes [1992], is found to
experience positive (northernmost half) and negative (south-

Figure 5. Unbiased seismicity rate change estimator E{log r̂}, (top left) for the Landers and (top
right) the Loma Prieta earthquakes, for 0–100 days after the main shocks, and L = 10 km. (bottom) A
section with L = 5 km along the Hayward, Calaveras, and San Andreas faults. The area probed in this
section is shown in dashed lines on the map (Figure 5, top right). Earthquakes of magnitude M4+ and
M3+ are shown, for Figures 5 (top) and 5 (bottom), respectively, with radii arbitrarily increasing with
magnitude.
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ernmost half) seismicity changes, which correlate well to
Coulomb stress calculations on strike-slip, vertical faults,
but not to a set of reverse slip faults as proposed by Jaumé
and Sykes [1992]. Coulomb stress changes, on optimally
oriented strike-slip, vertical faults, have been computed
following the Landers and the Big Bear earthquakes by
King et al. [1994]. Comparison with the seismicity rate
changes of Figure 5 shows the absence of quiescence east
and north of the Landers rupture, contrary to what would be
predicted by King et al. [1994]. While the few cells found
with negative seismicity changes correlate well with stress
shadows, too few of them are obtained, overall. The present
estimates of seismicity changes relate to both Landers and
Big Bear, while Joshua Tree is not considered as a trigger
(its aftershock sequence is accounted for by the nonsta-
tionary seismicity model of section 2). As a result, the
quiescence observed east of Joshua Tree is due to stress
changes caused by Landers.

3.3. Loma Prieta

[43] Seismicity changes following the Loma Prieta earth-
quake have been analyzed by Reasenberg and Simpson
[1992, 1997], Simpson and Reasenberg [1994], and Par-
sons et al. [1999] [see also Stein, 1999]. Surface creep
changes have also been detected and compared to stress
changes [Lienkaemper et al., 1997]. These studies agree that
(1) there seems to exist a significant correlation between
stress changes and seismicity or surface creep changes; (2)
mainly positive triggering is observed, especially on the
rupturing segment of the San Andreas; (3) the results are
ambiguous for the Calaveras fault, where the 1984 M6.1
Morgan Hill earthquake strongly disturbed the seismicity up
to the time of the Loma Prieta earthquake, and (4) a clear
instance of quiescence is found for the southernmost,
creeping segment of the Hayward fault (at about 37.45�
and �121.8�), a segment that previously experienced the
neighboring influence of the Morgan Hill earthquake.
[44] The unbiased seismicity rate change E{log r̂} at 0 <

tA < 100 days is shown in Figure 5 (top right and bottom).
Figure 5 (bottom) corresponds to a section roughly follow-
ing segments of the Hayward, Calaveras, and San Andreas
faults. As documented in the previous studies cited above,
inhibition of the seismicity is mainly observed along and
east of the Hayward fault, including both its southernmost
segment studied by Lienkaemper et al. [1997] and the area
where the Mount Lewis earthquake occurred. The Calaveras
and the San Gregorio faults are seen to globally undergo
positive triggering, even though, in the case of the Calaveras
fault, the section along depth (Figure 5, bottom) reveals
quiescent patches. Modeling of the static stress generated by
the Loma Prieta earthquake shows that the south Hayward
fault experienced a reduction in right-lateral shear stress
�t ’ �2 bars along with an increase in normal stress, i.e.,
unclamping �sn ’ +3 bars [Parsons et al., 1999] or,
equivalently, a decrease in Coulomb stress �s ’ �2 bars,
for a (low) friction coefficient m = 0.2 [Reasenberg and
Simpson, 1992]. The latter study also reports a positive
change of Coulomb stress, albeit small (�s ’ 0 � 1 bar) for
most of the Calaveras fault, south of the Morgan Hill
epicenter. The northern segment of the Hayward fault was
found to be slightly relaxed (with j�CFFj < 0.4 bar), while
the San Gregorio fault alternates positive and negative

Coulomb stresses. The seismicity rate changes calculated
here show good correlation with this modeling for the
Hayward fault, but not so for the San Gregorio nor the
Calaveras faults. Inspection of the time series indeed show
very little changes in the activity on the latter fault, south of
the Morgan Hill epicenter.
[45] The quiescence observed near the southern end of the

Hayward and north Calaveras faults corresponds to a zone
characterized by a strongly spatially variable, low p expo-
nent for the modified Omori’s law, as already noticed by
Schaff et al. [1998] for Morgan Hill aftershocks on the
Calaveras, and by Wiemer and Katsumata [1999]. This p
exponent is computed on Figure 6 for relocated (using
cross-spectral analysis leading to estimates of the relative
locations between events) aftershocks of the Morgan Hill
earthquake, using a simple least squares estimator and a t�p

model for the seismicity time series for t > 0 following
Morgan Hill. A clear transition at about 3–4 km north of the
Morgan Hill hypocenter is seen, separating low p values (p
< 0.3) to the north, from more usual p values with a p ’ 0.6
average, to the south. This transition is coincidental with the
transition between a clear decrease of seismicity to the north
(hence for low p values) and little seismicity change to the
south (higher p values). Lateral variations in frictional
properties can explain part of the observed seismicity
change distribution around the Morgan Hill hypocenter,
with clearly marked quiescence corresponding to (globally)
velocity strengthening segments.

4. Relative Absence of Shadowing Effects
Analyzed by Direct Correlation Measures

[46] The relative absence of quiescence, as compared to
typical predictions based on Coulomb modeling of earth-
quake interactions, can also be seen by direct correlation
analysis. When considering the activities of two given
crustal volumes, one expects them to behave independently
of each other unless a strong enough earthquake causes
significant stress changes on both locations; two cases can
then be distinguished: either (1) the two volumes are both
activated or both inhibited, resulting in positively correlated
fluctuations of their activities or (2) one place is inhibited
while the other is activated, hence a negative correlation
between the two volumes. Roughly speaking, case 1 implies
that the two zones ‘‘do the same thing (either increase or
decrease of activity) at the same time’’, and case 2 implies
that they ‘‘do opposite things at the same time’’. If on
average a portion p of the total crustal volume experiences
positive triggering, hence 1 � p experiences quiescence,
then case 1 is found with probability p2 + (1 � p)2, while
case 2 has probability 2p(1 � p). Coulomb modeling
predicts probabilities p close to 0.5 (or slightly higher, if
considering that the causative fault is characterized by
positive Coulomb stresses), hence inhibition and positive
triggering, therefore positive and negative correlations
between two arbitrary crustal volumes, should be observed
with roughly equal probabilities.
[47] Linear correlation coefficients r are computed for

southern and central California earthquakes (6824 M3+
earthquakes occurring between 1981 and 1999, with lat-
itude ranging between 32� and 37�, longitude between
�121� and �115�), after discretizing the area in cells of
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10 � 10 km2. For every pair of (distinct) cells with intercell
distance less than 100 km, the linear correlation coefficient
rij = {Cov [si(t), sj(t + �t)]}/{sisj} is computed, where
Cov[s1(t), s2(t + �t)] is the covariance of the two activity
time series in cell i and cell j, with time separation of �t,
and si and sj are their standard deviations. Probability
distributions of the coefficients rij are thus obtained, and
compared in Figure 7 to equivalent distributions that would
have been obtained by pure chance. The latter null hypoth-
esis corresponds to uniformly drawing the occurrence times
of the earthquakes without changing the location of their
epicenters. The correlation coefficients are then distributed
according to a law derived in Appendix C.
[48] Four cases are studied: (1) discretization in time

using 10-day bins, and �t = 0, (2) discretization in time
using 10-day bins, and �t = 90 days, (3) discretization in
time using 100-day bins, and �t = 0, and (4) discretization
in time using 100-day bins, and �t = 900 days. In all four
cases, positive correlation r > 0 is observed to be signifi-
cantly (well above the 95% confidence interval) more
frequent than for the null hypothesis, while negative corre-
lation r < 0 is too rarely obtained compared to the null
hypothesis. It is also noted that r is biased toward positive
values, since the null hypothesis yields r > 0 much more
frequently than r < 0. The latter case is however clearly
more frequent for the null hypothesis than in the real data.
This confirms the observation that quiescence is rather
insignificant, for the timescales studied (up to 1000 days).

Similar results are obtained when changing the maximum
distance (here equal to 100 km) between cells for which the
correlation coefficient is computed: any two cells tend to be
uncorrelated as the distance increases between them, and
therefore increasing this maximum intercell distance only
results in increasing the relative proportion of low valued rs.

5. Discussion

[49] The question remains as to why a region, or more
exactly a fault, that is on average unloaded (decrease of static
Coulomb stress), can still experience an increase of seismic-
ity, at least at the short timescales studied in this paper.
Triggering by dynamic stresses [Hill et al., 1993; Gomberg,
1996] is a natural candidate; the areas examined in the present
paper are about twice the length of the main shock rupture,
and thus experience dynamic stresses that are not on average
significantly greater than the static component. Predictive
models or observations of how the intensity of triggering vary
with the amplitude of the waves, their frequency content, and
the remanent static stress, need to be considered in order to
examine whether an initial period characterized by triggering
can eventually make way to quiescence.
[50] Global stress decrease, along with increase of seis-

micity, is characteristic of the causative fault: shear stress is
on average reduced by the occurrence of the main shock,
but large numbers of aftershocks are triggered on the fault.
Heterogeneity of the stress change, due to a variable (at

Figure 6. Estimate of the p exponent for the modified Omori’s law, for a segment of the Calaveras fault
(Figure 5) using relocated earthquakes. The horizontal coordinate (in km) is the same as in Figure 5,
depth (vertical axis) is also in km. The hypocenter of the Morgan Hill earthquake is shown with a star. A
rather sharp transition is observed between low (in the north) and higher (in the south) p values that
correlates well with the change in response following the Loma Prieta earthquake shown in Figure 5
(quiescence for low p, positive triggering for large p).
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small scale) slip distribution, can explain this common
observation [e.g., Bouchon, 1997]. Also, loading (or
unloading) of a rock volume or sample containing complex
sets of fractures generates complex, strongly heterogeneous
stress changes. Geodetic measurements, for example by
radar interferometry, of the displacements following an
earthquake, can only image the very large scale feature of
this heterogeneity in stress, as they integrate over, hence
smooth it (an example is given by Fialko et al. [2002], in
the case of the Hector Mine earthquake). It can be expected
that the stress changes undergone by the crust following an
earthquake are therefore much more fluctuating than the
changes computed by dislocation models in homogeneous
(or even layered) elastic half-spaces. Horizontal stress
orientations measured down a borehole at Cajon Pass, 4
km off the San Andreas fault, have been shown to fluctuate
in a scale-invariant way with depth [Shamir and Zoback,
1992]. Such fluctuations have been interpreted as resulting
from numerous superpositions of stress perturbations
caused by the local faults and fractures crossed by the

borehole. More generally, estimates of the elastic parameters
from sonic velocities measurements in various boreholes
have also been observed to exhibit large, scale-invariant
fluctuations, that could result from complex fracture sets and
self-similar lithological distribution [Leary, 1991; Wu et al.,
1994; Holliger, 1996; Bean, 1996;Marsan and Bean, 1999].
The ubiquity of the latter observations is remarkable. Stress
changes caused by a major earthquake can thus be expected
to be significantly variable in space, and to be controlled at
first order by both the complex slip distribution (close to the
fault) and the heterogeneity of the elastic medium (close to
and further away from the fault). Any given crustal volume
subject to an average stress decrease (on optimally oriented
faults, for instance), will contain subvolumes characterized
by stress increases. Nonsymmetric response, in terms of
earthquake occurrence rates, of a fault to positive or negative
Coulomb stress changes, combined with such a strongly
fluctuating stress perturbation, can explain the present
observation of the relative oddity of quiescence zones.
Rate-and-state friction exhibits such a nonsymmetric
response; seismicity rate changes are expected to be propor-
tional, at short timescales, to exp(�t/As), where �t is the
change in shear stress, s the normal stress acting on the
target fault, and A a constitutive parameter [Dieterich, 1994].
In this model, regions experiencing an average large, neg-
ative, but strongly fluctuating (due to the heterogeneity of
the medium) change in shear stress, can yield an average
increase of activity rather than quiescence. The latter would
only develop with time, as the asymmetry of the response is
reduced.

6. Conclusions

[51] The main results of the present analyses are as
follows:
[52] 1. Poisson statistics can be developed in order to

account for both the nonstationarity of earthquake popula-
tion dynamics and the bias in favor of triggering.
[53] 2. Changes in seismicity related to the occurrence of a

large earthquake are strongly time-dependent, and therefore
comparison with static, i.e., constant, stresses is ambiguous.
[54] 3. Positive triggering is significantly more frequently

observed than quiescence, the more so as the time interval
after the main shock is reduced.
[55] 4. Several instances of significant misfit between the

calculated seismicity rate changes and the modeled static
Coulomb stress changes are found. This shows that the
large-scale, static Coulomb stress does not systematically
control the seismicity occurring within the first few months
following an earthquake.
[56] 5. Heterogeneity of the medium, combined with a

nonsymmetric response of the crust to positive/negative
changes in shear stress, can possibly explain these observa-
tions, as would the existence of a distinct triggering regime,
at short timescales, due to the dynamic transient in stress
caused by the passage of the seismic waves.

Appendix A: Unbiasing E{log r̂}

[57] The biased E{log r̂} as defined in section 2.4 can be
studied for the stationary model of section 2.2. Knowing lA
and lB, and given tA and tB, the probability density

Figure 7. Distribution of the linear correlation coefficient r
for southern and central California discretized in 10� 10 km2

cells. Circles indicate actual values, and squares indicate
distribution for the null hypothesis (earthquake occurrence
times uniformly randomized), along with an estimate of the
95% interval (error bars). Four cases are considered, by
changing the length of the time bins over which the time
series are discretized (10 day bins for the top graphs, 100 day
bins for the bottom graphs) and the separation in time (time
lag)�t between the two series ((left)�t = 0 and (right)�t =
90 days and �t = 900 days, from top to bottom). Positive
correlation is significantly more frequent in the real case
compared to the null hypothesis, while there is a strong
deficit of negative correlation for the former. The correlation
decays when considering nonzero time lags �t, as expected
for any decorrelating process: in the limit�t!1 the actual
distribution converges toward the one of the null hypothesis.
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functions fA(l̂AjlA) and fB(l̂BjlB) can be calculated, since
f (l̂jl) = P1

n¼0

P(njlt) P(l̂jn). This simply gives that

f l̂jl
� �

¼ t e� lþl̂ð Þt X1
n¼0

ll̂t2
� �n

n!ð Þ2
ðA1Þ

This is then used in order to estimate

E log r̂j lA;lBf g ¼
Z1
0

dl̂ log l̂ fA l̂jlA

� �
� fB l̂jlB

� �n o

ðA2Þ

In the limit lAtA ! 0, i.e., in the case of regions becoming
very weakly active and short timescales tA, fA(l̂AjlA) ’ tA
exp(�l̂AtA), and the estimator converges toward

lim
lAtA!0

E log r̂ j lA;lBf g ¼ �g� log tA � E log l̂B j lB

n o
ðA3Þ

where g’ 0.557 is Euler’s constant. In this limit, E{log r̂jlA,
lB} is independent of lA, implying that it cannot correctly
measure seismicity rate changes for such regions and time-
scales. Note that a similar treatment leads to limlAtA!0P =
E{�el̂BtA jlB}. Figure A1 shows an example of how E{log r̂}
decays to log lA/lB as tA is increased, for lB = 10�2 earth-

quake/day, tB = 100 days, and lA varying between 2 � 10�3

and 2 � 10�2 earthquake per day. E{log r̂} gives a good
estimate of the expected log lA/lB when tA is large enough.
For too small a tA, a significant departure from log lA/lB is
seen, possibly resulting in the observation of an artificial
positive triggering. For example, lA = 0.006 earthquake/day
would correspond to an actual quiescence, since the seis-
micity rate lA is 1.67 times lower than the preseismicity rate
lB; however, an observation made at tA= 10 days would give
E{log r̂} = 0.78, i.e., an apparent positive triggering. Only for
tA greater than about 500 days would E{log r̂} be relatively
close to the expected loglA/lB = �0.22.
[58] E{log r̂} and P are therefore biased, for too small a

tA. P is unbiased when tA = tB, i.e., it yields P > 0.5 when
lA > lB and P < 0.5 when lA < lB. The bias on E{log r̂}
vanishes for large tA. A correction to this estimator can be
given in order to unbias it. Practically, in the nonstationary
case (i.e., the one that needs to be considered for real data),
the maximum likelihood estimate l̂B*, hence the one max-
imizing fB(l̂B), is used as our ‘‘best guess’’ on lB. Then,
knowing lB, tB and tA, lA is searched such that E{log
r̂jlA,l̂B*} of the stationary model equals the estimated
E{log r̂} of section 2.4. The log ratio log lA/l̂B* is then
taken as the new estimator. This operation corresponds to
shifting E{log r̂}, as shown in Figure A1, to the expected
log ratio.

Appendix B: Completeness of Data

[59] In order to estimate the minimum magnitude of
completeness of the three data sets analyzed in this manu-
script, the following procedure is taken:
[60] 1. The b value and the log likelihood of completeness

are computed for all earthquakes with magnitude greater
than m. The b value is computed using the discrete Guten-
berg-Richter model of Utsu [1966], with magnitude bands
of width dm = 0.1. No uncertainties on the magnitudes were
assumed. The log likelihood of completeness is the loga-
rithm of the probability that the best Gutenberg-Richter law
fitted against all the earthquakes with magnitudes greater
than m can predict the number of earthquakes with magni-
tude ranging between m � dm and m.
[61] 2. The minimum magnitude of completeness Mc is

chosen so that (1) the b value drops for m < Mc and (2) the
log likelihood drops for m = Mc. This indicates that
significantly too few earthquakes occur with magnitudes
m < Mc as would be expected from the best Gutenberg-
Richter law deduced from the magnitudes �Mc.
[62] Figure B1 shows this procedure, for the first year of

aftershock around Landers (33.5� to 35.5�, �117.5� to
�115�). The minimum magnitude of completeness is found
to be Mc = 2.3, as shown by the arrows on Figures B1
(middle) and B1 (bottom). The log likelihood is also
observed to drop at m = 2.9, but this corresponds to an
increase in b, hence a larger number of earthquakes com-
pared to the best Gutenberg-Richter prediction.
[63] The minimum magnitude of completeness is com-

puted independently for the preseismicity and for one year
of postseismicity, for the three data sets. The maximum
magnitude is then chosen between the post- and the pre-Mc

for each data set, to be the overall magnitude of complete-
ness. This yields Mc = 2.3, 1.9 and 1.0 for Landers, North-

Figure A1. E{log r̂jlA, lB} for lB = 0.01 earthquake per
day, tB = 100 days, and lA = 0.002, 0.004, 0.006,. . ., 0.02
earthquake per day (from bottom to top), in the stationary
case. The limit lA ! 0, as given by equation (A3), is shown
by the thick line. Expected log ratios log lA/lB are shown
by dashed lines. A minimum timescale tA is needed for
E{log r̂} to approximate log lA/lB, the smaller lA the
longer. In order to unbias the estimator E{log r̂}, a negative
shift is required (e.g., arrow, in the case lA = 0.002
earthquake per day and tA = 50 days).
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ridge and Loma Prieta, respectively. Spatial variations in Mc

can be observed, e.g., by considering subregions. Such
variations are not too strong; a maximum �Mc = 0.4 is
obtained for Loma Prieta, when looking at 50 � 50 km2

regions. Note also that the method described in section 2 is
only sensitive to temporal changes in Mc, but very little to
spatial changes since all the cells are treated independently
from each other.

Appendix C: Distribution of the Linear
Correlation Coefficient R for Two Independent,
Purely Random Time Series

[64] The null hypothesis considered in section 4, to be
compared to the real catalogue, is one for which the earth-
quakes are kept at their actual epicenter locations but are
given a random time of occurrence (i.e., their occurrence
time is an uniform random variable). The distribution P(r)
of the correlation coefficient r for all pairs of cells is here
derived, for this null hypothesis.
[65] Consider two time series s1(n) and s2(n), n =

{1,. . .,N}, such that the total numbers of earthquakes are
N 1 = N�s1 and N 2 = N�s2, where �s is the sample mean. Then

r ¼

PN
n¼1

s1 nð Þs2 nð Þ � N 1N 2=NffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1

s1 nð Þ � N 1=Nð Þ2
PN
n¼1

s2 nð Þ � N 2=Nð Þ2
s ðC1Þ

Assuming, as is very generally observed (as long as the cell
size L is small enough), that �s1 � 1 and �s2 � 1, then the
time series p(n) = s1(n) s2(n), n = {1,. . .,N}, is binary, with
Pr(p = 1) =N 1N 2=N

2 and Pr(p = 0) = 1 �N 1N 2=N
2. The

sum � = p(1) + . . . + p(N) is therefore a Poisson random
variable with mean l = N 1N 2=N . It is also straightforward
to show that the variances of s1 and s2 are var(s) ’
N 1�N =Nð Þ. This yields that P(r) = exp(�l)l�/�!, with
integer � = ar + b, l = N 1N 2=N , a =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 1N 2

p
/[1 +

N 1 þN 2ð Þ/2N] and b =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 1N 2

p
=N . The distribution of r

for the null hypothesis is obtained from these relations, with
(N 1;N 2) taking all possible observed pairs, for the grid
used in the analysis.
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