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ABSTRACT
Stars form in regions of very inhomogeneous densities and may have chaotic orbital motions.
This leads to a time variation of the accretion rate, which will spread the masses over some
mass range. We investigate the mass distribution functions that arise from fluctuating accretion
rates in non-linear accretion, ṁ ∝ mα . The distribution functions evolve in time and develop a
power-law tail attached to a lognormal body, like in numerical simulations of star formation.
Small fluctuations may be modelled by a Gaussian and develop a power-law tail ∝ m−α at
the high-mass side for α > 1 and at the low-mass side for α < 1. Large fluctuations require
that their distribution is strictly positive, for example, lognormal. For positive fluctuations the
mass distribution function develops the power-law tail always at the high-mass hand side,
independent of α larger or smaller than unity. Furthermore, we discuss Bondi–Hoyle accretion
in a supersonically turbulent medium, the range of parameters for which non-linear stochastic
growth could shape the stellar initial mass function, as well as the effects of a distribution of
initial masses and growth times.

Key words: accretion, accretion discs – turbulence – stars: formation – stars: luminosity func-
tion, mass function.

1 IN T RO D U C T I O N

Star-forming regions typically show a very inhomogeneous struc-
ture with large variations in the gas density due to turbulence and
filaments. Thus, accretion rates of forming stars, depending on gas
density, will show fluctuations. Sufficiently substantial fluctuations
in the accretion rate will spread out the starting masses after accre-
tion occurred, which affects, like many other effects, the stellar ini-
tial mass function, the distribution of stellar masses at their ‘birth’.
The accretion rate of a point mass in a homogeneous medium fol-
lows ṁ ∝ ρm2, which is Bondi–Hoyle–Lyttleton accretion (Edgar
2004). In a flocculent medium, the density variations change the de-
terministic Bondi–Hoyle–Lyttleton accretion into a stochastic pro-
cess, which is multiplicative, as ṁ depends on m, and non-linear, as
ṁ ∝ m2. In this paper, we investigate the distribution function that
arises from such a non-linear multiplicative stochastic process.

A linear stochastic process, fragmentation, has been employed for
some time to explain the shape of the stellar initial mass function at
low masses. The initial mass function has at low masses a lognormal
shape, but develops a power-law tail at high masses (Kroupa 2002;
Chabrier 2003). Larson (1973), Elmegreen & Mathieu (1983) and
Zinnecker (1984) modelled fragmentation as a sequence of discrete
fragmentation steps, during each the mass is reduced by a fraction of
itself. Applying the central limit theorem leads to a lognormal dis-
tribution function after a sufficient number of fragmentation steps.

� E-mail: thomas.maschberger@obs.ujf-grenoble.fr

Because the fragment mass is chosen to depend linearly on the mass
of the cloud this is a linear process. Fragmentation alone seems not
to embrace the whole star formation process, as the initial mass func-
tion has a power-law tail at the massive end. This deviation from
lognormality has been explained, amongst other ideas, by com-
petitive accretion, which is non-linear accretion of the fragments
without fluctuations in the accretion rate (Larson 1978; Zinnecker
1982; Bonnell et al. 1997, 2001a,b; Bate, Bonnell & Bromm 2003).
The power-law tail of the initial mass function then arises from the
scatter of the initial masses from which accretion starts.

With (linear) fragmentation and (non-linear) accretion two pro-
cesses encounter each other that have opposite sign. Fragmentation
leads (on average) to a reduction of mass, whereas accretion in-
creases mass. One can therefore speculate, whether it is possible to
model the main part of the star formation process as a single stochas-
tic process that is non-linear. This has already been attempted by
Marcus (1968), who adopted the random splitting model of Filip-
pov (1961) (who extended the work of Kolmogorov 19411). Marcus
(1968) assumed a time-discrete non-linear stochastic process. An
important aspect of the results by Marcus (1968) is that simulta-
neously the distribution of the number of fragments and the mass
distribution of the fragments are derived. We investigate a time-
continuous non-linear stochastic process, generalizing the work of
Marcus (1968) in that respect, but do not derive a distribution for
the number of fragments.

1 In English: Kolmogorov (1992).
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1382 Th. Maschberger

In linear or non-linear random fragmentation, it is usually as-
sumed that the fraction that is lost during a step follows a Gaussian
distribution. This has a curious side effect: the mass distribution
function at the end does not vanish above the initial mass. But noth-
ing can fragment to a mass larger than its initial mass. The reason
for this lies in the Gaussian distribution used to describe the frag-
ment distribution; there is a non-vanishing probability that some
fragments have negative mass. In stellar growth (which is ‘negative
fragmentation’), the distribution of accretion rates is due to the fluc-
tuations in the gas density. The gas density cannot be smaller than
zero. Therefore, we investigate the case of a non-linear stochastic
process with a strictly positive distribution of fluctuations as well.
The difference to Gaussian noise can be quite substantial.

In order to model the star formation process, it is, besides growth,
also necessary to consider the initial mass from which accretion
starts and the time how long accretion lasts. Several models cov-
ering all these aspects are present in the literature, for example:
Basu & Jones (2005) assume a lognormal distribution of initial
masses with growth ∝ m or ∝ m2/3 and an exponential distribution
of growth times. Bate & Bonnell (2005) consider growth with a log-
normal distribution of accretion rates without a mass dependence,
no distribution of initial masses, and also an exponential distribu-
tion of growth times. Related to this mass-independent growth with
lognormal accretion rates is the discussion of stable distributions
in Cartwright & Whitworth (2012). In a series of papers, Myers
(2000, 2008, 2009, 2011, 2012) published increasingly elaborate
models of the star formation process. Their main components are
an exponential distribution of growth times, accretion with a mass-
independent and a (non-linearly) mass-dependent contribution, and
a constant initial mass (a distribution of initial masses is considered
in Myers 2009). The model of Dib et al. (2010) contains a distri-
bution of initial masses originating from gravoturbulent accretion
(lognormal with a power-law tail) from which stars grow with a
mass-dependent accretion rate that is exponentially dampened in
time (cf. also Dib, Kim & Shadmehri 2007). Effects of fluctuating
accretion rates are to our knowledge not yet considered in the lit-
erature. In Section 5.3, we describe the effects of a distribution of
initial masses and a distribution of growth times on the mass distri-
bution arising from fluctuating accretion rates in a stochastic growth
process.

Before embarking on the investigation of non-linear growth with
a distribution of the accretion rates we would like to mention that our
results may have more applications than stellar growth. Non-linear
stochastic processes appear in many other contexts, particularly in
the context of turbulence. It is, for example, found that the prob-
ability distribution function (pdf) of the gas density in a turbulent
medium shows power-law tails in case of a polytropic index other
than unity (Passot & Vázquez-Semadeni 1998). Given that isother-
mal turbulence is assumed to be a linear multiplicative process, the
occurrence of the power-law tails hints at a non-linear process. Sim-
ilarly, the pdf of velocity in a turbulent medium show power-law
tails (e.g. Krumholz, McKee & Klein 2006), which again may be a
sign of non-linearity. Gravity also leads to non-linear stochastic pro-
cesses, power-law tails appear in self-gravitating turbulent gas if it
is isothermal (e.g. Klessen & Burkert 2000). Even stellar dynamics
can be seen as a stochastic process (Chandrasekhar 1943).

The outline of this paper is as follows: In the next section, we
prepare the necessary mathematical prerequisites with the help of
linear stochastic growth. Section 3 contains results for non-linear
stochastic growth where the random increments are assumed to be
Gaussian. Strictly positive fluctuations are considered in Section 4.
In Section 5, we discuss Bondi–Hoyle accretion in a supersonically

turbulent medium, the typical parameter ranges that would affect
the stellar initial mass function and the effects of a distribution of
initial masses and growth times. The usual summary concludes the
paper.

2 A T I M E - C O N T I N U O U S S TO C H A S T I C
F O R M U L AT I O N O F L I N E A R G ROW T H
O R F R AG M E N TAT I O N

We start with the simplest form of mass-dependent growth where
the accretion rate is linear in mass. Without fluctuations this is
described by the differential equation

dm

dt
= Am. (1)

The quantity A accounts for all the constants that are involved.
Suppose now that the star grows in a flocculent medium. Then,
the fluctuating gas density will cause fluctuations in the accretion
rate, or, more specifically, A will be varying. The mass dependence
remains unchanged.

Mathematically, the fluctuations can be introduced by changing
equation (1) from an ordinary differential equation to a stochastic
differential equation,

dm = m(a dt + b dW ). (2)

Now A is split into two terms, a dt, which describes the mean of
A, and b dW, which describes the fluctuations around the mean.
We assume that the fluctuations stem from a normal (or Gaussian)
distribution,

N (x; μ, σ ) = 1√
2πσ

e− 1
2

(x−μ)2

σ2 , (3)

with zero mean and variance dt, so that the distribution of dW is

p(dW ) = N (dW ; μ = 0, σ =
√

dt). (4)

For dt = 1, the distribution of dW has unit variance. Multiplying b
and dW is equivalent to scaling the variance to the desired amount
of fluctuations. Alternatively, the distribution of accretion rates can
be written as

p(A) = N (A; μ = a, σ = b). (5)

For integrating equation (2), we need to establish how the inte-
gral

∫ t

0 dW is to be interpreted. The integral can be approximated
with the limit of

∑n
i=1 dWi , where all the dWi are independently

drawn from a normal distribution. The normal distribution has the
property that the sum of two normal variates follows again a normal
distribution (in other words, the normal distribution is infinitely di-
visible). The parameters for the sum variate are μ = μ1 + μ2 and
σ 2 = σ 2

1 + σ 2
2 . Therefore,

∑n
i=1 dWi will again obey a normal dis-

tribution with σ 2 = ∑n
i=1 σ 2

i = ∑n
i=1(

√
dt)2 = t . The limit dt →

0 and n → ∞ gives the integral Wt = ∫ t

0 dW , which is a normally
distributed random number with zero mean and variance t. A more
rigorous derivation this can be found in the literature on stochastic
differential equations (e.g. Øksendal 2002).

The stochastic calculus is not unique, there are two ways of
defining it, the Itō and the Stratonovich calculus. Depending on the
nature of the fluctuations, the one or the other are more appropri-
ate. In our case, the fluctuations in density are not caused by the
growth process, but by external effects (e.g. turbulence or a chaotic
motion of the growing star). Such external fluctuations require the
Stratonovich calculus (van Kampen 2006), which preserves the
standard rules of calculus.
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Stochastic stellar growth 1383

With this we can solve equation (2) by integrating it to

log m − log m0 = at + bWt , (6)

where m0 is the initial mass and growth starts at t = 0.
For a population of growing stars, the distribution of m(t) can be

found by noting that

at + bWt ∼ N (μ = at, σ = b
√

t) (7)

(∼ denotes ‘is distributed as’). Thus,

log m − log m0 ∼ N (μ = at, σ = b
√

t), (8)

or,

p(m) = 1

m

1√
2π

1

b
√

t
e− 1

2
(log m−log m0−at)2

b2 t , (9)

where the factor 1/m comes from the transformation from log m to
m. The distribution of m(t) is, like in the discrete case, a lognormal
distribution.

The distribution function of m(t) (equation 9) is also defined for
values <m0, as in the discrete case. dm can have values <−m, as
dW can reach up to −infinity. Thus, the mathematical formulation
of the growth/fragmentation process, both continuous and discrete,
is not strictly correct. Nevertheless, for a small level of fluctuations
the probability for m < m0 can be very small. Note that m(t) is
always larger than zero.

Another puzzling property of equation (9) lies in the expectation
value of m(t),

E(mt ) = m0eat+ b2
2 t . (10)

Here, an additional term b2

2 t appears compared to the solution
m(t) = m0eAt of the deterministic differential equation (1). This
‘spurious drift’ is a consequence of using the Stratonovich stochas-
tic calculus.

3 N O N -LIN EA R G ROW TH

The accretion of stars is not linear in mass. Depending on the
environment ṁ ∝ m2 (Bondi–Hoyle accretion) or ṁ ∝ m2/3 (gas-
dominated potential; Bonnell et al. 2001b). Small fluctuations in the
accretion rate due to a flocculent density or random stellar motions
can be described neglecting that dW can take negative values, the
corresponding stochastic differential equation is

dm = mα(a dt + b dW ). (11)

This can be solved proceeding analogously to the previous section.
In this section, we discuss the solution of equation (11) and its prop-
erties. For an application to stellar accretion with large fluctuations,
we need modify equation (11), see the next section.

The solution for m(t) is

m(t) =
(

(1 − α)

(
m1−α

0

1 − α
+ at + bWt

))1/(1−α)

, (12)

which reduces for b = 0 to the solution of the deterministic growth
law.

For exponents α > 1, we have to account for the fact that the
solutions are exploding in the deterministic case (b = 0), infinite
masses are reached within a finite time,

tex = m1−α
0

a(α − 1)
. (13)

When fluctuations are added to the accretion rate, then there is
no single explosion time any more. Depending on the particular
fluctuations that are encountered by a growing star it may explode
earlier or later, at some random time. m(t) of equation (12) becomes
undefined for large Wt. Thus, we have to require

Wt < −1

b

(
m1−α

0

1 − α
+ at

)
=: ut (14)

if we consider only the not yet exploded particles. At some time t
the fraction of the population that is not yet exploded is

fnex,G(t) = �(ut ; 0,
√

t), (15)

(� is the cumulative normal distribution), because Wt ∼ N (0,
√

t).
In nature, the exploding solutions are suppressed because an infi-
nite reservoir from which material could be accreted does not exist.
This should be accounted for in the growth model, for example in
the line of logistic growth. Massive stars (which would become an
exploding solution) exercise a strong feedback as well, which like-
wise suppresses exceedingly large accretion rates. Unfortunately,
accounting for a finite reservoir and feedback is beyond the scope
of this paper.

The mass distribution function for the population is then

pG(m, t) = 1

fnex,G(t)

1

mα

1√
2π

1

b
√

t
e− 1

2

(
1

1−α

(
m1−α−m1−α

0

)
−at

)2

b2 t . (16)

The factor 1/fnex,G(t) normalizes pG as probability by accounting
for the exploded solutions if α > 1. For α < 1, it is not required,
fnex,G(t) = 1. Fig. 1 shows pG for various values of α. The other
parameters are a = 1, b = 1, t = 1 and m0 = 1. For α = 1 (top-
left panel), the solution corresponds to a lognormal distribution, as
discussed in Section 2. For α �= 1 (and α �= 0), a power-law tail
appears at one side of pG. If α > 1 (top-right panel), the power-
law tail ∝ m−α develops at the high-mass end of pG. The power
law is indicated by the dashed line. At smaller masses, pG behaves
similar to a lognormal distribution which is shown by the dotted
curve for comparison (the parameters for the lognormal distribu-
tion are chosen to follow pG). For exponents smaller than unity in
the growth law, a power-law tail develops at the left-hand side of the

Figure 1. Comparison of the distribution functions pG(m, t) for various α.
The parameters are a = 1, b = 1, t = 1, t0 = 0 and m0 = 1. For α = 1
(top left) the solution is a lognormal distribution. In the case of α > 1 (top
right), a power-law tail at high masses develops (dashed). The dotted line is
a lognormal distribution with parameters chosen to fit the lower part of pG.
If 0 < α < 1 (bottom left) a falling power-law tail at low masses develops,
whereas if α < 0 the power-law increases.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/436/2/1381/1131656 by guest on 20 M
arch 2022



1384 Th. Maschberger

peak at small masses. The other side of the distribution resembles
a lognormal distribution. If 0 < α < 1, the power law is decreas-
ing, which gives the distribution a rather peculiar appearance. For
α < 0, i.e. for example ṁ ∝ 1/m, the low-mass power law in-
creases, so that pG appears mirrored to the case of α > 1. Although
α < 0 may not be relevant for stellar accretion, it might be suitable
to describe the stochastic process for the distribution of velocities in
supersonic turbulence. Krumholz et al. (2006) found in numerical
simulations that the distribution of velocities has a power-law tail
at the left-hand side.

We do not discuss at this point the time evolution and the be-
haviour of the mean mass, but postpone it to the next section for a
comparison with the case of strictly positive fluctuations.

4 STRICTLY POSITIVE N OISE

The fluctuations in the stellar accretion rates originate in the vari-
ations of the gas density. If there are only small variations, then
their description with a mean density modulated by a Gaussian is
sufficiently accurate. However, if the gas density is very flocculent,
as for example in supersonic turbulence, then the use of a Gaussian
introduces an undesirable side effect: the random variate describ-
ing the fluctuations can become so large that it exceeds the mean
density. A strongly underdense region would then be assigned a
negative density, which is physically impossible. In supersonic tur-
bulence, the gas density pdf has been found to follow a lognormal
distribution,

plN (x) = 1

x

1√
2πσl

e
− 1

2
(log x−μl )

2

σ2
l (17)

(e.g. Vazquez-Semadeni 1994; Passot & Vázquez-Semadeni 1998;
Nordlund & Padoan 1999). We could use the lognormal distribu-
tion to describe the fluctuations. The lognormal distribution is, like
the normal distribution, infinitely divisible (Thorin 1977) and conse-
quently is suitable to describe fluctuations in a stochastic differential
equation. However, there are no formulas for the sum distribution of
two lognormal variates, so the stochastic integral cannot be solved
analytically.

Thus, we use for practical reasons an approximation of the log-
normal distribution, the inverse Gaussian distribution (invGauss),

pinvGauss(x; ν, λ) =
(

λ

2πx3

)1/2

e− λ(x−ν)2

2ν2x . (18)

It has expectation value E(x) = ν and variance Var(x) = ν3/λ. A
comparison of the invGauss and the lognormal distribution with the
same expectation value and variance is shown in Fig. 2. Compared
to the invGauss the lognormal has somewhat heavier tails.

As model of strictly positive fluctuations, we choose that an
infinitesimal fluctuation

diGa,b ∼ invGauss

(
ν = a dt, λ = a3

b2
(dt)2

)
. (19)

It has the mean value a dt and variance b2 dt, like fluctuations from a
normal distribution. For the approximation of the integral by a sum,
we note that the sum of two invGauss random numbers with the
same ν and λ follows again an invGauss distribution with ν ′ = 2ν

and λ′ = 22λ. With this follows that

iGa,b,t =:
n∑

i=1

diGa,b ∼ invGauss

(
ν = an dt, λ = a3

b2
(n dt)2

)
,(20)

the sum of infinitesimal fluctuations follows again an invGauss
distribution. The mean of iGa,b,t is an dt = at and the variance is

Figure 2. Comparison of a lognormal distribution (blue dashed curve) and
an inverse Gaussian distribution (black solid) as approximation. Both have
the same mean (1) and variance (0.6). The lognormal distribution is over a
wide range well approximated by the inverse Gaussian distribution.

b2(n dt)2 = b2t. This also corresponds to the results from the case
with a normal distribution. Now we are able to perform the limits
dt → 0 and n → ∞ which gives the integral

∫
diGa,b.

With this we can pose the mass-dependent growth equation with
strictly positive fluctuations,

dm = mαdiGa,b. (21)

Using standard calculus, we find for α �= 1 that

m(t) =
(

(1 − α)

(
m1−α

0

1 − α
+ iGa,b,t

))1/(1−α)

. (22)

(If α = 1, the term m1−α
0 /(1 − α) has to be replaced by log m0.)

Again, we have to consider the exploded solutions if α > 1 and

need to require
m1−α

0
1−α

+ iGa,b,t < 0 so that m(t) is not infinite. The
not exploding fraction is then

fnex iG = PinvGauss

(
− m1−α

0

1 − α
, ν = at, λ = a3

b2
t2

)
, (23)

where PinvGauss is the invGauss cumulative distribution function. For
α ≤ 1, nothing explodes and fnex iG = 1. With m(t) and fnex,iG, we
can write the mass function,

piG(m, t) = 1

fnex,iG

1

mα

1√
2π

t

b

(
X

a

)−3/2

e
−1

2

a

b2

(X − at)2

X , (24)

where

X :=

⎧⎪⎨
⎪⎩

m1−α

1 − α
− m1−α

0

1 − α
α > 1

log m − log m0 α = 1

. (25)

Fig. 3 shows the behaviour of piG for different α with a = 1,
b = 1, m0 = 1, t = 1 and t0 = 0. These are the same parameters as in
Fig. 1, which shows pG. For α > 1, the positive fluctuations lead to
the same power law ∝ m−α as Gaussian fluctuations. If α ≤ 1, the
positive fluctuations change the behaviour compared to Gaussian
fluctuations, now appears power-law-like behaviour at high masses
as well. This can be characterized with the ‘exponent’ function
(piG ∝ mS(m)),

S(m) = d log piG

d log m
(26)

= −α + m1−α

(
−1

2

a

b2
− 3

2

1

X
+ 1

2

a3

b2
t2 1

X2

)
. (27)
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Stochastic stellar growth 1385

Figure 3. Distribution functions piG(m, t) for various α (compare with
Fig. 1). The parameters are a = 1, b = 1, t = 1, t0 = 0 and m0 = 1. piG has a
power-law tail for α ≥ 1 and behaves even for α < 1 similar to a power law
over some mass range. The dashed lines show power laws whose exponents
are discussed in the text.

α = 1 leads to a strict power-law behaviour at high masses with
exponent −α − 1

2
a
b2 . However, as visible in Fig. 3 this exponent

occurs only as a limiting case and can set in not until very large
masses. At smaller masses piG is steeper.

If α < 1, then S(m) has −∞ as limit for m → ∞, piG decays
at high masses. Nevertheless, piG can for some combinations of a,
b and t be well described by a power law over some mass range
above the peak. The terms − 1

2
a
b2 m1−α and 1

2
a3

b2
m1−α

X2 cancel each
other around

mβ = (
(1 − α)at + m1−α

0

)1/(1−α)
, (28)

where

piG ∝ m−α−β (29)

with

β = 3

2

1

1 − m0
mβ

1−α
. (30)

Fig. 4 displays the time-evolution of piG (solid), as well as pG

(dashed) for a = 1 and the ratios b/a = 0.1, b/a = 0.5 and b/a = 1.0.
Both distribution develop a power-law tail over time, which happens
fastest if the amount of fluctuations is not too large (i.e. b/a = 0.5).
If the fluctuations are very large, then large accretion rates are oc-
curring only very rarely, as they do if the fluctuations are very small.
Thus, the power-law tail is slower populated. Both distributions also
shift in mass range over time, which is slower for larger b/a. As
piG does not allow for ‘negative’ growth it always moves to higher
masses. The Gaussian fluctuations in pG make the mass shift so slow
for b/a = 0.5 that the peak effectively does not move. For b/a = 1,
the shift has reversed, the peak of pG moves towards masses smaller
than m0.

The time development of the expectation value of piG and pG (cal-
culated numerically) is given in Fig. 5. The parameters are α = 2.1,
a = 1, b = 0.5 and m0 = 1. Also displayed is the deterministic so-
lution as dotted curve which explodes at tex = 0.909. Note that for
1 < α ≤ 2 the mean of pG and piG is infinity, because the mean for
a power law with such an exponent is infinite. For t < tex, the mean
mass with a fluctuating accretion rate is larger than expected from
deterministic growth. This is similar to the spurious drift introduced
by the stochastic formulation discussed in Section 2. Solutions can
explode but are not accounted for in the distribution function, so

Figure 4. Time evolution of the mass functions piG (solid curve) and pG

(dashed curve) for α = 2, a = 1, m0 = 1 and t0 = 0. In contrast to the
Gaussian noise there is no ‘growth’ below m0 = 1 for strictly positive noise.
For b/a = 0.1, piG lies outside the plotting area at t = 5 and t = 10.

Figure 5. Time evolution of the mean of piG (solid curve). The blue dashed
curve shows the expectation for pG and the red dotted line the expectation
of the deterministic case.

that both averages are finite even for t > tex. The mean piG appears
to explode, in contrast to pG, albeit slower than deterministic.

5 A P P L I C AT I O N TO STA R FO R M AT I O N

5.1 Bondi–Hoyle accretion in a medium with supersonic
turbulence

Krumholz et al. (2006) have studied the distribution of accre-
tion rates for Bondi–Hoyle accretion in a supersonically turbulent
medium. They performed hydrodynamical calculations of accretion
on to stationary point masses in a medium that is not self-gravitating.
They found that the normalized accretion rate, ṁ/ṁ0, can be fitted
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1386 Th. Maschberger

Table 1. Parameters for the distribution of accretion rates of Bondi–Hoyle accretion in a turbulent
medium (calculated from the results of Krumholz et al. 2006). The first two columns give Mach
number M and the ratio of Bondi Radius rB to the extent of the region l. The next three columns
are for the dimensionless case where ρ = 1, G = 1, cs = 1 and m = 1. The other columns are for
physical units where cs = 220 m s−1.

ρ = 1 ρ = 1000 M� pc−3 ρ = 104 M� pc−3

M log rB/l a0 b0 b0/a0 a b b/a a b/a
dimensionless (1/M�/Myr)

3 −5.00 0.17 1.8 11 1.8 6 3.4 18 1.1
3 −3.00 0.17 1.8 11 1.8 6 3.4 18 1.1
3 −1.00 0.071 0.42 6 0.75 1.3 1.8 7.5 0.57
3 1.00 0.0029 0.014 5 0.031 0.045 1.5 0.31 0.46
5 −5.00 0.07 5.4 77 0.73 17 24 7.3 7.5
5 −3.00 0.066 4.9 74 0.7 16 23 7 7.2
5 −1.00 0.028 0.93 33 0.3 3 10 3 3.2
5 1.00 0.0017 0.024 15 0.017 0.078 4.5 0.17 1.4
10 −5.00 0.016 10 619 0.17 33 191 1.7 60
10 −3.00 0.016 9.1 588 0.16 30 181 1.6 57
10 −1.00 0.0077 2.3 300 0.081 7.5 93 0.81 29
10 1.00 0.000 83 0.072 87 0.0087 0.23 23 0.087 8.5

by a lognormal distribution with parameters depending on the Mach
number and the ratio of the Bondi radius, rB, to the extent of the
region, l. The normalization constant is

ṁ0 = 4πρ
G2

(Mcs)
3 m2, (31)

with the gas density ρ, Mach number M, sound speed cs and the
gravitational constant G. Krumholz et al. (2006) give their results
in dimensionless units where ρ = 1, G = 1 and cs = 1, and used
m = 13

32 . In Table 1, we give their results adapted to our formalism,
where the average accretion rate a and its standard deviation b do
not depend on mass. Typically, the ratio b/a in dimensionless units
is much larger than unity and can reach values of a few hundred.

Table 1 gives also a and b in physical units (solar masses and mil-
lion years) for a typical star forming region. We assume a tempera-
ture of 10 K, which corresponds to a sound speed of 220 m s−1. The
Bondi radius at that temperature is rB = Gmc−2

s = 0.09 m/M� pc,
for a typical region size of 1 pc and 1 M� mass log(rB/l) = −2.4.
Although b/a becomes smaller with the scaling, it is still typically
larger than unity. This large level of fluctuations will only spread
out the initial masses over a range of final masses if accretion lasts
for several million years, or the initial masses are 1 M�, or the
average gas density is very high.

The large fluctuations in the accretion rate do not change the result
of Krumholz, McKee & Klein (2005) finding that Bondi–Hoyle
accretion should not generate large mass increases in typical star-
forming regions. For a low average accretion rate, strong accretion
events are too rare to have an effect. However, Bonnell & Bate
(2006) argue that in the central regions of star-forming regions the
average gas densities are several orders of magnitude higher than
the average gas density used by Krumholz et al. (2005), in which
case accretion does lead to mass growth and, as shown above, a
spreading out of the initial masses.

5.2 The required amount of fluctuations for an impact
of non-linear stochastic growth

Forming stars are embedded in the flocculent environment of their
natal cloud and will accrete from it, but in contrast to Bondi–Hoyle
accretion the ambient medium is self-gravitating as well. Bonnell

et al. (2001b) argue that in a gas-dominated potential the accretion
rate should follow m2/3, whereas in a stellar-dominated potential
(uncorrelated velocities of gas and stars) classical Bondi–Hoyle
accretion ∝ m2 occurs. Fluctuations in the accretion rate of forming
stars can be generated either by the turbulence of the gas, or by
the self-gravity of the gas cloud which generates filaments, or by
the chaotic orbital motion of the forming star, which will bring
it into regions of different gas density. Fluctuating accretion can
determine the shape of the stellar initial mass function. In this
section, we investigate the range of values that parameters can take
so that accretion has an impact. A measurement of the fluctuations
in numerical studies that account for the self-gravity of the gas is
required to answer what are the ramifications of accretion in the star
formation process.

Accretion can shape the initial mass function in two ways: a
power-law tail appears and the distribution becomes wider than
the distribution of the initial masses. An additional distribution of
growth times will contribute to both as well. Accretion will only
have an impact on mass functions if the initial masses are spread
over a sufficiently wide range and populate a power-law tail. This
occurs if piG has a rounded triangular shape.

In Fig. 6, we show in the left plot the probability density,
piG(m, t = 1), and in the right plot the cumulative distribution
for a range of average accretion rates a and level of fluctua-
tions b/a. ṁ ∝ m2/3 is shown as solid curve and ṁ ∝ m2 as dot-
ted curve. Starting mass is m0 = 1 and growth time is t = 1.
α = 2/3 constrains both a and b/a to be of order unity, other-
wise piG develops a power-law part too shallow to be consistent
with the initial mass function. α = 2 allows for a larger range of
parameters.

For both α the average accretion rate a needs to be larger than
unity in order to sufficiently spread out the initial masses. Although
a power-law tail appears and becomes stronger with increasing b/a,
it does not contain many stars (cumulative distribution in the power-
law tail already ≈1).

For a mean accretion rate a�1, the situation depends on the level
of fluctuations. If b/a � 1, then growth is effectively deterministic,
which less affects growth with α = 2. If the level of fluctuations is
very large (b/a  1), piG is very peaked at m0 and the power-law
tail is not strongly populated as well, unless the average accretion
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Figure 6. Probability density piG (left) and cumulative distribution PiG (right) for various a and b/a with m0 = 1 and t = 1. The solid curve is for α = 2/3
and the dotted curve for α = 2. As reference each panel shows piG and PiG for α = 2, a = 1 and b/a = 1 in grey.

Table 2. Some values for scaling of the initial mass and average accretion rate or time.

Scaling with initial mass: km = (m′
0/m0)1−α , a′ = kma and b′ = kmb

m′
0/m0 0.01 0.10 0.20 0.50 1.00 2.00 5.00 10.00

α = 2 km = 100.00 10.00 5.00 2.00 1.00 0.50 0.20 0.10
α = 2/3 km = 0.22 0.46 0.58 0.79 1.00 1.26 1.71 2.15

Scaling with average accretion rate a′ = kaa, b′ = √
kab, t′ = t/ka

a′ = kaa = 0.10 0.20 0.50 1.00 2.00 5.00 10.00
t′ = t/ka 10.00 5.00 2.00 1.00 0.50 0.20 0.10
b′ = √

kab = 0.32 0.45 0.71 1.00 1.41 2.24 3.16
b′/a′ = 3.16 2.24 1.41 1.00 0.71 0.45 0.32

rate is very high. For a lognormal distribution, the ratio between
median and mean is R = exp(−σ 2

l /2) = ((b/a)2 + 1)−1/2, depend-
ing only on the ratio of standard deviation to mean. When σ l = 2
(b/a = 7.32), this means that the median accretion rate is only ≈1/10
of the mean accretion rate. For comparison, σ l = 1 corresponds to
b/a = 1.31.

With increasing a and b/a the exploding fraction has to be con-
sidered for α = 2. For b/a = 0.1, it is not relevant at t = 1 (<10−25),
as for a = 0.1. For b/a = 1, the exploding fraction is 3 × 10−5 for
a = 1, and 10 and 15 per cent for a = 10 and 100, respectively. For
b/a = 10, a significant fraction of the seeds explode (34 per cent at
a = 1, 45 per cent at a = 10 and 100). These parameter combinations
would require some feedback mechanism to prohibit explosions.

Scaling to a different initial mass leaves the shape of piG(m, t)
unchanged for the same t, if a and b are scaled by multiplying both
with the scaling factor km = (m′

0/m0)1−α . Values for the scaling
factor for some typical initial masses are given in Table 2. For
α = 2, they span a very wide range, whereas for α = 2/3 they lie
around unity.

Scaling the mean accretion rate does not preserve the shape of piG,
unless the ratio b/a and the time-scale are changed. Correspond-

ingly, if the same shape of piG should be achieved in a different time,
both a and b require scaling. Here, the scaling does not preserve
the ratio b/a. Some values for the scaled parameters are given in
Table 2.

The above findings can be summarized in the rule of thumb that
both the average accretion rate a and the level of fluctuations b/a
have to be of order unity for unit initial mass and unit growth time
in order to sufficiently populate the power-law tail. Nevertheless,
there are other parameter combinations that may also lead to the de-
sired behaviour of piG. Furthermore, if the initial mass, the average
accretion rate and the time are given in physical units an observed
ratio b/a may be far from unity.

5.3 Effects of a distribution of initial masses and growth times

Fig. 7 shows the effects of a distribution of initial masses and
a distribution of growth times. We use a lognormal distribution
of initial masses (equation 17) with μl = −3.15 and σ l = 0.55,
corresponding to a mean mass m0 = 0.05 M�. p(m0) is shown as
dashed curve in Fig. 7. The distribution function for an ensemble
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Figure 7. Ensemble distribution functions for a population growing from a
distribution of initial masses (dashed) with different distribution of growth
times. α = 2/3, a = 2 and b = 1. In the top panel, all stars accrete for
the same time, the middle panel uses an exponential distribution of growth
times and the bottom panel a uniform distribution. The dotted line shows a
standard system mass function.

growing from a distribution of initial masses is given by

pE(m, t) =
∫

p(m0)piG(m, t ; α, a, b, m0) dm0. (32)

The top panel of Fig. 7 shows pE for α = 2/3, a = 3 M1/3
� Myr−1

and b = √
3 M1/3

� Myr−1 at t = 0.3 Myr, which corresponds to the
dimensionless case of a = 1, b = 1 and t = 1. Note that here no
explosions occur as α < 1. The peak of pE is significantly shifted
compared to the distribution of the m0. Above mβ = 0.45 M� (cal-
culated using m0) a power-law part ∝ m−1.8 appears (β = 1.11)
which starts to decay for larger masses. At m = 1 M� the expo-
nent is −2.6 and −4.4 at m = 10 M�. For comparison, we also
show the system IMF as dotted (Chabrier 2003; parametrization by
Maschberger 2013: pSys ∝ (m/μ)−α(1 + (m/μ)1−α)−β , α = 2.3,
β = 2, μ = 0.2). pE resembles pSys for stellar masses on, but
underpopulates the brown dwarf region.

Not only the initial masses but also the time how long a star ac-
cretes can be distributed. This may have an important impact on the
ensemble distribution: Basu & Jones (2004) found that an exponen-
tial distribution of growth times leads to a power-law tail instead of a
lognormal distribution for linear growth with Gaussian fluctuations.
Bate & Bonnell (2005) have similar findings for constant growth
with lognormal fluctuations. The ensemble distribution function for
both a distribution of initial masses and a distribution of growth

Figure 8. Cumulative ensemble distribution functions for a population
growing with a distribution of initial masses and an exponential distribution
of growth times (corresponding to the middle panel of Fig. 7) stopping at
t = 0.1, 0.3, 0.6 and 1.0 Myr (from left to right).

times is given by

pE(m) =
∫ ∫

p(m0)p(t)piG(m, t ; α, a, b, m0) dm0 dt . (33)

The middle panel of Fig. 7 shows pE for a lognormal distribu-
tion of m0, as above, and an exponential distribution of t (p(t) =
θ−1exp ( − t/θ )). We choose θ = 0.3, which is the mean growth
time. At large masses the power law is flatter compared to the case
without a distribution of growth times, populated by the stars that
had more time to grow. pE is visibly shallower than pSys.

A uniform distribution of growth times (bottom panel, t between
0 and 0.6 Myr) does not have the long tail like an exponential
distribution, so that the power-law part of pE is steeper as it is not
populated by the stars growing for a very long time. Here also the
brown dwarf regime is more populated.

With a distribution of initial masses and growth times the en-
semble mass function is also evolving in time. Fig. 8 shows the
cumulative distribution of pE with an exponential distribution of
growth times stopping at t = 0.1, 0.3, 0.6 and 1.0 Myr (left to right
curves). Rejection sampling has been used to obtain a sample pE

containing 2000 variates. The mean masses are m = 0.11, 0.24,
0.39 and 0.61 M�, and their time evolution not dissimilar to the
evolution of the mean mass in hydrodynamical simulations of star
formation (Bonnell, Vine & Bate 2004; Maschberger et al. 2010;
Bate 2012; Krumholz, Klein & McKee 2012). The cumulative dis-
tribution functions seem to evolve somewhat more in time than in
simulations (Krumholz et al. 2012; Bate 2012).

The parameters used in this section are chosen for illustrating
purposes such that the resulting pE has some resemblance of the
observed system mass function. Although the parameters have some
reasonable values (for example, a star grows for a few hundred
thousand years), it is very necessary to infer them from numerical
simulations of star formation in order to constrain the scenario.

6 SU M M A RY

We investigate the consequences of fluctuations in the accretion
rates of non-linearly accreting stars by the means of a non-linear
multiplicative stochastic process and find the following:

(i) Non-linear accretion, ṁ ∝ mα , with fluctuations in the accre-
tion rates leads to power-law tails in the distribution function of the
final masses.

(ii) The main body of the distribution of final masses resembles
a lognormal distribution.
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(iii) Gaussian fluctuations produce a power-law tail ∝ m−α at
high masses for α > 1 and at low masses for α < 1.

(iv) Lognormal fluctuations, approximated by the inverse Gaus-
sian distribution, always produce a mass distribution function that
has a power-law tail at high masses, even if accretion is linear
(ṁ ∝ m) or the α < 1. Only for α ≥ 1, the exponent of the power-
law tail is not evolving in time. For α < 1, the power-law tail decays
at very large masses.

(v) The shape of the mass distribution function depends on the
initial mass, the average accretion rate a, the amount of fluctuations
(ratio between standard deviation and average accretion rate b/a)
and time.

(vi) The power-law tail is more and more populated in time,
similar to time-evolution of the mass function obtained in numerical
simulations of star formation. If observed at an early time the power-
law tail may appear steeper because it is only sparsely sampled.

(vii) The final distribution function can resemble the whole shape
of the initial mass function.
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