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ABSTRACT
The fraction of star formation that results in bound star clusters is influenced by the density
spectrum in which stars are formed and by the response of the stellar structure to gas expulsion.
We analyse hydrodynamical simulations of turbulent fragmentation in star-forming regions
to assess the dynamical properties of the resulting population of stars and (sub)clusters.
Stellar subclusters are identified using a minimum spanning tree algorithm. When considering
only the gravitational potential of the stars and ignoring the gas, we find that the identified
subclusters are close to virial equilibrium (the typical virial ratio Qvir ≈ 0.59, where virial
equilibrium would be Qvir ∼ 0.5). This virial state is a consequence of the low gas fractions
within the subclusters, caused by the accretion of gas on to the stars and the accretion-induced
shrinkage of the subclusters. Because the subclusters are gas poor, up to a length-scale of
0.1–0.2 pc at the end of the simulation, they are only weakly affected by gas expulsion.
The fraction of subclusters that reaches the high density required to evolve to a gas-poor
state increases with the density of the star-forming region. We extend this argument to star
cluster scales, and suggest that the absence of gas indicates that the early disruption of star
clusters due to gas expulsion (infant mortality) plays a smaller role than anticipated, and is
potentially restricted to star-forming regions with low ambient gas densities. We propose that
in dense star-forming regions, the tidal shocking of young star clusters by the surrounding gas
clouds could be responsible for the early disruption. This ‘cruel cradle effect’ would work in
addition to disruption by gas expulsion. We suggest possible methods to quantify the relative
contributions of both mechanisms.

Key words: stars: formation – stars: kinematics and dynamics – open clusters and associa-
tions: general – galaxies: star clusters: general – galaxies: stellar content.

1 IN T RO D U C T I O N

Over the past years, the implications of clustered star formation
have touched a range of astrophysical disciplines, from the scales
of the star formation process itself (see the review by McKee &
Ostriker 2007) to the fundamental properties of young star clusters
(e.g. McMillan, Vesperini & Portegies Zwart 2007; Allison et al.
2009a; Moeckel & Bonnell 2009), or possibly even the global stel-
lar mass assembly of galaxies (see e.g. Pflamm-Altenburg, Weidner
& Kroupa 2007; Bastian, Covey & Meyer 2010). While it seems

�E-mail: kruijssen@mpa-garching.mpg.de

evident that most stars form in a clustered setting (e.g. Parker &
Goodwin 2007), estimations of the exact fraction are hampered
by the substantial dissociation of stellar structure that occurs dur-
ing (but is not necessarily related to) the transition from the gas-
embedded phase to classical, gas-poor star clusters (Lada & Lada
2003; Portegies Zwart, McMillan & Gieles 2010). The traditional
interpretation that most, if not all stars form in clusters, with gas
expulsion leading to their early disruption (‘infant mortality’; see
Lada & Lada 2003; Bastian & Goodwin 2006; Goodwin & Bastian
2006) has recently been challenged by observational studies sug-
gesting that stars form with a continuous distribution of densities,
of which only the high-density tail eventually leads to bound stellar
clusters (Bressert et al. 2010; Gieles & Portegies Zwart 2011).
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Current advancements in numerical calculations of turbulent frag-
mentation in star-forming regions enable the study of clustered star
formation in increasing detail (e.g. Bonnell, Bate & Zinnecker 1998;
Klessen & Burkert 2000; Bate, Bonnell & Bromm 2003; Bonnell,
Clark & Bate 2008). However, theoretical investigations of the re-
sponse of stellar structure to gas expulsion are still largely based on
the assumption of either a static gas potential1 or initial equilibrium
between the stars and gas (e.g. Tutukov 1978; Adams 2000; Geyer
& Burkert 2001; Boily & Kroupa 2003a,b; Baumgardt & Kroupa
2007; Parmentier et al. 2008), which need not apply to star-forming
regions in nature. A more realistic setting was recently explored by
Offner, Hansen & Krumholz (2009), who find that the velocity dis-
persions of the stars in hydrodynamic simulations of star formation
are smaller than that of the gas by about a factor of 5, suggesting
that the assumption of equilibrium between both components indeed
does not hold. The response of star clusters to gas expulsion has
also been investigated by Moeckel & Bate (2010), who consider
N-body simulations of star clusters using initial conditions from
hydrodynamic simulations, and by Moeckel & Clarke (2011), who
address the dynamical evolution of star clusters under the condition
of ongoing gas accretion. They propose that the disruptive effect
of gas expulsion is limited by the way in which gas and stars are
redistributed by the accretion-induced shrinkage of clusters.

The hydrodynamical calculations of Bonnell et al. (2008) cover
the hierarchical formation of several stellar (sub)clusters, which
have been identified and analysed by Maschberger et al. (2010).
The simulation is very suitable for investigating the properties of
the (sub)cluster population due to the relatively large range of mass
scales of the modelled structure (see Section 2). In this paper, we
analyse the simulations reported in Bonnell et al. (2008) to probe
the response of gas-embedded stellar structure to gas expulsion.
We consider the dynamical state of the stars while ignoring the
gas, which is equivalent to observing the stellar structure under
the condition of instantaneous gas expulsion at any time in the
simulation.

This paper starts with a discussion of the set-up of the simulations,
the subcluster identification algorithm and the characteristics of the
stellar structure in Section 2. An analysis of the dynamical state of
the subclusters follows in Section 3, which covers quantities such as
the virial ratio, bound mass fraction and gas content. The response
of the clusters to gas expulsion and an extension to the length-
scales of actual star clusters is considered in Section 4. The paper
is concluded with a summary and an outlook in Section 5, where
we discuss the possible dependence of the results on the initial
conditions of the simulations and the input physics, and suggest
ways in which our analysis could be improved and extended.

2 SI M U L ATI O N S A N D C L U S T E R S E L E C T I O N

In this work, we analyse the hydrodynamical/N-body simulations
of Bonnell, Bate & Vine (2003) and Bonnell et al. (2008), extend-
ing the analysis of Maschberger et al. (2010) and Maschberger &
Clarke (2011). These smoothed particle hydrodynamics (SPH) sim-
ulations follow the evolution of a initially marginally unbound, ho-
mogeneous gas sphere of 103 M� with a diameter of 1 pc (Bonnell
et al. 2003), and a cylinder of 3 × 10 pc that contains 104 M�
gas, bound in the upper part and unbound in the lower (Bonnell
et al. 2008). Initial turbulent motions are modelled with an initially

1 Except for a normalization of the gas potential that decreases with time
when the gas is expelled.

divergence-free random Gaussian velocity field with a power spec-
trum P(k) ∝ k−4. The gas is kept at a temperature of 10 K, staying
isothermal throughout the 103 M� simulation. In the 104 M� sim-
ulation, the gas follows a modified Larson-type equation of state
(Larson 2005) composed of three barotropic equations of state:

P ∝ ργ , (1)

with P the pressure, ρ the density, and where

γ = 0.75, ρ ≤ ρ1,

γ = 1.0, ρ1 < ρ ≤ ρ2,

γ = 1.4, ρ2 < ρ ≤ ρ3,

γ = 1.0, ρ > ρ3, (2)

and ρ1 = 5.5 × 10−19 g cm−3, ρ2 = 5.5 × 10−15 g cm−3 and ρ3 = 2 ×
10−13 g cm−3. For reference, a density of 1 M�(0.01 pc)−3 equals
1.6 × 10−17 g cm−3.

Star formation is modelled via sink particles, which are formed if
the densest gas particle and its ∼50 neighbours are gravitationally
bound (the critical density for sink particle formation is 1.5 ×
10−15 g cm−3 for the 103 M� simulation, and 6.8 × 10−14 g cm−3

for the 104 M� simulation; see Bonnell et al. 2008 for details). The
mass resolutions of the sink particles are ∼0.1 and 0.0167 M�,
respectively. Accretion on to sink particles occurs if SPH particles
move within the sink radius (200 au for both simulations) and are
gravitationally bound, or if SPH particles move within the accretion
radius (40 au for both simulations). Gravitational forces between
sink particles are softened at smoothing lengths of 160 au (103 M�)
and 40 au (104 M�).

Under the influence of gravity, the initially smooth gas distribu-
tions quickly form filaments in which the sink particles are formed.
The sink particles themselves group together in subclusters that
merge into larger structures, leading to the formation of one ‘star
cluster’ in the 103 M� simulation and about three ‘star clusters’
in the 104 M� simulation. Throughout this paper, we will focus
on the 104 M� simulation, which contains about 10 times more
subclusters than the 103 M� simulation, and therefore enables us
to consider a population of subclusters rather than a selected set
of examples. We also ran our analyses for the 103 M� simulation,
which gave results that are consistent with those from the 104 M�
simulation.

For the identification of the subclusters, we employ a minimum
spanning tree (MST)-based clustering technique, which has been
used in the context of young star-forming regions (e.g. Maschberger
et al. 2010; Kirk & Myers 2011). The MST, which has the advanta-
geous property of not imposing any geometrical symmetry on the
data set, has also been used to quantify the amount of substructure
(e.g. Cartwright & Whitworth 2004; Schmeja, Kumar & Ferreira
2008; Maschberger et al. 2010) and mass segregation (e.g. Allison
et al. 2009a,b; Maschberger et al. 2010; Parker et al. 2011 – see
Moeckel & Bonnell 2009; Maschberger & Clarke 2011 for alterna-
tive methods) in star-forming regions. The MST is a concept from
graph theory, which represents the unique connection of all points
of a data set, so that there are no closed loops (a ‘tree’), and so
that the total length of all edges between the points is minimal.
Typically, two separated groups of points are connected with one
single, long edge, whereas the points within the groups have short
edges. By simply removing edges that are longer than a chosen
break distance the tree can be split in subtrees, which connect the
points of the subclusters in the data set (further information on MST-
based clustering techniques can be found in Zahn 1971). To avoid
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Dynamical state of star-forming regions 843

Figure 1. Spatial distribution of sink particles that are present at the end of
the 104 M� simulation (t = 0.641 Myr), projected on the x–y plane. Black
particles constitute subclusters, and dark grey particles belong to the field
population. Since the spatial extent of the simulation in the z-direction is
larger than in the x–y plane, some of the apparent clustering is the result of
the projection.

spurious detections, we require that a subcluster contains a mini-
mum number of 12 stars.

The MST technique utilizes one free parameter, which is the
break distance. Automated methods to determine the break distance
are ill-suited for the analysis of the simulations due to the highly
varying properties of the stellar distribution. We therefore choose a
break distance of dbreak = 0.035 pc, which gives subclusters that are
comparable to those identified by the human eye, although they do
not include the stellar haloes surrounding them. This break distance
is larger than the choice of Maschberger et al. (2010), but leads
to comparable clusters because we analyse the stellar structure in
three spatial dimensions and not in projection. Because the choice
of a single break distance could introduce an artificial length-scale
into the analysis (Bastian et al. 2007), we have also performed our
calculations for a set of other break distances in the range dbreak =
0.020–0.100 pc, of which the results are used when discussing the
implications and applicability of our findings in Sections 4 and 5.

An example of the results of the subcluster identification method
can be seen in Fig. 1, which shows the spatial distribution of sink
particles and subclusters at the end of the 104 M� simulation at t =
0.641 Myr, some 0.3 Myr after the onset of star formation. At this
point in the simulation, after one free-fall time, about 60 per cent of
all stellar mass is constituted by subclusters. The spatial distribution
shown in Fig. 1 is the result of a complex tree of hierarchical merging
of small subclusters (Maschberger et al. 2010). This process is still
ongoing at the end of the simulation, which is illustrated by the
close proximity of the subclusters towards the right in the plane of
Fig. 1.

Following Casertano & Hut (1985), we use the projected dis-
tance to the Nth nearest neighbour to determine the surface density
distribution of the sink particles. For a rank number N, the lo-
cal surface density at the locations of each of the sink particles is
�sink = (N − 1)/(πD2

N ), with DN the projected distance to the Nth
nearest neighbour in the x–y plane. The resulting distribution of
surface densities for N = 7 is shown in Fig. 2, which includes all
sink particles at the end of the simulation (t = 0.641 Myr), as well
as those from a snapshot at t = 0.442 Myr, not too long after the

Figure 2. Surface density distributions of sink particles. The solid his-
togram includes all sink particles present at the end of the simulation (t =
0.641 Myr), with the shaded histogram marking the subset of particles that
belong to subclusters. The dashed curve represents a lognormal fit to the
distribution with a peak at log (�sink) = 3.75 and a dispersion of σ log � =
1.13. For comparison, the dotted histogram denotes the surface density dis-
tribution of sink particles at t = 0.442 Myr.

Figure 3. Top: time evolution of the number of subclusters. Bottom: time
evolution of the mean subcluster mass. The SFE of the entire simulation is
indicated along the top axis.

onset of star formation (also see Fig. 3). The difference between
the surface density distributions at both times shows that the stellar
structure in the simulation typically evolves towards higher densi-
ties, even though the density range spanned by the sink particles
does not change much. As should be expected, the high end of
the surface density distribution is occupied by the sink particles
that are residing in subclusters (shaded area), reaching densities
of more than 105 stars pc−2. These surface densities are several or-
ders of magnitude higher than those observed in nearby (<500 pc)
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star-forming regions by Bressert et al. (2010), which is not surpris-
ing for two reasons. First, crowding obstructs the observation of the
densest parts of star-forming regions, which are therefore not in-
cluded in their sample. Secondly, the high densities that are achieved
in the simulation are likely the result of the initial conditions, with
a mean initial gas mass surface density of over 103 M� pc−2 in
the x–y plane. None the less, the surface densities do compare well
to the high-density region in the Orion Nebula cluster (ONC), of
which the central surface density coincides with the peak of the
distribution in Fig. 2 (Hillenbrand & Hartmann 1998), although the
system under consideration here is about one order of magnitude
younger than the ONC.

The subcluster assembly history is considered in Fig. 3, which
shows how the number of subclusters and the mean subcluster mass
evolve as a function of time and the star formation efficiency (SFE,
the fraction of the gas that has been converted to stars) of the entire
simulation (see Bonnell et al. 2011 for a detailed spatial analysis
of the SFE). The number of subclusters initially increases until
it reaches a maximum, which occurs when the formation of new
concentrations of sink particles is neutralized by the hierarchical
merging of other subclusters. This is nicely illustrated by the mean
stellar subcluster mass, which steeply increases around t = 0.55–
0.60 Myr, when the merging of new-formed subclusters causes the
number of clusters to decrease. The mean mass keeps increasing
until the end of the simulation due to the ongoing accretion of gas
and small subclusters on to sink particles and the merging of small
subclusters with a few massive ones. This mass increase would
eventually be halted on time-scales much longer than the duration
of the simulation, when the available gas reservoir is depleted or,
more likely, when the further inflow of gas onto the subclusters is
obstructed by feedback from supernovae and stellar winds (neither
of which are included in the simulation).

3 DYNAMICAL STATE O F STELLAR
SUBCLUSTERS

Whether or not a gas-embedded stellar structure survives gas ex-
pulsion depends on its dynamical state. Excluding the gas from the
dynamical analysis is equivalent to observing the stellar structure at
the moment of instantaneous gas removal. This represents the ex-
treme case of gas expulsion, since a more gradual expulsion could
allow a subcluster to (adiabatically) respond to the potential change
and thereby retain a larger number of stars. As a result, the analysis
of the dynamical state of solely the stellar component in simulations
of star formation provides a lower limit to the retention of stellar
structure upon gas removal.

3.1 Dynamical quantities

We have followed the evolution of several (dynamical) properties
of the identified subclusters over the course of the simulation of
Bonnell et al. (2008), such as the stellar mass, the stellar half-
mass radius,2 the fraction of the subcluster mass that is bound
and the virial ratio. The properties of the stellar component are
supplemented with information on the gas, including the gas mass
fractions within the subclusters.

The gravitational boundedness and virial ratio of subclusters are
fundamental measures for their dynamical state. Both quantities

2 The subclusters have predominantly small elongations (Maschberger et al.
2010, fig. 10), which enables the use of a half-mass radius.

are based on the potential energy and internal kinetic energy of a
subcluster. For a sink particle i, the potential energy Vi is defined as

Vi = −
∑
j �=i

Gmimj

rij

, (3)

where mi and mj are the sink particle masses and rij their mutual
distance. The kinetic energy Ti of a sink particle is

Ti = 1

2
mi |vi − vcl|2, (4)

where vi and vcl are the respective velocity vectors of the sink
particle and the centre of mass of the subcluster. A particle is grav-
itationally bound if Ti + Vi < 0. We define the virial ratio Qvir

as

Qvir = −2
∑

i Ti∑
i Vi

. (5)

The factor 2 reflects the correction for counting the potential energy
twice for each particle pair when combining equations (3) and (5).
A subcluster is in virial equilibrium if Qvir ∼ 0.5 and gravitationally
bound if Qvir < 1. Supervirial subclusters have Qvir > 0.5, while
subvirial subclusters have Qvir < 0.5.

It is possible that a single, dynamically hard binary, triple or
multiple system dominates the energy of a subcluster. We correct
for this by searching the sink particle list for binaries3 and replacing
them with a single centre of mass particle. We repeat this step two
more times, thereby correcting for triples and higher order multiple
systems. During the last iteration, the kinetic and potential energies
of the subclusters generally remain unchanged, which indicates that
a correction for higher order multiples is not required. We quantify
the effect of binaries on the observables of interest below.

In previous studies, the SFE has been identified as a key pa-
rameter which determines the survival chances of stellar clusters
upon gas expulsion (e.g. Goodwin & Bastian 2006). However, a
more fundamental critical factor is the dynamical state of the stars
when the gas is removed. The effective SFE, eSFE = 1/2Qvir, was
therefore introduced as a measure for the survival probability of
stellar structure at the moment of instantaneous gas expulsion (e.g.
Verschueren 1990; Goodwin 2009). If the gas and stars were in
virial equilibrium before gas expulsion, the eSFE is equivalent to
the actual SFE. If they were not in virial equilibrium, the eSFE no
longer reflects the actual SFE. In that case, the survival chance of
stellar clusters is not related to the actual SFE, but is solely deter-
mined by their dynamical state. The eSFE is naturally higher in the
identified subclusters than in the simulation as a whole.

3.2 Virial ratio

As star formation progresses, the population of subclusters grows
in terms of its total mass. The hierarchical merging of the subclus-
ters inhibits the increase of their number and causes it to level off
towards the end of the simulation, when the formation of new sub-
clusters is balanced by their accretion on to more massive ones (see
Fig. 3 and Maschberger et al. 2010). Another consequence of this
hierarchical build-up is that the properties of the subcluster pop-
ulation as a whole are not a direct representation of the evolution
of individual subclusters, but also include ‘emergent’ properties of
the population due to the interactions between the subclusters. This

3 Binaries are selected by identifying a most bound partner for each sink
particle. If it exists and the semimajor axis is smaller than 1000 au, it is
considered a binary.
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Dynamical state of star-forming regions 845

Figure 4. Time evolution of the mean virial ratio of the stellar subclusters
(black solid line), of the mean virial ratio weighted by subcluster mass (grey
dash–dotted line) and of the total virial ratio of all sink particles in the
simulation (dashed line). The horizontal dotted lines indicate the marginally
gravitationally bound case (Qvir < 1) and the virialized case (Qvir = 0.5).
After t = 0.5 Myr, about 40–60 per cent of the stars resides in subclusters
for the break distance adopted here (dbreak = 0.035 pc).

is also relevant when considering the mean virial ratio of the sub-
clusters as a function of time. Individual subclusters can be formed
either subvirially or supervirially with respect to the total potential,
and would eventually virialize with the total potential if kept in iso-
lation. Deviations from this trend occur when subclusters merge or
accrete smaller stellar aggregates, which temporarily increase the
virial ratio of the merger product due to the relative velocity of the
progenitors. Another thing to keep in mind is that we only include
the stars in our dynamical analysis, implying that the obtained virial
ratio is always higher than its actual value by an amount that de-
pends on the gas fraction. This affects the mean virial ratio of the
population of subclusters, in which there is a continuous formation
of new, gas-rich subclusters, which are typically still supervirial and
only reach Qvir = 0.5 after some further evolution.

Despite the complex setting of hierarchical star formation, the
evolution of the mean virial ratio can be used as a first indication of
how the dynamical state of the subcluster population evolves over
time. This is shown in Fig. 4, which also includes the time evolution
of the virial ratio of the entire simulation. As indicated earlier, we
ignore the contribution of the gas to the gravitational potential, in
order to assess the dynamical state of the stellar structure under the
assumption of instantaneous gas removal. Even without accounting
for the gas potential, the population of subclusters evolves to a
near-virialized state on a time-scale of only a few tenths of a Myr.
This would suggest that the subclusters are typically gas poor on
length-scales corresponding to their half-mass radii. The difference
between the mean virial ratio and the mean virial ratio weighted by
subcluster mass in Fig. 4 indicates that more massive subclusters
are typically somewhat closer to virial equilibrium than low-mass
subclusters. This is more of a trend than a relation: a simple linear
regression of the virial ratio and subcluster mass M yields a best fit of
Qvir = 0.86 − 0.16 log M, but with scatter larger than the fitted slope.
Lastly, it is also shown by Fig. 4 that the entire stellar population in
the simulation does not reach virial equilibrium, but does become
marginally bound. This occurs because the simulation as a whole
has a higher gas fraction than the subclusters (see Section 3.3),
which illustrates that the SFE depends on the location and length-
scale on which it is computed. The dynamical state of the entire
simulation also bears some traces of the initial conditions, covering

Figure 5. Dependence of the bound mass fraction (ratio of the total mass
of the bound sink particles to the subcluster mass) on the virial ratio for the
subclusters from all snapshots of the simulation. Each symbol represents a
subcluster. The dashed line represents a linear fit to the data. Like in Fig. 4,
the dotted lines indicate the marginally gravitationally bound case (Qvir <

1) and the virialized case (Qvir = 0.5).

a cylinder that contains a bound upper half and an unbound lower
half (see Section 2).

The virial ratios of individual subclusters do not show notable cor-
relations with subcluster mass or half-mass radius.4 Instead, they
depend more strongly on the recent mass evolution of the subclus-
ters. The virial ratio temporarily increases whenever the subcluster
mass increases, be it due to the merging with other subclusters or
by individual sink particles moving inside the MST break distance.
When sink particles move more than a break distance away and the
subcluster mass decreases, the virial ratio decreases as well. Both
are natural consequences of the inclusion or exclusion of transient
substructure in the identification of the subclusters. The same de-
pendence is found when using different MST break distances to
identify the subclusters: larger break distances yield more extended
subclusters and consequently the mean virial ratio is higher. When
set to extreme values (dbreak > 0.050 pc), close passages of subclus-
ters are incorrectly picked up as merger products, causing a spurious
increase of the virial ratio. For the largest break distance used in our
analysis (dbreak = 0.100 pc), these fluctuations can yield mean virial
ratios briefly hitting 〈Qvir〉 = 1, in clear contrast with the result from
Fig. 4.

The quantity that most strongly correlates with the virial ratio is
the bound mass fraction of the subclusters, i.e. the fraction of their
mass that is bound even without accounting for the potential of the
gas (see the definition in Section 3.1, a sink particle is bound if Ti +
Vi < 0). It is shown in Fig. 5 that subclusters with high virial ratios
tend to have lower bound mass fractions, albeit with substantial
scatter. This is not surprising, because the virial ratio is efficiently
increased by fast, unbound sink particles that are included by the
MST algorithm but would be left out with a physically motivated
identification. For larger break distances, the correlation between
bound mass fraction and virial ratio is stronger, due to the erroneous
identification of kinematically hot structure as subclusters. None
the less, most subclusters contain only very few unbound stars,
with typical bound mass fractions of 0.95. Fig. 5 also confirms that
most subclusters are close to virial equilibrium, which was already
suggested by the evolution of the mean virial ratio in Fig. 4. For

4 Except for the unbound subclusters (Qvir > 1), which are generally small
(rh < 0.04 pc) and low mass (M < 30 M�).
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846 J. M. D. Kruijssen et al.

Figure 6. Histogram of the virial ratios of the subclusters from all snapshots
of the simulation (solid line). The shaded histogram represents the set of
subclusters from the last snapshot at t = 0.641 Myr. The dashed line is a
Gaussian fit to the data for all snapshots, with mean value Qvir = 0.59 and
standard deviation σQ = 0.16. The vertical dotted lines again indicate the
marginally gravitationally bound case (Qvir < 1) and the virialized case
(Qvir = 0.5).

further illustration, Fig. 6 shows the distribution of the virial ratios
of the subclusters from all snapshots, as well as those from the
last snapshot, which are shown as the shaded region. Only 8 per
cent of the subclusters are unbound when excluding the gas, while
25 per cent remains subvirial. When considering the subclusters
from all snapshots, a Gaussian fit to the distribution of virial ratios
gives a mean of Qvir = 0.59 and a standard deviation of σ Q =
0.16. As in Fig. 4, the gradual decrease of the mean virial ratio
towards Qvir = 0.5 is also visible in Fig. 6. A comparison of the
two histograms shows that the subclusters in the last snapshot are
closer to being virialized than the population of subclusters from all
snapshots. These virial ratios imply that the eSFE is close to unity,
i.e. the majority of subclusters will not be strongly affected by gas
expulsion (see Section 4).

Replacing hard binaries and higher order multiples by their centre
of mass particles is essential to obtain a reliable picture of the
subcluster dynamics. The disruption of the subclusters during gas
expulsion is controlled by the dynamical state of the binary centres
of mass rather than the binaries themselves. Had we not corrected for
binaries or higher order multiples, the measures for the dynamical
state of the subclusters would fluctuate with the orbital phase of a
few tightly bound and eccentric binaries.

The bound mass fraction of the subclusters is not strongly affected
by the presence of binaries (unbound sink particles are generally
single), but because binaries are in virial equilibrium5 or slightly
subvirial, the mean virial ratio of the subclusters from all snapshots
is decreased by 0.1–0.2 if it is not corrected for multiples. About
two-thirds of this difference is due to binaries, while the remain-
ing third is accounted for by triples and quadruples. This shift of
the virial ratio means that without correcting for binaries, the sub-
clusters could be incorrectly interpreted as being slightly subvirial6

5 Instantaneously, this only holds for binaries on circular orbits. Binaries on
eccentric orbits exhibit a variation of the virial ratio, with a subvirial state
near apocentre and a supervirial state near pericentre. When considering
the time-averaged virial ratio, eccentric binaries are in virial equilibrium.
However, because the phase velocity is lowest near apocentre, a sampled
population of randomly oriented binaries will typically be slightly subvirial.
6 As in all of Section 3.2, this statement excludes the gravitational potential
of the gas.

(Qvir ∼ 0.45–0.50), and the entire simulation would be close to
virialized (Qvir ∼ 0.60–0.65) instead of the marginally bound state
that is shown in Fig. 4. With respect to the binary-corrected results
from Fig. 4, this rather modest difference arises because the finite
gravitational smoothing length used in the simulation inhibits the
formation of very hard binaries. None the less, the correction for
binaries improves the accuracy of our analysis, and therefore all
results shown in this paper are corrected for binaries and higher
order multiple systems.

3.3 Gas content

The key question is why the subclusters are so close to virial equilib-
rium when neglecting the gas potential. An obvious answer would
be that the subclusters are generally gas poor, which would imply
that they are hardly affected by the gas potential in the first place. To
assess the gas potential and its time evolution, we have analysed the
distribution of the gas in two snapshots of the simulation, at times
t1 = 0.442 Myr (when star formation is ongoing) and t2 = 0.641 Myr
(the last snapshot of the simulation, after one free-fall time; also see
Fig. 3). For each of the identified subclusters in these snapshots, we
calculate the fraction of the total mass within the stellar half-mass
radius of the stellar distribution that is constituted by gas. The distri-
bution of these gas fractions is shown in Fig. 7, which confirms that
the subclusters are indeed gas poor on their typical length-scales,
with gas fractions of 〈f gas〉 = 0–0.2. Because the simulation does
not include feedback, this means that the accretion of gas on to the
sink particles can keep up with the overall gas inflow towards the
subclusters. Another mechanism that naturally leads to gas-poor
subclusters is their accretion-driven shrinking (Bonnell et al. 1998;
Moeckel & Bate 2010; Moeckel & Clarke 2011), which increases
the density contrast between the subclusters and the surrounding
gas.

Gas accretion and the time evolution of the structural proper-
ties of the population of subclusters both further decrease the gas
fraction as time progresses. This evolution is illustrated by com-
paring the data of the two snapshots in Fig. 7, corresponding to
times t1 = 0.442 Myr and t2 = 0.641 Myr. During the enclosed
time interval, the mean gas fraction of all detected subclusters de-
creases by 0.63 dex, from 〈f gas(t1)〉= 0.238 to 〈f gas(t2)〉= 0.056. The

Figure 7. Histogram of the gas fraction within the stellar half-mass radius
rh of each subcluster from the two snapshots at t1 = 0.442 Myr and t2 =
0.641 Myr (solid line). The shaded histogram only shows the gas fractions
for the last snapshot at t = 0.641 Myr.
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Figure 8. Subcluster mass-weighted, mean cumulative mass fractions
〈μ(ξ )〉 (see equation 6) of sink particles (dashed line), gas particles (dash–
dotted line) and the sum of both (solid line), as a function of the radial
distance in units of the half-mass radius (ξ ≡ r/rh). Top: mean cumulative
distributions for the subclusters present at t1 = 0.442 Myr. Bottom: mean
cumulative distributions for the subclusters present at t2 = 0.641 Myr. The
shaded areas enclosed by the dotted lines mark the 16th and 84th percentiles
and illustrate the typical spread of the enclosed mass fractions of sink par-
ticles (dark grey) and gas (light grey).

mean half-mass radius of the subclusters7 decreases from 〈rh(t1)〉 =
0.020 pc to 〈rh(t2)〉= 0.013 pc, which is a decrease of 0.18 dex. Even
though the shrinking of subclusters is a second-order effect caused
by gas accretion, it is interesting to ask which of both mechanisms
contributes most to the decrease of the gas fraction. Is it mainly
driven by the increasing mean stellar density of the subclusters or
by the ongoing gas accretion on to the sink particles?

To assess the relative contributions to gas depletion by accretion
and subcluster shrinking, we consider the spatial distribution of the
sink particles and the gas. Because of the relatively small numbers
of stars in individual subclusters, it is best to examine the mean den-
sity profiles of the populations of subclusters in the two snapshots
at t1 and t2. Such a combination of the different density profiles
decreases the influence of low-number statistics on the result. In
Fig. 8, we show the subcluster mass-weighted, mean cumulative
mass distributions of gas, sink particles and both combined. The
distributions represent the enclosed mass fractions μ, normalized
to the sum of the subcluster mass Mcl and the enclosed gas mass
within three stellar half-mass radii Mgas:

μi(ξ ) ≡ Mi(ξ )

Mcl + Mgas
, (6)

with i = {stars, gas, all} and Mi(ξ ) the enclosed mass at ξ ≡
r/rh, which is the radial distance in units of the stellar half-mass

7 The subcluster sizes are strongly correlated with the adopted MST break
distance. See Section 4.1 for a discussion.

radius. The mean distributions shown in Fig. 8 are weighted by
subcluster mass to emphasize those subclusters with better statistics.
A first comparison of both panels in Fig. 8 shows that the gas
fraction indeed decreases between t1 and t2. The contribution to
this decrease by subcluster shrinking can be estimated by a simple
thought experiment, in which the gas distribution is kept fixed and
the distribution of stellar mass is compressed by the appropriate
amount. In the top panel of Fig. 8, the half-mass radii 〈rh(t1)〉 and
〈rh(t2)〉 correspond to ξ = 1 and 0.66, between which the enclosed
gas mass differs by 0.26 dex. In other words, if the gas distribution
was held fixed and the stellar distribution was shrunk appropriately,
then the gas fraction within the new half-mass radius would have
declined by 0.26 dex. This is a probe for the decrease of the gas
fraction that is solely caused by the shrinking of the subclusters.
Comparing it with the actual decrease of the mean gas fraction
between t1 and t2 of 0.63 dex, we see that it covers about half of the
decrease, with the remaining 0.37 dex covered by gas accretion itself
– not only by adding to the mass in stars, but also by decreasing the
gas mass. We conclude that the evacuation of the gas due to ongoing
gas accretion is about equally important for the gas depletion as the
shrinking of the subclusters.

Apart from enabling a quantitative comparison of the effect of gas
accretion and cluster shrinking, Fig. 8 also demonstrates the spatial
variation of the gas fraction in the subclusters. At early times, the
gas is still prevalent in the outskirts of the subclusters, contributing
20–60 per cent of the enclosed mass at ξ = 3. At the end of the
simulation this gas has mostly vanished, leaving only a few per cent
of the mass within the stellar half-mass radius as gas, and typically
20 per cent at ξ = 3. The radial dependence of the enclosed gas
fraction is qualitatively reminiscent of the model of Adams (2000).
It is interesting to note that the relative increase of the enclosed gas
mass fraction with respect to the enclosed sink particle mass fraction
only occurs at radii where the latter flattens, i.e. the subclusters only
become gas rich at radii where very little stellar mass is present.
The influence of the gas on the subcluster dynamics is therefore best
evaluated at radii smaller than where the flattening of μstars occurs.
At t1, the ratio between the enclosed stellar mass and gas mass just
before the flattening is about 4:1, while at t2 it has increased to 11:1.
This suggests that if feedback starts at a time t > t2, the resulting
gas expulsion will not strongly affect the subcluster dynamics, and
that their virialized state (see Section 3.2) will be largely retained.

4 R ESPONSE TO G AS EXPULSI ON

Motivated by the low gas fractions found in Section 3, we now
address the response of the subclusters to gas expulsion in more
detail.

4.1 The expansion of subclusters

The long-term response of the subclusters to gas expulsion can be
evaluated by once again omitting the gas from the simulations and
considering only the identified stellar subclusters and their evolution
towards virial equilibrium. Given a certain virial ratio and bound
mass fraction, does a subcluster expand or shrink after gas removal?
We combine the data from the simulations with a simple energy
argument similar to Hills (1980) to estimate how the subcluster
masses and half-mass radii evolve after the expulsion of the gas. It
is insightful to consider the system at two key moments.

(i) The time of instantaneous gas removal, which is equivalent to
the current system in the simulations while omitting the gas. This
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can be done for each snapshot, thereby providing a larger sample of
subclusters than when only the last snapshot was to be considered.
Of course, including subclusters from different snapshots implies a
correspondingly extended range of moments of gas expulsion.

(ii) The time at which each subcluster attains virial equilibrium
after removing the gas. These times are different for each cluster
per definition, but by considering the subclusters at their respective
times of virialization the long-term impact of gas removal is most
clearly isolated and identified.

The evolution of the subclusters between these two moments can
be quantified by evaluating the conservation of energy. For any
subcluster, we can express the kinetic energy as

T = 1

2
Mcl〈v2〉 ≡ −V Qvir ≈ GM2

cl

2rv
Qvir, (7)

where rv is the virial radius, and 〈v2〉 denotes the mean square
velocity, which as a result can be written as

〈v2〉 = Qvir
GMcl

rv
. (8)

The total energy at the moment of instantaneous gas removal thus
becomes

E1 = (Qvir,1 − 1)
GM2

cl,1

2rv,1
, (9)

where the relevant quantities have been marked with subscript ‘1’
to indicate the moment of gas expulsion.

Given a deviation from virial equilibrium, a subcluster will re-
spond by changing its radius and/or mass. As can be verified from
Fig. 5, most subclusters contain a certain number of unbound sink
particles, which were either previously retained by the gas potential,
or are randomly passing the subcluster close enough to be included
by the cluster identification algorithm. These unbound sink particles
will escape the subcluster upon gas expulsion and take away some
of the kinetic energy. We now consider a second moment in time, at
which the gas-rid subcluster has reached virial equilibrium (Qvir,2 =
0.5) and the unbound sink particles have successfully escaped. At
this time, energy conservation dictates

E1 = E2 + Eesc = −GM2
cl,2

4rv,2
+ (Mcl,1 − Mcl,2)

β〈v2
2〉

2
, (10)

where E2 is the total energy of the (virialized) subcluster, Eesc is the
total energy of the escaped stars and the relevant quantities have
been marked with subscript ‘2’ to indicate the moment of virializa-
tion. The parameter β denotes the surplus energy per unit mass of
the escaped stars after they clear the potential of the subcluster, in
units of its mean square velocity. The values of β can be estimated
from the simulation by computing (Ti + Vi)/(GMcl,2mi/2rv,1) for
each of the unbound sink particles.8 For this, we use the relation
between the virial and half-mass radius corresponding to a Plummer
(1911) potential, which is given by rv = 1.3rh (e.g. Heggie & Hut
2003). The escaping sink particles are the tail of an approximately
Maxwellian velocity distribution of the sink particles in the subclus-
ter, and consequently the distribution of β declines exponentially
as f (β) ∝ exp(−β/β0), with β0 around unity. The mean of such a
distribution equals β0 per definition, which illustrates that unbound

8 The denominator holds a slightly modified form of the mean square veloc-
ity 〈v2

2〉 (see equation 8) and assumes that the virial radius does not change
much between gas expulsion and virialization (i.e. rv,1 ≈ rv,2). This is re-
quired since rv,2 is not available in the simulation. The assumption will be
verified below.

stars typically retain velocities similar to the mean square velocity
in the subcluster after they escape.

Combining equations (8) and (10), one obtains an expression
for the evolution of the gas-rid subcluster as it approaches virial
equilibrium, which relates the half-mass radii, masses, initial virial
ratio and β. It is given by

rh,2

rh,1
≈ rv,2

rv,1
= 1

1 − Qvir,1

[
1 + β

2

(
Mcl,2

Mcl,1

)2

− β

2

Mcl,2

Mcl,1

]
, (11)

where rh,2 is the only unknown and all other variables given by the
simulation. For β = 0, i.e. all escaping stars are only marginally
unbound, the expression returns the basic result that when unbound
stars escape from a virialized system (Qvir,1 = 0.5), it contracts
to reattain virial equilibrium.9 Inserting typical values of β = 1
(see above), Qvir,1 = 0.59 and Mcl,2/Mcl,1 = 0.95 (see Section 3.2)
in equation (11) yields rh,2/rh,1 = 1.04, which justifies the earlier
assumption that the radius does not change much between instan-
taneous gas removal and virialization (see Footnote 8). This minor
expansion is driven by the slightly supervirial state of the sub-
clusters, and inhibited by the escape of unbound stars, which have
velocities larger than the escape velocity.

As discussed in Section 3.2, the virial ratios of the subclusters
give an indication of their survival fraction after gas removal. Out of
all 140 subclusters identified in the simulation, only 10 have virial
ratios Qvir > 1 and are therefore unbound. In the last snapshot of
the simulation, only one of the 21 subclusters will disperse after
the removal of the gas.10 As a result, typically 90–95 per cent of all
the identified subclusters survive gas expulsion. The fate of these
survivors depends on whether they expand, and how their environ-
ment affects them. Expanded subclusters with lower densities are
more susceptible to disruption by tidal shocks. The evolution of the
half-mass radii after gas expulsion can be considered in more detail
by evaluating equation (11) for each of the subclusters in the sim-
ulation. This enables a comparison of the distribution of half-mass
radii of the current subclusters (at the moment of instantaneous
gas removal) with the distribution of their half-mass radii when
they have reached virial equilibrium, which is shown in Fig. 9. The
distribution of half-mass radii changes remarkably little after gas
removal, as the means of the lognormal functions that are fitted to
both distributions differ by 0.035 dex. This implies rh,2/rh,1 = 1.08,
very similar to the earlier, simple estimate of rh,2/rh,1 = 1.04. The
subclusters in the last snapshot experience roughly 1.5 times this ex-
pansion after gas removal, which is of the same order of magnitude
as the expansion of the other subclusters. As gas expulsion does not
increase the cluster radii, they become no more susceptible to tidal
perturbations once the gas is removed than they are at birth. How-
ever, this does not exclude any expansion of the subclusters, since
mass loss due to stellar evolution and tidal perturbations would still
cause them to expand (also see Section 4.3).

The characteristic size of the distribution in Fig. 9 strongly corre-
lates with the break distance of the MST. As indicated in Section 2,

9 This situation, in which the naturally unbound component of a system
escapes, should not be confused with the response of a virialized system to
mass loss due to stellar evolution, when energy is injected into the system
to unbind mass. In such a case, the surplus energy of the escaping mass
is supplied by the energy injection and not by the dynamical system itself,
which therefore mainly loses potential energy. This does not apply to the
case under consideration in equation (11), where no energy is injected and
the unbound stars take away more kinetic energy than potential energy.
10 These unbound subclusters are typically low-mass, compact systems, and
are often newly formed or have just experienced a subcluster merger.
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Figure 9. Histogram of the stellar half-mass radii of the subclusters from
all snapshots (solid line). The shaded histogram represents the set of sub-
clusters from the last snapshot at t = 0.641 Myr. Top: for the simulated radii,
representing the moment of instantaneous gas removal. Bottom: for analyti-
cally computed radii, reflecting the subclusters at a later moment, when they
have reached virial equilibrium. The dashed lines are lognormal fits to the
data for the subclusters from all snapshots, with mean values log (rh/pc) =
{−1.98, −1.95} and standard deviations σ log r = {0.73, 0.61} for the top
and bottom panel, respectively, with median half-mass radii log (rh/pc) =
{−1.96, −1.91}. The radii depend on the adopted break distance (see text),
but the lognormal shape of the distribution persists.

we varied the break distance over the range dbreak = 0.020–0.100 pc.
By fitting lognormal functions to each of the obtained size distri-
butions, we find that the corresponding mean sizes r̂h correlate
with break distance as r̂h/pc = (0.88 ± 0.16)(dbreak/pc)1.33±0.05 for
0.020 ≤ dbreak/pc ≤ 0.100. This demonstrates that the characteristic
size of the size distribution has no physical meaning. None the less,
it is consistent with a lognormal distribution for all break distances,
i.e. independently of the definition for the subcluster radius, and
the smallest subcluster size does remain constant at about 0.005 pc,
corresponding to the smallest cores in the simulation (Smith, Clark
& Bonnell 2009). Regardless of the adopted break distance, the
smallest subclusters are always those with the lowest numbers of
stars. These length-scales are not very surprising, because we are
not considering actual stellar clusters, but the compact (sub)systems
that develop during the early formation of a cluster.

Indeed a length-scale of a few 0.01 pc is much smaller than that
of typical embedded clusters (see e.g. Lada & Lada 2003) and of the
order of the maximum size of Class 0 protostars (Launhardt et al.
2010). The formation of multiple stars in such a small volume could
be related to the use of sink particles in the simulation, although
it should be noted that small stellar clusters and multiple systems
within star-forming globules are actually found on scales as small
as 0.005–0.015 pc (Kraus & Hillenbrand 2008; Gutermuth et al.
2009; Launhardt et al. 2010). Such separations are consistent with
simulated low-N subclusters of which the half-mass radii are dom-
inated by a single massive star or binary. In Section 4.3, the units

of the simulation are rescaled to cover the typical mass, length and
time-scales of low-mass, young star clusters, causing the half-mass
radii of the identified clusters to reach up to 0.3 pc.

4.2 The cluster formation efficiency

The instantaneous gas removal discussed in this paper is an extreme
form of the more gradual expulsion occurring in nature. As a result,
the described weak effect of gas expulsion should be even weaker
in real subclusters. It seems that gas expulsion plays a negligible
role on the length-scales of the compact stellar aggregates in star-
forming regions. However, the regions between subclusters may
still be gas dominated, implying that feedback could prevent the
further merging of subclusters and thereby inhibit their hierarchical
growth.

The length-scale on which the subclusters will have merged and
have become gas poor depends on the moment at which feedback
starts. For the MST break distance and corresponding length-scale
that is used in most of this paper, the subclusters are gas poor
irrespective of time. However, there should be a break distance
at which a notable time evolution of the gas fraction appears. By
comparing the subcluster gas fractions for different break distances,
we find that at the end of the simulation (after one free-fall time), the
subclusters have become gas poor (〈f gas〉 < 0.1) on a length-scale
of about 0.1–0.2 pc. This length-scale will increase further with the
number of free-fall times that are completed before the onset of
gas removal. In turn, this increases the spatial extent over which
the subclusters are allowed to merge before gas expulsion, which
implies that the most massive bound structure is inversely related
to the free-fall time.

The free-fall time is related to the density as tff ∝ ρ−1/2, which
implies that the time of the onset of gas removal by feedback tfb is
associated with a density ρfb that has a free-fall time equal to tfb.
For a given density spectrum of subclusters (see e.g. Bressert et al.
2010), only those subclusters with densities ρ � ρfb ∝ t−2

fb have the
opportunity to undergo the collapse and shrinkage that we find in
the simulations. The cluster formation efficiency (CFE) increases
with the fraction of subclusters that forms in these density peaks.
As subclusters merge, accrete gas and shrink, the density of the stel-
lar structure further increases (see Section 3). Each free-fall time,
more subclusters evolve into the density regime where ρ � ρfb,
also on larger length-scales. This means that the length-scales on
which star-forming regions produce virialized stellar systems that
are insensitive to gas expulsion are larger in dense sites of star for-
mation than in sparse ones. The resulting dense clusters are also less
susceptible to disruptive tidal effects from their environment, which
potentially further increases their survival chances. As a result, the
CFE should increase with density. Through the Schmidt–Kennicutt
law (Schmidt 1959; Kennicutt 1998), this suggests a relation be-
tween the CFE and the star formation rate (SFR) per unit volume
ρSFR or per unit surface area �SFR. Indeed, first observational indi-
cations for such a relation have been found by Larsen & Richtler
(2000), Larsen (2004) and recently also by Goddard, Bastian &
Kennicutt (2010), who obtain CFE ∝ �0.24

SFR. A relation between
the CFE and the SFR density would also be consistent with the
high cluster formation efficiencies that are found in starburst galax-
ies (e.g. Zepf et al. 1999). However, dense star-forming regions
are generally also more disruptive to clustered structure due to the
higher frequency and amplitude of tidal shocks (Lamers et al. 2005;
Kruijssen et al. 2011). This implies that a relation between the
CFE and the ambient density would be weakened or could even be
cancelled (also see Section 4.3).
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4.3 Infant mortality and the ‘cruel cradle effect’

It is often said that most stars form in stellar clusters. The concept
of ‘infant mortality’ (Lada & Lada 2003), i.e. the rapid dispersal of
stellar structure following the change of the gravitational potential
due to gas expulsion, has been put forward in the literature to explain
the observed rapid, mass-independent decline of the number of
stellar clusters between ages of a few Myr and several tens of
Myr (e.g. Bastian & Goodwin 2006). Because the majority of stars
has been thought to form in clusters, infant mortality was also
held responsible for the low number of clusters per unit field star
mass. However, recent (observational) evidence is pointing towards
a picture in which star clusters are the dense end of a continuous
density spectrum of star formation (see Fig. 2 and Bressert et al.
2010; Gieles & Portegies Zwart 2011). This view challenges the
need for infant mortality in the early disruption of stellar structure.

The results presented in this paper show that stellar substructure
can evolve towards a virialized state before the gas is removed. This
occurs because the dynamics of the stars and the gas are decoupled
(also see Offner et al. 2009), as the accretion of gas on to the stars
together with the subcluster shrinkage can compensate the overall
gas inflow on to the subclusters. In time, this causes the subclusters
to become gas poor, thereby diminishing the disruptive effect of gas
expulsion. It depends on the length- and mass-scales on which the
gas is evacuated whether this result can be extended from subclusters
to actual star clusters. Towards the end of the simulation, after about
0.3 Myr of star formation, the subclusters have a mean mass of
40 M� and are gas poor on length-scales of 0.1–0.2 pc. As a very
crude first-order estimate, one can rescale the units of the simulation
to have the subclusters match the typical properties of young star
clusters.11 By multiplying the mass unit by a factor of 25 and the
length unit by a factor of 5, we rescale the mean cluster mass to
103 M�, and the length-scale on which the stellar structure will be
gas poor to 0.5–1 pc. By scaling the time unit accordingly, we see
that such gas depletion is reached on a time-scale of 0.8 Myr, which
is of the same order as the expected tfb due to stellar winds and
ionization feedback. This order-of-magnitude estimate is of course
far from conclusive, but it does show the relevance of pursuing this
problem further.

If clusters reach a relatively gas-poor state before the onset of gas
removal by feedback, the influence of gas expulsion on the dynam-
ical state of the clusters will be smaller than previously expected.
Rather than leading to the disruption of clusters (‘infant mortality’),
the different spatial distributions of gas and stars imply that gas ex-
pulsion could leave clusters marginally affected, unbinding only a
certain fraction of their stars (e.g. Moeckel & Bate 2010). This is in
clear contrast with earlier (theoretical) approaches in literature (e.g.
Boily & Kroupa 2003a,b; Bastian & Goodwin 2006; Goodwin &
Bastian 2006; Baumgardt & Kroupa 2007; Parmentier et al. 2008),
which assumed a model where the gas and stars are in equilibrium
during gas expulsion. Clearly, this is not the case in the simulation
of Bonnell et al. (2008).

Because the density of the stellar structure determines whether
or not gas expulsion affects the survival chances of star clusters,
a continuous density spectrum of young stellar structure as in
Bressert et al. (2010) and Fig. 2 naturally leads to the situation
in which the dispersed part of the new-born stellar structure is af-

11 The simulations are scale-free except for the sink particle radius and
accretion radius mentioned in Section 2. For the scaling used in this example,
these respective radii are 103 and 200 au.

fected by gas expulsion, while the other, dense and clustered part
is not. However, this does not imply that the survival chances of
these clusters are necessarily higher. Recent papers have argued
that the disruption of star clusters due to tidal shocks from the na-
tal environment could be substantial (Elmegreen & Hunter 2010;
Kruijssen et al. 2011; Kruijssen & Bastian, in preparation). Al-
though the disruption rate due to tidal shocks decreases with cluster
density, sufficiently strong12 shocks would still be able to disrupt
dense clusters13 (Gieles et al. 2006). Such shocks could be preva-
lent in dense star-forming regions. As clusters move out of their
primordial environment, the typical ambient gas density decreases
(Elmegreen & Hunter 2010; Kruijssen et al. 2011), which lessens
the disruptive effect of tidal shocks. Observationally, this mecha-
nism affects the star cluster population in a way that is very similar
to infant mortality: the fact that young clusters are more efficiently
disrupted than older clusters gives rise to a strong decline of the
number of clusters with age at young ages. This decline acts on
the age scale corresponding to the time it takes to migrate out of the
star-forming region. Rather than being an internal effect, like infant
mortality is, the primordial disruption by tidal shocks is driven by
the state of the environment in which the clusters are born. We will
therefore refer to this mechanism as the ‘cruel cradle effect’.

It will be interesting to quantify what the relative contributions of
gas expulsion and the cruel cradle effect are to the early disruption
of young stellar clusters. It is possible that both effects co-exist,
and that the relative importance changes with the environment. It
was explained in Section 4.2 that the fraction of clusters that is
affected by gas expulsion decreases with the ambient density of
the star-forming region. The cruel cradle effect shows the opposite
dependence, as the disruptive effect of tidal shocks increases with
the ambient gas density. It would therefore not be unlikely that gas
expulsion and the cruel cradle effect each dominate a different side
of the gas density spectrum of star-forming regions. Their relative
strength would then determine the relation between the CFE and
the ambient gas density.

5 SU M M A RY A N D O U T L O O K

In this paper, we have assessed the dynamical state of stellar struc-
ture in star-forming regions and its response to gas expulsion by
analysing the properties of the stellar structure in the SPH/sink par-
ticle simulations of Bonnell et al. (2003, 2008). Subclusters have
been identified using a MST algorithm (following Maschberger
et al. 2010), and binaries have been replaced by their centre-of-
mass particles when computing the global dynamical properties of
the subclusters. We have also discussed the long-term implications
of gas expulsion for the properties of star cluster populations. The
main results are as follows.

12 The strength of a tidal shock corresponds to the amount of energy it injects
into the cluster.
13 Note that this early tidal disruption of stellar clusters is very different
from the mechanism studied by Parmentier & Kroupa (2011), who consider
the enhanced loss of stars due to the expansion of a young cluster to its tidal
boundary that is induced by gas removal. The difference again lies in their
assumption of equilibrium between the stars and the gas. If a young cluster
has evacuated the surrounding gas and gas expulsion plays a minor role,
then any gas expulsion-induced tidal stripping will be minor as well. None
the less, young clusters would still expand due to stellar evolutionary mass
loss and the tidal shocks that are causing them to be disrupted.
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(i) The surface density distribution of sink particles follows an
approximately lognormal distribution similar to that observed by
Bressert et al. (2010). However, the surface density corresponding
to the peak of the distribution is several orders of magnitudes higher
than the observed one, because the subclusters considered in our
study are part of a region that would represent only one or two
clusters in the observations. The high-density end of the distribution
is occupied by sink particles belonging to the subclusters that are
identified with the MST.

(ii) When excluding the potential of the gas from the dynamical
analysis and only considering the sink particles, we find that the
simulation as a whole becomes marginally bound after one free-
fall time, and the population of individual subclusters is close to
virial equilibrium. The mean value of a Gaussian fit to the distribu-
tion of virial ratios from all snapshots is Qvir = 0.59, where virial
equilibrium would imply Qvir = 0.5. The mean virial ratio of the
population slowly decreases with time, from Qvir = 0.70–0.80 early
on to Qvir = 0.55–0.60 towards the end of the simulation.

(iii) The virialization of the subclusters occurs due to their low
gas fractions. We consider the spatial distributions of gas and sink
particles at two characteristic moments during the simulation (t1 =
0.442 Myr and t2 = 0.641 Myr, reflecting the system early on and
after one free-fall time), and find that the mean gas fraction within
the stellar half-mass radii (rh ∼ 0.01 pc) of the subclusters decreases
by 0.63 dex during the enclosed time interval, from 〈f gas(t1)〉 =
0.238 to 〈f gas(t2)〉 = 0.056. By comparing the density profiles of
gas and sink particles, we conclude that this decrease is caused by
gas accretion and subcluster shrinkage to approximately the same
degree.

(iv) Because the subclusters are relatively gas poor, they are only
weakly affected by gas expulsion and the subsequent evolution
towards virial equilibrium. According to our analytical estimate,
they expand by an average factor of 1.08 after gas removal. The
length-scale on which the subclusters are gas poor (〈f gas〉 < 0.1) is
about 0.1 pc at the end of the simulation. By scaling up the units
of the simulation from subcluster to star cluster scales, we find that
after about 0.8 Myr of star formation, star clusters with a mean mass
of 103 M� would be gas poor on a length-scale of 0.5–1 pc.

(v) Only those (sub)clusters with densities much larger than the
density that is associated with a free-fall time equal to the gas
expulsion time can exhibit the shrinkage and accretion that causes
them to become gas poor. The fraction of clusters that reaches the
required density to become insensitive to gas expulsion before the
onset of gas removal therefore increases with ambient gas density.
This suggests a relation between the CFE and the ambient gas or
star formation rate density, with a larger fraction of star formation
resulting in bound clusters in dense regions.

(vi) A possible relation between the CFE and the ambient gas
density is affected by a second mechanism. In dense regions, the
survival chances of stellar structure are not determined by gas ex-
pulsion or ‘infant mortality’, but by the disruptive effect of tidal
shocks from the surrounding gas (Elmegreen & Hunter 2010;
Kruijssen et al. 2011). This disruption of young clusters by their
environment is titled the ‘cruel cradle effect’ and is suggested to
take over the disruptive role of gas expulsion in dense star-forming
regions. The strength and relative contributions of infant mortality
and the cruel cradle effect as a function of ambient gas density
will be the decisive factor to assess the relation between the CFE
and the ambient gas density. This needs to be quantified in future
studies, because the time-scale covered by the simulation is too
short to include the disruption of subclusters due to the cruel cradle
effect.

Throughout the paper, we have mentioned directions in which
further research should be undertaken to verify and expand our
conclusions. It is essential to check to what extent these results
depend on the properties of the simulations we analysed, such as
their initial conditions and input physics. The three chief concerns
would be whether the results are affected by (1) the turbulence
spectrum and initial set-up of the simulation, (2) the inclusion or
exclusion of feedback and magnetic fields and (3) the choice of sink
particle radius.

(i) The turbulence spectrum and overall boundedness of the sim-
ulation primarily influence the time evolution of the overall star
formation efficiency (McKee & Ostriker 2007; Dale & Bonnell
2008), and will only impact the evolution of subclusters if the in-
flow of gas becomes too high to be compensated by accretion and
subcluster shrinkage. Judging the relative ease at which the subclus-
ters in the current simulation become gas poor, it is unlikely that
the situation of a saturating gas inflow would take place. However,
a dynamical analysis of a larger set of simulations will be needed
to obtain a conclusive picture, also to include the formation of stars
and subclusters in environments with lower densities.

(ii) Feedback from accreting sink particles would inhibit the in-
flow of the gas, which in turn would lead to a lower gas fraction
within the subclusters. There have been several efforts in literature
to quantify the effect of (positive or negative) feedback on the star
formation process, which generally consider effects on the length-
scales of the giant molecular clouds in which the star formation
takes place (see e.g. McKee & Ostriker 2007). While global effects
could influence the gas-poor state of the (sub)clusters, the nature of
feedback is such that it evacuates the gas on the spatial scales of
the subclusters, which therefore should not lead to a fundamentally
different conclusion than made in this paper. Magnetic fields could
slow down the accretion process. If this decrease of the accretion
rate would be smaller in the outskirts of the subclusters than within
the stellar half-mass radius, it would increase the gas fractions and
virial ratios of the stellar component. Therefore, the influence of
magnetic fields on our results will need to be investigated.

(iii) If the accretion and/or sink radii of the sink particles were
comparable to the typical interstellar separation, the gas-poor nature
of the subclusters would be a trivial result of a high ‘filling factor’
of the subclusters by the sink particles, as the volume where the
gas could reside without being accreted would be too small to
achieve a stable configuration. We have addressed this to first order
by computing the accretion and sink volumes taken up by sink
particles and dividing it by the enclosed volume. This was done for
each sink particle while taking the nearest neighbour,14 and also by
calculating a mean radial ‘filling factor’ profile for each subcluster,
analogous to Fig. 8. Both methods returned low filling factors, with
typical values of 10−2 for the sink radius and 10−4 for the accretion
radius. In other words, less than 1 per cent of the volume inside the
subclusters is taken up by the sink particles. In order to assess to
which extent this allows us to neglect spurious accretion, we ran
a set of simple test simulations with different accretion and sink
particle radii. These tests show that the gas accretion rate is hardly
affected by the accretion and sink radii, which validates our results.
The details of the tests are given in Appendix A.

Ideally, the next step would be to perform the same type of cal-
culation as in Bonnell et al. (2008) for different initial conditions,

14 We used the particle list that was corrected for multiples, implying that
bound neighbours were ignored.
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including descriptions for radiative and mechanical feedback, po-
tentially accounting for magnetic fields and varying the sink particle
radius. The dynamical analysis of such simulations would provide
a good verification of our conclusions, and would improve the cur-
rent understanding of the dependence on initial conditions and input
physics.

The order-of-magnitude extension of our results from subcluster
to actual star cluster scales should be investigated further. With the
continuously improving computational facilities, it will be possible
to simulate systems on the scales needed to cover the formation of
star clusters. The key ingredients of such an effort will be larger par-
ticle numbers and smaller sink particle radii. Additionally, infrared
or spectroscopic observations can be used to verify the length-scales
on which star-forming regions are gas poor prior to the onset of gas
removal. The current and upcoming generation of telescopes will
provide excellent opportunities for this.

If gas expulsion indeed only weakly affects the survival chances
of stellar structure, it will need to be verified in which regimes in-
fant mortality still plays a role. In order to understand the relation
between the CFE and the local environment, the relative contribu-
tions to early star cluster disruption of infant mortality and the cruel
cradle effect will need to be quantified. The kinematic signatures
of both effects should differ and would therefore be measurable
in the velocity maps of young disrupted clusters (Kruijssen 2011).
Possible ways in which this could be done observationally include
searching for young clusters that are currently going through gas
expulsion and mapping the radial velocities of the stars, or tracing
the velocity dispersion profiles of young, gas-poor clusters in dense
regions. To aid this effort, the differences between the kinematic
signatures of energy injection into a star cluster by gas expulsion
or tidal shocks have to be established theoretically. The combina-
tion of these approaches should provide a conclusive picture of the
mechanisms that determine which fraction of star formation results
in bound star clusters.
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A P P E N D I X A : IN D E P E N D E N C E O F R E S U LTS
O N S I N K PA R A M E T E R S

In this appendix we verify that the resolution of the SPH simulation
is not playing an important role in the evolution of the stellar-to-gas
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Figure A1. Remaining gas mass as a function of time for our tests of the
SPH simulation sink parameters. Top panel: the runs with rgas = 3rsinks;
bottom panel: the runs with rgas = 10rsinks. Grey lines have racc = 0.125,
black lines have racc = 0.0625 and light grey lines have racc = 0.03125. Solid
lines have 5 × 104 gas particles. The dashed lines have 2 × 105 particles,
and the dotted lines have 1.25 × 104 particles.

mass ratio of the subclusters. We accomplish this via a series of
controlled, idealized tests in which a cluster of 10 sink particles
accretes from an envelope of gas. The total mass of the system is 1,
divided equally between the sinks and the gas. The sinks are initially

of equal mass, thus each has mass 0.05. They are placed randomly
in a Plummer model of virial radius rsinks = 1, and we use the same
initial configuration of the stars in each test. The median nearest
neighbour separation of the sinks is 0.43. The gas is likewise in
a Plummer sphere spatially, although with a larger radius than the
sinks. The gas has zero initial kinetic energy and minimal thermal
support, so that the gas falls on to the sink cluster and is accreted.
We run two sets of tests, one in which the gas sphere’s virial radius
is 10 times rsinks, i.e. rgas = 10, and one in which rgas = 3.

The two numerical scales we are concerned with are the accretion
radius of the sinks racc, and the smoothing length of the gas particles.
For the sink radii, we use the set racc = {0.125, 0.0625, 0.03125}.
The middle value yields approximately the ratio of the neighbour
distance to the accretion radius seen in the clusters in the simulation.
The smoothing length of the gas is determined by the number of
gas particles. To roughly match the simulated value, suppose the
sinks have masses 1 M�. The total gas mass is then 10 M�, and
5 × 104 gas particles approximates the resolution of the large-scale
simulation. We run the 0.0625 accretion radius cases with four times
more and fewer gas particles, i.e. 2 × 105 and 1.25 × 104.

In Fig. A1 we show the gas mass as a function of time for the
test runs. In the top panel we show the results for the case with
rgas = 3. Time is measured dimensionlessly where we have taken
the gravitational constant G = 1; the crossing time of the sink cluster
is ∼2. In this set-up, the gas free-fall time is ∼6 and the gas accretes
quickly compared to the time for the N-body dynamics to dissolve
the small-N sink system. The agreement between all the test runs is
excellent. The bottom panel shows the rgas = 10 cases, and the gas
falls on to the sink system over a longer time-scale, with a free-fall
time ∼35. At early times the agreement is quite good, with some
disagreement between the runs appearing after t ∼ 20. We attribute
this to the fact that at this point the N-body dynamics of the different
runs have set the clusters on clearly divergent paths; recall that the
gravitational smoothing length of the sinks is proportional to their
sink radius. By t = 80 the cluster of sinks has effectively dissolved.
We conclude that gas accretion time-scale is not greatly affected by
the choices of the sink radius.
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