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Abstract

The source of metals involved in the formation of oceanic ultramafic-hosted hy-

drothermal Cu-Fe-Co-Zn-Ni mineralization remains poorly constrained. Here,

we focus on a fossil ultramafic-hosted hydrothermal mineralized system pre-

served in the Platta nappe (SE Switzerland), where mantle rocks were ex-

humed along detachment faults to the seafloor during Jurassic rifting. The

Cu-Fe-Co-Zn-Ni mineralization, associated with Fe-Ca-metasomatism (ilvaite-

hydroandradite-diopside), represents an analogue of the root zone of present-day

hydrothermal systems formed at mid-ocean ridges (e.g., Rainbow hydrothermal

field at the Mid-Atlantic Ridge). We apply the Sr isotope geochemistry to Fe-Ca

silicates and secondary, alteration products that include serpentinites, altered

mafic and carbonated rocks to constrain the source(s) of metals and to charac-

terize the plumbing system. The Fe-Ca silicates and carbonates have Sr isotope

ratios close to that of Jurassic seawater, suggesting a near seafloor, seawater-

dominated hydrothermal system with high fluid/rock ratios. The altered mafic

rocks have 87Sr/86Sr ratios lower than those of Jurassic seawater. In contrast,

serpentinites display a large range of Sr isotope ratios, including values higher

than those of Jurassic seawater, indicating long lived fluid/rock interactions and
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multi-stage fluid infiltrations. These results suggest that hydrothermal activity

started during final crustal thinning, when seawater percolated along normal

faults through the hyper-thinned crust, acquiring high Sr isotope ratios before

penetrating and initiating serpentinization of the subcontinental mantle rocks.

At this early stage, the system was rock-dominated (i.e., low fluid/rock ratios),

leading to high 87Sr/86Sr ratios in serpentinites. On their way-back to seafloor,

the uprising, serpentinization-derived fluids mixed with seawater resulting in the

precipitation of metal sulfides and Fe-Ca silicates, with subsequent carbonation

in a fluid-dominated system. Our study shows that the Sr isotope geochemistry

can be used to identify reservoirs involved in the formation of mineral deposits

and for the characterization of the plumbing system of oceanic ultramafic-hosted

mineralizations.

Key words: Ultramafic-hosted metal deposits, Sr isotope geochemistry,

Hydrothermal alteration, Ocean-Continent Transition, Alps, template

1. Introduction

Seawater circulation through the oceanic lithosphere plays a key role in heat

and element transfers between the main Earth reservoirs, such as the mantle and

seawater (Wolery and Sleep (1976); Bonatti et al. (1984); Alt (1995); Allen and

Seyfried Jr (2004); Seyfried Jr et al. (2015) Humphris and Klein (2018); Le Gal5

et al. (2018)). During final rifting and breakup, extensional tectonics leads to

the formation of high-angle normal and exhumation faults, which create pref-

erential pathways for fluid circulation (Jackson (1987)). While hydrothermal

fluids flow along these faults, they interact with the surrounding rocks, forming

a variety of secondary rocks such as serpentinites, altered mafic rocks (among10

which rodingites) and ophicalcites (Spooner et al. (1974)). These alteration

processes occur under a wide range of temperature, pH and redox conditions,

leading to the formation of hydrothermal fluids with various chemical composi-

tions (e.g., Früh-Green et al. (1990); Von Damm (1995); Seyfried Jr et al. (2004);

Bach et al. (2004)). Among them, moderate to high-temperature, acidic and15
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reduced fluids are responsible for the formation of mineralized systems at or

near the seafloor (Rona (1984); Rona et al. (1993); Hannington et al. (2001);

Douville et al. (2002)). The discovery of ultramafic-hosted hydrothermal sys-

tems along slow- to ultra-slow-spreading ridges (Krasnov (1995); Fouquet et al.

(1998); Cherkashov et al. (2008); Melchert et al. (2008); Tao et al. (2014); Tao20

et al. (2020)) or fossil systems in ophiolites preserved in the Alps (Garuti et al.

(2008); Toffolo et al. (2017); Coltat et al. (2019b)) highlighted that hydrated

ultramafic rocks may be suitable sinks for metals. In these geological settings,

mineralization is commonly enriched in base (Cu, Zn, Ni), critical (Co), and

precious metals (Au and Ag, Fouquet et al. (2013)).25

Although our understanding of the formation of ultramafic-hosted hydrother-

mal systems has improved these last years, the source of metals in the mineral-

ization is not fully constrained yet. Iron, Zn and Cu stable isotope systematics

may bring constraints to decipher the source of metals and offer an interesting

way of tracing metal mobilities in hydrothermal cells (Rouxel et al. (2004b),30

Rouxel et al. (2004a); Debret et al. (2018)). However, multiple factors con-

trol isotopic fractionation in these systems, including temperature, oxidation-

reduction, multi-step processes, preventing to obtain a straightforward interpre-

tation from isotopic compositions solely (Zhu et al. (2002)). On the opposite,

the strontium isotopes are not subject to significant mass-dependent isotopic35

fractionation. The Sr isotope systematics are thus likely easier to interpret es-

pecially as the main terrestrial reservoirs (mantle reservoirs, continental crust,

seawater) have distinct and well-defined Sr isotope compositions. Whereas ex-

changes between these reservoirs using Sr isotopes have been widely investigated

(e.g., Veizer and Compston (1974); Chapman and Spooner (1977); Mcculloch40

et al. (1980); Albarede et al. (1981); Burke et al. (1982); Bach and Humphris

(1999); Boschi et al. (2008); Delacour et al. (2008); Augustin et al. (2012);

Schwarzenbach et al. (2021)), their application to mineralized systems has not

been considered so far.

In the Platta nappe, in the SE Swiss Alps, Coltat et al. (2019b) identified45

a Jurassic mineralized system hosted in serpentinites considered to represent
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an analogue of the root zone of active hydrothermal systems at slow-spreading

ridges. The precipitation of metal-bearing phases (sulfides and oxides) was con-

temporaneous with a Fe-Ca-metasomatism responsible for the precipitation of

Fe-Ca silicates (i.e., ilvaite, hydroandradite, diopside, Coltat et al. (2019b)).50

Since Ca and Sr share close chemical properties, these Fe-Ca metasomatic as-

semblages represent suitable targets for a Sr isotope-based tracing. These as-

semblages may have recorded isotopic information related to the metal source(s)

involved in the formation of seafloor metal ore deposits and its related plumbing

system.55

Following this idea, we have measured the Sr isotope compositions of the Fe-

Ca silicates that act as Sr sink. We also analyzed the potential contributors (i.e.,

the metasomatic rocks) and we compiled data from the literature. We discuss

the implications of our results for the overall understanding of the formation

of mineralized systems and more generally of fluid/rock interactions that occur60

during detachment-related mantle exhumation in oceanic domains.

2. Geological setting

2.1. The Platta nappe

The Platta nappe is located in the Central Alps in Grisons, SE Switzerland

(Figure 1A). It corresponds to a remnant of the Alpine Tethys Ocean-Continent65

Transition (OCT), which formed during late Middle Jurassic when Europe and

Adria separated. The Platta nappe is composed by serpentinized peridotites,

mafic rocks (including basalts and gabbros) and post-rift sediments (Dietrich

(1969), Manatschal and Nievergelt (1997); Desmurs et al. (2002); Schaltegger

et al. (2002); Epin et al. (2019)). The Platta nappe is subdivided into two Alpine70

units (Figure 1B, C). The Upper Platta Unit mainly consists of serpentinized

peridotites that originally formed the inherited subcontinental mantle of the

Adriatic distal margin (i.e., the Err domain Schaltegger et al. (2002); Müntener

et al. (2004); Müntener et al. (2010); Picazo et al. (2016); Epin and Manatschal

(2018)). The Lower Platta Unit, originally located further oceanward, consists75
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of a large serpentinized mantle domain locally intruded by Jurassic gabbros and

covered by pillow lavas, pillow breccias and locally also lava flows (Desmurs

et al. (2002); Amann et al. (2020)). Contrarily to the mantle rocks from the

Upper Platta Unit that do not exhibit any syn-rift melt imprint, those from the

Lower Platta Unit have been largely refertilized by melt percolation during final80

rifting and breakup (Müntener et al. (2004); Müntener et al. (2010)).

The Platta nappe is separated, along an Alpine thrust, from the nappe stack

preserving remnants of the former distal Adriatic continental margin (e.g. Err

and more proximal domains of the former Adriatic margin). Slivers of con-

tinental origin also occur in the Platta nappe and have been interpreted as85

extensional allochthons (Froitzheim and Manatschal (1996)). Based on this ob-

servation and the subcontinental nature of the mantle, the Platta nappe has

been considered as a magma-poor OCT of late Middle Jurassic age (Froitzheim

and Manatschal (1996); Manatschal and Nievergelt (1997); Figure 1). Mantle

exhumation in the OCT was accommodated along multiple detachment faults90

(Epin et al. (2019)) accompanied with the inception of mafic magmatism. More

detailed mapping enabled to propose the existence of a well preserved mantle

core complex, capped by a main extensional detachment and overprinted by later

high-angle faults Epin et al. (2019). U-Pb dating on zircons from syn-tectonic

mafic intrusions provided a Jurassic age of 161 ±1 Ma for the timing of mantle95

exhumation (Schaltegger et al. (2002)). This exhumation phase was accompa-

nied by intense fluid circulations, leading to (i) serpentinization of ultramafic

rocks, (ii) rodingitization of mafic intrusive and epidotization-chloritization of

mafic extrusive rocks (Desmurs et al. (2002); Amann et al. (2020)), (iii) for-

mation of mineralized systems (Dietrich et al. (1972); Perseil and Latouche100

(1989); Coltat et al. (2019b)) and (iv) carbonation of serpentinites and basalts

near and at the seafloor along the exhumed detachment surface (Coltat et al.

(2019a); Coltat et al. (2020)).

Reactivation of the Alpine Tethys margin during Alpine convergence can

be subdivided into three stages. During a first Late Cretaceous phase (D1 of105

Froitzheim (1994), the whole Adriatic margin was telescoped along major, west-
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verging thrusts during which the Platta nappe became part of the main Alpine

nappe stack (Figure 1B, C). The second phase (D2) corresponds to a late Creta-

ceous extensional event forming top-to-the-east to top-to-the-southeast normal

faults. This phase is followed by a third phase (D3) that produced east-west110

trending folds with steeply dipping axial planes and a few north-vergent folds

and thrusts with minor displacement (some few meters at a maximum). It is

worthy to note that the whole Platta Nappe has been relatively preserved from

Alpine deformation (only D1 results in a main overprint) and the metamor-

phic overprint was week with maximum conditions corresponding to prehnite-115

pumpellyite metamorphism (less than 350°C) (see Coltat et al. (2021). It is also

important to note that the Platta nappe remained in the hanging wall of the

Late Cretaceous to Cenozoic subduction, which differs from most Alpine ophi-

olites exposed in the Western Alps. Therefore, the pre-Alpine seafloor-related

structures and hydrothermal alterations remained largely preserved (Froitzheim120

and Manatschal (1996); Chalot-Prat et al. (2003); Epin et al. (2019)).

2.2. The Marmorera-Cotschen Hydrothermal System

A well-preserved fossil ultramafic-hosted hydrothermal system, namely the

Marmorera-Cotschen hydrothermal system, has been recently identified in the

Platta Nappe (Coltat et al. (2019b); Coltat et al. (2021)). This hydrother-125

mal system is preserved in the serpentinized footwall of a detachment fault

juxtaposing basalts onto serpentinites (Figure 1B, Coltat et al. (2019b)). The

serpentinite-hosted mineralization is geometrically associated with mafic intru-

sions indicating that the latter acted as preferential pathways for the fluid.

The Cu-Fe-Co-Zn-Ni mineralization consists of sulfides (mainly chalcopyrite,130

pyrrhotite, (Co-)pentlandite and sphalerite) and oxides (magnetite). Geochem-

ical analyses performed on massive sulfides show enrichments up to 27.7 wt.

% Cu, 0.28 wt. % Zn, 0.16 wt. % Co and Ni content of about ∼1500 ppm,

similar to those of unaltered mantle rocks (Coltat et al. (2021)). Gold was

never concentrated enough to be detected in Cu-rich massive sulfides but Ag135

concentration reach up to ∼120 ppm in the most mineralized samples (Coltat
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et al. (2021)). A Fe-Ca-metasomatism responsible for the formation of Fe-Ca

silicates such as ilvaite, hydroandradite and Fe-rich diopside as stockwork zones

and pervasive replacement zones in serpentinites was coeval with the mineral-

ization (Coltat et al. (2019b)). Based on petrographic and structural features,140

the Marmorera-Cotschen hydrothermal system is assumed to represent the root

of an ultramafic-hosted black smoker system (Coltat et al. (2019b)).

3. Methods

3.1. Field sampling

In this study, we present the Sr isotope compositions of 64 samples from the145

Platta nappe including Fe-Ca silicate minerals (12 samples), carbonated rocks

(15 samples), serpentinites (24 samples) and mafic rocks (8 samples). In order

to unravel the hydrothermal alterations during the tectonic evolution of the

margin, we collected samples at different structural positions along the margin,

from the continentward (Upper Platta) to the oceanward (Marmorera-Cotschen,150

Lower Platta) domains (Table 1; Figure 1B, C). Several Sr sources are supposed

to be involved for the considered hydrothermal alterations, such as the Jurassic

seawater , the subcontinental lithospheric mantle and the continental crust.

The Fe-Ca silicate minerals were sampled at two different sites: Cotschen

and Kanonensattel (i.e., the eastern prolongation of the Marmorera-Cotschen155

hydrothermal system, for location see Figure 1B). The site of Cotschen corre-

sponds to the deepest structural position of the hydrothermal system and is

located about 150 m below the detachment/seafloor. Based on mineralogical

assemblages reported in the mineralization at Kanonensattel, this site also likely

corresponds to a deep part of the hydrothermal system, although the contact160

between serpentinites and mafic rocks (i.e., the detachment surface) has not

been observed. The potential variations of the fluid/rock interactions during

Fe-Ca-metasomatism were tested by sampling both Fe-Ca silicate minerals in

the stockwork zone (Figure 2A) and those that pervasively replaced the serpen-

tinites (Figure 2B).165
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Carbonated rocks, especially marine carbonates are often used to determine

the Sr isotope composition of seawater through geological times since they pre-

sumably precipitated at isotopic equilibrium with seawater (Burke et al. (1982)).

In the Jurassic, the 87Sr/86Sr ratio of seawater is between 0.7068 and 0.7078

(DePaolo and Ingram (1985), Hess et al. (1986), McArthur et al. (1993), Jones170

et al. (1994), Veizer et al. (1999). In the Platta nappe, ophicalcites and carbon-

ated mafic rocks from different sites (i.e. Cotschen, Marmorera, Falotta, Figure

1B; Table 1) were analyzed in order to better constrain the Sr isotope value of

seawater when carbonation occurred. The sampled rocks include discrete calcite

veins crosscutting the serpentinites (i.e. fracture infilling ophicalcites in Coltat175

et al. (2019a)) and mafic rocks (Figure 2C) as well as thick carbonated shear

bands in serpentinites (i.e., foliated ophicalcites in Coltat et al. (2019a); Figure

2D). The latter are assumed to form under higher fluid/rock ratios than the

former, making them suitable candidates to record the original 87Sr/86Sr value

of seawater.180

The Sr reservoirs implied in the serpentinization of mantle rocks can be de-

duced from the isotope compositions of serpentinites through the Platta nappe.

The serpentinites display several generations of serpentine minerals, with a pre-

dominant one presenting a typical mesh texture (the groundmass), and a series

of green veins crosscutting the mesh (Figure 2E; referred to as veins in Table185

1). These two types of serpentinite are supposed to record different conditions

of formation during mantle exhumation Picazo et al. (2013).

In addition to serpentinites and carbonates, eight mafic rocks, including

epidotized and chloritized basalts (Figure 2F) and chlorite/actinolite-bearing

mafic intrusions have been analyzed. Our geochemical dataset (Table 1) is190

completed by data from the literature for mafic rocks, rodingites and associated

blackwalls of the Platta nappe (See supplementary material; Stille et al. (1989);

Schaltegger et al. (2002) and Amann (2017)).
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3.2. Analytical methods

The whole-rock analysis of serpentinites and mafic rocks was carried out to195

determine the Sr and Rb contents of the rocks. Trace elements were measured

by Inductively Coupled Plasma Mass Spectrometry (ICP-MS; Thermo Scientic

X series II instrument) at the Institut Terre et Environnement de Strasbourg

(ITES). Following the analytical procedure of Chauvel et al. (2011), about 100

mg of rock powder was precisely weighed and dissolved in Savillex beakers in200

a HF-HNO3-HClO4 (5:1:1) mixture, during a minimum of 7 days at 140°C

on a hot plate. The solution was then evaporated and the residue dissolved

in concentrated HNO3 and evaporated before dilution in about 40 ml of 7 M

HNO3.

The Sr isotope compositions of whole rock samples (serpentinites, mafic205

rocks, rodingites and blackwall) were determined at the Institut Terre et Envi-

ronnement de Strasbourg (ITES) using a Neptune Thermo Scientific instrument

Multi-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS)

and a Thermo Finnigan Triton instrument Thermal Ionisation Mass Spectrom-

eter (TIMS). About 100 mg of rock powder was dissolved and digested in a210

HF:HNO3:HClO4 (5:1:1) mixture for 7 days. The samples were then evaporated

and the residues taken up in concentrated HNO3 to ensure complete dissolu-

tion. After another evaporation, the samples were finally dissolved in 2ml of 2

M HNO3 before being loaded in resin columns (Eichrom Sr-spec resin), washed

with 5.5 ml of HNO3 7 M and then eluted with 2.4 ml of HNO3 0.05 M. Chemi-215

cal separation and purification were performed following an analytical procedure

modified after Pin and Zaldueguil (1997) and Deniel and Pin (2001). Measured

87Sr/86Sr ratios were normalized to 86Sr/88Sr = 0.1194. During the collection

of isotopic data, replicate analysis of NBS 987 (SrCO3) reference material gave

a mean value of 0.710260 ± 8 (2 SE, n = 26). The total procedural blank for220

the whole chemical treatment was 207-233 pg, negligible for all samples.

The Sr isotope composition of carbonates were determined at Geosciences

Rennes, Université de Rennes 1, using a Mat Finnigan 262 instrument (TIMS).

Approximatively 10 mg of rock powder were sampled by micro drilling and then
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dissolved in 2.5 M HCl before chemical separation.225

The 87Sr/86Sr ratios for serpentinites, mafic rocks, rodingites and blackwalls

were recalculated at 160 Ma, based on the age of magmatic intrusions and gab-

bros of the Platta nappe. For Fe-Ca silicates, Rb concentrations were systemat-

ically below the detection limit, and for carbonated rocks, it was presumed that

the Rb content is extremely low, giving a Rb/Sr ratio close to zero; therefore230

it was assumed that the 87Sr/86Sr ratio of these samples did not significantly

evolve during the last 160 Ma (Table 1).

4. Sr isotope compositions of altered rocks from the Platta nappe

4.1. Fe-Ca silicates in veins and pervasively replacing serpentinites

The Sr isotope ratios of Fe-Ca silicates range from 0.70592 to 0.70785 with235

an average composition close to the value of Jurassic seawater (∼0.7068, n = 12,

Figure 3). At Kanonensattel, Fe-Ca silicates that pervasively replaced serpen-

tine are more radiogenic than those from Cotschen (mean values of 0.70708 and

0.70648, respectively, Table 1). At Cotschen, Fe-Ca silicates occurring as per-

vasive replacement are slightly more radiogenic than those in veins crosscutting240

serpentinites (0.70676 and 0.70621, respectively Table 1).

4.2. Carbonates veins and shear bands in serpentinites and basalts

The 87Sr/86Sr ratios of carbonates are centered around 0.70668 (n = 15;

Table 1), close to the value of Jurassic seawater (Figure 3). The carbonated

rocks from Falotta display Sr isotope ratios comprised between 0.70624 and245

0.70729, with a mean value of 0.70684, while carbonates from Cotschen are

less radiogenic (0.70645 in average). Carbonates from Marmorera exhibit low

Sr isotope ratios, with maximum at 0.70548. Carbonate veins in serpentinites

show the highest variability of Sr isotope compositions, ranging from 0.70419 to

0.70729, with a mean value slightly below the Jurassic seawater (0.70640, Table250

1). At Falotta, discrete carbonate veins in serpentinites display Sr isotope ratios

higher than their equivalents in mafic rocks (0.70706 vs. 0.70665, respectively) or

10



than carbonated shear bands in serpentinites (0.70686; Table 1). At Marmorera,

carbonates in pervasive replacement of serpentinites display lower Sr isotope

ratios than calcite veins in serpentinites (0.70468 and 0.70484, respectively;255

Table 1).

4.3. Serpentinites

Serpentinites are characterized by 87Sr/86Sr ratios of 0.70394 to 0.7939, val-

ues that range between those of the sub-continental lithospheric mantle and the

mean value of the continental crust (Figure 3). Numerous samples display Sr260

isotope ratios higher than the Jurassic seawater. As for carbonate veins, part

of the isotope heterogeneity seems to be related to the structural position along

the margin: serpentinites from the Upper Platta (proximal part of the paleo-

margin) have higher 87Sr/86Sr ratios (0.70783 in average, n = 10) than those

from the Lower Platta (0.70741, n = 14). In the latter, the less radiogenic sam-265

ple is from Marmorera (0.70394), while serpentinites from Kanonensattel and

Cotschen have similar and relatively high Sr isotope ratios (0.70717 in average;

Table 1), close to the value of Jurassic seawater. In Falotta (Lower Platta), the

Sr isotope ratios of serpentinites are more heterogenous, with a mean value of

0.70741 (n = 10; Table 1), higher than the Jurassic seawater. In addition, green270

serpentine veins (0.70832 in average) are characterized by higher Sr isotope

compositions than serpentinites forming the groundmass (0.70717 in average).

4.4. Mafic rocks

The Sr isotope ratios of mafic rocks are consistent with those available in

the literature (Stille et al. (1989); Schaltegger et al. (2002); Amann (2017);275

supplementary material). They range between the Jurassic seawater and the

sub-continental lithospheric mantle (0.70181 to 0.70641; Figure 3). The mafic

rocks from Marmorera (87Sr/86Sr=0.70400) have Sr isotope ratios lower than

other samples from the Lower Platta (0.70603 in average), consistent with what

is described for carbonates and serpentinites. Intrusive rocks display 87Sr/86Sr280

ratios lower than those for basalts (0.70351 and 0.70551 in average, respectively,

11



Table 1). Extrusive rocks display quite homogenous Sr isotope compositions

regardless of their alteration (i.e., epidotization or chloritization), with a slightly

less radiogenic composition for epidotized basalts when compared to chloritized

basalts (0.70524 and 0.70606, respectively; Table 1).285

4.5. Rodingites and blackwalls

Rodingites and blackwalls display 87Sr/86Sr ratios between 0.70345 and

0.70641 (see supplementary material online), overlapping those of mafic rocks

(Figure 3). Rodingites display more radiogenic Sr compositions than blackwalls

(0.70589, n = 6 and 0.70440, n = 4, respectively).290

5. Discussion

5.1. Multiple Sr reservoirs involved during seafloor hydrothermalism in Ocean

Continent Transition

Regardless the timing of the different hydrothermal alterations reported in

the Platta nappe, the Sr isotope compositions of the altered rocks highlight295

that different Sr contributors were involved during hydrothermalism. The Sr

isotope compositions of Fe-Ca silicates and carbonates are centered around the

Jurassic seawater value (Figure 3). This suggests that seawater was the main

contributor of strontium for these two lithologies, assuming that isotopic equi-

librium was achieved. This is consistent with the development of ophicalcites300

within serpentinites close to the seafloor Weissert and Bernoulli (1984), and/or

thanks to the infiltration of seawater during the syntectonic carbonation along

the detachment fault and the serpentinite-basalt contact as evidenced by ho-

mogeneous stable δ18O and δ13C signatures of carbonates in the Falotta area

(Coltat et al. (2019b)).305

By contrast with other hydrothermal alteration products, many serpentinites

display Sr isotope compositions significantly higher than the Jurassic seawater.

This implies that the fluids responsible for serpentinization previously inter-

acted with the continental crust, the latter reservoir being significantly more
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radiogenic than Jurassic seawater (Figure 3). Hence, serpentinization of the310

sub-continental mantle occurred before its exhumation at the seafloor. A simi-

lar interpretation was proposed recently for serpentinization of mantle rocks in

the Apennines Schwarzenbach et al. (2021).

The Sr isotope compositions of altered mafic rocks (i.e., epidotized and chlo-

ritized basalts) are slightly higher than those of fresh gabbros (Table 1). This315

observation can hardly be attributed to different magmatic parental sources

since structural and geochemical relationships between intrusive and extrusive

mafic rocks in the Platta nappe indicate they share a common genetic origin

(Epin et al. (2019); Amann et al. (2020)). Consequently, we consider that the

higher 87Sr/86Sr compositions of extrusive mafic rocks result from the interac-320

tion with seawater at higher fluid/rock ratios than for gabbros, which is similar

to previous work (e.g., Burke et al. (1982);Rampone et al. (1998)). This in-

ference is confirmed by the calculated percentage of Sr isotopic exchanged and

fluid/rock ratios (Table 1). As the Jurassic seawater has a higher Sr isotope

ratio than the sub-continental lithospheric mantle, intense alteration implying325

seawater circulation interacting with mafic rocks would ultimately lead to an

increase of the Sr isotope compositions of the altered rocks.

As for mafic rocks, the Sr isotope compositions of rodingites and blackwalls

range between the sub-continental lithospheric mantle value and that of Juras-

sic seawater (Figure 3), suggesting here again that the source of Sr predomi-330

nantly derives from these two reservoirs during the hydrothermal alteration of

mafic rocks. Rodingites and blackwalls have higher 87Sr/86Sr ratios than mafic

rocks, which might also be explained by a more intense alteration highlighted

by high Sr isotope exchange (supplementary materials). The involvement of

modified seawater or different magmatic sources is an unlikely scenario that335

is discarded here. Indeed, in the rodingites from Falotta, which display the

highest Sr isotope compositions (up to0.7068), primary minerals are completely

replaced by secondary minerals (chlorite, grossular, diopside Amann (2017)).

Besides, it is widely accepted that rodingites are formed by successive inter-

actions between mafic rocks and fluids released after serpentinization reactions340
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(e.g., Coleman (1967); Frost (1975); Evans (1977); Palandri and Reed (2004);

Panseri et al. (2008), Bach and Klein (2009); Salvioli-Mariani et al. (2020)). As

shown earlier, some serpentinites have more radiogenic Sr isotope compositions

than Jurassic seawater, especially at Falotta. Consequently, serpentinization-

derived fluids reacting with mafic rocks would likely confer to rodingites and345

associated blackwalls higher Sr isotope compositions than those of the parental

magmatic protolith.

5.2. Mineral textures as a proxy of fluid/rock ratios during hydrothermal alter-

ation

The fluid/rock ratios prevailing during alteration can be calculated using the350

Sr isotope compositions of the altered rocks following the procedure describe in

Delacour et al. (2008). Besides the isotopic variability explained by sourcing

distinct reservoirs in variable amounts, some of the variability observed for a

given lithology (dispersion of histograms; Figure 3) seems to be directly related

to mineral textures, especially for Fe-Ca silicate minerals from Cotschen. The355

minerals in veins are less radiogenic than those in pervasive replacement of

serpentinites (Table 1). This may relate to variable fluid/rock ratios and/or

variable modes of secondary mineral formation during hydrothermal alteration

(replacement vs. open-space infilling). This suggests close relationships between

the replacement process and the resulting Sr isotope compositions. During360

hydrothermal alteration, the Sr isotope composition of secondary minerals is

related to the amount of fluid available and its capacity to percolate into the

rock. When large amounts of fluid are available (i.e., high fluid/rock ratio),

the Sr isotope composition of the fluid remains unchanged during interaction

with the country rocks and consequently, secondary minerals will record the365

isotopic signature of this fluid. On the contrary, if the amount of fluid available

is low (i.e., low fluid/rock ratio), the initial Sr isotope composition of the fluid is

modified during fluid/rock interactions and thus secondary minerals will record

these fluid/rock interactions.

In cases where a large quantity of seawater was available, pervasive replace-370
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ment of primary minerals occurred, and the resulting Sr isotope compositions of

altered rocks are close to the value of seawater (Figure 3). The initial Sr isotope

compositions of protoliths, i.e., serpentinites both for Fe-Ca silicate minerals

and carbonates, were erased during intense interaction with Jurassic seawater.

Conversely, if small amounts of seawater were involved, discrete veins pref-375

erentially formed, yielding Sr isotope compositions which were not buffered by

seawater but rather preserved the ones of the primary host rocks. For instance,

at Cotschen, the Fe-Ca silicate minerals produced during pervasive replace-

ment of serpentinites display Sr isotope compositions close to that of Jurassic

seawater (∼0.70676) and very large Sr isotope exchange (from 84 to 100 %),380

whereas isolated Fe-Ca silicate veins in serpentinites have slightly lower Sr iso-

tope compositions (∼0.70621) and lower Sr isotope exchange (from 75 to 87 %).

This supports the hypothesis of Coltat et al. (2019b), who proposed that the

fluid/rock ratio increased from the outer zone (i.e., host serpentinites) where dis-

crete veining occurred in the stockwork to the inner zone (i.e., Cu-rich massive385

sulfides) where Fe-Ca silicate minerals pervasively replaced the serpentinites.

As for Fe-Ca silicates, the textural variability of the carbonates at Falotta

seems to control the Sr isotope compositions of altered rocks. Coltat et al.

(2019a) inferred that an infinite isotopic reservoir was available during the for-

mation of thick foliated ophicalcites (∼10 m). Fracture-filling carbonates, which390

formed under lower fluid/rock ratios than those prevailing for foliated ophical-

cites, have higher Sr isotope compositions than the latter (0.70706 and 0.70686,

respectively; Table 1). The percentage of Sr exchange calculated is about 96 %

for foliated ophicalcites. This supports the idea that the textural variability of

altered rocks is controlled by variations of the fluid/rock ratio during hydrother-395

mal alteration, leading to distinct Sr isotope compositions of the secondary

minerals. Where the fluid/rock ratio was high, secondary minerals recorded

the Sr isotope composition of the fluid solely (i.e., seawater), whereas at low

fluid/rock ratio, they recorded interactions between the hydrothermal fluid and

the surrounding rocks (i.e., acquiring intermediate Sr isotope compositions be-400

tween those of the fluid and the surrounding rocks). Similarly, Schwarzenbach
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et al. (2021) have measured Sr and stable isotopes in calcite veins in ophical-

cites from Apennine ophiolites, and proposed that carbonation resulted from

extensive seawater circulation.

A different trend is recorded by serpentinites. At Falotta, the serpentine405

veins are more radiogenic than the groundmass of serpentines with mesh tex-

ture (0.70898 and 0.70756, respectively; Table 1). Mesh formation requires

very low fluid/rock ratios and supports a diffusion process in a roughly closed

system (where the amount of fluid is limited; Viti and Mellini (1998); Evans

(2004); Andreani et al. (2007)). In contrast, vein formation corresponds to410

higher fluid/rock ratios, especially during the latest vein formation in an open

system near the seafloor Andreani et al. (2007). The serpentine veins were

formed after interaction with seawater that previously percolated through the

continental crust. The oxygen isotope compositions measured in late serpentine

veins from the Platta nappe by Früh-Green et al. (1990), are consistent with415

interaction with metamorphic fluids channelized along discrete brittle fractures

and at grain boundaries in a rock-dominated system. More recently, Schwarzen-

bach et al. (2021) proposed that hydrogen isotopes compositions measured in

serpentinites from the Apennine ophiolites resulted of a seafloor process and

interaction with an evolved seawater-derived fluid. In the absence of evidence420

of metamorphic overprint in the area and in line with our results, we argue that

this latter explanation is the most plausible.

5.3. Hydrothermal alteration during the final rifting and breakup of the Platta

nappe

Part of the isotopic variability in serpentinites cannot be explained by varia-425

tions of the fluid/rock ratios nor by mineral textures, e.g., the wide disparities in

the groundmass serpentinites between sites (Table 1). Serpentinites in a more

continentward position (Upper Platta) have 87Sr/86Sr ratios higher than ser-

pentinites from a more oceanward position (Lower Platta; Table 1). For mafic

rocks, epidotized basalts from Marmorera (distal domain) are less radiogenic430

than those from Falotta (distal domain; Table 1). Moreover, at Falotta, epido-
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tized basalts recorded a higher Sr isotope exchange and fluid/rock ratio than

those at Marmorera (Table 1). Therefore, the contribution of the Sr reservoirs

likely evolved with the position along the margin and thus a change in the na-

ture and the proportion of the Sr contributors during the margin formation may435

be inferred.

Serpentinization of mantle rocks resulted from the interaction of the sub-

continental lithospheric mantle with hydrothermal fluids (Table 1; Figure 3)

that previously interacted with the continental crust. During rifting, the con-

tinental crust was progressively thinned due to the interplay between brittle440

detachment faulting in upper crustal level and ductile shearing in middle and

lower crustal levels (Mohn et al. (2012)). Hence, before reacting with mantle

rocks, seawater likely percolated through the permeable faults and interacted

with crustal rocks (Incerpi et al. (2020)). In a later stage of rifting, shear zone

allowed to thin the crust less than 10 km and completely brittle, enabling faults445

and fluids to penetrate across the residual thinned crust into the mantle initiat-

ing serpentinization. At a following stage, mantle was exhumed to the seafloor

by in and out of sequence detachment systems, whereby domains near the crust

experienced contamination by continent-derived Sr, while this contamination

decreased oceanward. This led to the Sr isotope gradient observed in serpen-450

tinites with lower Sr isotope compositions oceanward. Hence, a significant part

of the isotopic heterogeneity of serpentinites is likely due to long-term serpen-

tinization reactions during extensional tectonics, from the hyperextension phase

to the exhumation phase (i.e., creation of the distal domain).

To a lesser extent, the position along the margin may also have influenced the455

Sr isotope compositions of carbonated rocks. Indeed, samples from Falotta (Fig-

ure 1B) display higher Sr isotope compositions than carbonated rocks from the

more oceanward Cotschen and Marmorera domains. This could be explained by

higher Sr isotope compositions of the host rocks at Falotta than at Marmorera-

Cotschen (i.e., serpentinites Table 1; Figure 3). Hence, during carbonation, at460

a given fluid/rock ratio, the seawater that would have interacted with serpen-

tinites having higher Sr isotope ratios at Falotta than at Marmorera-Cotschen
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likely formed carbonates with higher Sr isotope compositions at Falotta.

5.4. Timing of the hydrothermal alteration at the Marmorera-Cotschen Hy-

drothermal System465

All the points discussed above allow to propose a timing for the hydrother-

mal alteration and formation of the Marmorera-Cotschen hydrothermal plumb-

ing system (Figure 4). In the Platta nappe hydrothermal alteration story, the

serpentinization of mantle rocks was the first event (Figure 4, stage1). It started

during the hyperextension phase of the rifting, when the sub-continental litho-470

spheric mantle was still capped by a thinned continental crust (less than 10

km thick), forming the highly radiogenic serpentinites (Figure 3; Table 1). Ser-

pentinization continued after mantle rocks exhumation at the seafloor (i.e., for-

mation of the Ocean Continent Transition after continental breakup), leading

to the interaction between mantle rocks and isotopically pristine seawater that475

circulated along the detachment faults (Figure 4, stage 2).

Mantle exhumation was accompanied by the emplacement of mafic magma-

tism (Desmurs et al. (2002); Epin et al. (2019); Amann et al. (2020)). Ex-

trusive rocks were emplaced onto an active exhumation fault and were further

altered during hydrothermal circulations, leading to epidotization, chloritization480

and late carbonation at the serpentinite-basalt interface (Coltat et al. (2019a);

Coltat et al. (2020)). Rodingitization and associated blackwalls formed syn-

chronously to the serpentinization of mantle rocks, through a diffusional meta-

somatism process between serpentinized-derived fluids and mafic rocks, such as

described in Bach and Klein (2009) (Figure 4, stage 2). Here again, the heteroge-485

nous Sr isotope compositions of rodingites and blackwalls are consistent with

long-term fluid/rock interactions and multi-stage infiltration of fluids Salvioli-

Mariani et al. (2020). The fluids released during the rodingitization of mafic

rocks migrated upwards and likely interacted with serpentinization-derived flu-

ids and isotopically unmodified seawater to form Fe-Ca silicate minerals and490

late carbonates (Figure 4, stage 3 and 4, respectively).

The Sr isotope compositions of Fe-Ca silicate minerals and carbonated rocks
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are centered around the value of seawater, especially those at Cotschen (Figure

3). The homogeneity of Sr isotope ratios and the large Sr exchange suggest

short-lived fluid circulations under high fluid/rock ratios. Based on oxygen495

isotope compositions of ophicalcites, a similar interpretation was proposed by

Coltat et al. (2019a) at the Falotta site (Lower Platta Unit) and in the Apen-

nine ophiolites Schwarzenbach et al. (2021). Consistently, in our model, car-

bonation of mafic rocks and serpentinites was the latest hydrothermal event in

the story. It is assumed to have occurred in high-permeability zones like the500

basalt-serpentinites interface during the mixing between seawater and uprising

hydrothermal fluids. Towards the seafloor, the seawater component became

more predominant (Figure 4, stage 4).

5.5. Consequences for the formation of ultramafic-hosted metal deposits

The Sr isotope compositions of Fe-Ca silicates accompanying mineralization505

in the Platta nappe are consistent with a contribution from the surrounding

magmatic rocks (altered mafic and ultramafic rocks) but also from seawater

(Figure 4D). The latter was also involved in metal precipitation (e.g. Co, Cu,

Ni, Zn), during mixing with the hydrothermal fluid, as proposed for the Rainbow

hydrothermal field (Debret et al. (2018)) and the fossil Marmorera-Cotschen hy-510

drothermal system (Coltat et al. (2021)). However, it is unlikely that metals

derived from seawater itself, even considering large fluid/rock ratios, since sea-

water contains infinitesimal proportions of metals compared to the surrounding

rocks (e.g., Fouquet et al. (2013) and references therein). Rather, we propose

that the main part of the metal stock involved for the Marmorera-Cotschen515

hydrothermal system mineralization derived from the surrounding rocks (ser-

pentinites and mafic rocks) with minor involvement of seawater.

Based on S and Pb isotope geochemistry of ultramafic-hosted mineraliza-

tions, a similar scenario was proposed to explain metal enrichments at oceanic

hydrothermal systems (Zeng et al. (2017)). These authors indicate that the520

contribution of seawater-derived sulfur taking part to mineralized systems was

less than 36 %, whereas on the basis of Pb isotope compositions it was argued
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that lead solely derived from the surrounding magmatic rocks. In addition, De-

bret et al. (2018) recently investigated the Fe, Cu and Zn systematics of barren

and mineralized rocks from the ultramafic-hosted Rainbow hydrothermal sys-525

tem (MAR). They showed that serpentinization of mantle rocks was responsible

for metal leaching from the parental peridotite (e.g., decreasing of metal con-

centrations from peridotite to serpentinite). Mantle rocks may thus represent

a major contributor for metals involved in the formation of ultramafic-hosted

mineralized systems.530

Finally, the results from the present study highlight that the formation of

ultramafic-hosted mineralized systems depends on the availability of both mafic

and ultramafic reservoirs to extract metals that form economic mineralization

enriched in base (Cu, Ni, Zn), critical (Co) and precious (Au) metals, similar to

what is observed in present-day systems (Fouquet et al. (2013)). Recently, a re-535

view of fossil ultramafic-hosted mineralized systems preserved on-land has been

proposed (Patten et al. (2021)). The main results are that: i) these systems

are not scarce but rather represent a self-standing sub-group of the so-called

volcanogenic massive sulfides (VMS) deposits, ii) they form in complex tectonic

environments preserved in the geological record (e.g., ocean-continent transition,540

mid-oceanic ridge, supra-subduction zone), iii) they present specific alteration

and deformation features (i.e. associated with serpentinites, carbonated mantle

rocks and talc-chlorite-tremolite schists along extensional structures generally

at the contact between mantle rocks and overlying mafic and/or sedimentary

rocks), and iv) according to the Zipf’s law, many deposits are still undiscovered.545

Although a genetic model is still missing for ultramafic-hosted VMS deposits,

in which the Marmorera-Cotschen hydrothermal system belongs, our study, fo-

cused on the Sr isotope systematics, demonstrates that mafic and ultramafic

reservoirs are important components that control the formation of polymetallic

deposits. Similar mineralized systems have been reported at the contact be-550

tween mantle and sedimentary rocks (e.g., Bouvier et al. (1990); Peltonen et al.

(2008)), implying that mafic rocks are not a prerequisite to produce ultramafic-

hosted metal deposits. Further studies are needed to produce a proper genetic
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model for ultramafic-hosted VMS, especially concerning their relationships with

the different hydrothermal alterations and the seafloor-related extensional tec-555

tonics, but this model will likely be implemented by Sr isotope investigations.

6. Conclusions

In the Platta nappe, the Fe-Ca silicates (87Sr/86Sr = 0.70668) and associ-

ated mineral deposits (the Marmorera-Cotschen hydrothermal system, of late

Middle Jurassic age) formed through intense leaching of surrounding mafic and560

ultramafic rocks during interactions with seawater (87Sr/86Sr = 0.70628, this

value being estimated using the most carbonated serpentines, i.e., the foliated

ophicalcites). The Sr isotope compositions and textural features of altered rocks

allowed to reconstruct the timing of the hydrothermal alteration and formation

of the Marmorera-Cotschen hydrothermal plumbing system. The Sr isotope565

compositions of serpentinites recorded multiple and long-time fluid/rock inter-

actions. In particular, the involvement of seawater is demonstrated, both during

early stage (hyperextension phase) for which it interacted with continental crust

and during late exhumation stage (mantle exhumation at the seafloor) during

which it mixed with serpentinization-derived fluids. Obviously, the involvement570

of seawater became dominant during serpentinization and carbonation near the

paleo-seafloor. Mafic rocks also recorded multiple fluid histories, involving vari-

able amounts of hydrothermal fluids, leading to a diversity of Sr isotope com-

positions (from 0.70334 to 0.70624). In contrast, the Fe-Ca silicates and the

ophicalcites mostly recorded latest stages of fluid/rock interactions dominated575

by seawater under high fluid/rock ratios. Rather than giving a straightforward

information on the source of the metals present in ultramafic-hosted oceanic

deposits, the Sr systematics thus helps identify the reservoirs involved in the

mineralization and constrain the plumbing system through which mineraliza-

tion occurred.580
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Figure 1: A) Simplified map of the major paleogeographic units of the Western and Central

Alps and the Apennines, with location of the study area (white frame) modified after Man-

atschal and Müntener (2009). B) Geological map of the Platta nappe with samples location

(modified after Schaltegger et al. (2002) ). C) Distribution of subcontinental and infiltrated

mantle domains along an ocean-continent-transition of the former Alpine Tethys (modified

after Müntener and Piccardo (2004)).
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Figure 2: Representative macroscopic and microscopic pictures illustrating the different

lithologies reported in the Platta nappe (Cotschen and Falotta sites). A) Fe-Ca silicates

(ilvaite and andradite) associated with sulfides (sphalerite, chalcopyrite) and oxides (mag-

netite (Mt) pervasively replacing serpentinite. B) Fe-Ca silicate (ilvaite) in veins (stockwork

structure) cutting through serpentinite. C) Discrete calcite veins crosscutting an epidotized

basalt. D) Calcite shear band cutting through serpentinite. E) Green serpentine vein cross-

cutting a massive dark serpentine. F) Basalt altered to an assemblage made of chlorite,

actinolite and pumpellyite. Chl=chlorite; Act=actinolite; Pump=pumpellyite; Ilv=ilvaite;

Adr=(hydro)andradite; Srp=serpentine; Mt=magnetite; Sph=sphalerite; Cp=chalcopyrite;

Cc=calcite
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Figure 3: Histograms of 87Sr/86Sr recalculated at 160 Ma for the different lithologies. SCLM:

Sub Continental Lithospheric Mantle from McDonough et al. (1985), SW: Seawater from

Jones et al. (1994) and CC: Continental Crust values from Willbold and Andreas (2010). N.

Apennine serpentinites from Schwarzenbach et al. (2021).
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Figure 4: Schematic model showing the evolution of the OCT and associated fluid circulations

leading to the formation of Fe-Ca silicates, modified from Epin et al. (2019). A) Stage 1: ser-

pentinization initiated from fluids with radiogenic Sr (CC-derived fluids) leading to formation

of serpentinites with Sr isotope compositions higher than SW. B) Stage 2: first exhumation of

subcontinental lithospheric mantle previously serpentinized and onset of magmatism, serpen-

tinization continues to occur by seawater with a lesser continental influence. C) Stage 3: in-

crease of magmatic rocks and alteration (rodingitization, epidotization-chloritization of mafic

extrusives) by serpentinization derived fluids mixing with seawater infiltrated along faults.

Serpentinization continues to occur with pristine seawater. D) Schematic model showing flu-

ids pathways, the different alteration products and their associated Sr isotope compositions.

Fluids resulting from the alteration of mafic rocks and serpentinization migrated upwards and

mixed with seawater to form Fe-Ca silicates. Carbonation was the last hydrothermal event

recording in ultramafic and mafic rocks.
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Site Sample Latitude Longitude 87
Sr/

86
Srmes

2 SE 87
Sr/

86
Sr160 Ma

Sr ppm Rb ppm Sr exchange (%)

Cot18_40 46°29’56N 9°37’16E 0.706462 0.000010 0.70646 87

Cot18_46 46°29’56N 9°37’16E 0.707848 0.000012 0.70785 nd

Cot18_50 46°29’56N 9°37’16E 0.706456 0.000013 0.70646 87

Cot18_57 46°29'55N 9°36’55E 0.70592 0.000022 0.70592 75

Cot18_66 46°29'54N 9°36’58E 0.706325 0.000010 0.70633 84

Cot18_67 46°29'54N 9°36’58E 0.706419 0.000011 0.70642 86

Cot18_70 46°29'54N 9°36’58E 0.706422 0.000015 0.70642 86

Cot18_72 46°29'54N 9°36’58E 0.706027 0.000013 0.70603 77

Kan19_3 46°30'48N 9°38’35E 0.707114 0.000029 0.70711 nd

Kan19_5 46°30'48N 9°38’35E 0.707456 0.000010 0.70746 nd

Kan19_7 46°30'48N 9°38’35E 0.707045 0.000013 0.70705 100

Kan19_9 46°30'48N 9°38’35E 0.706708 0.000013 0.70671 93

Cot16_49a 46°30’02 N 9°36′42E 0.706588 0.000010 0.70659 90

Cot16_52 46°30’02 N 9°36′42E 0.706311 0.000010 0.70631 84

Mar16_37 46°30’18 N 9°37′40E 0.704193 0.000010 0.70419 36

Mar16_40a 46°30’18 N 9°37′40E 0.705481 0.000010 0.70548 65

Mar16_40e 46°30’18 N 9°37′40E 0.704675 0.000010 0.70468 46

Fal16_16 46°32’42N 9°39’36E 0.707294 0.000010 0.70729 nd

Fal16_17 46°32’42N 9°39’36E 0.706677 0.000010 0.70668 92

Fal17_28 46°32’42N 9°39’36E 0.707220 0.000010 0.70722 nd

Fal17_63 46°32’42N 9°39’36E 0.706866 0.000010 0.70687 96

Fal17_64 46°32’42N 9°39’36E 0.706835 0.000010 0.70684 95

Fal17_65 46°32’42N 9°39’36E 0.706868 0.000010 0.70687 96

Fal17_35 46°32’42N 9°39’36E 0.706813 0.000010 0.70681 95

Fal17_42 46°32’42N 9°39’36E 0.706731 0.000010 0.70673 93

Fal17_49b 46°32’42N 9°39’36E 0.706418 0.000010 0.70642 86

Fal17_51 46°32’42N 9°39’36E 0.706657 0.000010 0.70666 91

Tal-18-01 46°29’43N 9°37’21E 0.707668 0.000018 0.706826 0.55 0.07 95

Tal-18-06a 46°29’43N 9°37’19E 0.709049 0.000025 0.707798 0.42 0.08 nd

Marmorera Mar 18-01 46°30’20N 9°37’41E 0.704621 0.000040 0.703939 4.40 0.59 30

Kanonensatel KAN-19-10 46°30'48N 9°38’35E 0.707677 0.000013 0.706885 12.8 1.54 97

Fal17_18 46°32’51N 9°39’9E 0.708068 0.000015 0.708068 1.12 0.00 nd

Fal17_20 46°32’51N 9°39’9E 0.708075 0.000010 0.708075 1.14 0.00 nd

Fal17_22 46°32’51N 9°39’9E 0.709308 0.000010 0.708580 5.55 0.62 nd

Fal17_23 46°32’51N 9°39’9E 0.709408 0.000010 0.708134 1.13 0.22 nd

Fal 18-11 46°32’44N 9°39’39E 0.706826 0.000009 0.706303 1.50 0.12 83

Fal 18-12 46°32’43N 9°39’34E 0.706754 0.000006 0.706481 13.5 0.58 87

Fal 18-13 46°32’42N 9°39’35E 0.707383 0.000004 0.705745 5.00 1.24 71

Fal 18-14 46°32’30N 9°39’40E 0.708211 0.000006 0.706755 2.00 0.44 94

TG-P-1a 46°32’51N 9°39’9E 0.707431 0.000010 0.707431 nd

TG-P-1b 46°32’51N 9°39’9E 0.708495 0.000010 0.708495 nd

Fal 18-02a 46°32’51N 9°40’10E 0.709274 0.000009 0.708432 0.70 0.09 nd

Table 1: Sr isotope compositions of Fe-Ca silicates, serpentinites, carbonates and mafic rocks sampled in the Platta nappe 87Sr/86Sr in italics refers 87Sr/86Sr(mes) without Rb correction.

Fe-Ca-silicates

Carbonates

Serpentinites

Cotschen

Kanonensatel

Cotschen

Marmorera

Falotta

Cotschen

Falotta LP

Falotta UP
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Fal 18-02b 46°32’51N 9°40’10E 0.709006 0.000009 0.708579 2.40 0.17 nd

Fal 18-03 46°32’51N 9°40’10E 0.708520 0.000003 0.708122 6.10 0.39 nd

Fal 18-04 46°32’51N 9°40’10E 0.710033 0.000006 0.708752 0.90 0.18 nd

Fal 18-05 46°32’51N 9°40’10E 0.708889 0.000011 0.707704 0.50 0.09 nd

Fal 18-06 46°32’51N 9°40’10E 0.708954 0.000010 0.708226 4.10 0.45 nd

Fal 18-07 46°32’51N 9°40’10E 0.705323 0.000010 0.704852 13.4 0.96 51

Fal 18-08 46°32’57N 9°40’7E 0.708644 0.000015 0.708144 1.60 0.12 nd

Fal 18-09 46°32’57N 9°40’7E 0.709482 0.000003 0.709391 3.50 0.55 nd

Fal 18-10 46°32’57N 9°40’7E 0.706453 0.000004 0.706135 1.40 0.07 80

A 46°30’22N  9°37'39E 0.704651 0.000009 0.704628 393 0.76 45

D 46°30’22N  9°37'39E 0.704638 0.000010 0.704342 1240 56.6 39

Mar18_17 46°30'18N 9°37'40E 0.703860 0.000010 0.703337 37.4 0.60 16

Mar18_28 46°30'18N 9°37'40E 0.703781 0.000010 0.70369 80.6 1.20 24

Fal17_38 46°32’42N 9°39’36E 0.706243 0.000010 0.706243 3.94 0.00 82

Fal17_39 46°32’42N 9°39’36E 0.705879 0.000010 0.705879 3.68 0.00 74

Fal17_44 46°32’42N 9°39’36E 0.706071 0.000010 0.706026 1840 13.1 77

Fal17_49a 46°32’42N 9°39’36E 0.705990 0.000009 0.705967 4790 16.1 76

Marmorera

Falotta LP

Mafic rocks

Falotta UP

2
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nd nd pervasive replacement
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nd nd pervasive replacement
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nd nd veins
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18.3 3.4

nd nd
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Table 1: Sr isotope compositions of Fe-Ca silicates, serpentinites, carbonates and mafic rocks sampled in the Platta nappe 87Sr/86Sr in italics refers 87Sr/86Sr(mes) without Rb correction.

Fe-Ca-silicates

Carbonates
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nd nd

nd nd

nd nd veins

nd nd veins

nd nd

1.3 0.9

nd nd

nd nd

nd nd

1.0 0.8 epidotized basalt

0.8 0.6 epidotized basalt

0.2 0.2 mafic intrusion

0.4 0.3 mafic intrusion (mineralized)

5.7 2.2 chloritized basalt

3.5 1.7 nodule of chloritized basalt

4.2 1.8 epidotized basalt

3.9 1.8 epidotized basalt

Mafic rocks
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