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ABSTRACT
The origin and stability of a thin sheet of plasma in the magnetosphere of an accreting
neutron star are investigated. First, the radial extension of such a magnetospheric disc is
explored. Then a mechanism for magnetospheric accretion is proposed, reconsidering the
bending wave explored by Agapitou, Papaloizou & Terquem, that was found to be stable in
ideal magnetohydrodynamics. We show that this warping becomes unstable and can reach
high amplitudes, in a variant of Pringle’s radiation-driven model for the warping of active
galactic nucleus accretion discs. Finally, we discuss how this mechanism might give a clue to
explain the observed X-ray kilohertz quasi-periodic oscillation of neutron star binaries.
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1 IN T RO D U C T I O N

Neutron star binaries are at the centre of numerous investigations
since they are the laboratory of extreme physics, combining high
magnetic fields and strong gravity. These effects dominate the in-
terface between the star magnetosphere and the accretion disc, with
which the present work is concerned. Although many works have
been dedicated to descriptions of this interface, a fully consistent
model is still not available. In the pioneering work of Ghosh &
Lamb (1979), a strong anomalous resistivity was assumed in the
disc; this allows magnetic field lines anchored in the neutron star
and rotating with it to thread the disc over an extended transition
region, while the gas remains in differential rotation. More recent
works have rather considered a weaker resistivity, resulting in a
sharp transition between the disc and the magnetosphere.

In subsequent work Spruit & Taam (1990) showed that an inter-
change instability, at the disc/magnetosphere interface, could allow
the gas to penetrate from the Keplerian disc into the magnetosphere,
and they studied its subsequent fate. In particular they showed that,
depending on the configuration of the magnetosphere, the gas could
reach a radius where its vertical motion (along the field lines) could
in turn become unstable to a warping mode, leading to magne-
tospheric accretion. However, Lepeltier & Aly (1996) later found
that the gas could form a stable magnetospheric disc, supported
against gravity by the magnetic field in a structure very similar to
the ‘helmets’ of stable cold gas suspended on magnetic field lines,
commonly observed in the solar chromosphere. Furthermore, they
found that the interchange mode was strongly stabilized by line ty-
ing, i.e. the fact that, since magnetospheric field lines are tied to the
surface of the neutron star, they need to be bent somewhere between
the surface and the disc to accommodate interchange motion in the
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disc; the required energy is large and is expected to stabilize the
mode in most realistic magnetic configurations.

Numerical works (Romanova et al. 2002, 2003; Bessolaz et al.
2008) have addressed this question, but they are still dominated by
a relatively strong dissipation. Thus, although they can address the
extremely complex case where the rotation axis of the disc, the spin
axis of the neutron star and its dipolar magnetic moment are mis-
aligned, and do show the possibility of magnetospheric accretion,
this dissipation can be considered as modelling the effect of these
instabilities, but they cannot study the instabilities themselves.

In these works the emphasis was on possible instabilities of purely
magnetohydrodynamics (MHD) origin, for which instability crite-
ria were derived. In this case, when the modes are unstable their
frequency is purely imaginary; they have a zero real frequency
[Real (νosc) = 0] in the gas frame, and would always be observed
Doppler shifted to rotate at the neutron star rotation frequency ν∗.

In the present work we reconsider warp oscillations that are stable
in the pure MHD context, but become unstable by a different process
of radiative origin.

We first present in Section 2 the general set-up and geometry we
consider, and we show how gas can enter the neutron star magneto-
sphere to form a disc. In Section 3 we show that the bending mode
considered by Agapitou, Papaloizou & Terquem (1997) is stable in
the configuration considered here but that radiative forcing can make
it unstable, in a variation of the mechanism developed by Pringle
(1996) to explain the warping of the external part of active galactic
nucleus (AGN) accretion discs. We also discuss how this instability,
since it gives the gas strong vertical oscillations, might provide the
transition from radial accretion (in the Keplerian disc, followed by
the interchange mode at its inner edge) to magnetospheric accretion
along magnetic field lines, on to the neutron star.

We note here that our approach is different from that of Ogilvie &
Dubus (2001) and Ferreira & Ogilvie (2008), who consider warps
of the differentially rotating disc (not the magnetospheric disc we
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Warping modes in accreting neutron stars 795

consider here), excited by various mechanisms. It is also dif-
ferent from the warps observed in numerical MHD simulations
(Romanova et al. 2003) when the stellar magnetic field and the disc
plane are misaligned.

2 MAG NETO SPHERIC D ISC

2.1 Magnetic geometry

Let us first describe the geometry we consider, as shown in Fig. 1:
the Keplerian accretion disc presses on the dipole magnetic field of
the neutron star, so that a fraction of the magnetospheric field lines
is pinched and has a concavity looking outward. There is necessarily
a boundary layer (see Ghosh & Lamb 1979) where plasma from the
accretion disc is picked up by magnetospheric field lines, rapidly
slowing down from the Keplerian rotation frequency (typically of
the order of 1 kHz) to the neutron star spin frequency (typically
a few times slower). As previous authors (Spruit & Taam 1990;
Lepeltier & Aly 1996), and contrary to Ghosh & Lamb (1979), we
assume that this boundary layer is very thin. For this and a general
discussion of the physics of the interaction between the disc and the
stellar dipole field we will refer to the recent works of Romanova
et al. (2003) and Bessolaz et al. (2008), where the emphasis was on
T Tauri stars but where the general setup is similar.

Figure 1. Schematic representation of the model. The blue region is the
neutron star magnetosphere, pinched by the Keplerian accretion disc. The
magnetospheric disc inside the magnetosphere is supported against gravity
by magnetic tension, while the Keplerian disc is a usual, centrifugally sup-
ported, accretion disc. The arrows schematise the physical process involved
in the model: as the gas reaches the inner edge of the Keplerian disc it
is picked up by magnetospheric field lines and slows down to the neutron
star spin frequency ν∗. Supported against gravity by magnetic tension, it
is subject to the interchange instability which transports it inward toward
the magnetic saddle point (marked by an X in the figure) where the con-
cavity of the field lines changes. Radiation from the Keplerian disc and the
stellar surface then makes it unstable to a warp wave, which can trigger
magnetospheric accretion vertically along the field lines.

A strong toroidal current must reside in this boundary layer,
marking the transition from field lines anchored on the neutron star
to ones anchored in the disc, and the radial Lorentz force from this
current must, at equilibrium, balance self-consistently gravity and
centrifugal force in the transition from neutron star to Keplerian
rotation frequency. It is important to note here that a large fraction
of the luminosity from the system is emitted in this boundary layer,
where the gas is rapidly slowed down from the Keplerian frequency
at the inner edge of the disc to the neutron star rotation frequency,
and at the surface of the neutron star.

In the resulting geometry there must thus be within the mag-
netosphere, as shown in Fig. 1, a radius where the concavity of
the field lines changes from inward to outward. Using cylindrical
coordinates (r , φ, z), it is easy to show that at this radius and in
the disc mid-plane, the vertical component of the magnetic field Bz

starts increasing with radius: indeed, following a field line upward
from the mid-plane (where Br = 0), one sees that Br is negative
on a field line within this radius, and positive outside this radius:
thus ∂Br/∂z changes sign at this radius and so does ∂Bz/∂r , since
outside the mid-plane we assume to be in vacuum with no currents,
giving ∇ ×B = 0. We call this region, marked by an X in Fig. 1, the
magnetic saddle, since one easily shows that ∂2|B|/∂z2 is negative
while ∂2|B|/∂r2 is positive; we call the corresponding radius rsaddle.
We do not expect that force-free currents, which could exist if the
magnetosphere is filled by a low-density plasma, would change this
geometrical property.

2.2 Interchange instability

Spruit & Taam (1990), Lepeltier & Aly (1996) and Agapitou et al.
(1997) have studied the MHD equilibrium and stability of the mag-
netospheric disc formed of plasma trapped in this configuration.
One instability involves essentially radial motion, and the other one
vertical motion. The first one is an interchange instability, classical
in plasmas supported by magnetic fields against gravity: it inter-
changes flux tubes and the plasma they contain, and thus releases
gravitational energy, if more plasma moves radially in than out, i.e.
if initially the mass per unit magnetic flux increases outward. Spruit
& Taam (1990) showed that this could allow plasma from the ac-
cretion disc to penetrate in the magnetosphere, and this gas forms
what we call the magnetospheric disc, suspended against gravity
mostly by the magnetic field; Lepeltier & Aly (1996) derived the
stability condition of the interchange mode in the magnetospheric
disc as (in our notations)

∂

∂r

(
�

|Bz|
)

≤ r|Bz|
2πGM�

, (1)

where � is the surface density in the disc (assumed infinitely thin),
M is the mass of the neutron star and � is a parameter describing
the geometry of the field line.

In this equation the left-hand side is the radial derivative of the
mass per unit of magnetic flux, as expected from the physics of the
interchange instability. The right-hand side describes the stabilizing
effect of line tying, i.e. the fact that the field lines are anchored on
the star: this implies that, although the instability involves motion
essentially transverse to the field lines, some torsion must be ap-
plied to them as they are exchanged at the disc but not at the star
surface. The energy this requires decreases or cancels the gravita-
tional energy released in the interchange, stabilizing it. � is infinite
on open field lines, is large on the outermost magnetospheric field
lines, because they are long and can be twisted easily, and be-
comes ∼1 and strongly stabilizing on the innermost field lines. The
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796 H. Meheut and M. Tagger

presence of � in the left-hand side implies that the stabilizing effect
is extremely strong if the surface density of the magnetospheric disc
is low, i.e. the release of gravitational energy cannot compete with
the necessary magnetic energy.

Even without line tying one can show that the interchange, near
marginal stability, cannot transport the gas inward from the magnetic
saddle, which is also the radius where � decreases sharply. We thus
conclude that the interchange instability results in penetration of the
gas from the Keplerian disc, forming a tenuous disc where line tying
is not yet efficient and accumulating gas where it becomes strong
and quenches the instability. The exact radius where this happens
cannot be farther in than the magnetic saddle, and depends very
strongly on details of the Keplerian disc/magnetosphere interaction,
which could be obtained only from a self-consistent computation
such as the ones of Bessolaz et al. (2008), in three (rather than 2.5)
dimensions in order to show the interchange mode.

This (a sudden drop in density at the magnetospheric radius,
and a local density maximum inside the magnetosphere) is indeed
observed in the simulations of Bessolaz et al. (2008), and shown
in their fig. 4. However, there the penetration of the gas within
the magnetosphere is due to dissipation and can thus only roughly
represent the action of the interchange mode, whose development
is prevented by the assumed axisymmetry. The quenching of radial
transport, resulting from line tying stabilization of the interchange
mode, is thus not taken into account.

3 WARPING INSTA BILITY

3.1 Bending wave

What happens beyond this was tentatively described by Spruit &
Taam (1990) as resulting from the vertical MHD instability, which
causes a warp of the magnetospheric disc and gives the gas some
vertical motion: it can thus be expected to trigger magnetospheric
accretion, vertically along the field lines. However, Lepeltier &
Aly (1996) and Agapitou et al. (1997) refined the theory of this
instability, taking into account rotation. We follow their simple
approach (an aligned rotator), where the disc is infinitely thin and
the neutron star magnetic axis is aligned with its spin, so that the
unperturbed system is axisymmetric and the magnetic field purely
poloidal: B = (Br, 0, Bz).

Using a WKB (Wentzel, Kramers, Brillouin) approximation for
the radial structure of the bending wave, Agapitou et al. (1997) find
its dispersion relation:

(νv − mν∗)2 = ν2
K + B+

r

2π2�

∂Bz

∂r
+

2
(
B+

r

)2

4π2�
|k|, (2)

where νv is the frequency of the wave, ν∗ is the neutron star
spin frequency, νK the vertical epicyclic frequency (equal to the
Keplerian rotation frequency), B+

r is the radial magnetic field at the
disc surface, � the disc surface density and k and m are the radial and
azimuthal wavenumbers of the perturbation ξ z ∼ exp[i(kr + mφ) −
2iπνt].

In this equation, the right-hand side terms are given by the vertical
restoring forces applied to the disc when it is displaced from its
equilibrium position: the gravitational force appears through the
epicyclic frequency, and the Lorentz force through the last two terms
which correspond, respectively, to magnetic tension and magnetic
pressure.

Furthermore, in equation (2), B+
r is due to the azimuthal current

in the disc, and this current in turn is responsible for the radial

support of the gas, suspended in the gravitational field by magnetic
tension: the radial equilibrium is maintained by the balance of the
vertically integrated gravity, centrifugal and Lorentz forces:

�
∂�

∂r
− 4π2ν2

∗r� − 2B+
r Bz = 0, (3)

where � is the gravitational potential of the neutron star, linked
with the Keplerian frequency, so that one finally gets (Agapitou
et al. 1997)

B+
r

�
=

4π2r
(
ν2

K − ν2
∗
)

Bz

. (4)

Thus equation (2) can be rewritten as

(νv − mν∗)2 = ν2
K +

r
(
ν2

K − ν2
∗
)

Bz

∂Bz

∂r

+ 8π2r2(ν2
K − ν2

∗ )2 �

B2
z

|k|. (5)

The surface density of the disc thus disappears from the second term
in the right-hand side, which now depends only on the magnetic
configuration. The third term, on the other hand, can in a first
approach be neglected if the surface density of the gas is low enough.

In this approach one gets the stability criterion, for the MHD warp
wave, from the condition that the right-hand side of equation (5) be
positive:

r

Bz

∂Bz

∂r
+ ν2

K

ν2
K − ν2∗

> 0. (6)

Since observations show that at the inner edge of the Keplerian
disc νK is typically two to four times higher than ν∗, and is even
higher in the magnetosphere, the second term is strongly stabilizing
so that the vertical mode becomes active only at a significant dis-
tance inward from the magnetic saddle (where ∂Bz/∂r = 0). This
leaves a radial gap where the interchange can no more cause the
gas to move in, and the vertical instability cannot yet cause it to
move up along the field lines: the conventional MHD instabilities
thus still leave a missing link between radial and magnetospheric
accretion.

Romanova et al. (2002) and Bessolaz et al. (2008) find in their
simulations that funnel flows can be initiated by the vertical pressure
gradient in the gas. We note however that in this region of a neutron
star magnetosphere (in contrast with the protostellar case with which
these works are more concerned) the gas should be submitted to very
rapid cooling, whereas in the absence of differential rotation, and
assuming that the interchange mode is stabilized by line tying, there
is no known source of turbulence to heat it, so that the formation of
a pressure-driven funnel flow may be difficult.

In the present work we thus return to Spruit’s original idea and
present a model that could provide an alternative trigger for magne-
tospheric accretion. For this we will consider an additional mecha-
nism that can make the warp unstable. Interestingly, this mechanism
relies on the intense radiation field in the vicinity of an accreting
neutron star.

3.2 When the wave becomes an instability

We now turn to the radiative mechanism that can make the bending
wave unstable, permitting it to reach high amplitudes. For this we
use a variant of the model presented by Pringle (1996) to explain
the warp observed in the outer region of the accretion disc of AGN.
In that case radiation coming from the inner region of the disc and
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pressing on the surface of the outer disc region was shown to make
the warp wave unstable. Here on the other hand we are interested
in an instability of the innermost (magnetospheric) region of the
disc, and radiation can be assumed to come both from the surface
of the neutron star and from the inner region of the Keplerian disc,
immediately outside the magnetospheric disc. We find that both
can result in warp instability, and we present here a derivation only
for illumination from the Keplerian disc (i.e. from outside) since
illumination from the stellar surface (i.e. from inside) is essentially
the case studied by Pringle – with the difference that our disc is in
solid rather than Keplerian rotation, at the stellar spin frequency ν∗.

We assume for simplicity that the radiative flux is axisymmetric
and comes from a transition ring at the magnetospheric radius;
integrating over angles we find that the luminosity dL pressing on a
surface dS of the magnetospheric disc is, in the same polar grid as
before,

dL = L

4πx2
|ux · dS|, (7)

where x is the radial distance between the surface element dS and
the magnetospheric radius. Then the pressure force is

dF = 2

3c
dL,

dFz

dS
= L

4πx2

2

3c

dS
dS

· x
x

= L

6πcx3

(
−∂r ξz, −1

r
∂θ ξz, 1

)
(−x, 0, ξz)

= L

6πcx2
(ξz/x + ∂r ξz),

where c is the velocity of light and ξ z the vertical displacement of
the surface element. Adding this force in the equations of motion
we get the dispersion relation, modified from equation (5):

(νv − mν∗)2 = ν2
K + 2

r
(
ν2

K − ν2
∗
)

Bz

∂rBz + B2
r

2π2�
|k|

− L

6πcx3�
− i

L

6πcx2�
k.

(8)

Taking for definiteness m positive, let us first consider the root

νv − mν∗ =
[
ν2

K + 2
r
(
ν2

K − ν2
∗
)

Bz

∂rBz + B2
r

2π2�
|k|

− L

6πcx3�
− i

L

6πcx2�
k

]1/2

.

(9)

To lowest order, the wavefrequency will be close to

νv ≈ mν∗ + νK.

Treating the luminosity contributions as perturbations in order to
identify the trend of their consequences, one finds easily that

(i) waves with negative k, i.e. leading waves are amplified by
radiation (as in Pringle’s mechanism);

(ii) these waves propagate radially inward, from the Keplerian
disc/magnetospheric disc interface toward the magnetic saddle;

(iii) their radial group velocity is proportional to �, i.e. they
propagate very slowly if the surface density of the magnetospheric
disc is weak. This leaves them ample time to be amplified from
small perturbations at the disc/magnetosphere interface.

As in Pringle’s mechanism, waves with a large radial wavenumber
have stronger linear amplification, but we expect that, as in AGN

discs, non-linear and viscous effects (see Ogilvie & Dubus 2001
and references therein) will select the dominant mode. We note that
in AGN the dominant observed mode has m = 1 and a small k
(small winding angle), but there as in neutron star binaries modes
of smaller wavelength might result in a weaker modulation and be
more difficult to observe.

Taking k ∼ 1/x as the smallest possible wavelength, we note that
the real and imaginary contributions due to the radiation field are of
the same order in equation (8). This implies that a luminosity suffi-
cient to induce strong amplification will also significantly decrease
the real part of the frequency.

3.3 The retrograde wave

The dispersion relation, equation (8), also admits a retrograde wave
obtained by taking the negative square root in the right-hand side:

νv − mν∗ = −
[
ν2

K + 2
r
(
ν2

K − ν2
∗
)

Bz

∂rBz + B2
r

2π2�
|k|

− L

6πcx3�
− i

L

6πcx2�
k

]1/2

.

Examination of this relation shows that this wave would have the
same characteristics as the ‘direct’ one we have discussed: leading
waves with negative k are amplified and propagate inward with
the same growth rate and group velocity. However, we note that
a retrograde wave would also be possible in Pringle’s model for
AGN, but does not seem to appear in observations. We believe that
this might be due to the very low level, at these frequencies, of the
thermal noise from which the unstable wave has to grow. We will
thus ignore the retrograde wave in our discussion.

4 TOWA R D S A ME C H A N I S M F O R K I L O H E RTZ
QUASI -PERI ODI C OSCI LLATI ONS?

If the radiation field is sufficient to make the warp wave strongly
unstable, one should expect this to have observable consequences
since it would result in the presence of a tilted surface, rotating at
a frequency in the kilohertz range in the immediate vicinity of the
most emissive regions of the star–disc system. Both obscuration of
emissive regions and reflection of the luminosity should result in
a strong modulation of the X-ray signal at that frequency, i.e. in
a quasi-periodic oscillation (QPO). In this section we explore the
possibility that the radiation-driven warp could explain one of the
twin kilohertz QPOs observed in low-mass X-ray binaries (LMXB)
that host a neutron star (van der Klis 2006). We find that, although
this could solve some questions raised by models of these QPOs, it
results in frequencies that do not correspond to the observed ones.
This estimate is however still limited by the available models of
the disc–magnetosphere interface. We will finally discuss possi-
ble properties of the disc–magnetosphere interface, not included in
these models, that could produce warp frequencies in better agree-
ment with the observed QPOs.

4.1 Observations

The frequencies ν1 and ν2 of the lower and upper kilohertz QPO
can change by a factor of 2 in a given source but their separation

ν = ν2 − ν1 varies little and was initially observed to stay close
to the frequency of the burst oscillations, believed to be the neutron
star spin frequency ν∗. However, 
ν is observed to decrease by a
significant fraction when ν1 and ν2 reach their highest values. Until
recently it was generally thought that 
ν stayed close to either the
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burst oscillation frequency or its half, but after a new examination of
the data Méndez & Belloni (2007) have shown that the link between
the two quantities is not so direct, as we will discuss below.

4.2 A new approach

Numerous models have been proposed to explain the different types
of QPO in LMXB. For the neutron star binaries kilohertz QPO, two
main classes of models can be distinguished: those based on a beat
frequency and those based on relativistic precession motion (Lamb
et al. 1985; Miller, Lamb & Psaltis 1998; Stella & Vietri 1998;
Stella & Vietri 1999).

We note here that a pre-supposition of both of these models, that
ν2 corresponds to the Keplerian rotation frequency at the inner disc
edge, has remained widespread without further justification.

In these interpretations of the kilohertz QPO, two points stand
out. The first one is that in these models the most ‘fundamental’
mode is the one associated with the Keplerian rotation frequency
at the inner disc edge, at frequency ν2. We would thus expect the
higher kilohertz QPO, to have a higher coherence, and thus a higher
Q factor (where Q = ν/FWHM, and FWHM is the frequency width
at half-maximum) than the lower one at frequency ν1. However, the
opposite is observed, i.e. the lower kilohertz QPO can have an
extremely high Q, much higher than the other QPO (see e.g. Barret
et al. 2005).

The second point we wish to address has been emphasized by
van der Klis (2000): although the beat frequency model fails to
explain the variations of 
ν, the proximity between 
ν and ν∗
would indicate that somehow the gas disc seems to ‘know’ about
the neutron star spin frequency. This would be very difficult to
explain, since any direct connection (e.g. by magnetic field lines)
between the disc and the neutron star or its magnetosphere would
mechanically imply a constant 
ν.

In the present work we consider the gas that has entered the
magnetosphere, and thus rotates at ν∗ (and will presumably end up
accreted along magnetospheric field lines). Mirroring the previous
argument, it would be difficult for this gas to know about the Keple-
rian rotation frequency in the disc. However, this gas feels the same
gravity field that corresponds to the Keplerian rotation, although
magnetic support allows it to rotate solidly at the stellar frequency.
This gravity field also defines the vertical epicyclic frequency of
the magnetospheric gas, so that according to equation (9) the warp
frequency νv should be close to νK + ν∗ for an m = 1 mode. Thus
assuming that the lower kilohertz QPO (rather than the higher one
as in other models) appears at the rotation frequency at the inner
disc edge, one could expect the warp to appear as a higher frequency
QPO with a frequency difference close to ν∗.

However, additional terms appear in equation (9), and can sub-
stantially change the warp frequency. The main unknown quantities
that can affect the frequency difference 
ν are

(i) the effect of the second term, due to the gradient of Bz, in the
right-hand side of equation (9);

(ii) the distance between the magnetospheric radius, where we
assume that the QPO at frequency ν1 originates, and the radius
where the frequency of the warp must be computed.

This should be obtained from a self-consistent computation of the
magnetospheric disc equilibrium, in three dimensions and with low
enough dissipation to show the interchange instability and its con-
sequences on the accretion of the gas. This is far beyond present
theoretical or numerical possibilities. Lepeltier & Aly (1996) have
studied simple exact models of such equilibrium configurations, in

Figure 2. The upper plot shows the dimensionless quantity νv(r0 =
0.8rM) − νK(rM)/ν∗ = 
ν/ν∗ in our model, when ν∗/νK(rM) varies.

ν is the frequency difference between the two kilohertz QPO, ν∗ is the
neutron star spin frequency and νK(rM) is the rotation frequency at the inner
edge of the Keplerian disc. The lower plot is the observational data as plotted
by Méndez & Belloni (2007). The shape of the curves is similar, although
the numerical values differ, as explained in the text.

the case of a partially diamagnetic Keplerian disc. They found a
class of stable equilibria that we can use to estimate representative
values of the magnetic terms of the dispersion relation. We present
in Appendix A detailed calculations of these terms, which let us
calculate the resulting warp frequencies using equation (9).

Fig. 2(a) shows the resulting evolution of 
ν as a function of
ν∗ in one of these models. The free parameters are the neutron
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star mass, spin and magnetic moment, the position rM and r i of
the inner edges of the Keplerian and magnetospheric disc and
finally the radius r0 of the magnetospheric disc where the fre-
quency of the wave is computed. We have chosen the units such as
rM = 1, GM = 1 where G is the gravitational constant and M the
neutron star mass. The magnetospheric disc extends between r i =
0.8 and rM = 1, and the frequency of the wave is computed at r0 =
0.8, the location of the magnetic saddle.

The general trend is that, as observed when comparing differ-
ent sources, 
ν decreases when ν∗ increases, although the ratio
between them is higher than observed, but this depends both on
the radii chosen and on the choice we have made in the class of
equilibria of Lepeltier & Aly (1996).

4.3 The disc/magnetosphere interface

Fig. 2(b) shows the same plot as Fig. 2(a) using a different model,
where the saddle is closer (at r0 = 0.88) and the disc is not fully
diamagnetic, so that it is threaded by a fair amount of the neutron
star magnetic flux. 
ν is decreased but still remains larger than ν∗.
Obviously at this stage these results do not permit to consider the ra-
diatively driven warp as an explanation for the observed QPO. There
are however two effects that could reduce 
ν to values compatible
with the observations.

The first effect is the role of the luminosity, in equation (9).
It contributes both to the growth rate and to the real part of the
frequency, in a ratio equal to kx. Let us thus consider a luminosity
high enough to make the warp strongly unstable, with a growth
rate of the order of the rotation frequency: its effect on the warp
frequency, for a large-scale warp (kx ∼ 1) will thus be to decrease

ν by a similar amount, bringing it to a better possible agreement
with the observations – in particular the fact that 
ν decreases at
high luminosity.

The second effect can be understood by considering the radial
profile of Bz, as shown in Fig. 3 with different sets of parameters:
Bz first decreases outward (at low radius the dipole field of the
neutron star is weakly affected by the disc), then has a minimum (the
magnetic saddle) and increases toward the magnetospheric radius:
this is due to the fact that in the basic model the disc is fully
diamagnetic, rejecting the neutron star magnetic field: one thus
has a strong current ring at the magnetospheric radius, explaining

Figure 3. Vertical component of the magnetic field in the plane of the disc
in function of radius. The straight, dash and dotted–dash lines correspond to
different values of the diamagnetic parameter, respectively, λ = 0.3, 0.6, 1.

the sharp rise of Bz which strongly increases the warp frequency,
according to equation (9). When the diamagnetism (the parameter
λ of Lepeltier & Aly 1996) is reduced, a part of the stellar field
threads the disc, reducing the ring current and the rise of Bz – and
finally 
ν, as in Fig. 2(b).

Such a reduction of the diamagnetism is probably unrealistic,
since the stellar field lines rotating at ν∗ in the disc would involve
an extremely strong, and probably unrealistic, turbulent resistivity.
However, the model does not include a magnetic field originating
in the disc itself, with magnetic field lines open to infinity rather
than tied to the star. We believe that the inclusion of this magnetic
contribution would also reduce the ring current without requiring
resistivity, and might result in a warp frequency in better agreement
with the observed QPO frequency.

5 C O N C L U S I O N

In this work we have explored a variant of the radiation-driven
instability, found by Pringle (1996) to explain the warps observed
in the outer region of AGN discs. In this variant radiation from the
inner region of a neutron star accretion disc destabilizes the gas that
has entered the stellar magnetosphere and formed a magnetospheric
disc. The mechanism is similar, but can be expected to be even more
effective as the radiating region and the destabilized one are in very
close contact.

The resulting warp wave can be expected to play an important
role in the chain that permits the gas, first accreted in a conventional
manner in the Keplerian disc, to enter the magnetosphere by the
interchange instability as found by Spruit & Taam (1990), to form
a stable magnetospheric disc as shown by Lepeltier & Aly (1996)
and eventually to accrete on to the neutron star by flowing along its
magnetic field lines. More specifically, we have discussed how the
warp could provide a crucial missing link between the interchange
and magnetospheric accretion.

We have finally discussed how this warp, forming a non-
axisymmetric feature in the most strongly emitting region of the
star–disc system, should produce a strong modulation of the lumi-
nosity by reflexion and obscuration of the accretion power. This
could produce a QPO in the kilohertz range but, at the present stage
of models of the magnetosphere/accretion disc interface, its fre-
quency is not adequate to reproduce the observed QPO frequency.

On the other hand, the warp would be well adapted to explain
some other properties of the kilohertz QPOs, such as the variation
of the frequency with the luminosity. This will be an incentive for
further work that will aim at perfecting the models of the magne-
tosphere/accretion disc interface, in order to explore possibilities
that could result in warp frequencies in better agreement with QPO
observations.
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A P P E N D I X A : MAG N E T I C C O N F I G U R AT I O N

We present here the model used for the calculation of the magnetic
terms of the dispersion relation, equation (8), using the equilibria
of Lepeltier & Aly (1996) which describe a neutron star surrounded
by a Keplerian disc and a magnetospheric disc. They show that the
magnetic field can written as

B = B∗ + BK + BM,

where the right-hand side contains contributions from, respectively,
the stellar dipole field, currents in the Keplerian disc and in the
magnetospheric disc. Introducing a parameter λ measuring the dia-
magnetism of the Keplerian disc, which excludes totally (λ = 1) or
partially (λ < 1) the magnetic field from the neutron star, they find
a family of equilibria where these contributions can be written as

B∗ = B1[(1 − λ)μ1, ∞], (A1)

BK = B1(λμ1, rM ), (A2)

BD = B3(j, rM ), (A3)

where rM is the inner radius of the Keplerian disc and j the azimuthal
current in the magnetospheric disc. B1(μ, rM) and B3(j , rM) can
be derived from the azimuthal magnetic potentials A = f uφ with
(in a dimensional units, convenient since for us only the magnetic
geometry is important rather that the amplitude of the field)

f1(μ, d) = 2μ

πr

(
r2X2 − d2 cos2 θ

d2X
+ sin2 θ arctanX

)
, (A4)

where X = {1/2 [(1 − d2/r2)2 + 4(d2/r2) cos2 θ ]1/2 − 1/2 (1 −
d2/r2)}1/2, and

f3(j, d) = r sin θ

∫ ∞

0
g(k)J1(kr sin θ ) e−kr cos θ dk, (A5)

Figure A1. The disc–magnetosphere configuration computed in the
appendix.

where J1 is the Bessel function of first kind and order 1, and

g(k) =
∫ d

0

[
sin(ks)

ks
− cos(ks)

]
G(s)

s
ds, (A6)

G(s) = 4

r2
i

∫ s

0

t2j (t)√
s2 − t2

dt, (A7)

j (ri < r < rM ) = j0
4rirM

(rM − ri)2

(rM − r)(r − ri)

r2
(A8)

and c is the speed of light. For our examples shown in Fig. 2 we
have chosen μ1 = 10, j 0 = −10, r i = 0.8, rM = 1 and, respectively,
λ = 0.8 and 0.265. Fig. A1 gives the shape of the corresponding
magnetic field lines for λ = 0.8.
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