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Abstract6

Concentration fields of solutes in porous media often exhibit large fluctuations, driven by phys-7

ical and chemical heterogeneity from the pore to the Darcy scale. For many applications, ranging8

from reactive transport modeling to toxicology, the knowledge of mean concentrations is not suf-9

ficient, and quantifying concentration variability is necessary. The probability density function10

(PDF) of concentration quantifies the frequency of occurrence of concentration values throughout11

a spatial domain. While evolution equations and analytical solutions for the concentration PDF12

exist for conservative solutes, less is known about its evolution under the joint action of transport13

and reaction. In this work, we investigate how dilution of a reactive plume by diffusion affects14

the statistics of concentrations. While mixing has no effect on first-order reactions, its coupling15

with nonlinear reactions leads to non-trivial effective kinetics relevant for a broad range of reac-16

tive transport problems. We study the evolution of the concentration PDF under diffusion and17

nonlinear reaction in one spatial dimension, which represents a critical step towards further cou-18

pling with heterogeneous advection. We show that the dependence of the scalar dissipation rate19

on concentration encodes the impact of diffusive transport on the concentration PDF and derive20

a dynamical equation for its time evolution. Using a weak-coupling approximation for the reac-21

tion and diffusion dynamics, we derive analytical predictions for the concentration PDF and its22

moments. Our results provide new insights into how diffusion and reaction control concentration23

variability and open new opportunities for coupling mixing models with chemical reactions.24

Highlights25

• We introduce a general framework quantifying the link between concentration PDFs and spatial26

concentration profiles.27

• We derive a dynamical equation for the evolution of the concentration PDF under diffusion and28

nonlinear reaction in 1D.29

• We derive analytical predictions for the concentration PDF and its moments using a weak-30

coupling approximation.31

1 Introduction32

Quantifying the variability in solute concentrations in the subsurface is of primary importance to a33

large range of applications, including reactive transport modeling (e.g., [1]), characterizing the natural34

chemical signature of groundwater systems (e.g., [2]), and assessing human health risks associated with35

contaminant transport (e.g., [3]). In particular, when reaction rates depend nonlinearly on available36

concentrations, effective reaction rates can differ by orders of magnitude from reaction rates determined37

under well-mixed conditions [4–7]. In such cases, knowledge of mean concentrations is not sufficient38
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to predict overall reaction rates, which requires additional knowledge about the spatial variability of39

concentration values and local reaction rates.40

Concentration probability density function (PDF) methods aim to quantify transport and reaction41

processes in terms of the spatial statistics (i.e., frequency of occurrence of given values) of transported42

scalars [8–11]. These methods were originally developed in the context of turbulent flows, where they43

have been extensively employed to model both conservative transport [12–17] and reactive transport44

with an emphasis on combustion [18–23]. More recently, these methods have gained popularity in the45

context of porous media to study conservative [2, 24–33] and reactive [34–40] mixing. The statistics of46

concentrations have been studied in relation to different types of fluctuations. The first approach is to47

study concentration fluctuations with respect to an average transport model, such as the advection–48

dispersion equation [24–26], in terms of a stochastic transport model such as the continuous time49

random walk [28, 41]. Regarding, for instance, average concentrations at a given spatial position,50

fluctuations typically arise from variability in particle transit times due to heterogeneity. A second51

approach is to characterize uncertainty in concentrations due to uncertainty in model parameters, such52

as flow velocities and reaction rates [29, 42–45]. These methods quantify the variability in concentra-53

tions due to uncertainty in physical and chemical parameters. A third point of view is to consider54

the variability in concentrations over the spatial extension of a solute plume which arises from known55

transport and reaction processes. Even with homogeneous physical and chemical parameters, mean56

concentrations and associated fluctuations evolve under the combined effect of transport and reaction.57

In this context, the concentration PDF provides a useful tool to quantify the spatial frequency of58

occurrence of different solute concentration values, and to provide information about the mixing state59

of solute plumes without explicitly resolving the corresponding spatial profiles [31].60

Here, we follow this last approach to study how the dilution of a reactive plume by diffusive mixing61

affects concentration statistics (Fig. 1). In this context, evolution equations have been derived for the62

conservative concentration PDF by quantifying the formation and interactions of lamellar structures63

in concentration fields subject to advection and diffusion [30, 31, 46]. Recent developments have64

extended these theories to mixing-limited bimolecular reactions [47]. Here, we consider a different65

reactive transport problem in which mixing does not act to bring segregated reactants into contact66

but rather to dilute a reactive plume. This system is relevant to a broad range of reactive transport67

problems [6, 7], including situations where transported solute plumes react nonlinearly with a solid68

phase as they get diluted by mixing. This leads to new dynamics that fundamentally differ from what69

is known regarding mixing-limited reactions across diffusing or dispersing fronts [48–51].70

We investigate the coupling of dilution by diffusive mixing with the nonlinear degradation of a sin-71

gle species locally undergoing diffusion in one spatial dimensional and decaying at a rate proportional72

to an arbitrary power of concentration (Fig. 1). We generalize the results of [7] for the evolution73

of total mass and mean concentration to the evolution of the full concentration PDF, and we obtain74

a dynamical equation for the latter in terms of the scalar dissipation rate [52–56], expressed as a75

function of concentration. In addition to the mean concentration, the concentration PDF formulation76

allows us to quantify higher-order concentration moments, such as the concentration variance, which77

provides information about the variability in concentration values observed throughout a spatial do-78

main. Building on the weak-coupling approximation developed in [7], we relate the evolution of the79

concentration PDF and its moments to the evolution of the maximum concentration, and quantify the80

resulting anomalous kinetics.81

In the interest of developing and illustrating the new method proposed here, the class of reaction–82

diffusion problems we analyze introduces significant simplifications. In particular, we consider a one-83

dimensional problem and neglect heterogeneous advection effects. In addition, the weak-coupling84

approach involves a Gaussian approximation for the solute plumes at late times. Although reaction85

under diffusion or dispersion in the absence of advective heterogeneity has been studied in its own86

right in the context of porous media [4, 57–61], these conditions may be seen as fundamental building87

blocks in the theory of mixing in heterogeneous flows. In the presence of heterogeneous flow fields88

characteristic of porous media, solute plumes are deformed into a collection of elongated structures89

termed lamellae (Fig. 1) [31]. Using the Ranz transform [62], the resulting compression–diffusion–90

reaction equation can be mapped onto a one-dimensional diffusion–reaction equation, which motivates91
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Figure 1: Illustration of the reactive transport problem under consideration (adapted from a simulation
of transport at the Darcy scale in a heterogeneous permeability field [30]). We consider a plume of
reactive solute (green) that undergoes nonlinear decay either by reaction with the solid, with another
solute in excess everywhere, or with another solute that is well mixed inside the plume. The plume
is diluted by mixing with the non-reactive resident fluid (black) while it reacts, leading to non-trivial
effective reaction rates [7]. The latter are governed by the coupling of nonlinear reaction with the
diffusive flux along concentration gradients. Here, we study the one-dimensional diffusion–reaction
problem, which represents the first step towards solving the full advection–diffusion–reaction system.

the present study.92

The paper is structured as follows. Section 2 introduces a general definition for the concentration93

PDF associated with a given spatial profile and explores its key properties. In Section 3, in light94

of these concepts, we derive a governing equation for the dynamics of the concentration PDF of a95

solute undergoing diffusion-induced dilution in one spatial dimension and nonlinear reaction described96

locally by a power-law decay of concentration. In this context, we also discuss the relationship between97

this simplified one-dimensional problem and reaction–diffusion in the presence of heterogeneous flows98

typically found in porous media, based on the Ranz transform. We then study the one-dimensional99

problem and the associated effective kinetics in terms of the weak-coupling approximation in Section 4.100

Conclusions and an overall discussion of the results are presented in Section 5. Some additional101

technical derivations are provided in the Appendices.102

2 The concentration PDF103

This section is concerned with providing a general definition of the concentration PDF associated with104

arbitrary spatial concentration profiles. We first present the general multispecies formulation, and then105

discuss the single-species case. We provide a detailed discussion of the properties of the concentration106

PDF, as well as of its numerical computation. The approach developed here, which forms the basis for107

the subsequent sections, builds on that introduced in [63] regarding Eulerian velocity PDFs. The main108

concepts behind the concentration PDF, which quantifies the spatial frequency of occurrence of different109

concentration values, are illustrated in Fig. 2 for a one-dimensional, single-species concentration profile.110

Before proceeding, we introduce some notation that will be employed throughout. The concentra-111

tion C(x; t) at a given location x and time t, with C = (C1, . . . , Cns), is defined so that C(x; t) dx is112

the mass in an infinitesimal volume dx centered at x = (x1, . . . , xd) of each chemical species 1, . . . , ns.113

We use an underscore to denote quantities whose components relate to concentration species (of which114

there are a number ns), and boldface to denote spatial vectors (which have components according to115
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Figure 2: Illustration of the key concepts underlying the concentration PDF. (a): Example spatial
concentration profile, a Gaussian with unit variance and unit height, restricted to the spatial domain
Ω = [−3, 3] of size |Ω| = 6. (b): Corresponding concentration PDF. Given a spatial profile, the
concentration PDF quantifies the spatial frequency of occurrence of different concentration values
c = C(x) occurring at some position(s) x. When concentration values are discretized into bins of
width ∆c, the PDF value p(c) is approximated by the fraction of the domain of the domain where
the concentration c falls in this range, divided by ∆c to obtain a probability density (bars in panel
b). The continuous PDF (solid line in panel b) is obtained in the limit of infinitesimal bin widths
dc. Each infinitesimal region dx around a point where C(x) = c contributes a probability density
(dx/dc)/|Ω| = 1/(|Ω||dC(x)/dx|). This causes a divergence of the PDF at the maximum concentration
cM = 1, where the gradient is zero, and contributes to a large value at the minimum concentration
cm = C(3) = C(−3), where the gradient is small. These concepts are quantified and explored in detail
throughout the text.

the spatial dimension d). We denote by |A| the d-volume of a spatial domain A (volume for d = 3-116

dimensional A, area for d = 2, length for d = 1, and number of points for d = 0). As usual, |a| for a117

vector a denotes its Euclidean norm. We consider a spatial domain Ω(t) where the concentrations are118

defined for each time t, and denote by X(t) a random variable with a uniform distribution over Ω(t).119

The average with respect to X(t), i.e., the spatial average, is denoted by · . We also introduce, for120

each time t, a random variable C(t) taking concentration values according to their spatial probability121

of occurrence, and denote the average with respect to it (i.e., over concentrations) by 〈·〉. As will be122

discussed in more detail below, the two averages, while conceptually different, yield equivalent results.123

That is, for an arbitrary function f(c, t) of concentrations c and times t,124

f(C[X(t), t]) =
1

|Ω(t)|

∫
Ω(t)

dx f(C[X(t), t]) =

∞∫
0

dc f(c, t)p(c; t) = 〈f [C(t), t]〉, (1)

where, at each time t, p(·; t) is the concentration PDF, to be formally defined momentarily.125

2.1 General formulation for a multispecies system126

At each time t, the concentration PDF p(·; t) is defined so that p(c; t) dc is the probability, in the sense127

of spatial frequency of occurrence, of finding a concentration in the infinitesimal vicinity dc =
∏ns
j=1 dcj128

of c in the domain Ω(t). According to this definition, we have129

p(c; t) = δ[c− C[X(t); t]] =
1

|Ω(t)|

∫
Ω(t)

dx δ[c− C(x; t)], (2)
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where δ(·) is the Dirac delta. Intuitively, this expression encodes the fact that the contributions to the130

probability of having a value c of concentration at time t correspond to points x where C(x; t) = c,131

which are “counted” by the Dirac delta in accordance with the continuous nature of concentrations132

(for the general theory of PDFs as averages of Dirac deltas, see, e.g., [64]). This corresponds to the133

continuum limit described in Fig. 2.134

The concentration PDF contains information about the full structure of point statistical variabil-135

ity of concentrations. According to the definition, Eq. (2), moments of concentration, such as the136

component-wise mean concentrations 〈C(t)〉 and variances σc
2 = 〈C2(t)〉 − 〈C(t)〉2 (representing not137

a spatial variance but variability with respect to the mean concentration), may be computed given138

knowledge of the PDF, and agree with those obtained from the spatial profile. In particular,139

〈C(t)〉 =

∞∫
0

dc cp(c; t) =
M(t)

|Ω(t)| = C[X(t); t], (3)

where the total component masses are given by140

M(t) =

∫
Ω(t)

dxC(x; t). (4)

It is important to note that Ω(t) may be time-dependent, but its size |Ω(t)| must be finite at all141

times, because a uniformly-distributed random variable X(t) does not exist in an infinite domain.142

Intuitively, this is related to the fact that the concentration PDF is defined in terms of the spatial143

frequency of occurrence of concentration values. Thus, if the total component masses are finite, most144

regions in an infinite domain Ω(t) must have a vanishing concentration, and p(c; t) = 0 for all c 6= 0,145

so that we must have trivially p(c; t) = δ(c) by normalization. In practice, as will be discussed in more146

detail below, this means that in order to define a non-trivial concentration PDF we must consider147

either a finite, fixed reference domain Ω, or a minimum concentration threshold cm such that Ω(t) is148

the region where concentrations are above this threshold. Finally, we note that, in an infinite periodic149

system, the concentration PDF may be naturally defined over a single period. The previous argument150

can be circumvented in this case because the total mass in such an infinite system is infinite, although151

the mass per period is finite.152

2.2 Single-species formulation153

Writing the concentration PDF in a more useful analytical form requires changing variables in the154

Dirac delta in Eq. (2), in order to identify the spatial points x that contribute to the integral for a155

given value of concentration c. In other words, we must invert the relations C(x; t) = c, which form156

a set of ns constraints in d dimensions. These constraints are not necessarily independent, and this is157

a difficult problem in general from an analytical perspective. We now derive a simple analytical form158

for the single-species case. We write C = C1 and c = c1 for the single species component. A numerical159

computation procedure, also valid for the general multispecies PDF, is discussed in Appendix A.160

Assuming C(·; t) to be smooth, the Dirac delta can be expressed as a simple-layer integral [65],161

δ[c− C(x; t)] =

∫
Λ(c;t)

dS(y)
δ(x− y)

|∇C(y; t)| , (5)

where dS(x) is the (d − 1)-area element at point x on the (d − 1)-surface consisting of the points162

in the domain at time t at which the concentration has value c, and which do not constitute a local163

extremum (or zero-gradient inflection point). Formally, this surface is defined as Λ(c; t) = {x ∈ Ω(t) |164

C(x; t) = c ∧ |∇C(x; t)| 6= 0}. Note that, for the one-dimensional example in Fig. 2, Λ(c) = 2 for all165

concentrations strictly between the minimum and maximum values. This is discussed in more detail166
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in Section 2.4. Substituting Eq. (5) in Eq. (2), we find167

p(c; t) =

∫
Λ(c;t)

dS(x)

|Ω(t)||∇C(x; t)| . (6)

This form corresponds to the intuitive notion of a change of variables mentioned above: it expresses168

the contribution to the probability density of a given value c of concentration as a spatial integral over169

the spatial region where the concentration takes the required value (see also Fig. 2). This spatial region170

has dimensionality one less than the full space due to the constraint C(x; t) = c. This result holds171

for smooth, non-constant C(·; t). The contributions of concentrations found near spatial concentration172

extrema and in extended regions of constant concentration are discussed below.173

Equation (6) can also be expressed so as to highlight the role of concentration gradients associated174

with a given concentration in determining the value of the PDF. To this end, consider the harmonic175

average gh(c; t) of the concentration gradient magnitudes in Λ(c; t). By definition, it is given by176

gh(c; t) =

 1

|Λ(c; t)|

∫
Λ(c;t)

dS(x)

|∇C(x; t)|


−1

. (7)

Substituting this definition in Eq. (6) immediately yields the simple form177

p(c; t) =
|Λ(c; t)|

|Ω(t)|gh(c; t)
. (8)

The proportionality to the inverse of a concentration gradient magnitude is a consequence of the178

fact that p(c; t) is a density, i.e., a probability per unit concentration. Spatial regions where the179

concentration gradient is low correspond to a higher density around the corresponding concentration180

value due to the slow variation. To understand this, consider a surface Λ(c; t) over which the gradient181

magnitude gh(c; t) = |∇C| is homogeneous and therefore equal to its harmonic average. A small182

variation dc of concentration occurs over a distance dz = dc/gh(c; t) along the concentration gradient.183

The gradient is locally perpendicular to the surface of constant concentration, so that the spatial184

volume associated with an occurrence of concentration in [c, c + dc] is |Λ(c; t)|dz. Correspondingly,185

the contribution to the probability p(c; t) dc of concentration in this range is |Λ(c; t)| dz/|Ω(t)|. Thus,186

its contribution to the concentration PDF p(c; t) is |Λ(c; t)|/[|Ω(t)|gh(c; t)], in agreement with Eq. (8).187

This is illustrated for a one-dimensional profile in Fig. 2. More generally, if the gradient is not constant188

over the surface, the same argument can be applied locally, using the area element dS introduced above189

and the volume element dSdz. The inverse proportionality to the harmonic average then arises due to190

the inverse proportionality of the local contributions to the inverse gradient magnitude, which must191

be integrated over. This provides an intuitive explanation for Eq. (6) and recovers Eq. (8).192

2.3 Extrema and constant-concentration regions193

We now study the impact on the concentration PDF of local extrema of the spatial concentration194

profile, at which |∇C(x; t)| = 0. Near an extremum c0 at position x0 and time t, we have C(x0 +195

∆x; t) ≈ c0 + ∆x ·H(x0; t)∆x/2 and ∇C(x; t) ≈ H(x0; t)∆x, where H(x0; t) is the Hessian matrix196

of concentration at position x0 and time t, with components Hij(x0; t) = ∇i∇jC(x; t)|x=x0
. We find197

that in d = 1 the PDF of concentration behaves in a vicinity ∆c of c0 as198

p(c0 + ∆c; t) ≈
(
|Ω(t)|

√
∆c

∂2C(x; t)

∂x2

∣∣∣
x=x0

)−1

, (9)

to first order in |∆c| � c0, for ∆c < 0 near a maximum and ∆c > 0 near a minimum. This type199

of divergent behavior due to a spatial maximum can be observed in Fig. 2. We note that this is an200
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integrable divergence, that is, the integral of p(·; t) converges near c0 as necessary for a PDF. This201

result is a direct consequence of the fact that for a smooth function near an extremum the behavior of202

the function is quadratic, and the behavior of its derivative is linear. We have assumed the extremum is203

non-degenerate, so that the second derivative is nonzero; otherwise, higher order terms are important204

and the behavior is different.205

In arbitrary dimension, we provide an argument based on dimensional analysis. First, note that206

the qualitative behavior near an extremum is determined by the Hessian determinant |H| and the207

distance |∆x| to the maximum; thus, the gradient near an extremum obeys |∇C| ∝ |H|1/d|∆x|, and208

the concentration changes as |∆c| ∝ |∇c||∆x| ∝ |H|1/d∆x2. The second equation gives |∆x| ∝209

|H|−1/(2d)|∆c|1/2, and substituting in the first leads to p(c0 + ∆c) ≈ |Λ(c0 + ∆c; t)|/[|Ω(t)||∇C|] ∝210

|Λ(c0 + ∆c; t)|/[|Ω(t)||H|1/(2d)|∆c|1/2]. Substituting |Λ(c0 + ∆c; t)| ∝ |∆x|d−1 for the (d − 1)-area of211

the surface of concentration c0 + ∆c yields212

p(c0 + ∆c; t) ∝ |∆c|d/2−1

|Ω(t)||H|1/2 . (10)

Thus, there is no divergence in d > 2. In d = 2, extrema of the spatial concentration correspond to213

extrema of the concentration PDF, and in d = 3 they correspond to zeros. As before, we have assumed214

that the minimum is non-degenerate, i.e., |H| 6= 0. As a simple example of degeneracy, consider a215

concentration field which is constant along the second and third dimensions, and exhibits a regular216

extremum along the first dimension. As expected, the divergence as the extremum is neared then217

depends only on the distance ∆x along the first dimension, and the square-root divergence of the218

concentration PDF characteristic of d = 1 is recovered.219

If C(·; t) is constant in space (i.e., the concentration is homogeneous), or if we relax the smoothness220

assumption so that |∇C(·; t)| may be zero in open sets by letting C(·; t) be non-differentiable at their221

boundary (i.e, piecewise-smooth), these sets may contribute additional terms to the concentration PDF.222

Consider first that the concentration is piecewise-constant. Each set Ωi(t) where the concentration223

takes a given position-independent value ci(t) at time t is associated with a probability |Ωi(t)|/|Ω(t)|.224

Note that there must be a finite number N(t) of such constant-concentration sets at each time, and thus225

a finite number of corresponding concentration values, because open sets have nonzero measure and226

sets corresponding to different concentrations are disjoint, so that |Ω(t)| = ∑N(t)
i=1 |Ωi(t)|. Therefore,227

p(c; t) =

N(t)∑
i=1

|Ωi(t)|
|Ω(t)| δ[c− ci(t)]. (11)

The Dirac deltas express the fact that concentration takes a single specific value within spatially-228

homogeneous regions. If the concentration is piecewise-smooth and non-constant over certain parts229

of the domain, Eq. (8) may be applied separately to each such region, and the contributions of all230

constant and non-constant regions summed over to obtain the full concentration PDF.231

2.4 One-dimensional Gaussian profile232

As a relevant example which will play a central role in Section 3, we consider a single-species Gaussian233

concentration profile in d = 1 spatial dimension (Fig. 1), characterized by spatial variance σ2(t) and234

total mass M(t):235

C(x; t) =
M(t)√
2πσ2(t)

exp

[
− x2

2σ2(t)

]
. (12)

The corresponding regions of constant concentration c are zero-dimensional, Λ(c; t) = {x|x = ±xc(c; t)}.236

Inverting C(x; t) = c for x,237

xc(c; t) =
√

2σ2(t) ln[cM (t)/c], (13)

where238

cM (t) =
M(t)√
2πσ2(t)

(14)
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is the maximum concentration at time t. The zero-dimensional area element on Λ(c; t) is a sum of239

point measures concentrated at the two points ±xc(c; t) where the concentration takes a given value,240

dS(x) = (δ[x + xc(c; t)] + δ[x − xc(c; t)]) dx. For all c < cM (t), |Λ(c; t)| = 2 because it consists of241

two points. The gradient of concentration magnitudes at ±xc(c; t) have the same value, so that their242

harmonic average is equal to this value and given by243

gh(c; t) = |∇C(x; t)|x=±xc(c;t) =

√
2c2 ln[cM (t)/c]

σ2(t)
. (15)

As discussed in Section 2, we must consider a finite domain in order for the concentration PDF244

to be well-defined. This can be conveniently achieved through one of two possible approaches. The245

first considers a fixed (i.e., time-independent) reference domain Ω centered at x = 0. In this case,246

a time-dependent minimum concentration cm(t) = cM (t) exp{−|Ω|2/[8σ2(t)]} is found at the fixed247

domain boundaries. Alternatively, we fix a (time-independent) minimum concentration cm, and con-248

sider Ω(t) = {x|C(x; t) > cm}, the time-dependent spatial domain where concentration are above the249

minimum value. In this case, cm can be thought of as a lower detection limit, and the concentration250

PDF as being computed over the region of space where non-zero concentration is detected. In either251

case, using Eq. (8) leads to the concentration PDF252

p(c; t) =
H[cM (t)− c]H[c− cm(t)]

2c
√

ln[cM (t)/c] ln[cM (t)/cm(t)]
, (16)

where under the second approach cm(t) = cm is constant. This PDF is illustrated in Fig. 2, and it253

agrees with the result reported, e.g., in [30]. By noting that |Ω(t)| = 2xc[cm(t); t] and using Eqs. (13)254

and (14), we find255

|Ω(t)| = 2M(t)

cM (t)

√
ln[cM (t)/cm(t)]

π
, (17)

and the concentration PDF can thus also be expressed as256

p(c; t) =
M(t)H[cM (t)− c]H[c− cm(t)]

|Ω(t)|ccM (t)
√
π ln[cM (t)/c]

. (18)

Note that, for fixed t, setting c = cM (t)−∆c and expanding to first order in ∆c recovers the expected257

∆c−1/2 divergence due to the presence of a spatial maximum discussed in Section 2.3. For small258

concentrations compared to the peak value, this PDF scales as 1/c with logarithmic corrections.259

Using these results and Eq. (12), it can be verified by direct computation that the mean concen-260

tration is given by261

〈C(t)〉 = C(X; t) ≈ M(t)

|Ω(t)| =
cM (t)

2

√
π

ln[cM (t)/cm(t)]
, (19)

and for the second moment of concentration we have262

〈C2(t)〉 = C2(X; t) ≈ M(t)cM (t)√
2|Ω(t)|

=
c2M (t)

2

√
π

2 ln[cM (t)/cm(t)]
, (20)

where the approximation corresponds to approximating the total mass M(t) in the infinite domain263

by the mass within Ω(t), over which concentration is larger than cm(t). Note that, in particular, this264

approximation requires cM (t) � cm(t), that is, the lower detection limit must be small compared to265

the peak concentration. Under the same approximation, the variance of concentration is thus266

σ2
c (t) ≈ πc2M (t)

4 ln[cM (t)/cm(t)]

[√
2 ln[cM (t)/cm(t)]

π
− 1

]
, (21)

or equivalently267

σ2
c (t)

〈C(t)〉2 ≈
√

2 ln[cM (t)/cm(t)]

π
− 1. (22)
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Note that the mean and variance of concentration represent the mean value and the associated vari-268

ability in the frequency of occurrence of concentration values found throughout the domain. They269

differ from the more common metrics of mean plume position, which here is zero, and spatial or plume270

variance, which here is σ2(t).271

3 Concentration PDF evolution under nonlinear reaction and272

diffusion273

In this section, we apply the concepts developed above to the single-species, one-dimensional reaction–274

diffusion problem275

∂C(x; t)

∂t
= D

∂2C(x; t)

∂x2
− r[C(x; t)], (23)

where the reaction rate as a function of concentration has the form276

r(c) = κcβ , (24)

with β > 0 the order of the reaction and κ the reaction rate constant in units of [C1−βT−1]. Under-277

standing the role and dynamics of concentration statistics under one-dimensional reaction–diffusion278

represents a fundamental first step towards treating more complex reaction problems in heterogeneous279

flow fields. In this connection, we discuss the Ranz transform, which was developed to quantify mixing280

and reaction in the context of turbulence and combustion problems [62, 66] and has more recently been281

employed to study these phenomena in porous media [30, 67, 68]. The goal of the Ranz transform is to282

exploit the fact that material elements in an incompressible flow tend to orient themselves according283

to the principal directions of strain-induced stretching (Fig. 1), forming thin lamellar structures (lines284

in 2D or sheets in 3D) [48, 69–74, 74–76].285

Due to incompressibility, the thickness of such a material element along the principal axis of com-286

pression is given by s(t) = s(0)A(0)/A(t), where A(t) is its area (or length in 2D). Assuming that local287

compression is well described by a first-order Taylor expansion of the flow, and neglecting concentra-288

tion gradients on the surface in comparison to normal gradients along the compression direction ζ, the289

advection–diffusion–reaction equation becomes [30, 67, 74, 75]290

∂C

∂t
= −ζ

s

ds

dt

∂C

∂ζ
+D

∂2C

∂ζ2
− r(C). (25)

These approximations provide a very good description of transport at high Péclet number [30, 74, 75].291

Applying the Ranz transform [62],292

τ =

∫ t

0

dt′
s2(0)

s2(t′)
, ξ =

s(0)

s(t)
ζ, (26)

reduces Eq. (25) to a diffusion–reaction equation in the new time τ and rescaled transverse coordinate293

ξ, which takes into account the history of advective deformation:294

∂C

∂t
= D

∂2C

∂ξ2
− s2

s2
0

r(C). (27)

Thus, the full advection–diffusion–reaction problem reduces to a collection of one-dimensional diffusion–295

reaction problems over lamellae. Solving this problem remains highly nontrivial, as it requires deter-296

mining the statistics of thicknesses s(t) and those of lamella coalescence (overlapping) [30, 46, 67,297

68, 77, 78], and the solution of the one-dimensional reaction–diffusion problem (27) for given s(τ),298

where the reaction rate becomes time-dependent according to a rescaling by s2(τ)/s2
0. Treating the299

full problem is beyond the scope of this work. Here, we restrict ourselves to the purely-diffusive case,300

Eq. (23), which corresponds to setting s2/s0 = 1 in Eq. (27), with the power-law reaction rate (24).301
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The dynamics remain nontrivial even under this simplified scenario. When the reaction is nonlinear302

(order β nonzero and different from unity), the effective kinetics, representing the overall reaction rate303

for a given amount of available mass, depend on the spatial variability of concentration. In other304

words, the global reaction rate dM(t)/dt for the total mass is not given by κMβ(t), except when305

β = 1 or when the system is well mixed, i.e., uniformly characterized by a single concentration value.306

Similar considerations apply to the reaction rate in terms of the mean concentration instead of the total307

mass. Nonetheless, knowledge of the point statistics of concentration as encoded in the concentration308

PDF is sufficient to fully characterize the global reaction rate, which can be obtained by integrating309

Eq. (23) over the domain Ω(t). Using integration by parts, the diffusive term can be seen to contribute310

2D|∂C/∂x| evaluated at the domain boundaries, which we neglect under the assumption of a small311

lower detection limit cm as above, we obtain312

dM(t)

dt
= −

∞∫
0

dc r(c)p(c; t) = −κ
∞∫

0

dc cβp(c; t), (28)

where in the last equality we have expressed the integral of the reactive contribution in terms of the313

concentration PDF using its definition, Eq. (2).314

In what follows, we will first derive a dynamical equation for the evolution of the concentration315

PDF, in terms of a concentration-dependent scalar dissipation rate. We will then discuss and employ316

the Gaussian spatial profile arising from the weak-coupling approximation of [7] to directly compute317

the evolution of the concentration PDF using the results of Section 2.4, and compare it to the PDF318

obtained from numerical solutions of Eq. (23).319

3.1 Dynamical equation for the concentration PDF320

The concentration PDF evolves under the combined action of transport and reaction processes. The321

structure of the reaction–diffusion equation (23), where transport and reaction terms locally contribute322

independently to the evolution of the concentration field, ensures that the same holds for the evolution323

of the concentration PDF for each value of concentration. We thus seek to express its evolution as324

∂p(c; t)

∂t
= ∆pD(c; t) + ∆pR(c; t), (29)

where the two contributions respectively represent the effect of diffusion and reaction. Note that, while325

this independence holds locally, the global reaction dynamics (i.e., the evolution of the total mass and326

other global quantities such as the concentration mean and variance) are affected by the dynamical327

evolution of the plume through the combined effect of transport and reaction. These dynamics will328

be discussed in detail in Section 4 using a weak-coupling approximation. We focus in what follows on329

the case of a fixed minimum detection limit cm and a time-varying domain Ω(t) where concentrations330

are above cm. This choice avoids the introduction of an arbitrary domain devoid of physical meaning,331

and corresponds more closely to real-world situations, where a lower detection limit always exists.332

Nonetheless, note that the introduction of a fixed reference domain may be appropriate if one is in333

fact interested in a specific spatial region, and the formalism can be easily adapted to that case.334

As shown in Appendix B, the reactive contribution in Eq. (29) is given by335

∆pR(c; t) =
∂r(c)p(c; t)

∂c
+ p(c; t)p(cm; t)r(cm). (30)

Note that it is completely determined given knowledge of the concentration PDF and local reaction336

rate as a function of concentration. The first term represents the net change in the probability density337

of concentration c due to reaction, and the second term guarantees the PDF remains normalized by338

accounting for reactive decay of concentrations below the threshold value cm.339

It should be clear that, in general, knowledge of the frequencies of occurrence of concentration340

values, as expressed by p(c; t), is not sufficient to determine their evolution under transport. This is341
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because concentration fluxes due to advection and diffusion are sensitive to the spatial gradients in the342

concentration profiles. Thus, without additional information, an equation for the concentration PDF,343

which encodes only the point statistics of concentration, cannot be closed. However, it is possible to344

express the concentration PDF’s evolution in terms of an additional mixing metric, which corresponds345

to the scalar dissipation rate (see, e.g., [53, 54]),346

χx(x; t) = (∇C) · (D∇C), (31)

expressed as a function of concentration. We make the simplifying assumption that the initial con-347

centration profile C(x, 0) is symmetric about the origin and monotonically decreasing away from it348

(as happens, e.g., for a Gaussian profile or a square pulse). In that case, these properties hold for all349

times, so that a given concentration value is associated with a single concentration gradient magnitude,350

simplifying the description. Under these assumptions, the concentration-dependent scalar dissipation351

rate is given by352

χ(c; t) = χx[±xc(c; t); t] = Dg2
h(c; t), (32)

where the harmonic average gradient magnitude gh is equal to the gradient magnitude at both points353

±xc where the concentration is equal to c. As shown in Appendix B, we have for the transport354

contribution:355

∆pD(c; t) = p(c; t)

[
1

4

∂ lnχ(c; t)

∂c

∂χ(c; t)

∂c
− 1

2

∂2χ(c; t)

∂c2
− p(cm; t)

2

∂χ(c; t)

∂c

∣∣∣∣∣
c=cm

]
, (33)

where the first and second terms arise from the impact of diffusion on the concentration gradients356

associated with a given concentration value, and the third term is due to the change in domain size357

due to concentrations dropping below cm by diffusion.358

Substituting Eqs. (30) and (33) in Eq. (29), we conclude that the combined effect of transport and359

reaction leads to360

∂p(c; t)

∂t
=
∂r(c)p(c; t)

∂c
+

[
1

4

∂ lnχ(c; t)

∂c

∂χ(c; t)

∂c
− 1

2

∂2χ(c; t)

∂c2

+

(
r(cm)− 1

2

∂χ(c; t)

∂c

∣∣∣∣∣
c=cm

)
p(cm; t)

]
p(c; t). (34)

This equation shows that the dynamical evolution of the concentration PDF for this problem is fully361

determined given knowledge of the local reaction rates r(c) and the concentration-dependent scalar362

dissipation rate χ(c; t). The first (reactive) term on the right-hand side has the form of an advective363

contribution: the reaction rate r(c) functions as an advective “velocity” (units of inverse concentration364

per time) generating a net flux of probability towards lower concentrations. The remaining contri-365

butions have the form of concentration-dependent sink/source terms. The first two terms in square366

brackets, which are governed by the scalar dissipation rate, encode the impact on the PDF of changes367

in concentration values and the associated gradients due to diffusive transport. The remaining terms368

concern the reactive and diffusive fluxes of probability towards concentration values below the de-369

tection limit. These affect the concentration PDF through the normalization across the remaining370

concentration values, since
∫ cM (t)

cm
dc p(c; t) = 1 by definition.371

As discussed in the introduction, the scalar dissipation rate has been studied in connection with372

mixing in porous media. By clarifying its role in the evolution of the concentration PDF, this approach373

provides a promising departure point for upscaling of reaction dynamics under transport.374

4 Concentration dynamics under the weak-coupling approxi-375

mation376

The weak-coupling approximation developed in [7] simplifies the full reaction–diffusion dynamics of377

Eq. (23) by assuming that, after a time on the order of the diffusion time, the concentration profile378
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remains Gaussian as for the conservative problem, but with a spatial variance and mass that are affected379

by reaction. We briefly review this approach before applying the theory and concepts developed here380

to analyze the evolution of concentration statistics.381

4.1 Problem setup and nondimensionalization382

We will focus here, as in [7], on a rectangular pulse initial condition, corresponding to constant con-383

centration c0 = M0/s0 over a domain Ω(t) centered at the origin and of initial width s0 = |Ω(0)|. This384

setup correspond to a Dirac delta initial condition for the PDF, p(c; 0) = δ(c−c0). The initial condition385

allows for meaningful direct comparison with the well-mixed batch problem in the domain Ω(0), which386

corresponds to the purely-reactive scenario in the absence of diffusion. In that case, D = 0, so that387

the scalar dissipation rate χ ≡ 0, and we denote the associated uniform solution for concentration as388

a function of time as cB(t).389

In addition, in order to meaningfully compare the behavior of the system across different parameter390

values, it is convenient to nondimensionalize concentration according to the initial concentration c0,391

position according to the initial width s0, and time according to the characteristic reaction time [7]392

τR = κ−1c1−β0 . Thus, denoting nondimensionalized quantities by an asterisk, nondimensional time393

is given by t∗/τR, positions by x∗ = x/s0, and concentrations by C∗ = C/c0, seen as a function of394

nondimensional times and positions. Functions of these quantities, such as the concentration PDF, are395

nondimensionalized accordingly; further details may be found in Appendix D. In what follows, we work396

exclusively in nondimensional units and drop the asterisks for notational brevity. The nondimensional397

transport equation is given by398

∂C(x; t)

∂t
=

1

2 Da

∂2C(x; t)

∂x2
− r[C(x, t)], (35)

where we have introduced the Damköhler number399

Da =
τD
τR
, τD =

s2
0

2D
. (36)

A large Damköhler number corresponds to fast reaction compared to the diffusion time τD associated400

with the nondimensionalization lengthscale s0, and a low Damköhler number to slow reaction. Note401

that Eq. (34) for the evolution of the concentration PDF remains unchanged when all intervening402

quantities are nondimensionalized.403

4.2 Early times – Batch dynamics404

Under the weak-coupling approximation, up to times on the order of the diffusion time, the concen-405

tration distribution is approximated as not having deformed substantially with respect to the initial406

condition, here a square pulse of unit width in nondimensional coordinates. Thus, up to nondimen-407

sional time t = Da, the system is taken to evolve according to reaction in a batch reactor. Since408

variations in the spatial distribution up to this time are considered negligible and not resolved, under409

this approximation the concentration PDF remains a Dirac delta for t 6 Da, p(c; t) ≈ δ[c− cB(t)]. We410

have (see also Appendix E):411

dcB
dt

= −cβB . (37)

The special case β = 1 corresponds to linear reactions. Decay is then exponential, cB(t) = exp(−t).412

In this classical case, reaction and transport dynamics are fully decoupled: the exact solution of the413

full reactive transport problem is simply the conservative transport solution, multiplied by exp(−t) to414

account for mass loss due to reaction. For nonlinear reactions, β 6= 1, integrating Eq. (37) yields415

cB(t) = [1− (1− β)t]
1

1−β . (38)

In nondimensional units, the total mass and concentration coincide for batch dynamics, because416

the width of the pulse is approximated as constant and equal to the initial unit width in this time417
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window. Thus, for t < Da we approximate M(t) ≈ cB(t). Note that for β < 1 the batch reaction is418

fully depleted in a finite time419

tBf =
1

1− β . (39)

If tBf < Da, the full dynamics are thus simply treated as a well-mixed batch reactor.420

4.3 Late times – Gaussian profile421

For times t < Da, [7] have verified that the dynamics are reasonably well approximated by a well-mixed422

batch reactor, disregarding transport and spatial variability in concentration. We thus focus now on423

times t > Da, for which spatial concentration variability cannot be neglected. Starting at t = Da, when424

diffusion has had sufficient time to deform the concentration pulse, the weak-coupling approximation425

consists in approximating the spatial profile as a Gaussian, whose properties are governed by the426

combined effect of reaction and diffusion as detailed below. Consider first Eq. (34) for the dynamical427

evolution of the concentration PDF. Under the Gaussian approximation, the scalar dissipation rate428

can be computed analytically. From Eqs. (12) and (13) for the Gaussian profile and (77b) for the429

scalar dissipation rate, we find430

χ(c; t) =
2πc2M (t)c2 ln[cM (t)/c]

DaM2(t)
H[cM (t)− c]H[c− cm], (40)

where we have used Eq. (14) to express the spatial variance in terms of the mass and peak concentration.431

Note that, expanding the logarithm in Taylor series for small ∆c near the peak value, c = cM (t)−∆c,432

we find that the scalar dissipation rate approaches zero linearly with ∆c. At low concentrations433

compared to the peak value, it scales as c2 with logarithmic corrections. Using Eq. (40), Eq. (34) for434

the evolution of the concentration PDF becomes435

∂p(c; t)

∂t
=
∂cβp(c; t)

∂c
+

{
1 + 2 ln[cM (t)/c]

2 ln[cM (t)/c]

+

(
1− 2 ln

cM (t)

cm
+ cβ−1

m

)
cmp(cm; t)

}
πc2M (t)p(c; t)

DaM2(t)
. (41)

Consider first the conservative case, corresponding to omitting the reactive terms involving cβ and436

cβm. As explained above, we consider a Gaussian initial condition at t = Da, and take the detection437

limit to be sufficiently low for the mass corresponding to concentrations above cm to be approximately438

equal to the total mass for all times of interest. Then, M(t) = 1, and the peak concentration is given439

by Eq. (14) with a spatial variance σ2(t) = σ2(0) + (t − Da)/Da. Using Eq. (16) for the Gaussian440

concentration PDF, it can be verified by direct calculation that Eq. (34) holds identically for all c and441

t. As a direct verification of the combined effect of reaction and diffusion on the concentration PDF,442

consider the particular case of a linear decay reaction, r(c) = c, for which analytical solutions are443

available. In this case, the concentration profile remains exactly Gaussian as before, but with a total444

mass that evolves in time as M(t) = exp(−t). The spatial variance remains unchanged with respect to445

the conservative case, and Eq. (16) remains valid with cM (t) given by Eq. (14) as before. Once again,446

direct computation of both sides of Eq. (41) shows that they are identical for all values of c and t.447

Equation (41) quantifies the full evolution of the concentration PDF and sheds light on the fun-448

damental governing processes. However, solving it directly is challenging. We will thus focus instead449

on extending the weak-coupling approach to directly compute the concentration PDF and associated450

quantities based on the evolution of the total mass M(t) and the peak concentration cM (t). This will451

allow us to obtain additional analytical insights into the dynamics. [7] focused on the evolution of452

the total mass and spatial variance. For the purpose of determining the concentration PDF, and in453

particular the mean concentration above a detection threshold and the associated variability, it is more454

convenient to quantify the dynamics in terms of the evolution of total mass and peak concentration,455
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as the latter plays a central role (see Eqs. (12), (19), and (21)). At time t = Da, when we begin456

approximating the concentration profile as Gaussian, the mass and peak are approximated as457

M(Da) = cM (Da) = cB(Da) = [1− (1− β) Da]
1

1−β , (42)

where cB(Da) is computed according to the batch solution (38). We note that in [7], instead of458

matching the peak value to the batch dynamics at t = Da, the spatial variance was set to match that459

of the initial square pulse, σ2(Da) = 1/12. This leads to qualitatively similar results and makes no460

difference at late times. The present choice enforces continuity of cM (t) at t = Da, while the previous461

choice enforces continuity of σ2(t) instead. Due to Eq. (14), the approximation of a sharp transition462

between batch dynamics and a Gaussian profile cannot enforce the continuity of both, and for the463

current choice we have σ2(Da) = 1/(2π), roughly double the initial spatial variance.464

The total mass dynamics are then obtained from the local reaction kinetics. That is, integrating465

Eq. (35) in space for fixed time and using Eq. (12) for the Gaussian profile, neglecting mass present466

at concentrations below the detection limit cm, we obtain the mass evolution for β > 0 as467

dM(t)

dt
= −M

β(t)√
β

[
2πσ2(t)

] 1−β
2 . (43)

In order to obtain an equation for the peak concentration, we employ Eq. (35) at x = 0. This gives468

dcM (t)

dt
= − cM (t)

2 Daσ2(t)
− cβM (t). (44)

Using Eq. (14) to express the spatial variance in terms of the mass and peak concentration, we obtain469

dM(t)

dt
= −M(t)√

β
cβ−1
M (t), (45a)

470

dcM (t)

dt
= − πc3M (t)

DaM2(t)
− cβM (t). (45b)

Note that Eq. (45a) for the overall reaction rate can also be obtained directly from the concentration471

PDF by using Eqs. (18) and (28). The result follows from setting cm = 0 in the lower integration472

limit, which, for β > 0, is equivalent to neglecting the mass present at concentrations lower than cm,473

as was done for the spatial profile in Eq. (43). This confirms that, as expected, knowledge of the474

concentration PDF directly determines overall reaction rates and mass evolution, without need for475

additional detailed knowledge about the spatial profile.476

Equations (45), with initial conditions at time t = Da according to Eq. (42), fully determine the477

evolution of total mass and peak concentration in this regime. Given knowledge of the mass and peak478

concentration, the concentration PDF for t > Da, based on the Gaussian assumption, is given by479

Eq. (16). In the examples considered here, we fix the minimum concentration, corresponding to an480

arbitrary lower detection limit, to cm = 10−6. Recall that, in nondimensional units, this refers to a481

detection limit six orders of magnitude below the initial concentration characterizing the rectangular482

pulse injection. The results are qualitatively similar for different cm, so long as the peak concentration483

cM (t) remains large compared to cm for the times of interest. If cM (t) approaches cm, an appreciable484

amount of mass loss will start occurring as it drops below the detection limit. The system will then485

appear completely depleted, with all detectable mass and concentrations reaching zero.486

In [7], good agreement was shown to hold between the total mass and spatial variance predicted by487

the weak-coupling approximation and numerical simulations of Eq. (35). Here, we verify the predictions488

of this approach, cast in terms of the total mass and peak concentration, for the full concentration PDF,489

as well as the time-evolution of the associated mean concentration and concentration variance. To this490

end, we first conduct resolved numerical simulations of the coupled diffusion and reaction problem,491

Eq. (35). To compute the quantities associated with model predictions, we employ Eqs. (45), which492

constitute ordinary rather than partial differential equations and can be efficiently solved numerically.493
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The numerical methods used for both these computations are detailed in Appendix C. Furthermore,494

we obtain analytical predictions for late-time behaviors under the weak-coupling approximation.495

In order to test the applicability of the Gaussian assumption for predicting concentration variability496

at times t > Da, we note that the concentration PDF associated with a Gaussian profile, Eq. (16) can497

be expressed in terms of concentrations rescaled by their (time-dependent) peak value, c′ = c/cM (t),498

as499

p′(c′; t) = cM (t)p[cM (t)c′; t] = fp(c
′)
H(1− c′)H[c′ − c′m(t)]√

ln[1/c′m(t)]
, (46)

where c′m(t) = cm/cM (t), and500

fp(c
′) =

1

2c′
√

ln(1/c′)
. (47)

The concentration PDF p′(c′; t) of rescaled concentration is independent of time except through the501

lower cutoff c′m(t) (on which it depends in terms of both its range and normalization). The func-502

tional dependency fp(c
′) on rescaled concentration under the Gaussian approximation is both time-503

independent and independent of the system parameters β and Da. In order to compare this to the504

resolved numerical results, below we compute the functional dependency according to Eq. (46), i.e., as505 √
ln[1/c′m(t)]cM (t)p[cM (t)c′; t].506

Similarly, to assess the quality of the Gaussian approximation regarding the scalar dissipation rate,507

we consider the rescaled form (see Eq. (40))508

χ′(c′; t) =
DaM2(t)

2πc4M (t)
χ[cM (t)c′, t] = fχ(c′)H(1− c′)H[c′ − c′m(t)], (48)

where the functional dependency on rescaled concentration is given by509

fχ(c′) = c′2 ln(1/c′). (49)

Below, we employ Eq. (48) to compute the functional dependency from numerical simulations, similarly510

to the case above for the concentration PDF. Comparison of the concentration PDF functional forms511

provides a metric for the performance of the Gaussian approximation regarding the relative frequency512

of occurrence of different concentration values, and comparison of the scalar dissipation rate func-513

tional forms provides complementary information about the approximation’s performance regarding514

the gradient values associated with each concentration value.515

As they correspond to qualitatively different regimes, we consider the cases β < 1, 1 < β < 3,516

and β > 3 separately below. In what follows, we also discuss analytical approximations for late-time517

behaviors. Before proceeding, we note that the starting point for these results is the fact that, for518

t > Da, the concentration profile may be approximated as Gaussian with a spatial variance that519

increases diffusively as σ2(t) ≈ t/Da [7]. Substituting into Eq. (43) and solving the resulting equation,520

we obtain an approximation for the mass evolution for t > Da,521

M(t) ≈
[
M(Da)1−β − 2√

β

1− β
3− β

(
2π

Da

) 1−β
2 [

t
3−β
2 −Da

3−β
2

]] 1
1−β

, (50)

valid for β 6= 1, 3. Recall that the case β = 1, corresponding to a first-order decay reaction, can be522

fully solved analytically. The case β = 3, which we do not analyze in detail here for brevity, behaves523

qualitatively similarly to β > 3, although extremely slow (logarithmic) decay of mass occurs at late524

times [7].525

4.4 Reaction order β < 1 — Full-depletion regime526

For β < 1, reaction rates increase with decreasing concentration, leading to full depletion in finite527

time. Under fully-mixed conditions, the depletion time tBf is given by Eq. (39). Recall that for528
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sufficiently large Da full depletion occurs before transport must be taken into account. We thus focus529

on Damköhler numbers such that Da < tBf .530

Under the combined effect of reaction and diffusion, mass is still fully depleted in a finite time tf ,531

different from tBf . Setting M(tf ) = 0 in Eq. (50) and solving for tf yields [7]532

tf ≈
[

Da
3−β
2 +

√
β

2

3− β
1− β

(
Da

2π

) 1−β
2

[1− (1− β) Da]

] 2
3−β

. (51)

For sufficiently small detection limit cm, we expect this prediction to provide a good estimate of the533

time at which the peak, mean concentration, and concentration variance reach zero. Interestingly,534

the depletion time decreases with decreasing Da. This decrease is due to the fact that, because in535

this regime reaction is faster at lower concentrations, stronger diffusion (smaller Da) leads to faster536

depletion when compared to a system with the same reaction rate. For this reason, both mass and537

peak concentration decay faster than the batch solution. In particular, for small Da � 1, we find a538

simple power-law scaling with Da,539

tf ≈
(√

β

2

3− β
1− β

) 2
3−β

(
Da

2π

) 1−β
3−β

. (52)

Note however that tf/Da increases with decreasing Da, meaning that with increasing diffusion the540

depletion time occurs increasingly later than the time t = Da at which the Gaussian approximation541

kicks in.542
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Figure 3: Functional dependency of the concentration PDF in terms of concentration rescaled by peak
value, for β = 1/2 and (a): slow reaction, Da = 10−2, (b): intermediate reaction, Da = 10−1, and (c):
fast reaction, Da = 1. Colors stand for different times, with markers showing the results of resolved
numerical simulations of the fully-coupled reaction–diffusion problem (35). Solid lines represent the
analytical solution (47) under the weak-coupling model. The dashed lines show a pure 1/c′ scaling for
reference at low concentrations and the scaling of the inverse-square-root divergence near the maximum
concentration value (see Eqs. (9) and (47)).

To illustrate these results, we take β = 1/2 as a representative example. First, we compare the543

functional dependency of the concentration PDF (see Eqs. (46) and (47)) under the weak-coupling544

approximation to that obtained from resolved numerical simulations of Eq. (35) (see Appendix A545

and Appendix C). We focus on times t such that Da 6 t < tf (see Eq. (51)). Results for different546

Damköhler numbers and times are shown in Fig. 3. Overall, the Gaussian approximation provides good547

estimates of the relative frequency of concentration values. Because, for β < 1, reaction is faster at548

lower concentrations, lower PDF values compared to the Gaussian prediction are observed at low values549
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Figure 4: Functional dependency of the scalar dissipation rate in terms of concentration rescaled by
peak value, for β = 1/2 and (a): slow reaction, Da = 10−2, (b): intermediate reaction, Da = 10−1, and
(c): fast reaction, Da = 1. Colors stand for different times, with markers showing the results of resolved
numerical simulations of the fully-coupled reaction–diffusion problem (35). Solid lines represent the
analytical solution (49) under the weak-coupling model. The dashed lines show a pure c′2 scaling
for reference at low concentrations and the linear approach to zero near the peak concentration (see
Eqs. (40) and (49)).

of concentration. This discrepancy at low concentrations also leads to a corresponding overprediction550

of higher concentrations, due to the normalization condition for the PDF. Although the bulk of the551

mass distribution is generally well captured, as discussed below, high Da leads to significant depletion552

at early times and results in a worse approximation.553

Similar conclusions are reached from consideration of the functional dependency of the scalar dis-554

sipation rate (see Eqs. (48) and (49)), shown in Fig. 4. The Gaussian approximation again provides555

good estimates, but higher scalar dissipation rates, corresponding to higher gradients, are observed at556

low concentration values. The discrepancy is more pronounced in the same cases and for the same557

reasons as discussed regarding the concentration PDF, although in this case normalization does not558

play a role and thus no associated discrepancy at higher concentration values is observed.559

Next, we turn to the evolution of the mass and peak concentration, shown in Fig. 5. As predicted560

by the weak-coupling approximation, both quantities reach zero in finite time as complete depletion561

occurs. However, due to the nonlinear nature of the reaction and the presence of diffusion, the peak562

dynamics differ from the total mass dynamics, as captured by Eqs. (45). Note the onset of a diffusive563

scaling of peak decay for low Damköhler, showing that the dynamics are controlled by diffusion at564

times t ∼ Da (corresponding to dimensional times on the order of the diffusion time). For late times,565

as concentration becomes smaller, reaction becomes more efficient. The dynamics depart from the566

diffusive scaling and full depletion eventually occurs. The slight underprediction of the depletion time tf567

by the analytical approximation compared to the numerically-computed weak-coupling approximation568

results is due mostly to the breakdown of the linear variance growth approximation just before complete569

depletion, as observed in [7]. When comparing the predictions of the weak-coupling approximation to570

the resolved numerical simulations, we find overall good agreement. Regarding peak concentrations,571

the approximation of a sharp transition between batch and Gaussian-profile dynamics at t = Da572

leads to some discrepancy at times t ∼ Da, which becomes more pronounced with increasing Da. As573

the Damköhler number increases and the depletion time approaches Da from above (tf/Da ∼ 1, see574

Eq. (51)), stronger discrepancies are observed for both the mean concentration and the total mass,575

due to significant depletion before an approximately Gaussian profile is achieved. Nonetheless, the576

predictions for tf still provide a reasonable approximation. Recall that, for higher Da > tBf = 2577

(Eq. (39)), diffusion does not play a role before depletion the dynamics become well described by578

simple batch kinetics.579
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Figure 5: Temporal evolution of (a): total mass and (b): peak concentration for β = 1/2. Colors
stand for different Damköhler numbers, markers show the results of resolved numerical simulations of
the fully-coupled reaction–diffusion problem (35), solid lines are numerical results based on the weak-
coupling model (Eqs. (45)), and dash-dotted lines show the purely-diffusive behavior. The vertical
dashed lines show approximate analytical results for the depletion time (Eq. (51)).

Note that defining a mean concentration in terms of a fixed, reference spatial region, as done580

in [7], leads to a mean concentration scaling identical to that of the total mass, since in that case581

〈C(t)〉 = M(t)/|Ω| with constant domain size |Ω|. Interestingly, when the mean concentration is582

instead defined, as here, in terms of the temporally-variable region where concentration is above a583

detection limit, the concentration mean and variance are instead fully controlled by the peak dynamics,584

see Eqs. (19) and (21). This leads also to a similar quality of the weak-coupling approximation when585

compared to the resolved simulations, as shown in Fig. 6. In particular, for low Damköhler numbers,586

our approach accurately predicts a transition from diffusion- to reaction-controlled dynamics, governed587

by the peak behavior described above, for both the mean concentration and the concentration variance.588

4.5 Reaction order 1 < β < 3 — Power-law-decay regime589

In this regime, the interplay between reaction and diffusion leads to power-law mass decay at late590

times. Indeed, for t� Da, Eq. (50) reduces to [7]591

M(t) ≈
√

2π

Da

(√
β

2

3− β
β − 1

) 1
β−1

t−
3−β

2(β−1) . (53)

Substituting in Eq. (45b), and noting that, for 1 < β < 3, as the peak concentration decreases the592

reactive term eventually dominates over the diffusive term, we have for late times593

dcM (t)

dt
≈ −cβM (t). (54)

Solving this equation, we obtain the late time peak decay594

cM (t) ≈ [(β − 1)t]−
1

β−1 . (55)

This behavior is characteristic of reaction-dominated conditions, and identical to the late-time batch595

dynamics, see Eq. (38). However, note that the total mass, Eq. (53), exhibits a different temporal596

scaling, as it results from the reactive decay of Gaussian-distributed concentration values undergoing597

diffusive spreading. This results, in contrast to the β < 1 regime, in slower asymptotic mass decay598

than predicted by batch dynamics, because in this case reaction is slower at lower concentrations.599
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Figure 6: Temporal evolution of (a): mean concentration and (b): concentration variance for β =
1/2. Colors stand for different Damköhler numbers, markers show the results of resolved numerical
simulations of the fully-coupled reaction–diffusion problem (35), solid lines are numerical results based
on the weak-coupling model (Eqs. (45)), and dash-dotted lines show the purely-diffusive behavior. The
vertical dashed lines show approximate analytical results for the depletion time (Eq. (51)).

We now take β = 2 as a representative example. Again, we start by assessing the performance600

of the Gaussian assumption for the functional dependency of the concentration PDF (Fig. 7). The601

approximation provides very good estimates of the frequency of occurrence of different concentrations.602

A slight underestimation of low concentrations, and corresponding overestimation of intermediate con-603

centrations, occurs at late times for large Damköhler number. When considering the scalar dissipation604

rate (Fig. 8), we again observe very good agreement, with a corresponding slight but more discernible605

overestimation of concentration gradients at low concentrations. In this case, reaction is less efficient606

at low concentrations, so these results are somewhat counter-intuitive. Indeed, reaction is stronger607

and therefore has a more pronounced effect compared to diffusion at high concentrations. However,608

when the corresponding spatial profile is compared to a Gaussian of the same variance and maximum609

concentration, the latter underestimates the intermediate values but overestimates the tails. This is610

illustrated in Fig. 9 for the case of Da = 102 at time t = 10 Da. This effect is slight, but it is more611

pronounced at the level of concentration gradients.612

Next, we consider the evolution of total mass and peak concentration, see Fig. 10. The analytical613

approximation captures the asymptotic scalings correctly, although it slightly underpredicts the mass614

and overpredicts the peak concentration when compared to the numerically-computed weak-coupling615

approximation results. These discrepancies result in this case from small corrections to the σ2(t) ≈616

t/Da diffusive spatial variance growth approximation of [7], implicit in Eq. (50) for the approximate617

late-time mass evolution. Again, the onset of a purely-diffusive scaling of peak decay is visible for low618

Damköhler before the asymptotic regime is reached. The weak-coupling approximation provides very619

good estimates of the resolved dynamics, even for Da ∼ 1. As expected, the largest discrepancies occur620

for times t ∼ Da, around which the approximation of a sharp transition between batch and Gaussian-621

profile dynamics has the most impact. In addition, a sharp depletion of mass can be observed at622

late times for the high-Da cases due to the detection limit. As expected, the transition from the623

dynamics predicted by the weak-coupling approximation to this sharp depletion occurs when the peak624

concentration becomes comparable to cm.625

As for the β < 1 case, the concentration mean and variance (Fig. 11) are controlled by the peak626

dynamics, see Eqs. (19) and (21). However, the changes in the size of the domain where concentration is627

larger than the detection limit lead to logarithmic corrections to the purely-reactive power-law scaling628

observed for the peak concentration. As for the mass and peak, the weak-coupling approximation629

19



10
-6

10
-4

10
-2

10
0

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
-6

10
-4

10
-2

10
0

10
-6

10
-4

10
-2

10
0

Figure 7: Functional dependency of the concentration PDF in terms of concentration rescaled by peak
value, for β = 2 and (a): slow reaction, Da = 10−2, (b): intermediate reaction, Da = 1, and (c):
fast reaction, Da = 102. Colors stand for different times, with markers showing the results of resolved
numerical simulations of the fully-coupled reaction–diffusion problem (35). Solid lines represent the
analytical solution (47) under the weak-coupling model. The dashed lines show a pure 1/c′ scaling for
reference at low concentrations and the scaling of the inverse-square-root divergence near the maximum
concentration value (see Eqs. (9) and (47)).

provides very good predictions of the full dynamics, with the quality of the approximation improving630

for late times t & 10 Da. The discrepancies in the analytical vs numerical results for the weak-coupling631

approximation result from the discrepancies in the computation of the peak concentration discussed632

above.633

4.6 Reaction order β > 3 — Incomplete-depletion regime634

In this case, the substantial reaction slowdown associated with decreasing concentrations, enhanced635

by diffusion-induced dilution, prevents the complete depletion of mass by reaction, even for arbitrarily636

large times. Taking the limit t→∞ in Eq. (50) yields the leftover mass [7]637

M∞ ≈
[

1 +

(
1 +

2

(β − 3)
√

(2π)β−1β

)
(β − 1) Da

]− 1
β−1

. (56)

Substituting in Eq. (45b) as before, we now conclude that the late-time dominant contribution is638

diffusive, so that639

dcM (t)

dt
≈ − πc

3
M (t)

DaM2
∞
. (57)

Solving this equation leads, for large times, to640

cM (t) ≈M∞
√

Da

2πt
. (58)

As the mass becomes constant at late times, the decay of peak concentration exhibits the signature of641

diffusive plume spreading. The mass in a well-mixed batch decreases asymptotically to zero, meaning642

the diffusing system leads to less efficient reaction, as expected since the reaction slows down strongly643

with decreasing concentration in this case. In contrast, however, the diffusion-governed peak decay is644

asymptotically faster than the corresponding batch prediction, Eq. (38).645

To illustrate this regime, we take β = 4 as a representative example. As predicted by the weak-646

coupling approximation, reaction is sufficiently inefficient at low concentrations for diffusive spreading647

20



10
-6

10
-4

10
-2

10
0

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
-6

10
-4

10
-2

10
0

10
-6

10
-4

10
-2

10
0

Figure 8: Functional dependency of the scalar dissipation rate in terms of concentration rescaled by
peak value, for β = 2 and (a): slow reaction, Da = 10−2, (b): intermediate reaction, Da = 1, and (c):
fast reaction, Da = 102. Colors stand for different times, with markers showing the results of resolved
numerical simulations of the fully-coupled reaction–diffusion problem (35). Solid lines represent the
analytical solution (49) under the weak-coupling model. The dashed lines show a pure c′2 scaling
for reference at low concentrations and the linear approach to zero near the peak concentration (see
Eqs. (40) and (49)).

to completely arrest mass decay. This means that the system dynamics are essentially dominated by648

diffusion. Correspondingly, both the concentration PDF and the scalar dissipation rate show excellent649

agreement with the Gaussian prediction, as shown in Figs. 12 and 13, respectively.650

Next, we consider the evolution of total mass and peak concentration, see Fig. 14. In this case, the651

analytical asymptotic predictions provide very accurate estimates of the weak-coupling dynamics. As652

expected from the analytical discussion, the results become indistinguishable from a purely diffusive653

system for sufficiently low Da. However, when comparing to the resolved numerical simulations, we654

find that the weak-coupling approximation underpredicts the asymptotic mass at higher Da. The main655

reason for the discrepancy is that, because the reaction is particularly inefficient at low concentrations,656

the system transitions to the Gaussian regime earlier in this case. Indeed, as shown by the dash-dotted657

lines in Fig. 14, assuming the transition occurs at t = Da /10 rather than at t = Da leads to improved658

estimates of the asymptotic mass. To obtain this prediction, we proceed as for Eq. (56) but set the659

initial condition of the weak-coupling Gaussian regime at t = Da /10 (see Eq. (42)), leading to660

M∞ ≈
[

1 +

(
1 +

2 · 10
β−1
2

(β − 3)
√

(2π)β−1β

)
(β − 1)

Da

10

]− 1
β−1

. (59)

Note that the scaling of asymptotic mass with Da, and the relationship between asymptotic peak661

dynamics and asymptotic mass, Eq. (58), remain unchanged.662

The concentration mean and variance for this case are shown in Fig. 15. The considerations663

pertaining to the 1 < β < 3 case regarding the scaling of concentration mean and variance in terms of664

the peak concentration remain valid here, but in this case we observe logarithmically-corrected diffusive665

rather than reactive scalings. Once again, the low-Da case is indistinguishable from purely-diffusive666

dynamics. In addition, due to the low efficiency of reaction at low concentrations, the scaling behavior667

of both mean concentration and concentration variance remains purely diffusive, even for large Da.668

Overall, as for the total mass and peak concentration, the analytical approximation provides very good669

asymptotic estimates of the weak-coupling approximation, but better predictions of the fully-resolved670

dynamics are obtained by assuming the transition to the Gaussian regime occurs at time t = Da /10671

rather than at t = Da.672
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Figure 9: Concentration profile for β = 2 and Da = 102, at time t = 10 Da. The solid line shows the
profile computed from resolved numerical simulations of Eq. (35), and the dashed colored line shows
a Gaussian profile with the same variance σ2(t) and maximum concentration cM (t). The horizontal
dashed line shows the lower detection limit.

5 Discussion and conclusions673

We have presented a detailed discussion of the theoretical and numerical properties of the concentra-674

tion PDF of a reactive plume evolving under the coupled action of dilution and nonlinear reaction. The675

concentration PDF encodes the full point statistical variability of concentration values found through-676

out a spatial domain, and is therefore of central interest to both fundamental and applied reactive677

transport and risk assessment problems.678

As a first step towards solving the full advection–diffusion–reaction system, we have conducted a679

detailed analysis of nonlinear decay of a single solute undergoing one-dimensional diffusion. We have680

shown that the weak-coupling approximation developed in [7] to quantify the evolution of total mass681

and mean concentration in a fixed reference domain can be extended to quantify the evolution of682

mean concentrations above a lower detection limit, along with the associated variability. In particular,683

we have found that the late-time Gaussian profile approximation leads to good predictions of the684

concentration PDF. Even for this simple one-dimensional diffusive system, the effective reaction kinetics685

governing these quantities exhibit rich dynamics. In contrast to well-mixed batch kinetics, the decay686

of concentrations at different Damköhler numbers can be dominated by diffusive or reactive effects687

at different times. Late-time concentrations can exhibit complete extinction, power-law decay, or688

complete arrest of reaction depending on the reaction order. The Gaussian approximation underlying689

the weak-coupling approach allows us to predict the associated concentration variance. Remarkably,690

the dynamics of the maximum concentration value, which provide the key control on the mean and691

variance of concentrations above a given detection threshold, differ qualitatively from the dynamics of692

total mass. In particular, for low Damköhler numbers, both the mean concentration and associated693

variability exhibit diffusion-controlled decay for times on the order of the diffusion time, for any reaction694

order. This diffusive control persists across all times and Damköhler numbers for strongly superlinear695

decay reactions (of order β > 3), whereas reaction is the fundamental mechanism controlling late-time696

and/or large-Da dynamics for lower reaction orders.697

We have also derived a dynamical equation for the evolution of the concentration PDF in the698

nonlinear reaction–diffusion problem, showing that the impact of transport is encoded in the scalar699

dissipation rate seen as a function of concentration. It is important to note that the generalization of700

this equation to multiple dimensions, variable advection and/or diffusion tensor, and arbitrary reaction701

rates, for which concentration is no longer necessarily monotonically decreasing, is not straightforward.702
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Figure 10: Temporal evolution of (a): total mass and (b): peak concentration for β = 2. Colors
stand for different Damköhler numbers, markers show the results of resolved numerical simulations of
the fully-coupled reaction–diffusion problem (35), solid lines are numerical results based on the weak-
coupling model (Eqs. (45)), dashed lines show approximate asymptotic analytical results (Eqs. (53)
and (55)), and dash-dotted lines show the purely-diffusive behavior.

Nonetheless, we believe the approach developed here, highlighting the role of the scalar dissipation rate,703

has the potential to form the basis for upscaling procedures in more complex systems. In particular, as704

discussed in Section 3, the dynamics of reaction under advection–diffusion in heterogeneous flows, in705

both two- and three-dimensional porous media, can be reduced to one-dimensional reaction–diffusion706

equations along the principal direction of compression on a collection of lamellar structures. With this707

in mind, further work will focus on the generalization of the approach developed here to the dynamics708

of Gaussian profiles subject to stretching-enhanced diffusion over an ensemble of lamellae.709
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A Discretization720

When computing the concentration PDF numerically, discretizations are typically employed both spa-721

tially and for the concentration values. As a simple example that highlights the central concepts,722

consider a regular spatial discretization into a grid with constant cell volume Vg, with each grid cell723

associated with the average concentration within it. According to the argument for constant concen-724

tration regions developed in the previous section, for each fixed time t, the concentration PDF is then725
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Figure 11: Temporal evolution of (a): mean concentration and (b): concentration variance for β =
2. Colors stand for different Damköhler numbers, markers show the results of resolved numerical
simulations of the fully-coupled reaction–diffusion problem (35), solid lines are numerical results based
on the weak-coupling model (Eqs. (45)), dashed lines show approximate asymptotic analytical results
(Eqs. (19) and (21), using Eq. (55) for the peak concentration), and dash-dotted lines show the purely-
diffusive behavior.

estimated as726

p(c; t;Ng) =
1

Ng

Ng∑
i=1

δ[c− ci(t)], (60)

where Ng = |Ω|/Vg is the number of grid points and ci is the average concentration in cell i. Note that727

the ci associated with different cells are not necessarily all different.728

Further discretizing concentration into bins leads to a probability mass function with values for the729

probability of concentration in each bin Bk = [c(k), c(k+1)[, k > 0:730

pk(t;Ng) =
1

Ng

Ng∑
i=1

H[ci(t)− c(k)]H[c(k+1) − ci(t)], (61)

where H(·) is the Heaviside step function. This means that the probability of finding a concentration731

value in bin k is the fraction of cells where the concentration falls within bin k. If we take concentration732

bin widths ∆c to be constant, c(k) = k∆c for k > 0, and approximate the PDF of concentration by733

dividing probabilities by ∆c (as in Fig. 2), we obtain734

p(c; t;Ng,∆c) =
1

Ng∆c

Ng∑
i=1

H[ci(t)− k∆c]H[(k + 1)∆c− ci(t)]. (62)

These discretization procedures generalize directly to a multispecies system. In that case, concentration735

bins refer to the simultaneous attainment of concentration values of each species. The associated736

probabilities are computed as above by counting spatial cells where these values occur simultaneously.737

The procedure also generalizes directly to non-uniform and/or time-dependent spatial cell sizes and/or738

concentration bins. More involved techniques employing kernel reconstructions of the concentration739

field may be formalized in a similar manner [80–82].740

The maximum resolution of the discretized concentration PDF described above is given by 1/(Ng∆c),741

and the maximum PDF value is 1/∆c. We now discuss the impact of local spatial extrema, which742

can be associated with divergences of the continuous PDF as discussed in Section 2.3, on the dis-743

cretized computation. It is also important to note that sources of error typically come into play in the744

24



10
-6

10
-4

10
-2

10
0

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
-6

10
-4

10
-2

10
0

10
-6

10
-4

10
-2

10
0

Figure 12: Functional dependency of the concentration PDF in terms of concentration rescaled by
peak value, for β = 2 and (a): slow reaction, Da = 10−2, (b): intermediate reaction, Da = 1, and (c):
fast reaction, Da = 102. Colors stand for different times, with markers showing the results of resolved
numerical simulations of the fully-coupled reaction–diffusion problem (35). Solid lines represent the
analytical solution (47) under the weak-coupling model. The dashed lines show a pure 1/c′ scaling for
reference at low concentrations and the scaling of the inverse-square-root divergence near the maximum
concentration value (see Eqs. (9) and (47)).

determination of the spatial concentration field. For example, if the latter is computed based on a par-745

ticle tracking simulation of some transport and reaction dynamics, fluctuations arise due to the finite746

number of particles, whereas in a standard Eulerian simulation the spatial discretization impacts the747

determination of the true concentration field. We focus here on the error resulting from concentration748

discretization ∆c, which is dominant given a sufficiently-resolved spatial concentration field.749

Consider first a region of constant concentration. A delta peak δ(c−c0)|Ω0|/|Ω| in the concentration750

PDF, associated as discussed above to a subdomain Ω0 of volume |Ω0| where C(x; t) = c0, corresponds751

under sufficiently fine spatial discretization to a discretized contribution |Ω0|/(|Ω|∆c). Thus, halving752

the concentration discretization ∆c leads to a doubling of the numerically-computed peak. More753

generally, refining the discretization as ∆c → a∆c, a < 1, yields p(c0; t;Ng, a∆c) = ap(c0; t; ∆c).754

On the other hand, smooth extrema correspond to divergences only for spatial dimension d = 1, for755

which they lead to an inverse-square-root divergence, as shown in Section 2.3. In this case, averaging756

the concentration over a range ∆c near the spatial extreme value c0 yields p(c0; t; ∆c) ∝ 1/
√

∆c,757

so that p(c0; t; a∆c) ≈ √ap(c0; t; ∆c). Thus, observing these behaviors in a numerical computation758

is a signature of the presence of a spatial extremum, and the scaling behavior with concentration759

discretization refinement indicates its type.760

B Dynamical equation for the concentration PDF761

In this appendix, we provide a detailed derivation of the dynamical equation for the concentration PDF762

discussed in the main text, Eq. (34), by explicitly determining the diffusive transport and reaction763

contributions in Eq. (29). We first consider the effect of diffusion, ∆pD(c; t). For one-dimensional764

diffusion and nonlinear concentration decay, assuming a symmetric initial condition about the origin765

and monotonically decreasing with distance from the latter, the spatial concentration profile retains766

these properties for all times. Therefore, we have |Λ(c; t)| = 2 for all concentrations within the range767

observed at time t, corresponding to the two points x = ±xc(c; t) where C(x; t) = c. Furthermore, the768

concentration gradient magnitude is the same at ±xc, so that its harmonic average is simply gh(c; t) =769

∇C[−xc(c; t), t] = −∇C[xc(c; t), t]. Using Eq. (8) and the fact that |Λ(c; t)| is time-independent within770
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Figure 13: Functional dependency of the scalar dissipation rate in terms of concentration rescaled by
peak value, for β = 2 and (a): slow reaction, Da = 10−2, (b): intermediate reaction, Da = 1, and (c):
fast reaction, Da = 102. Colors stand for different times, with markers showing the results of resolved
numerical simulations of the fully-coupled reaction–diffusion problem (35). Solid lines represent the
analytical solution (49) under the weak-coupling model. The dashed lines show a pure c′2 scaling
for reference at low concentrations and the linear approach to zero near the peak concentration (see
Eqs. (40) and (49)).

the concentration range observed, we can write the change in the concentration PDF as771

∂p(c; t)

∂t
= −p(c; t)

[
∂ ln |Ω(t)|

∂t
+
∂ ln gh(c; t)

∂t

]
. (63)

If a fixed reference volume is considered, the term corresponding to the change of |Ω(t)| in time is772

zero. As discussed in the main text, we focus here on the case of a minimum detection limit cm and a773

time-varying domain Ω(t) where c > cm.774

In order to compute the terms in square brackets, we consider the time evolution of quantities on775

a given concentration surface (in one dimension, at the points ±xc(c; t)). By definition, the change in776

time of concentration over such a surface is zero, so that777

∂C[xc(c; t); t]

∂t
=

[
∂xc(c; t)

∂t

∂C(x; t)

∂x
+
∂C(x; t)

∂t

]
x=xc(c;t)

= 0 (64)

Taking into account that, at x = xc, ∂/∂x = −gh(c; t)∂/∂c, the changes associated with transport lead778

to779

∂xc(c; t)

∂t
=

1

2gh(c; t)

∂χ(c; t)

∂c
, (65)

where χ(c; t) = χx[±xc(c; t); t] = Dg2
h(c; t) is the concentration-dependent scalar dissipation rate. The780

same approach for the variation of the concentration gradient leads to781

∂gh(c; t)

∂t
= −

[
∂xc(c; t)

∂t

∂2C(x; t)

∂x2
+
∂

∂t

∂C(x; t)

∂x

]
x=xc(c;t)

, (66)

and we find782

∂ ln gh(c; t)

∂t
=

1

2

∂2χ(c; t)

∂c2
− 1

4

∂ lnχ(c; t)

∂c

∂χ(c; t)

∂c
. (67)

The change in domain volume Ω(t) = 2xc(cm; t) due to dilution of concentration below the detection783

limit cm obeys784

∂|Ω(t)|
∂t

= 2
∂xc(cm; t)

∂t
, (68)
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Figure 14: Temporal evolution of (a): total mass and (b): peak concentration for β = 4. Colors
stand for different Damköhler numbers, markers show the results of resolved numerical simulations of
the fully-coupled reaction–diffusion problem (35), solid lines are numerical results based on the weak-
coupling model (Eqs. (45)), and dashed lines show approximate asymptotic analytical results (Eqs. (56)
and (58)). Dash-dotted lines show analytical results assuming the transition to the Gaussian regime
occurs at time t = Da /10 rather than at t = Da (Eq. (59)).

Using Eq. (65), this leads to785

∂|Ω(t)|
∂t

=
1

gh(cm; t)

∂χ(c; t)

∂c

∣∣∣∣∣
c=cm

, (69)

so that, dividing through by |Ω(t)| and using Eq. (8),786

∂ ln |Ω(t)|
∂t

=
p(cm; t)

2

∂χ(c; t)

∂c

∣∣∣∣∣
c=cm

. (70)

Using Eq. (63) for the transport contribution, these results lead to787

∆pD(c; t) = p(c; t)

[
1

4

∂ lnχ(c; t)

∂c

∂χ(c; t)

∂c
− 1

2

∂2χ(c; t)

∂c2
− p(cm; t)

2

∂χ(c; t)

∂c

∣∣∣∣∣
c=cm

]
. (71)

We now turn to the reaction term, ∆pR. Consider a small change dc in the concentrations due to788

reaction only, over a small time interval dt. The probability p(c; t+ dt) dc of finding concentrations in789

the infinitesimal vicinity dc of c decreases due to reaction at rate r(c) away from c, and increases due790

to decrease in nearby concentrations towards c. Thus,791

[p(c; t+ dt)− p(c; t)] dc =

ns∑
j=1

[r(c+ dc)p(c+ dc; t)− r(c)p(c; t)] dt. (72)

Expanding the first term on each side in Taylor series, and dividing through by dt and dc, we obtain792

∂p(c; t)

∂t
=
∂r(c)p(c; t)

∂c
. (73)

When a fixed minimum concentration detection limit is considered, as discussed above, it is necessary793

to take the change in volume (in one dimension, length) |Ω(t)| due to reactive decay of the minimum794
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Figure 15: Temporal evolution of (a): mean concentration and (b): concentration variance for β =
4. Colors stand for different Damköhler numbers, markers show the results of resolved numerical
simulations of the fully-coupled reaction–diffusion problem (35), solid lines are numerical results based
on the weak-coupling model (Eqs. (45)), and dashed lines show approximate asymptotic analytical
results (Eqs. (19) and (21), using Eqs. (56) and (58) for the peak concentration). Dash-dotted lines
show analytical results assuming the transition to the Gaussian regime occurs at time t = Da /10
rather than at t = Da (Eqs. (19) and (21), using Eqs. (58) and (59) for the peak concentration).

concentration into account. Using the same techniques as before, we obtain for the change in the795

domain size due to reaction:796

∂ ln |Ω(t)|
∂t

= −p(cm; t)r(cm). (74)

Thus, the complete effect of reaction is797

∆pR(c; t) =
∂r(c)p(c; t)

∂c
+ p(c; t)p(cm; t)r(cm). (75)

Note that integration of the right-hand side from c = cm to c = ∞ yields zero, which ensures the798

reactive contribution conserves probability for arbitrary r(c). Substituting the effects of transport799

and reaction, Eqs. (33) and (33), in Eq. (29) leads to the dynamical Eq. (34) for the evolution of the800

concentration PDF under one-dimensional diffusion and nonlinear decay.801

C Numerical methods802

In this appendix, we provide details on the numerical methods used to integrate the weak-coupling803

equations (45) and the reaction–diffusion equation (35). Regarding Eqs. (45), which are ordinary differ-804

ential equations, we implemented a standard fourth-order Runge–Kutta method in the C++ language.805

This method was chosen for its simplicity of implementation and high accuracy, and also because, as806

an explicit method, it provides a convenient approach to integrate these nonlinear equations without807

requiring numerical root-finding methods. We employed a time step ∆t = 10−2 min{Da, 1/Da} for808

the temporal discretization, which we verified led to consistently converged results.809

For the fully-coupled reaction–diffusion problem, Eq. (35), we employed the py-pde open-source810

Python package for solving partial differential equations [79]. We used a regular finite difference811

discretization of a one-dimensional domain of half-width L and second-order centered differences for812

the spatial derivative approximations. For the time integration, we employed an explicit Forward813

Euler scheme. We set reflecting boundary conditions at the edges of the computational domain, but814

we verified that the latter was sufficiently large that no appreciable mass reached the edges, rendering815
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Table 1: Discretization parameters used in computing solutions of Eq. (35) to determine the mass and
concentration peak, mean, and variance. For these computations, we employed a temporal discretiza-
tion ∆t = amin{Da, 1/Da} and a spatial discretization ∆x = b

√
∆t/Da. The corresponding values

of (a, b) for different reaction orders β and Damköhler numbers Da are given in the table.

β \ Da 10−2 10−1 100 101 102

1/2 (10−4, 1) (10−4, 1) (5 · 10−7, 1) − −
2 (10−2, 1) (10−2, 1) (10−2, 1) (10−1, 2) (10, 4)

4 (10−3, 1) (10−2, 1) (10−2, 1) (10−1, 1) (10−1, 1)

Table 2: Discretization parameters used in computing solutions of Eq. (35) to determine the concentra-
tion PDF and scalar dissipation rate. For these computations, we employed a temporal discretization
∆t = amin{Da, 1/Da} and a spatial discretization ∆x =

√
∆t/Da. The corresponding values of a

for different reaction orders β and Damköhler numbers Da are given in the table.

β \ Da 10−2 10−1 100 101 102

1/2 10−4 10−4 5 · 10−6 − −
2 10−3 − 10−4 − 10−2

4 10−4 − 10−4 − 10−1

the choice of boundary conditions irrelevant. Since the late-time variance growth is approximately816

diffusive, L = 10
√
tm/Da, where tm is the maximum simulation time, may be used as a simple817

estimate of necessary domain size. However, because of the lower detection limit cm = 10−6 used in818

the computation of the quantities of interest, we found that in practice it was never necessary to use819

L > 1500 for the simulations conducted here. We note that, for β < 1, where complete depletion of820

concentrations can happen in finite time, the increase of reaction rates with decreasing concentration821

values can lead to numerical issues, because very low concentrations can drop below zero within a time822

step. We avoid this issue by setting negative concentrations to zero before computing reaction rates.823

We chose the spatial and temporal discretizations so as to ensure good accuracy while maintaining824

reasonable simulation times. The discretization parameters for different system parameters β and Da825

are summarized in Table 1 for the mass and concentration peak, mean, and variance calculations, and826

in Table 2 for the concentration PDF and scalar dissipation rate.827

The concentration PDF was obtained by counting discretized spatial locations where the concen-828

tration value fell within prescribed bins (see also Section A). In order to accurately resolve both low829

and high concentrations, we employed n` logarithmically-spaced concentration bins for concentrations830

between the lower detection limit cm and 2cM (t)/3, where the time-dependent peak value cM (t) was831

determined from the numerical concentration profiles, and nh linearly-space bins for the remaining832

concentrations between 2cM (t)/3 and cM (t). For the lower, intermediate, and higher time examined833

in each case, we employed (n`, nh) = (20, 10), (15, 8), and (10, 6), respectively. The scalar dissipation834

rate was calculated according to Eq. (77b) by numerically computing the spatial derivative at each dis-835

cretized spatial location (in the rising limb of the symmetric concentration profile), using second-order836

central differences. The corresponding concentration values at each spatial location were recorded and837

used to obtain the scalar dissipation rate as a function of concentration.838
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D Problem setup and nondimensionalization839

This appendix provides additional details on the nondimensionalization used in Section 4. Denoting840

nondimensionalized quantities by an asterisk, we have841

C∗(x∗; t∗) =
C(s0x∗, τRt∗)

c0
, r∗(c∗) =

τR
c0
r(c0c∗) = cβ∗ , (76)

where the characteristic reaction time τR = κ−1c1−β0 . The minimum and maximum concentrations842

cM (t) and cm(t) are normalized in the same manner. Similarly, the nondimensional spatial variance843

σ2
∗(t∗) = σ2(τRt∗)/s

2
0. The concentration PDF and scalar dissipation are then nondimensionalized844

accordingly as845

p∗(c∗; t∗) = c0p(c0c∗; τRt∗), (77a)

χ∗(c∗; t∗) =
τR
c20
χ(c0c∗; τRt∗) =

1

2 Da

(
∂C∗(x∗, t∗)

∂x∗

)2

x∗=xc(c)/s0

, (77b)

with the Damköhler number Da = τD/τR.846

Note that, in nondimensional units, the pulse initial condition is given by a unit-width rectangle847

centered at the origin,848

C∗(x∗; 0) = H (1/2− x∗)H (1/2 + x∗) , (78)

which implies p∗(c∗; 0) = δ(c∗ − 1). The batch concentration cB(t) for the well-mixed problem is849

nondimensionalized as above, and cB∗(0) = 1.850

E Batch dynamics851

Here, we provide some details on the equations governing the well-mixed batch problem discussed in852

Section 4 and its relation to the concentration PDF. Noting that p(c; t) = δ[c − cB(t)] for the batch853

problem, where cB(t) = C(x; t) is the homogeneous concentration over the domain, and assuming854

cB(t) > cm, Eq. (34) becomes855

∂p(c; t)

∂t
=
∂r(c)p(c; t)

∂c
. (79)

Multiplying through by c and integrating over c (using integration by parts on the right hand side),856

we recover the standard well-mixed rate law for the batch concentration as a function of time,857

dcB(t)

dt
= −r[cB(t)]. (80)

Substituting Eq. (76) for the rate yields Eq. (37).858

Once cB(t) drops below cm, at some time tm, the domain Ω(t) where concentrations are above this859

detection limit becomes empty, and the concentration PDF becomes ill-defined. By convention, we860

can set cB(t > tm) = 0 and p(c; t > tm) = δ(c), which conveys the meaning that concentrations are861

zero everywhere (below the detection limit).862
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ity density functions of concentrations for mixing-controlled reactive transport in heterogeneous942

aquifers. Mathematical geosciences, 41(3):323–351, 2009.943

[36] Pietro De Anna, Tanguy Le Borgne, Marco Dentz, Diogo Bolster, and Philippe Davy. Anomalous944

kinetics in diffusion limited reactions linked to non-Gaussian concentration probability distribution945

function. J. Chem. Phys., 135(17):174104, 2011.946

[37] A. Bellin, G. Severino, and A. Fiori. On the local concentration probability density function of947

solutes reacting upon mixing. Water Resour. Res., 47(1), 2011.948

[38] Olaf A Cirpka, Felipe PJ de Barros, Gabriele Chiogna, and Wolfgang Nowak. Probability density949

function of steady state concentration in two-dimensional heterogeneous porous media. Water950

Resour. Res., 47(11), 2011.951

32



[39] Gabriele Chiogna and Alberto Bellin. Analytical solution for reactive solute transport considering952

incomplete mixing within a reference elementary volume. Water Resour. Res., 49(5):2589–2600,953

2013.954

[40] Nicolae Suciu, Florin A Radu, Sabine Attinger, L Schüler, and Peter Knabner. A fokker–planck955
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