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ABSTRACT
The magnetorotational instability (MRI) is the most promising mechanism by which angular
momentum is efficiently transported outwards in astrophysical discs. However, its application
to protoplanetary discs remains problematic. These discs are so poorly ionized that they
may not support magnetorotational turbulence in regions referred to as ‘dead zones’. It has
recently been suggested that the Hall effect, a non-ideal magnetohydrodynamic (MHD) effect,
could revive these dead zones by enhancing the magnetically active column density by an
order of magnitude or more. We investigate this idea by performing local, three-dimensional,
resistive Hall-MHD simulations of the MRI in situations where the Hall effect dominates
over Ohmic dissipation. As expected from linear stability analysis, we find an exponentially
growing instability in regimes otherwise linearly stable in resistive MHD. However, instead
of vigorous and sustained magnetorotational turbulence, we find that the MRI saturates by
producing large-scale, long-lived, axisymmetric structures in the magnetic and velocity fields.
We refer to these structures as zonal fields and zonal flows, respectively. Their emergence causes
a steep reduction in turbulent transport by at least two orders of magnitude from extrapolations
based upon resistive MHD, a result that calls into question contemporary models of layered
accretion. We construct a rigorous mean-field theory to explain this new behaviour and to
predict when it should occur. Implications for protoplanetary disc structure and evolution, as
well as for theories of planet formation, are briefly discussed.

Key words: accretion, accretion discs – instabilities – MHD – protoplanetary discs – stars: for-
mation.

1 IN T RO D U C T I O N

Protoplanetary discs are poorly ionized. This fact casts doubt upon
whether the most promising mechanism for enhanced angular-
momentum transport in accretion discs, the magnetorotational in-
stability (MRI; Balbus & Hawley 1991, 1998), is capable of driving
the observationally inferred mass-accretion rates in these systems
(e.g. Hartmann et al. 1998). Not only are the most potent sources of
ionization (e.g. cosmic rays, stellar X-rays, UV radiation) shielded
over significant portions of these discs, but also the presence of dust
grains is anticipated to remove an appreciable fraction of the charge
from the gas phase. All this makes it improbable that protoplanetary
discs are magnetically coupled across their full radial and vertical
extents (for a review, see Armitage 2011). This is particularly true
in the dense mid-plane, where the principal source of ionization is
likely to be weak radioactivity.

� NASA Einstein Postdoctoral Fellow.
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There are reasons to believe, however, that such pessimism is
unwarranted. The MRI appears to be much more resilient in the
face of diffusive losses than one may at first suspect. While a
low degree of ionization is known to decouple the MRI-unstable
charged species from the bulk neutral fluid in processes known as
ambipolar diffusion (Blaes & Balbus 1994; Hawley & Stone 1998;
Desch 2004; Kunz & Balbus 2004; Bai & Stone 2011; Simon et al.
2013) and Ohmic dissipation (Jin 1996; Sano & Miyama 1999;
Fleming, Stone & Hawley 2000), it is somewhat surprising that the
critical ionization fraction at ∼1 au is just ∼10−13 for typical pro-
toplanetary discs (e.g. Balbus 2011). This is because the charged
species have ∼1 yr to communicate the magnetic field to the neutrals
via collisions. This renders the innermost (r � 0.1 au), outermost
(r � 30 au) and surface-layer (z � 0.1 au) regions magnetically ac-
tive, either by thermal ionization of metals or by unshielded ionizing
radiation.

Of course, these numbers come with large uncertainties, and
much of the research concerning the MRI in protoplanetary discs
has boiled down to determining the extent of magnetically active
regions by coupling chemical networks of increasing complexity to
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either linear stability analyses (e.g. Gammie 1996; Igea & Glass-
gold 1999; Sano et al. 2000; Salmeron & Wardle 2003, 2005, 2008;
Wardle & Salmeron 2012) or some sort of non-linear criterion based
upon numerical experiments (e.g. Fromang, Terquem & Balbus
2002; Ilgner & Nelson 2006; Bai & Goodman 2009; Bai 2011).
However, while determining the chemical abundances and conse-
quent diffusivities in such discs is without a doubt essential to
improving our understanding of disc stability, structure and evolu-
tion, the results presented in this paper suggest that the philosophy
driving this approach can be misleading.

Here, we take an alternative route to understanding magnetoro-
tational turbulence in protoplanetary discs. We forego a detailed
study of disc chemistry and instead concentrate on the turbulent
disc dynamics themselves. Employing non-linear numerical simu-
lations and mean-field theory, we investigate the impact of Ohmic
dissipation and the Hall effect on magnetorotational turbulence.
We extend previous work by Sano & Stone (2002a,b, hereafter
SS02) into the Hall-dominated regime, and obtain qualitatively new
results. Instead of vigorous and sustained magnetorotational turbu-
lence, we find that the Hall-MRI saturates by producing large-scale,
long-lived, axisymmetric (‘zonal’) structures in the magnetic and
velocity fields. Their emergence – a result of the antidiffusive nature
of the Hall effect when the Maxwell stress increases with magnetic-
field strength – causes a reduction in turbulent transport by at least
two orders of magnitude from extrapolations based upon resistive
magnetohydrodynamics (MHD).

Our results suggest that existing estimates of the depth of magne-
torotationally active layers in protoplanetary discs based on damp-
ing by Ohmic dissipation and ambipolar diffusion are likely to be
in error. This conclusion has been reached before by other authors
(Wardle & Salmeron 2012), but for different reasons. Those au-
thors put emphasis on the fact that the Hall effect can render a
disc linearly unstable (Wardle 1999; Balbus & Terquem 2001) even
in the presence of strong Ohmic and ambipolar diffusion. In this
case, the critical magnetic Reynolds number Rmcrit for magnetoro-
tational turbulence ought to be smaller than is often assumed. By
contrast, our results suggest that, even when a disc is deemed mag-
netically active from the perspective of linear analysis, the actual
turbulent transport that results may be much too small to be con-
sidered ‘active’. Even for discs in which Rm � 103, an order of
magnitude larger than what is usually considered the critical value,
the Hall effect can cause a turbulent bifurcation to a low-transport
state (LTS). As a result, Hall-dominated regions of protoplanetary
discs (r ∼ 5–10 au), while magnetically active, may nevertheless
exhibit prohibitively low accretion rates.

The paper is organized as follows. In Section 2.1, we present
the governing shearing-sheet equations of resistive Hall-MHD. In
Sections 2.2 and 2.3, we highlight two key physical concepts encap-
sulated by these equations – the conservation of canonical vorticity
and the close connection between the transport of magnetic flux
and the transport of angular momentum. Section 2.4 places these
considerations in the context of protoplanetary discs, from which
we obtain numerical estimates of the four dimensionless free pa-
rameters in our system (Section 2.5). We close Section 2 by proving
that MRI ‘channel’ modes remain exact non-linear solutions despite
the complicating features of the Hall effect (Section 2.6); we defer
to Appendix A an investigation of their stability to secondary ‘par-
asitic’ modes. Section 3 presents the numerical approach we have
adopted, the tests we have employed to verify its stability and accu-
racy (see also Appendix B), and the results of using this approach to
study the Hall-dominated MRI in the linear and non-linear regimes.
These results motivate the construction of a mean-field theory that

explains both the emergence of zonal structures and the transition to
an LTS observed in our simulations (Section 4). Finally, in Section 5
we summarize our results and briefly comment on their implications
for protoplanetary discs and planetesimal formation.

2 PRELI MI NARI ES

2.1 Shearing-sheet equations

We adopt the shearing-sheet approximation (Goldreich & Lynden-
Bell 1965), a useful framework for describing phenomena that vary
on lengthscales much less than the large-scale properties of the disc.
A small patch of the disc, co-orbiting with a fiducial point r0 in the
mid-plane of the unperturbed disc at an angular velocity � = �0 êz,
is represented in Cartesian coordinates with the x and y directions
corresponding to the radial and azimuthal directions, respectively.
Differential rotation is accounted for by including the Coriolis force
and by imposing a background linear shear, v0 = 2A0x êy , where

A0 = r0

2

d�(r)

dr

∣∣∣∣
r=r0

is the Oort ‘A’ value; Keplerian rotation yields A0 = −(3/4)�0. We
take the flow to be incompressible, a good assumption when the
magnetic pressure is much less than the gas pressure.

The equations of motion are then

∂v

∂t
= −v · ∇v − 1

ρ
∇P + J×B

cρ
− 2�0 × v − 4A0�0x êx

+ ν∇2v, (1)

∂B
∂t

= ∇×
(

v × B − J × B
ene

)
+ η∇2 B, (2)

subject to the constraints

∇ · v = 0, (3)

∇ · B = 0. (4)

Our notation is standard: ρ is the (homogeneous) mass density, v is
the velocity, P is the gas pressure, B is the magnetic field and

J = c

4π
∇ × B

is the current density. The number density of electrons ne is taken
to be constant and uniform, as are the viscosity ν and resistivity
η. For future reference, we also introduce the total number density
n = ρ/m, where m is the mean mass per particle, and the ion mass
density ρ i = mini. Quasi-neutrality (i.e. ne = Zni) is assumed.

Henceforth, the subscript ‘0’ on A0 and �0 is dropped.

2.2 Lorentz force, Hall effect and canonical vorticity

In the incompressible approximation, the gas pressure P is deter-
mined not by an equation of state, but rather by satisfying the
incompressibility condition (3). In fact, it is customary to elimi-
nate the pressure by taking the curl of equation (1) to obtain an
evolutionary equation for the flow vorticity ω ≡ ∇ × v + 2�:

∂ω

∂t
= ∇×

(
v × ω + J × B

cρ

)
+ ν∇2ω. (5)
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The form of equation (5) is very similar to that of equation (2). Just
as the Lorentz force changes the number of vortex lines threading a
fluid element, the Hall effect (represented by the penultimate term
in equation 2) changes the number of magnetic-field lines threading
a fluid element. Indeed, the origin of the Hall term is the differential
motion between the electrons, to which the magnetic-field lines are
tied (modulo Ohmic losses), and the drifting ions, which we take to
be collisionally well coupled to the bulk neutral fluid.

Since the divergences of both the vorticity and the magnetic field
are zero, any new vortex and magnetic-field lines that are made must
be created as continuous curves that grow out of points or lines
where the vorticity and magnetic field, respectively, vanish. Put
simply, just as the effect of the Lorentz force on the vorticity is non-
dissipative, so too is the Hall effect on the magnetic field; vorticity
and magnetic flux can only be redistributed by these processes. We
now prove that they must be redistributed in a specific way.

Consider the canonical momentum

℘canonical ≡ m
(
v + � × r

)
+ eA

c

ne

n
, (6)

and the associated canonical vorticity

ωcanonical ≡ 1

m
∇ × ℘canonical = ω + eB

mc

ne

n
, (7)

where A is the magnetic vector potential satisfying B = ∇ × A.
Students of plasma physics will recognize the final term in equation
(7) as the vectorized Hall frequency ωH ≡ (eB/mc)(ne/n), at and
above which small-wavelength circularly polarized waves with left-
handed polarization cannot propagate. Combining equations (2) and
(5), we find that the canonical vorticity satisfies

∂ωcanonical

∂t
= ∇×

(
v × ωcanonical

)
+ ∇2

(
νω + ηωH

)
. (8)

This equation states that, in the absence of dissipative sinks, the
canonical vorticity is frozen into the fluid. As a result, the combined
number of vortex and magnetic-field lines threading a material sur-
face is conserved; i.e. the canonical circulation

�canonical ≡
∮
C

℘canonical· d�

(
= 1

m

∫
S

ωcanonical · dS
)

around a simple closed contour C bounding a material surface S
is a constant. This is simply Kelvin’s (1869) circulation theorem
generalized for Hall-MHD. An important consequence is that a
local increase in magnetic flux must be accompanied by a local
decrease in vorticity flux and vice versa.

Such behaviour is absent in ideal MHD, in which the magnetic
flux is conserved for each fluid element independent of how the
vorticity is advected. The difference is due to the fact that, in
Hall-MHD, the ion-neutral fluid drifts relative to the field lines
and, as such, has its momentum augmented by the magnetic field
through which it travels. One may think of this as a consequence
of Lenz’s law. We refer the reader to the review by Polygiannakis
& Moussas (2001) for further discussion of conserved quantities in
Hall-MHD.

2.3 Hall electric field and Maxwell stress

Many of the results in this paper stem from the realization that the
Hall electric field may be re-written in the following form:

J × B
cene

= ∇·
(

B B
4πene

)
, (9)

dropping the extra ∇B2 term with impunity. This form is particularly
useful, as it underscores the connection between the evolution of
the magnetic flux and the Maxwell stress

Mij ≡ BiBj

4π
,

whose xy-component plays the dominant role in transporting an-
gular momentum in MRI-driven turbulence. In other words, the
transport of magnetic flux in a partially ionized accretion disc is in-
timately tied to the efficiency and nature of the angular-momentum
transport. This, along with the conservation of canonical vorticity,
will turn out to be an extremely important property for understand-
ing the subsequent analytical and numerical results.

2.4 Hall effect in protoplanetary discs

The Hall effect becomes important on lengthscales � 	H, where

	H ≡ vA

ωH
=

(
mic

2

4πZ2e2ni

)1/2 (
ρ

ρi

)1/2

(10)

and vA ≡ B/(4πρ)1/2 is the Alfvén speed. The lengthscale 	H is
the ion skin depth divided by the square root of the mass-weighted
ionization fraction, and is independent of magnetic-field strength.
The smaller the degree of ionization, the broader is the range of
scales that can be appreciably affected. This is why the cold, dense
regions of protoplanetary discs are so easily susceptible to the Hall
effect.

While the complexity involved in diagnosing the ionization rates,
chemical abundances and consequent diffusivities in actual proto-
planetary discs cannot be overstated (for a review, see Wardle 2007),
it helps if we have at least some handle, if only rough, on the im-
portance of the Hall effect in such discs. Assuming an equilibrium
balance between cosmic ray ionization and dissociative recombi-
nation leads to the scaling ne ∝ √

n, for which 	H is a constant
dependent only upon the ionization and recombination rates and
the mean mass per particle. Taking their respective values to be
ζ cr = 10−17 cm3 s−1, αdr = 5 × 10−7 cm3 s−1 and m = 2.33mp

(e.g. Umebayashi & Nakano 1990), we find 	H � 0.4 au. Assuming
the standard model of the minimum-mass solar nebula (MMSN;
Hayashi 1981), the disc scaleheight

H � 0.03
( r

1 au

)5/4
au

is comparable to 	H at a radius r ∼ 10 au, inside of which the
entire disc thickness becomes subject to the Hall effect. Further in
around ∼1 au, there is enough column density to effectively shield
cosmic rays; there, the Hall effect is likely to be most important
away from the mid-plane where Ohmic losses are less severe.

The presence of a small fraction of dust grains (∼10−4–10−2 by
mass) can affect the extent of the Hall-dominated region by a sub-
stantial, though highly uncertain, amount by soaking up gas-phase
charges and altering the equilibrium balance of chemical reactions.
In this paper, we circumvent these complications by restricting our-
selves to radii ∼5–10 au where both Hall and Ohmic diffusion are
considered to be dominant, and by allowing for a range of fields
strengths and ionization fractions in a parameter study. Readers
interested in the details of protoplanetary disc chemistry, the conse-
quent values of the diffusivities and the implications for the (linear)
MRI may consult, e.g., Salmeron & Wardle (2008) and Wardle &
Salmeron (2012).
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2.5 Dimensionless free parameters

Solutions to equations (1)–(4) are governed by four dimensionless
free parameters: the plasma beta

β ≡ (�H )2

v2
A

,

the viscous Elsasser number

ν ≡ v2
A

ν�
,

the (classical) Elsasser number

η ≡ v2
A

η�

and the Hall Elsasser number

H ≡ ωH

�
.

The Hall Elsasser number can be cast in the more traditional form

H ≡ v2
A

ηH�
,

by introducing an effective Hall resistivity, ηH ≡ v2
A/ωH = vA	H;

however, this form is somewhat specious as the Hall effect is not
dissipative. We also define the Reynolds number,

Re ≡ �H 2

ν
,

and the magnetic Reynolds number,

Rm ≡ �H 2

η
,

which differ from their Elsasser counterparts by a factor of β.
The ratio of viscosity to resistivity is known as the magnetic

Prandtl number, Pm = ν/η. While Pm does not appear explicitly
in the equations, it is known to affect the saturated state of magne-
torotational turbulence (Fromang et al. 2007; Lesur & Longaretti
2007; Simon & Hawley 2009; Longaretti & Lesur 2010). In proto-
planetary discs, our primary systems of interest here, Pm 	 1 and
thus we restrict our attention to low-Pm flows. However, it should
be noted that high-Pm flows could exhibit significantly different
behaviour than what is presented here (e.g. Balbus & Henri 2008).

Taking the density, temperature and rotation frequency at a radius
of 10 au in the MMSN, and assuming a 10 mG magnetic field and
μm-sized dust grains (see fig. 1 in Salmeron & Wardle 2008), we
find typical values for these parameters of β ≈ 1000, η ≈ 0.5,
H ≈ 0.01, 	H ≈ 3H and Rm ≈ 500; for all practical purposes, Re
is infinite in protoplanetary discs. We adopt similar parameters in
our numerical simulations (see Table 1) with the exception of Re;
numerical constraints demand that its value be �104.

2.6 Hall-MRI channel modes

It is well known that, in the absence of the Hall effect, equations (1)–
(4) admit exact non-linear solutions referred to as MRI ‘channel’
modes:

B = B0 + Bch

= B0 êz + beγ tB0 cos Kz
(
êx sin θ − êy cos θ

)
, (11)

v = v0 + vch

= 2Ax êy + beγ t v0 sin Kz
(
êx cos φ + êy sin φ

)
, (12)

where γ is the growth rate of the mode, K is its vertical wavenumber,
b is a dimensionless measure of the channel amplitude, and v0

and B0 are constants (Goodman & Xu 1994). In the absence of
dissipation, the two (constant) orientation angles φ and θ are equal.
These solutions are exact because all non-linearities vanish (i.e.
vch · ∇vch = Bch · ∇ Bch = vch · ∇ Bch = Bch · ∇vch = 0).

What seems to have gone unappreciated in the Hall-MRI litera-
ture is that these channel modes remain exact non-linear solutions
in the presence of the Hall effect, since the channel current density

J ch = −Kc

4π
beγ tB0 sin Kz

(
êx cos θ + êy sin θ

)
(13)

satisfies J ch · ∇ Bch = Bch · ∇ J ch = 0. This result also follows from
equation (9), since there are no non-linear z-components of the
Maxwell stress for a magnetic field described by equation (11).

Defining a dimensionless Hall parameter,1

Ha ≡ K2B0c

8πene�
= 1

2

�

ωH,0

(
KvA,0

�

)2

,

and an effective magnetic Reynolds number,

Rmeff ≡ �

ηK2

(
1 − Ha

1 − Pm

)
,

the properties of the channel solution may be found after some
straightforward but tedious algebra:

γ + νK2 = −A sin 2θ − �

Rmeff

(
1 + A

�
sin2 θ

)
, (14)

(
KvA,0

)2 = −4�2

(
Ha+ A

�
sin2 θ

)

×
[

1+ 1

4
Rm−2

eff + A

�
cos2 θ

(
1 + 1

2
Rm−1

eff tan θ

)2
]

,

(15)

Kv0 = −2�

(
Ha + A

�
sin2 θ

) (
1 + 1

4
Rm−2

eff

)1/2

, (16)

φ = θ − tan−1

(
1

2
Rm−1

eff

)
. (17)

In the limit Rmeff → ∞, equations (15) and (16) differ from equa-
tions 6 and 7 of Goodman & Xu (1994) only by the multiplicative
factor[

1 + 2�

ωH,0

(
1 + A

�
cos2 θ

)]−1

;

the growth rate in this limit, γ = −A sin 2θ , is identical to that
of the ideal MHD case (their equation 5). In other words, while
the Hall effect cannot alter the growth rate of these modes, it can
increase or decrease their wavenumbers and Mach numbers when
the angular velocity and background magnetic field are antiparallel
or parallel, respectively (Wardle 1999).2 Physically, this sensitivity
to the polarity of the magnetic field appears because the magnetic

1 This definition differs from that used in Balbus & Terquem (2001) by a
factor of 4 and in Kunz (2008) by a factor of |�/A|.
2 For �/ωH, 0 → +∞, the Hall parameter Ha → −(A/�) sin 2θ and both
the channel wavenumber (equation 15) and the Mach number (equation 16)
tend to zero as the destabilizing shear is marginalized. Exact equality can
only be achieved for Ha = θ = 0 or Ha = −(A/�) sin 2θ = 1, both of which
are spurious solutions not satisfied by the original equations of motion.
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Table 1. List of the runs discussed in this paper, along with their defining dimensionless parameters. The viscous, resistive and Hall Elsasser
numbers all refer to their values in the initial state, as does the plasma beta parameter; the Hall lengthscale 	H is constant. The growth rate γ

refers to the most unstable pure-kz mode available in the simulation domain. The time-averaged turbulent transport α is obtained using data
between t = 100 and 630 (unless otherwise noted).

Name Lx × Ly × Lz nx × ny × nz −1
ν −1

η −1
H 	H β γ α

ZB1I1 4 × 4 × 1 256 × 128 × 64 0.2 1 0 0 1000 0.40 3 × 10−2

ZB1H1 4 × 4 × 1 256 × 128 × 64 0.2 1 17.4 0.55 1000 0.71 1.7 × 10−4

ZB1H1L 8 × 8 × 1 512 × 256 × 64 0.2 1 17.4 0.55 1000 0.71 1.4 × 10−4

ZTB1H1 4 × 4 × 1 256 × 128 × 64 0.2 1 17.4 0.55 1000 0.67 3.2 × 10−4

ZB1H2 4 × 4 × 1 256 × 128 × 64 0.2 1 4.2 0.13 1000 0.60 1.4 × 10−1

ZB1H3 4 × 4 × 1 256 × 128 × 64 0.2 1 8.6 0.27 1000 0.62 6.8 × 10−2

ZB1H4 4 × 4 × 1 256 × 128 × 64 0.2 1 13 0.41 1000 0.68 4.7 × 10−4

ZB1H5 4 × 4 × 1 256 × 128 × 64 0.2 1 21.8 0.69 1000 0.70 1.2 × 10−4

ZB1H6 4 × 4 × 1 256 × 128 × 64 0.2 1 30.4 0.97 1000 0.53 1.4 × 10−5

ZB3I1 4 × 4 × 1 256 × 128 × 64 0.32 1 0 0 3200 0.40 1.9 × 10−2

ZB3H1 4 × 4 × 1 256 × 128 × 64 0.32 1 −1 0.018 3200 0.25 6.7 × 10−3

ZB3H2 4 × 4 × 1 256 × 128 × 64 0.32 1 1 0.018 3200 0.50 4.2 × 10−2

ZB3H3 4 × 4 × 1 256 × 128 × 64 0.32 1 2 0.035 3200 0.55 6.6 × 10−2

ZB3H4 4 × 4 × 1 256 × 128 × 64 0.32 1 4 0.071 3200 0.62 1.0 × 10−1

ZB3H5 4 × 4 × 1 256 × 128 × 64 0.32 1 8 0.14 3200 0.64 1.1 × 10−1

ZB3H6 4 × 4 × 1 256 × 128 × 64 0.32 1 16 0.28 3200 0.70 1.1 × 10−2

ZB3H7 4 × 4 × 1 256 × 128 × 64 0.32 1 32 0.57 3200 0.66 4.7 × 10−5

ZB3H8 4 × 4 × 1 256 × 128 × 64 0.32 1 56.57 1.0 3200 0.74 1.8 × 10−5

ZB3H9 4 × 4 × 1 256 × 128 × 64 0.32 1 100 1.8 3200 0.53 6.3 × 10−7

ZB3I2a 4 × 4 × 1 256 × 128 × 64 0.32 4 0 0 3200 0.17 5.1 × 10−3

ZB3H10a 4 × 4 × 1 256 × 128 × 64 0.32 4 −1 0.018 3200 0.08 2.7 × 10−4

ZB3H11 4 × 4 × 1 256 × 128 × 64 0.32 4 1 0.018 3200 0.24 1.3 × 10−2

ZB3H12 4 × 4 × 1 256 × 128 × 64 0.32 4 2 0.035 3200 0.30 2.4 × 10−2

ZB3H13 4 × 4 × 1 256 × 128 × 64 0.32 4 4 0.071 3200 0.39 5.1 × 10−2

ZB3H14 4 × 4 × 1 256 × 128 × 64 0.32 4 8 0.14 3200 0.50 9.5 × 10−2

ZB3H15 4 × 4 × 1 256 × 128 × 64 0.32 4 16 0.28 3200 0.56 2.0 × 10−2

ZB3H16 4 × 4 × 1 256 × 128 × 64 0.32 4 32 0.57 3200 0.62 4.9 × 10−4

ZB10I1 4 × 4 × 1 256 × 128 × 64 0.2 50 0 0 10 000 0.00 <10−20

ZB10I2 4 × 4 × 1 256 × 128 × 64 0.2 1 0 0 10 000 0.41 8.7 × 10−3

ZB10H1a, b 4 × 4 × 1 256 × 128 × 64 0.2 50 25 0.25 10 000 0.19 2.1 × 10−1

ZB10H2 4 × 4 × 1 256 × 128 × 64 0.2 50 50 0.5 10 000 0.32 1.8 × 10−3

ZB10H3 4 × 4 × 1 256 × 128 × 64 0.2 50 100 1 10 000 0.47 6.7 × 10−4

ZB10H4 4 × 4 × 1 256 × 128 × 64 0.2 50 200 2 10 000 0.55 4.8 × 10−5

ZB10H5 4 × 4 × 1 256 × 128 × 64 0.2 50 300 3 10 000 0.41 1.3 × 10−5

aThese runs exhibit a relatively small growth rate, and so the time-averaging procedure is performed between t = 300 and 630 in order to
eliminate the influence of initial transients.
bThis run shows strong bursts of turbulence associated with the breakup of channel modes. A longer time average should be used to obtain
a properly converged α; consequently, the value of α for this run is not used in the discussion.

‘epicycles’ induced by the Hall electric field introduce a handedness
that enhances (if �/ωH, 0 < 0) or reduces (if �/ωH, 0 > 0) the
effective magnitude of the destabilizing shear. For

ωH,0

�
< −2

(
1 + A

�

) (
= −1

2
for Keplerian rotation

)
, (18)

this multiplicative factor becomes negative at all orientation angles,
and the channel modes become stable whistler waves. Note that the
Hall-dominated regime is not accessible to the MRI when Bz < 0.

By differentiating equation (14) with respect to θ and setting
the result to zero, one may show that the most vigorously growing
channel takes an orientation of

θmax = φmax = π

4
+ 1

2
cot−1 (2Rmeff) (19)

and exhibits the growth rate

γmax + νK2 = −A

(
1 + 1

4
Rm−2

eff

)1/2

− �

Rmeff

(
1 + A

2�

)
. (20)

In the limit of vanishing viscosity and resistivity, this reduces to
the well-known result that the maximum growth rate of the MRI is
given by the Oort ‘A’ value (Balbus & Hawley 1991).

Being non-linear solutions, Hall-MRI channel modes are analyt-
ically amenable to a stability analysis. Such an analysis indicates
that these channels are subject to secondary ‘parasitic’ instabilities
similar to those found by Goodman & Xu (1994) and further stud-
ied by Pessah & Goodman (2009), Latter, Lesaffre & Balbus (2009)
and Pessah (2010). We defer this calculation to Appendix A, as our
numerical simulations indicate that they do not play an important
role in the saturation of the MRI in the Hall-dominated regime.

3 SH E A R I N G - B OX S I M U L AT I O N S

3.1 Numerical approach

3.1.1 The SNOOPY code

Equations (1)–(4) are solved using SNOOPY, a three-dimensional
(3D) incompressible spectral code. SNOOPY is based on the FFTW 3
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2300 M. W. Kunz and G. Lesur

library to compute 3D Fourier transforms using domain decomposi-
tion. It uses a low-storage, third-order Runge–Kutta (RK3) scheme
to compute all the terms except for the linear dissipation terms,
which are integrated implicitly. All non-linearities are solved using
a pseudo-spectral algorithm, avoiding aliasing errors with the 2/3
rule (Canuto et al. 1988). Shearing-sheet boundary conditions are
implemented by solving the equations in a sheared frame comoving
with the mean Keplerian flow. This algorithm is similar to the FARGO

scheme (Masset 2000), although it can be extended to arbitrary
order in space and time. This procedure implies a periodic remap
in Fourier space, which is performed every �tremap = |2A|Ly/Lx,
where Lx and Ly are, respectively, the radial and azimuthal extents
of the shearing box (Umurhan & Regev 2004). SNOOPY is now a well-
tested code, having been used for both hydrodynamical and MHD
problems such as resistive MRI, dynamo and subcritical transitions
to turbulence.

We have implemented a new module in SNOOPY to account for the
Hall effect. This scheme integrates the Hall term using the same RK3
and pseudo-spectral algorithms employed elsewhere in the code. To
guarantee stability, the integration time step must be smaller than
all of the physical time-scales of the system. When the Hall effect
dominates the dynamics, the shortest physical time-scale is given by
the whistler-wave time-scale at the grid, τw ≡ ω−1

H (�x/π	H)2. This
constraint is quite demanding, as it implies that very short time steps
are needed to ensure stability (�t <

√
3 τw; see Appendix B). The

numerical results presented in Section 3.2 are therefore obtained at
limited resolution (typically 64 points per H); even at this resolution,
a simulation of the Hall-dominated MRI requires ∼50 times more
computational time than an ideal MHD simulation.

3.1.2 Testing the Hall-MHD module

We have assessed the stability and accuracy of the Hall-MHD mod-
ule in SNOOPY using two tests. First, we verified that linear waves
can propagate stably in all three spatial directions while satisfying
the linear dispersion relation (equation 36 of Balbus & Terquem
2001)

ω

ωH
= k	H

⎡
⎣

√
1 +

(
k	H

2

)2

± k	H

2

⎤
⎦ (21)

across a range of wavenumbers k. At small wavenumbers (low fre-
quencies), these waves are circularly polarized Alfvén waves; at
large wavenumbers, right-handed waves (plus sign) go over to the
high-frequency whistler-wave branch, whereas left-handed waves
(minus sign) are cut off at ωH. In Fig. 1, the numerical eigenfre-
quencies (circles) are overlaid on the two solutions (solid lines)
of equation (21). The former were obtained by exciting a small-
amplitude velocity perturbation δvx = 2 × 10−5cos (kz) along a
mean magnetic field B0 êz and Fourier transforming vx(z = 0, t) in
time. This procedure gives two peaks in the spectra, which corre-
spond to the eigenfrequencies of the right- and left-handed waves.
The agreement between the analytical and numerical solutions is
very good all the way down to the grid scale (the Nyquist frequency
kN	H = 3.2π), a benefit of SNOOPY’s spectral decomposition. Note
that these tests were carried out with ν = η = 0, demonstrating that
the code can stably propagate whistler waves without the need for
explicit dissipation. In Appendix B, we prove analytically why this
is true for the RK3 integration scheme used in SNOOPY.

For our second test, we simulated the Hall-shear instability (HSI)
described by Kunz (2008, hereafter K08). The basic ingredients of

Figure 1. Comparison between the analytical dispersion relation (equa-
tion 21; solid lines) and the numerical eigenfrequencies (circles) of linear
waves in SNOOPY.

this instability are a background shear, which generates a stream-
wise magnetic-field component from a transverse one, and the
Hall effect, which induces a circular polarization that (for cer-
tain wavevectors) conservatively reorients stream-wise magnetic
fields into the transverse direction. The induced transverse com-
ponent is sheared further and an exponentially growing instability
ensues. Since the interaction between shear and the Hall effect is
strongest when the motions implied by the shear lie in the same
plane as the magnetic ‘epicycles’ induced by the Hall effect, the
instability is maximized when the vorticity, wavevector and mag-
netic field all share a mutual axis: (k · B)(k · ω) must be negative
for instability. Note that this instability occurs even in non-rotating
systems stable to the ‘classical’ MRI. In Fig. 2, we present the re-
sults of two numerical experiments with � = 0, A = −3/4 and
(−1

ν , −1
η , β) = (0.2, 1, 1000). We find a linear instability with a

growth rate γ = 0.69 when −1
H = 17.4, matching the theoretical

growth rate of the most unstable mode (γ � 0.70) within 2 per cent.
When −1

H = 0, no instability occurs; instead, the sheared fluctu-
ations resistively decay. These results confirm the accuracy of the
Hall-MHD module in SNOOPY.

Figure 2. Evolution of kinetic energy in a non-rotating shearing box demon-
strating the HSI. Solid line: with Hall effect and Ohmic dissipation; dot–
dashed line: with Ohmic dissipation only. The dashed line represents the
theoretical growth rate.
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Hall-dominated MRI turbulence 2301

3.1.3 Units and runs

For our Hall-MRI simulations, the equations are put in a dimension-
less form by choosing units natural to the system. The unit of time
τ = �−1 is the inverse of the rotation frequency. Lengthscales are
measured in units of the vertical box size Lz, and the magnetic-field
strength is measured in units of the initial Alfvén speed vA, 0. We
also introduce a dimensionless measure of the turbulent transport,

α = δvxδvy − δBxδBy

L2
zτ

−2
.

This definition is made equivalent to the Shakura & Sunyaev (1973)
definition of α by setting Lz = H, which we do for all of our
simulations. Keplerian rotation (i.e. A = −3/4) is assumed.

In this work, we only consider horizontally extended (‘slab’)
shearing boxes with Lx, Ly > Lz. As discussed by Bodo et al.
(2008), a slab configuration exhibits better convergence properties
than bar configurations (as used by SS02) due to the absence of
recurrent channel modes. Horizontally extended domains have also
been shown to impact quantitative measurements; Bodo et al. (2008)
reported that the time-averaged turbulent transport in an Lx = 8 slab
is a factor ∼2 smaller than the transport measured in an Lx = 1
bar. One should bear this in mind when comparing our results
with those of SS02. For most of our simulations, we consider boxes
with aspect ratio Lx × Ly × Lz = 4 × 4 × 1 and resolution
nx × ny × nz = 256 × 128 × 64; we have also performed two
versions of our fiducial simulation, one with an extended domain
(8 × 8 × 1) and one with increased resolution (384 × 192 × 96).

All the runs discussed in this paper are summarized in Table 1.
Unless otherwise stated, the initial conditions are white noise3 on
all components of the velocity and magnetic fields with a typical
rms amplitude equal to 7 × 10−7. We add to the magnetic field a
constant poloidal component whose magnitude is determined by a
choice of initial β. These runs have been integrated up to t = 630,
corresponding to 100 orbits in a Keplerian shearing box; our fiducial
run was integrated to t = 2000. Finally, we introduce an averaging
procedure · , which denotes a volume and time average. The
time average is performed using data only from t = 100 (or, in some
cases, t = 300) to the end of the run, in order to avoid transient
effects from the (arbitrary) initial conditions and the initial growth
of channel modes.

We close this section by providing a translation between our
dimensionless parameters and those employed by SS02. Those au-
thors used X = 2−1

H and ReM = η, and focused mainly on initial
values of X = 1, 2 and 4. For their fiducial initial β = 3200, this
implies 	H/H ∼ a few × 10−2. Here we are concerned with some-
what larger values of X, which place 	H ∼ H and render the entire
disc prone to the Hall effect.

3.2 Results

3.2.1 Averaged turbulent transport and the Hall effect

The relationship between the averaged turbulent transport and the
intensity of the Hall effect was first explored numerically by SS02.
In order to make a proper comparison with this earlier work, we have
reproduced runs Z6–Z9 from SS02 (named ZB3H1–ZB3H4 here).
We have also explored the regime of very strong Hall effect, up to
−1

H = 100 (run ZB3H8), corresponding to a Hall term 16 times

3 The non-linear outcome of a simulation does not depend significantly on
the initial conditions.

Figure 3. Volume-averaged turbulent transport α as a function of the inverse
Hall Elsasser number −1

H from runs ZB3(I1, H1–H9) (black circles) and
runs Z6–Z9 from SS02 (red crosses).

larger than the largest one considered by SS02. The results of this
first exploration are presented in Fig. 3.

In the regime of weak Hall effect (−1
H � 5), we qualitatively

recover the SS02 results: increasing −1
H increases the amount of

turbulent transport. This demonstrates the sensitivity of disc stability
to the orientation of the background magnetic field (Wardle 1999).
The actual values of α we find, however, are significantly smaller
than those found by SS02. This is probably due to the different
aspect ratios of the shearing boxes employed.

For larger −1
H , a totally new behaviour appears: the transport

follows a steep decline down to α = 4.7 × 10−5 at −1
H = 32. At

first sight, one may think that this behaviour is due to the stabiliza-
tion of the MRI when the Hall effect is too dominant. To check this,
we present in Fig. 4 the growth rate of the largest channel modes
for the parameters used in runs ZB3H(1–4). In each of these runs,
there exists at least one channel mode with γ > 0.5; i.e. a vigor-
ous linear instability is initially present in all of these runs. The

Figure 4. Linear growth rate γ as a function of the inverse Hall Elsasser
number −1

H for simulations ZB3H(1–9). Each line corresponds to a channel
mode with kz = 2πn/Lz.
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2302 M. W. Kunz and G. Lesur

Figure 5. Volume-averaged turbulent transport α as a function of time for
different inverse Hall Elsasser numbers −1

H (runs ZB3I1, ZB3H3, ZB3H6,
ZB3H7, ZB3H9).

behaviour for −1
H > 5 indicates that a new saturation mechanism

is at work, one that is not related to the linear properties of the
flow.

In order to isolate the cause of this new saturation mechanism,
we focus on the evolution of the box-averaged turbulent transport
at different −1

H (Fig. 5). Simulations with −1
H � 5 show the same

qualitative behaviour exemplified in ideal and resistive MHD sim-
ulations of the MRI – a time-steady α ∼ few × 10−2 with mod-
erate transport spikes. The intermediate case (−1

H = 16) shows
oscillations between a low-transport state (LTS ≡ α < 10−4) and
a high-transport state (HTS) qualitatively similar to that seen in
the −1

H � 5 runs. For −1
H = 32 and 100, the turbulence stays

in the LTS after an initial burst caused by the breakup of the
channel mode. Note that the qualitative behaviour observed dur-
ing the linear phase in all of these simulations (i.e. t � 50) is very
similar.

Inspecting snapshots of the two extreme cases (Fig. 6) reveals
the origin of the LTS. In the ideal case (−1

H = 0; top), the flow
exhibits turbulent fluctuations of Bz. This is the ‘traditional’ satu-
rated state of the MRI as described by Hawley, Gammie & Balbus
(1995) and others. In the Hall-dominated case (−1

H = 32; bottom),
we observe a coherent, axisymmetric, large-scale structure in Bz,
which we refer to as a zonal magnetic field. In this zonal-field con-
figuration, the vertical magnetic flux is accumulated in some radial
(x) region, leaving most of the box with a very weak Bz (typically
|Bz| < 10−3). In this configuration, almost no turbulent activity is
observed. Note that the total vertical magnetic flux is conserved,
indicating that this feature is due to a redistribution of magnetic
flux.

3.2.2 Characterizing the LTS

In the previous section, we described a new saturated state of the
MRI called the LTS. This state is characterized by very weak turbu-
lent transport, despite the presence of a vigorous linear instability
in the initial equilibrium. Here we conduct a dedicated study of the
LTS by examining our fiducial run ZB1H1 in detail. This simu-
lation exhibits the same kind of LTS as described above, with an
averaged turbulent transport α = 1.8 × 10−4. Increasing the resolu-
tion to 384 × 192 × 96 does not change the outcome of the saturated

state: a similar LTS is observed, demonstrating that our simulations
have converged.4

We quantify the presence of a zonal field by defining an averaging
procedure,

〈·〉 ≡ 1

LyLz

∫∫
dy dz,

and computing the evolution of the vertically and azimuthally av-
eraged vertical component of the magnetic field 〈Bz〉. In the top
panel of Fig. 7, we present the resulting space–time diagram. This
diagram clearly exhibits a strong zonal field with a typical radial
thickness ∼1. Outside of this zonal-field region, the averaged field
is weak with |〈Bz〉| � 10−2. A closer inspection shows that the sys-
tem initially exhibits two zonal-field regions, centred at x � 0.3 and
x � 1.8. At t � 160 a rapid reorganization occurs, and these two
regions merge to produce one zonal field that survives for more than
1000 �−1. While zonal fields are generally very long-lived struc-
tures in isolation, this demonstrates that they may become strongly
unstable when another is nearby.

It was shown in Section 2.2 that, in the presence of the Hall effect,
a new conserved quantity replaces the magnetic flux: the canonical
vorticity. Since canonical vorticity is conserved without dissipative
effects (e.g. viscosity, resistivity), we expect the formation of ax-
isymmetric bands of vertical vorticity that are anticorrelated with
the zonal fields. To check for this effect, we have computed the
vertically and azimuthally averaged vertical component of the flow
vorticity 〈ωz〉 = −∂x〈vy〉 + 2A in run ZB1H1. The resulting space–
time diagram is shown in Fig. 7(b), and clearly demonstrates the
formation of a zonal-vorticity region akin to a zonal flow. In accor-
dance with expectations from conservation of canonical vorticity,
we also find that the flow vorticity is anticorrelated with the ver-
tical magnetic field. However, the vorticity and magnetic field do
not have exactly the same shape – the mean vorticity appears to be
concentrated around the edges of the zonal-field region. This differ-
ence is due to the explicit dissipation, and in particular due to the
fact that Pm 	 1: magnetic-field lines diffuse quite rapidly through
the bulk ion/neutral fluid, whereas vortex lines do not. Therefore,
conservation of canonical vorticity is only approximately verified in
our simulations, owing to the presence of non-negligible dissipative
terms.

Since our box size is limited, one may suspect that the presence
of only one zonal-field region in run ZB1H1 is an artefact of the
boundary conditions. To check this, we have performed a simulation
in a wider box (8 × 8 × 1) with the same physical parameters as run
ZB1H1. The space–time diagram of this simulation (run ZB1H1L)
is presented in Fig. 8. We observe the formation of two zonal-
field regions of size ≈1.5, which survive for the remainder of the
simulation. This indicates that zonal-field regions have an intrinsic
width independent of the radial and azimuthal box size (provided
the latter is significantly larger than H).

In order to verify that the formation of a zonal field is not de-
pendent upon the initial conditions of the simulation, we have also
run a purely resistive (−1

H = 0) MRI simulation with the same pa-
rameters as run ZB1H1. This simulation was run up until t = 630,
at which point the Hall effect was switched on with −1

H = 17.4.
Within approximately four orbits, the fully developed 3D turbulence
disappeared and was replaced by a large-scale zonal field with an
averaged turbulent transport α ∼ 10−4. This demonstrates that the

4 Due to the extreme cost of such a high-resolution simulation, this particular
run was stopped at t = 160; it is therefore not listed in Table 1.
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Hall-dominated MRI turbulence 2303

Figure 6. Snapshot of the vertical magnetic field Bz in runs ZB3I1 (top) and ZB3H7 (bottom) at t = 630.

Figure 7. Space–time diagram of the vertically and azimuthally averaged
vertical component of the magnetic field 〈Bz〉 and the vorticity 〈ωz〉 in run
ZB1H1. The appearance of vorticity bands, anticorrelated with the zonal-
field structures, is observed.

Figure 8. Space–time diagram of the vertically and azimuthally averaged
vertical component of the magnetic field 〈Bz〉 in run ZB1H1L. Two stable
zonal-field regions are produced.

LTS and the zonal field associated with it are robust non-linear
features of the Hall-dominated MRI.

To understand how this zonal-field structure is sustained, we
return to the argument given in Section 2.3. In particular, it was
shown that the Maxwell stress directly enters into the induction
equation through the Hall effect. We therefore compute the mean
stress and magnetic field in run ZB1H1, averaging these quanti-
ties in y, z and time (from t = 500 to 600). The resulting profiles
are presented in Fig. 9, and exhibit a very clear correlation be-
tween the averaged Maxwell stress 〈Mxy〉 and the magnetic-field
profile 〈Bz〉. In particular, there are inflection points in the Maxwell
stress at the boundaries of the zonal-field region. Between these
points where the magnetic field is relatively strong, the MRI is
magnetically quenched; elsewhere, the field is relatively weak and
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2304 M. W. Kunz and G. Lesur

Figure 9. (y, z, t) averages of the turbulent stress (top) and magnetic field
(bottom) for run ZB1H1. A clear correlation between the Maxwell stress
and the mean vertical magnetic field is exhibited, a feature which is re-
sponsible for the formation and sustainment of a zonal magnetic field (see
Section 3.2.2).

turbulent fluctuations persist with a low level of transport. As we
show explicitly in Section 4, such residual fluctuations are respon-
sible for maintaining the integrity of the zonal-field structure in the
face of resistive (both molecular and turbulent) diffusion.

3.2.3 A numerical criterion for the LTS

We have shown that an LTS exhibiting axisymmetric (‘zonal’) fields
emerges in several simulations of the Hall-dominated MRI. To make
any prediction about the saturation level, one must know when
the system will choose the LTS instead of the ‘classical’ turbulent
MRI state (HTS). To this end, we have systematically explored the
parameter space (η, ν , β). In this parameter space, we include
a regime which is stable without the Hall effect (runs ZB10XX).
We present in Fig. 10 the growth rates of the most unstable Hall-
MRI modes present in some representative runs from ZB3XX and
ZB10XX. As expected, all the runs but ZB10I1 are linearly unstable
with growth rates γ > 0.1. Note that the vertical wavelength of the
most unstable mode increases with 	H (Section 2.6).

In Fig. 11, we summarize all our results on a single plot exhibit-
ing the mean turbulent stress α as a function of 	H. Despite the

Figure 10. Location of some representative runs from ZB3XX (top) and
ZB10XX (bottom) on a linear stability diagram. The colour contours denote
the growth rates of the most unstable eigenmodes.

Figure 11. Mean turbulent stress versus Hall effect for β = 1000, 3200
and 10 000, and −1

η = 1, 4 and 50. The turbulent stress decreases sharply
when 	H � 0.2, separating the LTS from the classical HTS.

differing initial β, viscosities and resistivities, all of the values of
α tend to collapse on to a single curve dependent primarily upon
	H. We find that the system stays in the HTS up to 	H � 0.2 for
all our simulations, independent of the mean-field strength and of
the resistivity; in this case, the typical turbulent stress α ∼ 10−2–
10−1. Beyond 	H ∼ 0.2, the system transitions rapidly to an LTS
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characterized by α � 10−3. A very important characteristic is that
the presence of the LTS is not correlated to any linear property of
the Hall-MRI. For instance, all of the situations where we observe
an LTS are characterized by strongly unstable MRI modes with γ

� 0.5 (compare Figs 10 and 11). This illustrates the fact that a flow
which is strongly unstable to the Hall-MRI does not necessarily
evolve into fully developed turbulence.

3.2.4 Other magnetic-field configurations

One may suspect that the behaviour described above is very specific
to situations with only a mean vertical magnetic field. We have
therefore run a simulation with a magnetic field inclined by 45◦ in
the azimuthal (y) direction of strength β = 103 (run ZTB1H1). We
find results very similar to the pure-Bz run ZB1H1. The transport
is increased by a factor ∼2, but the large-scale zonal-field structure
characteristic of the LTS remains.

We have also performed a limited number of simulations either
without a mean magnetic field or with only a mean azimuthal mag-
netic field, finding no sustained zonal-field configurations in either
case. While the mean-field theory presented in the next section does
suggest an explanation for this negative result, a more systematic
exploration of these cases is needed to verify our conclusions. This
is deferred to a future publication.

4 M E A N - F I E L D T H E O RY O F Z O NA L FI E L D S
A N D F L OW S

In this section, we formulate a mean-field theory that explains the
observed transport bifurcation from an HTS to an LTS and the ap-
pearance of zonal magnetic fields and flows. We start by separating
the velocity and magnetic fields into fluctuating and non-fluctuating
parts:

v = v0 + 〈v〉 + δv and B = 〈B〉 + δB.

Upon averaging over azimuth and height, equations (3) and (4)
become ∂x〈vx〉 = 0 and ∂x〈Bx〉 = 0, respectively; it follows from
equation (2) that 〈Bx〉 = 0 if it is so initially. For clarity of presen-
tation, we further assume that 〈vx〉 = 0. Not only is this assumption
supported by our numerical results, but it also allows us to can-
cel global epicyclic oscillations non-essential for understanding the
emergence of zonal fields and flows.

Introducing the Reynolds stress,

Rij ≡ ρδviδvj ,

and the Faraday tensor,

Fij ≡ δviδBj − δvj δBi,

the pertinent mean-field equations are the z-component of the aver-
aged induction equation (2),

∂〈Bz〉
∂t

= −∂〈Fxz〉
∂x

− c

ene

∂2〈Mxy〉
∂x2

+ η
∂2〈Bz〉
∂x2

, (22)

and the z-component of the averaged vorticity equation (5),

∂〈ωz〉
∂t

= − 1

ρ

∂2〈Rxy〉
∂x2

+ 1

ρ

∂2〈Mxy〉
∂x2

+ ν
∂2〈ωz〉
∂x2

. (23)

The mean vorticity,

〈ωz〉 = ∂〈vy〉
∂x

+ 2A,

includes a contribution from the background shear (=2A, which is
negative in Keplerian discs). Note that the averaged Maxwell stress
〈Mij〉 comprises products of only the fluctuating magnetic fields.

In order to solve equations (22) and (23), we must construct
models for 〈Fij〉, 〈Rij〉 and 〈Mij〉. The Faraday tensor has been shown
to be accurately modelled by a turbulent resistivity with coefficient
ηt (Lesur & Longaretti 2009), and we take this to be the case in what
follows. We follow a similar approach for the Reynolds stress by
modelling it as a turbulent viscosity with coefficient ν t. Adopting
these simplifications, our mean-field equations become

∂〈Bz〉
∂t

� (η + ηt)
∂2〈Bz〉
∂x2

− c

ene

∂2M

∂x2
, (24)

∂〈ωz〉
∂t

� (ν + νt)
∂2〈ωz〉
∂x2

+ 1

ρ

∂2M

∂x2
. (25)

We consider two models for the Maxwell stress, each of which will
produce zonal behaviour very similar to that seen in our non-linear
numerical simulations.

4.1 Case I: 〈Mxy〉 = M(〈Bz〉)

As a first approach, we take the xy-component of the Maxwell stress
to be a function only of the local vertical magnetic flux,

〈Mxy〉 ≡ M(〈Bz〉),
and we concentrate on the evolutionary evolution for the mean
vertical magnetic field (equation 24). We suppose that there is some
〈B0

z 〉 that satisfies this equation in steady state (e.g. 〈B0
z 〉 constant)

and we examine small deviations 〈B1
z 〉 about that state. Linearizing

equation (24), we find that such deviations satisfy

∂〈B1
z 〉

∂t
�

(
η + ηt − c

ene

dM

d〈Bz〉
∣∣∣∣
〈B0

z 〉

)
∂2〈B1

z 〉
∂x2

. (26)

This equation has a simple interpretation. While resistivity acts
diffusively on 〈B1

z 〉, the Hall term may be diffusive or antidiffusive
depending upon the local gradient of the Maxwell stress.

Fortunately, even without a specific model for M, progress can
be made. For sufficiently large values of 〈Bz〉, we expect the MRI
to be stable and M → 0. We also expect M → 0 for sufficiently
small values of 〈Bz〉, since unstable modes exist only at small wave-
lengths where Ohmic dissipation becomes important and suppresses
turbulent transport. In between these extremes, we know that the
Maxwell stress is negative since the MRI transports angular mo-
mentum outwards. Therefore, d2M/d〈Bz〉2 < 0, and so there must
be a value of 〈B0

z 〉 = Bz,crit above which dM/d〈Bz〉 > 0 and below
which dM/d〈Bz〉 < 0.

First, let us consider 〈B0
z 〉 < Bz,crit. Then both the Ohmic and

Hall contributions to equation (26) are positive and any deviations
from steady state diffusively decay. Now let us consider the opposite
case, 〈B0

z 〉 > Bz,crit. Then the Ohmic and Hall contributions to equa-
tion (26) have opposite signs and so the Hall effect acts antidiffu-
sively. If the Hall effect can overcome diffusive processes, any
increment in the local magnetic flux continues to grow and contract
until 〈Bz〉 becomes large enough for M → 0. By flux conservation,
there must be accompanying patches of decreased magnetic flux,
which we anticipate having low levels of turbulent transport as well.
We associate this scenario with the transition to the LTS.

We now make these ideas concrete by specifying a simple model
for the Maxwell stress,

M = −0.01(γ /γmax), (27)
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2306 M. W. Kunz and G. Lesur

Figure 12. Top: space–time diagram of the vertically and azimuthally av-
eraged vertical component of the magnetic field 〈Bz〉 in a toy model (Sec-
tion 4.1) based upon our mean-field theory. The appearance of a zonal
magnetic field is observed. Bottom: regions of increased field strength (red
crosses) evolve antidiffusively towards 〈Mxy〉 = 0, whereas regions of de-
creased field strength (blue circles) evolve diffusively towards an LTS.

where γ is the growth rate obtained by solving the dispersion rela-
tion (equations 14–17) with K = 2πH−1, B0 = 〈Bz〉 and A = −3/4;
its dependence on 〈Bz〉 is shown in the bottom panel of Fig. 12 as the
solid line. While we do not advocate such a crude relationship be-
tween the non-linear Maxwell stress and the linear properties of the
Hall-MRI, this model does satisfy all of the qualitative expectations
for M highlighted in the previous two paragraphs. (One could have
equally well approximated M by a non-positive function quadratic
in 〈Bz〉 with upward concavity.)

Using equation (27), we solve equation (24) in a periodic domain
of length Lx = 4, in which a uniform vertical magnetic field of
strength 〈Bz〉 = 0.01 is initially disturbed by low-amplitude white
noise.5 The result is graphically presented in the top panel of Fig. 12
and bears a striking resemblance to the results of the fully non-
linear numerical simulations (top panel of Fig. 7). A zonal magnetic
field is produced, with accompanying regions of low magnetic-field
strength.

To quantify the evolution of 〈Bz〉, data are collected at fixed in-
tervals in time along lines of constant x where the magnetic field
achieves its global maximum and minimum; these points are marked
in the top panel of Fig. 12 by the white crosses and white circles,
respectively. These data are mapped on to the solid line (equa-
tion 27) in the bottom panel of Fig. 12. Regions of locally in-

5 In order to regularize the solutions of our mean-field equations, we have
used a hyper-resistivity ∝k4 to damp small-scale growing modes. This extra
term mimics the role played by the z direction, which would destabilize and
damp structures with radial lengths �H.

creased magnetic-field strength (red crosses) find themselves asso-
ciated with antidiffusive transport (i.e. dM/d〈Bz〉 > 0), further in-
creasing their magnetic-field strength and moving to the right along
the curve until M = 0. By contrast, regions of locally decreased
magnetic-field strength (blue circles) find themselves associated
with diffusive transport (i.e. dM/d〈Bz〉 < 0), further decreasing
their magnetic-field strength and moving to the left along the curve
as M → 0. Note that M �= 0 in the low-field region; otherwise, the
necessary inflection point in M(x) would vanish and the zonal field
would diffuse away.

4.2 An analytical criterion for the LTS

From these results, we deduce that a transition from an HTS to an
LTS can occur provided that

c

ene

dM

d〈Bz〉
∣∣∣∣
〈B0

z 〉
> η + ηt (28)

for some 〈B0
z 〉. To make this criterion more quantitative, we must

estimate the size of each of these terms in the HTS. First, we neglect
molecular resistivity, which we assume to be small compared to the
turbulent resistivity. Secondly, we assume that the turbulent resistiv-
ity is related to the turbulent transport via ηt ∼ α �H 2/Pmt, where
Pmt ∼ 2 is the turbulent Prandtl number estimated for this partic-
ular component of the turbulent resistivity by Lesur & Longaretti
(2009).6 Finally, we approximate dM/d〈Bz〉 by α ρ(�H )2/Bz,stab,
using the definition of α and introducing Bz, stab as the critical
magnetic-field strength above which the longest wavelength MRI
mode is stabilized by magnetic tension. Using these estimates, the
bifurcation condition (28) reduces to

	H � vA,stab

� Pmt
, (29)

where vA,stab ≡ Bz,stab/(4πρ)1/2. Solving the linear dispersion re-
lation for vA, stab, our criterion becomes 	H � 0.2H, tantalizingly
close to the value deduced from Fig. 11.

4.3 Case II: 〈Mxy〉 = M(〈Bz〉, 〈ωz〉)

Equation (25) indicates that the gradient of the Maxwell stress also
affects the mean vorticity. While the model for the Maxwell stress
presented in Section 4.1 is successful at explaining the bifurcation
from an HTS to an LTS, it does not take into account this effect,
nor does it take into account the feedback of a vorticity-dependent
Maxwell stress on the evolution of the magnetic field. Here, we
generalize the form of the Maxwell stress to allow for this interplay:

〈Mxy〉 = M(〈Bz〉, 〈ωz〉).
To leading order in the perturbation amplitudes, equations (24) and
(25) then become

∂〈B1
z 〉

∂t
�

(
η + ηt − c

ene

∂M

∂〈Bz〉
)

∂2〈B1
z 〉

∂x2
− c

ene

∂M

∂〈ωz〉
∂2〈ω1

z 〉
∂x2

,

(30)

∂〈ω1
z 〉

∂t
�

(
ν + νt + 1

ρ

∂M

∂〈ωz〉
)

∂2〈ω1
z 〉

∂x2
+ 1

ρ

∂M

∂〈Bz〉
∂2〈B1

z 〉
∂x2

, (31)

6 See also Guan & Gammie (2009) and Fromang & Stone (2009) for other
magnetic-field configurations.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/434/3/2295/1036918 by guest on 20 M
arch 2022



Hall-dominated MRI turbulence 2307

Figure 13. Space–time diagrams of the vertically and azimuthally averaged
vertical component of the magnetic field 〈Bz〉 (top) and the flow vorticity
〈ωz〉 (bottom) in a toy model (Section 4.3) based upon our mean-field theory.
A zonal-vorticity band emerges anticorrelated with the zonal magnetic field,
consistent with the behaviour found in our numerical simulations (see Fig. 7).

where the partial derivatives of M are evaluated at 〈B0
z 〉 and 〈ω0

z 〉.
In principle, the Lorentz and Hall terms may be diffusive or antid-
iffusive, depending upon the local gradient of the Maxwell stress.
In practice, ∂M/∂〈ωz〉 is generally non-negative for MRI-driven
turbulence (e.g. Pessah, Chan & Psaltis 2008), and so the Lorentz
force acts diffusively on the mean vorticity. As in the previous sec-
tion, ∂M/∂〈Bz〉 is positive above some critical field strength and
negative below it. We capture this physics by taking the Maxwell
stress to be proportional to the channel growth rate, allowing for
its dependence on vorticity by promoting 2A → 〈ωz〉 in the disper-
sion relation. We then solve equations (24) and (25) as before, with
〈ω0

z 〉 = 2A. The result is graphically presented in Fig. 13. A zonal
magnetic field is produced, with the flow vorticity being anticorre-
lated with the vertical magnetic field. This model captures all of the
salient features of the LTS.

5 D ISCUSSION

In this paper, we have described the saturation of the MRI in a
plasma dominated by the Hall effect. This situation is of particular
importance to protoplanetary discs, which are poorly ionized and
in which one expects a particularly strong Hall effect near the disc
mid-plane (e.g. Wardle 2007). A strong Hall effect is considered to
be particularly important to the disc dynamics, as it can destabilize
plasmas which would otherwise be stabilized by Ohmic losses and
could therefore eliminate (or at least significantly reduce) purported
‘dead zones’ in such discs (Wardle & Salmeron 2012).

Using the 3D spectral code SNOOPY, we recovered the linear
properties of the Hall-dominated MRI. We also demonstrated ana-
lytically that MRI ‘channel’ modes remain non-linear exact solu-
tions notwithstanding the complicating influence of the Hall effect,
and we explored their stability with respect to secondary para-
sitic modes. We subsequently confirmed the numerical results of
SS02, which correspond to the weak-Hall regime (	H ∼ 10−2H).
By extending those authors’ numerical experiments into the Hall-
dominated regime (	H � 0.2H), we arrived at our most interesting
and perhaps most important finding: the presence of a completely
new saturation mechanism at work in MRI-driven turbulence. We
have shown that this new saturation mechanism is associated with a
reduction in turbulent transport by at least two orders of magnitude
compared to ‘classical’ magnetorotational turbulence.

This LTS is produced by a redistribution of the vertical magnetic
flux into long-lived, narrow (∼H), axisymmetric regions, outside
of which the mean field averages almost to zero. We refer to these
regions as zonal magnetic fields. Coincident with these zonal-field
regions are zonal flows, which we have shown to result from (ap-
proximate) conservation of canonical vorticity. The accumulation
of vertical magnetic flux into zonal-field regions increases the lo-
cal magnetic tension enough to stabilize their internal flow; outside
of these regions, very weak magnetorotational turbulence persists.
In fact, the surrounding weak turbulence actively reinforces the
integrity of the zonal-field structure by contributing a confining az-
imuthal electric field. This reinforcement is necessary in the face of
resistive (both molecular and turbulent) diffusion.

To explain this behaviour, we have developed a mean-field model
based on y–z averages of the full set of resistive Hall-MHD equa-
tions in the shearing sheet. The key ingredient of this model is the
introduction of the xy-component of the Maxwell stress Mxy into the
induction equation by the Hall electric field. This term introduces
a new type of radial magnetic diffusion into the averaged induction
equation, which can be either diffusive or antidiffusive depending
on the sign of d〈Mxy〉/d〈Bz〉. Since both very weak and very strong
magnetic fields quench turbulent transport by the MRI (the former
through Ohmic losses and the latter by strong tension), we conclude
that there will always be regions of MRI-driven turbulence where
d〈Mxy〉/d〈Bz〉 > 0 and therefore the Hall effect will act antidiffu-
sively. When 	H � 0.2H, this antidiffusive behaviour appears to
overtake resistive and turbulent diffusion. We have constructed a
toy model based upon our mean-field theory that reproduces the
zonal-flow structure revealed by our simulations and captures all
the salient features of the LTS.

Our results indicate that, despite being strongly linearly unstable,
Hall-dominated accretion discs could undergo a global bifurcation
that substantially reduces the amount of MRI-driven turbulent trans-
port. This contradicts the recent suggestion by Wardle & Salmeron
(2012) that the Hall effect could revive turbulent ‘dead’ zones long
suspected to exist in the poorly ionized interiors of protoplanetary
discs (e.g. Gammie 1996). Our results also bring into question nu-
merous attempts to estimate the size of the dead zone by coupling
chemical networks with MRI stability criteria, whether they be ob-
tained through linear analyses or by naively extrapolating results
from resistive MHD simulations into the Hall-dominated regime.
Since strong Hall diffusion can non-linearly render magnetically ac-
tive regions magnetorotationally ‘dead’, existing estimates for the
extent of the active and dead zones may require revision.

Despite the simplicity of this result and the very general physical
principles upon which it is based (e.g. field-strength-dependent tur-
bulent transport, conservation of canonical vorticity), it is prudent
to remind the reader that these results have been obtained using
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a crude representation (an incompressible and unstratified shearing
box) of an actual protoplanetary disc. Since the magnetic quenching
responsible for the stabilization of zonal fields is dependent upon
the vertical scaleheight, which is artificially set in our simulations
to be the vertical size of the shearing box, vertical stratification
could affect the dynamics, extent and magnetic-field strength of the
zonal structures. That being said, stratified discs do exhibit a natu-
ral lengthscale that stabilizes MRI modes (Gammie & Balbus 1994;
Latter, Fromang & Gressel 2010; Lesur, Ferreira & Ogilvie 2013)
so that, in principle, zonal fields and flows should also be produced
and sustained in stratified shearing boxes. Compressibility, ambipo-
lar diffusion and the presence of dust grains introduce additional
complications by altering the ionization fraction and the turbulent
response of the disc in height-dependent ways.7 Simulations of lay-
ered discs (without the Hall effect or ambipolar diffusion) have
even shown that magnetorotational turbulence in active surface lay-
ers could drive a Reynolds stress (Fleming & Stone 2003; Oishi &
Mac Low 2009) and/or a large-scale Maxwell stress (Turner & Sano
2008) in the dead zone. We intend to explore the impact of such
complexities on the robustness of our results in subsequent work.

We close by remarking that the presence of zonal magnetic fields
and zonal flows is of great interest in its own right. While zonal
flows have been previously found to naturally emerge in both ideal
and resistive simulations of MRI-driven turbulence, those structures
are generally weak in amplitude and are believed to be generated
by random contributions of the Maxwell stress (Johansen, Youdin
& Klahr 2009). The zonal structures we find in Hall-dominated
magnetorotational turbulence, on the other hand, are strong in am-
plitude and are driven by a coherent Maxwell stress acting in concert
with conservation of canonical vorticity. A natural suspicion is that
these dominant zonal structures may act as particle-trapping sites,
enabling fast planetesimal formation through a gravitationally un-
stable dust layer. The enticing link between Hall-induced turbulent
bifurcation to an LTS, the occurrence of zonal fields and flows, and
the formation of planetesimals will be the subject of a forthcoming
publication (Lesur & Kunz, in preparation).
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A P P E N D I X A : C H A N N E L STA B I L I T Y
A N D PA R A S I T E S

A1 Formulation of the problem and method of solution

The fact that the Hall-MRI channel flows are exact non-linear solu-
tions allows one to analytically examine their stability to parasitic
modes. One simply considers the channel solution to be part of a
time-dependent background state, upon which small-amplitude per-
turbations are applied. Unfortunately, this time dependence compli-
cates matters somewhat, since one cannot Fourier decompose in
time. We circumvent this difficulty by assuming that the growth
rate σ of the parasites is much greater than the growth rate γ ∼ �

of the ‘background’ channel solution (Goodman & Xu 1994). Since
σ ∼ b�, this amounts to the assumption that the channel mode has
grown to large amplitude (b � 1) and, from the perspective of the
parasites, may be considered a stationary equilibrium. This order-
ing implies that the effects of rotation and shear on the parasites, as
well as the uniform background magnetic field B0, may be ignored.
What results is an eighth-order boundary-value problem in z with
eigenvalue σ .

Following this prescription, we substitute

v = vch + δv, B = Bch + δB, P = P0 + δP

into equations (1)–(3), linearize in the perturbation amplitudes
and search for Fourier modes with the space–time dependence
δ ∝ exp(σ t + ik·x). The perturbation wavevector

k = k
(
êx sin θk − êy cos θk

)
is parallel to the channel magnetic (velocity) field when θ k = θ

(θk = φ ± π/2). The resulting set of equations is

σδv = −ik·vch δv − δvz

dvch

dz
− 1

ρ

(
ik + êz

d

dz

)
δ�

+ ik·Bch
δB
4πρ

+ δBz

4πρ

dBch

dz
+ ν

(
d2

dz2
− k2

)
δv, (A1)

σδB = −ik·
(

vch − J ch

ene

)
δB −

(
δvz − δJz

ene

)
dBch

dz

+ ik·Bch

(
δv − δ J

ene

)
+ δBz

d

dz

(
vch − J ch

ene

)

+ η

(
d2

dz2
− k2

)
δB, (A2)

ik · δv + dδvz

dz
= 0, (A3)

where

δ� = δP + Bch · δB
4π

is the perturbation of the total pressure and J ch is the channel current
density (equation 13).

The linear operator associated with equations (A1)–(A3) is
periodic in L ≡ 2πK−1, and we thus make the Floquet ansatz
δ ∝ δ(z) exp (ikzz) where the function δ(z) is L-periodic. Following

Latter et al. (2009), we solve the resulting set of equations numer-
ically via a pseudo-spectral technique: the z-domain is partitioned
into N (=256) grid points and the operator is discretized using
Fourier cardinal functions (see Boyd 2001). This procedure leads
to a 7N × 7N generalized algebraic eigenvalue problem, which we
solve using the QZ algorithm. The resulting (complex) eigenvalues
are the growth rates σ of the eigenmodes.

In the following sections, we give representative examples of
three classes of parasitic eigenmodes. First, we take k⊥ Bch and
η = 0. The resulting ‘kink’ and ‘kink–pinch’ modes are essen-
tially hydrodynamical disturbances of the channel jets, whose
growth is afforded by the shear free energy stored in the chan-
nel mode. Secondly, we take k || Bch and η �= 0. The resulting
‘pinch-tearing’ mode extracts little to no free energy from the
flow shear, and instead relies on Ohmic dissipation to facilitate
the reconnection of neighbouring field lines of opposite polarity
and thereby tap into the magnetic energy stored in the channel
mode. Finally, we take k || Bch and η = 0 and investigate whether
the HSI can act as a parasitic mode by feeding off the shear free
energy of the channel. In all cases, we set ν = 0 and �/ωH, 0 =
17.4, the latter of which corresponds to our fiducial simulation
ZB1H1.

A2 Kink and kink–pinch parasites

The kink (i.e. type I) and kink–pinch (i.e. type II) parasitic modes
are described in detail in Goodman & Xu (1994, section 3.4) and
Latter et al. (2009, section 2.3.3), to which we refer the reader.
These parasites are most clearly identified when η = 0 and k⊥ Bch,
conditions which simultaneously alleviate the stabilizing influence
of magnetic tension and maximize the access to the shear free en-
ergy of the channel. In brief, the kink mode is a Kelvin–Helmholtz
instability feeding upon the inflection points in the channel velocity
profile. It is associated with kz = 0 and, as such, is the domi-
nant parasite for a two-stream channel. The kink–pinch mode is
a hybrid mode, exhibiting both kink-like and pinch-like charac-
teristics. Rather than exhibiting a phase velocity that matches the
inflection points of the channel velocity profile, the kink–pinch
mode appears to influence the flow most strongly near the points
in z where the channel magnetic field changes sign. This mode
grows about an order of magnitude slower than the pure kink mode
and, having kz �= 0, only afflicts channels with more than two
streams.

In the top panel of Fig. A1, we plot the δvx, δvz and δ� com-
ponents of the eigenfunction of a kink mode with θ = φ = π/4,
k/K = 0.5, θk = −π/4 and kz = 0. The solid (dashed) lines denote
the real (imaginary) parts. In the bottom panel, we display coloured
isocontours of the real part of vx at y = 0 in the (x, z) plane. The
Hall effect does not significantly impact the structure of the mode
since k · Bch = 0. Just as in ideal MHD, a pressure gradient devel-
ops across each jet and gives rise to a kink motion, deflecting the
channels upwards or downwards. The Hall effect does, however,
reduce the parasite growth rate from σ/b� = 0.1959 to 0.008 616.
This is because a strong Hall effect with �/ωH, 0 > 0 substantially
decreases the shear free energy Kv0 stored in the channel mode (see
equation 16).

We find a similar situation for the kink–pinch mode (kz = 0.5),
shown in Fig. A2. As in ideal MHD, the pressure perturbation δ�

changes sign at Kz = π/2 and kinks the jet centred there, while
the vertical velocity perturbation δvz changes sign at Kz = 3π/2
and pinches the jet centred there. This gives rise to the alternate
kinking and pinching of neighbouring jets, which can be observed
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Figure A1. Top: the δvx, δvz and δ� components of the eigenfunction of a
kink mode with θ = φ = π/4, k/K = 0.5, θk = −π/4 and kz = 0. The solid
(dashed) lines denote the real (imaginary) parts. The total eigenfunction
is normalized so that max|δvx| = 1. The growth rate σ/b� = 0.008 616.
Bottom: coloured isocontours of the real part of vx at y = 0 in the (x, z)
plane. The background is a four-stream Hall-MRI channel with jets centred
at Kz = nπ/2 with n = 1, 3, 5 and 7. The perturbation is normalized so that
max|δvx| = vch.

in the bottom panel of the figure. For the same reason as for the kink
mode, the growth rate decreases from σ/b� = 0.0931 + 0.1319i
to 0.004 093 + 0.0058i. The complex conjugate of this mode has
the pressure perturbation kink at the Kz = 3π/2 jet and the vertical
velocity perturbation pinch at the Kz = π/2 jet.

For both the kink and kink–pinch modes, the growth rates are
much too small to be of relevance for the saturation of the Hall-
dominated MRI. In order for σ ∼ γ , the usual criterion for deter-
mining when secondary parasitic modes might overtake the primary
channel mode and instigate a breakdown into 3D turbulence (Pessah
& Goodman 2009), the channel must grow to amplitudes b ∼ 100.
By this stage, compressibility effects become important, a feature
not captured in our parasite linear analysis nor in our non-linear
simulations.

A3 Pinch-tearing parasite

When resistivity is included, pinching motions are subject to tear-
ing instabilities driven by magnetic reconnection. This not only
modifies the kink–pinch mode by opening a pathway to extract the
extra energy stored in the channel’s magnetic field, but also facili-

Figure A2. Top: the δvx, δvz and δ� components of the eigenfunction
of a kink–pinch mode with θ = φ = π/4, k/K = 0.5, θk = −π/4 and
kz = 0.5. The solid (dashed) lines denote the real (imaginary) parts. The
total eigenfunction is normalized so that max|δvx| = 1. The growth rate
σ/b� = 0.004 093 + 0.0058i. Bottom: coloured isocontours of the real part
of vx at y = 0 in the (x, z) plane. The background channel and normalization
are as in Fig. A1. The entire pattern is moving to the left because σ possesses
a positive imaginary part.

tates the growth of pinch-tearing modes (see section 2.3.4 of Latter
et al. 2009). The latter manifest most readily when θ k = θ , i.e.
when the wavevector and the channel magnetic field are aligned.
As θ k deviates from θ , the pinch-tearing mode bifurcates into two
complex-conjugate modes, each one localized on one or the other
jet. This is the situation we display in Fig. A3, which highlights the
δvx, δBx and δBz components of the eigenfunction of a pinch-tearing
mode with θk = π/3, k/K = 0.4, kz = 0 and b = 5. The eigenmode
localizes preferentially on the lower jet, with a growth rate σ/b� =
0.028 68 − 0.034 49i; its complex conjugate localizes on the upper
jet.

While the Hall effect with �/ωH, 0 > 0 decreases the magnetic
shear energy stored in the channel, it also generally increases the
growth rate of the pinch-tearing mode. Indeed, this parasite grows
faster than both the kink and kink–pinch modes described above by
a factor of ∼10. Nevertheless, its growth rate remains quite small;
in simulations of the Hall-dominated MRI in which a two-stream
kx = 0 channel mode is deliberately excited, this parasite grows over
such a long time-scale that the shearing of its wavevector (a feature
not taken into consideration here) wraps the mode into an almost
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Figure A3. Top: the δvx, δBx and δBz components of the eigenfunction of a
pinch-tearing mode with θk = π/3, k/K = 0.4, kz = 0 and b = 5. The channel
orientation θ � 0.255π is obtained by solving the dispersion relation for the
fastest growing mode with β, H and η taken from our fiducial simulation
ZB1H1. The solid (dashed) line denotes the real (imaginary) part. The
total eigenfunction is normalized so that max|δvx| = 1. The growth rate
σ/b� = 0.028 68 − 0.034 49i. Bottom: coloured isocontours of the real
parts of vx and Bz at y = 0 in the (x, z) plane. The background channel and
normalization are as in Fig. A1. The entire pattern is moving to the right
because σ possesses a negative imaginary part.

axisymmetric configuration with k > 1.8 In fact, the channel grows
to such large amplitudes (b > 300) that the numerical time step drops
precipitously and further time integration becomes untenable. In

8 We refer the reader to appendix B of Latter et al. (2010) for a quantitative
assessment of how shear retards parasite growth.

simulations where a kx = 0 channel mode is not exclusively excited
by hand (e.g. all of those listed in Table 1), the linear phase is
disrupted at b ∼ 10, not by parasites, but rather by the interference
of large-amplitude kx �= 0 channels.

A4 HSI as a channel parasite

In Section 3.1.2 we employed the HSI as a test of our numerical
algorithm. In the context of the channel mode, the background shear
is provided by the sinusoidal variation of vch and is strongest at the
vertical locations satisfying Kz = nπ with n = 0, ±1, ±2, . . . . The
magnitude of the channel magnetic field is also greatest at those
heights. As a result, any local patch centred on Kz = nπ resem-
bles a non-rotating shearing sheet with a vorticity-aligned magnetic
field – precisely the setup considered by K08. While this analogy
suggests that the HSI could act as a powerful channel parasite, this
expectation is not borne out in our numerical simulations. Here we
adapt the K08 calculation to determine why this is so.

The HSI is most easily examined in the limit of negligible resis-
tivity, in which case the channel magnetic and velocity fields are
mutually perpendicular (θ = φ; see equation 17). We can therefore
erect an orthonormal coordinate system oriented with the channel
mode: êb = Bch/Bch, êv = vch/vch and êz = êb×êv . In this geom-
etry, wavevectors parallel to the channel magnetic field (k = kêb)
have the greatest potential for growth. The z- and v-components of
the linearized induction equation (A2) become9

σδBz − b cos Kz
ck2B0

4πene
δBv = ikB0 b cos Kz δvz, (A4)

σδBv + b cos Kz

[
ck2B0

4πene

(
1 − 1

k2

d2

dz2
− K2

k2

)
− Kv0

]
δBz

= ikB0 b cos Kz δvv. (A5)

It is clear from equation (A5) that the shear of the channel mode
(represented by the final term in the brackets) uses δBz to generate
δBv . The Hall terms, on the other hand, generate δBz at the expense
of δBv . This effect is present even in the absence of shear and arises
because the v-component of the perturbed electron velocity differs
from the ion-neutral velocity by

− δJv

ene
= ick

4πene

(
1 − 1

k2

d2

dz2

)
δBz.

The induced magnetic field is sheared further, and there is the po-
tential for runaway.

It is a straightforward exercise to show from equations (A1), (A4)
and (A5) that, whether k � K, d/dz (the limit captured by the K08
analysis) or d/dz � k, K (a WKBJ treatment), a necessary condition
for instability is

1 <
Kv0

ωH,0
. (A6)

Physically, this inequality states that the time required for an ion to
execute one orbital gyration around a magnetic-field line must be
longer (by a factor of ne/n) than the time it takes for a magnetic
perturbation to grow by shear. If this condition is not met, the ions
are well coupled to the electrons (and thereby to the magnetic field),
and we are left with simple linear-in-time growth due to shearing of

9 These equations may be profitably compared with equations 46a and 46b
of K08 after making the replacements z → x and v → y.
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the magnetic-field perturbation by the channel flow. (This criterion
is analogous to equation 43 of K08.)

What complicates matters beyond those investigated in K08 is
that here the channel shear, which provides the free energy for
growth, is itself a function of ωH, 0. Plugging in our expression for
the channel shear (equation 16 with Rmeff → ∞), our instability
criterion (A6) for the HSI parasites becomes equation (18), precisely
the stability criterion for the Hall-MRI channels themselves! In other
words, if the Hall-MRI channels are active in the disc, then the HSI
cannot act as a parasitic instability.

APPENDIX B: NUMERICAL STABILITY
I N H A L L - M H D

Falle (2003) suggested that explicit schemes for numerically solv-
ing the equations of Hall-MHD are unconditionally unstable due
to the existence of small-wavelength whistler waves. Although this
conclusion is correct for the numerical schemes Falle (2003) consid-
ered, here we demonstrate that higher order time-explicit schemes,
such as the one used in SNOOPY, are stable without the need for physi-
cal (e.g. Ohmic or ambipolar) or artificial (e.g. hyper-resistive) wave
damping.

We start by considering the induction equation (equation 2) with
the first (ideal) and third (Ohmic) terms on the right-hand side
dropped. Decomposing the magnetic field into a fixed guide field
B0 and a small-amplitude fluctuation δB(t) exp(ik · x), we find that
linear whistler waves are described by

dδB
dt

= ck·B0

4πene

(k×δB) . (B1)

In spectral codes such as SNOOPY the right-hand side of this equation
is computed exactly using Fourier decomposition, and we adopt this
scheme in what follows.

Without loss of generality we take the wavevector k = kêz

and magnetic-field perturbation δB = δBx êx + δBy êy , ensuring
k · δB = 0. Equation (B1) can then be written as

dδB
dt

= R δB, where R ≡ ck2B0,z

4πene

(
0 −1

1 0

)
. (B2)

We integrate equation (B2) forward in time from t(n) to t(n + 1) using
an RK3 scheme similar to that used in SNOOPY. For a system of
differential equations y′ = f ( y), this procedure reads

q1 = f
(

y(n)
)

q2 = f
(

y(n) + h

2
q1

)

q3 = f
(

y(n) − hq1 + 2hq2

)
y(n+1) = y(n) + h

6
(q1 + 4q2 + q3),

where h ≡ t(n + 1) − t(n). Applying this algorithm to equation (B2),
we find

δB(n+1) = Q δB(n) (B3)

for

Q =
(

1 − 1
2 ε2 −ε + 1

6 ε3

ε − 1
6 ε3 1 − 1

2 ε2

)
and ε ≡ h

ck2B0,z

4πene
.

Note that the matrix Q is a third-order expansion of the formal
solution δB(n+1) = exp(hR) δB(n). Extensions to higher order are
straightforward.

Stability is guaranteed if the eigenvalues of Q,

λ± = 1 − ε2

2
∓ i

(
ε − ε3

6

)
,

satisfy the inequality |λ±| < 1. The numerical scheme is therefore
stable provided ε <

√
3; SNOOPY uses ε = 1.5. It can easily be

shown by this approach that similar schemes of first or second
order in time, such as the ones considered by Falle (2003), are
unconditionally unstable. The fourth-order Runge–Kutta scheme is
stable for ε < 2

√
2.

In conclusion, the third-order explicit time integrator employed
in SNOOPY guarantees that linear whistler waves are stable, without
the need for additional diffusion terms.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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