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ABSTRACT
Exoplanets have been observed at many stages of their host star’s life, including the main-
sequence (MS), subgiant and red giant branch stages. Also, polluted white dwarfs (WDs) likely
represent dynamically active systems at late times. Here, we perform three-body simulations
which include realistic post-MS stellar mass-loss and span the entire lifetime of exosystems
with two massive planets, from the endpoint of formation to several Gyr into the WD phase
of the host star. We find that both MS and WD systems experience ejections and star–
planet collisions (Lagrange instability) even if the planet–planet separation well-exceeds the
analytical orbit-crossing (Hill instability) boundary. Consequently, MS-stable planets do not
need to be closely packed to experience instability during the WD phase. This instability
may pollute the WD directly through collisions, or, more likely, indirectly through increased
scattering of smaller bodies such as asteroids or comets. Our simulations show that this
instability occurs predominately between tens of Myr to a few Gyr of WD cooling.

Key words: planets and satellites: dynamical evolution and stability – planet-star interac-
tions – stars: AGB and post-AGB – stars: evolution – white dwarfs.

1 IN T RO D U C T I O N

A planet’s life may be split into four distinct stages: (1) forma-
tion and concurrent dynamical excitation, (2) main-sequence (MS)
evolution, (3) evolution during post-MS stellar phase changes and
(4) white dwarf (WD) evolution. The first stage generally lasts no
longer than 0.1 per cent of the entire MS lifetime. The second stage
is relatively dynamically quiescent, with only occasional but often
important scattering interactions. In the third stage, the planet is
subject to dynamical changes due to the star’s violent actions as it
becomes a giant. In the final stage, the star has become a WD, and
the planet again enters and remains in a phase of relative dynam-
ical quiescence occasionally punctuated by scattering interactions
or external forcing. This general picture, which does not include
possibilities such as the capture of free-floating planets, planetary
destruction due to supernovae, or multiple host stars, describes the
life cycle of the vast majority of known exoplanets.

The volume of planetary literature investigating the first two
stages dwarfs the literature describing the final two stages, despite
the fact that the Universe is already over 13.5 Gyr old (Jarosik et al.
2011) and that the Milky Way contains about 109 WDs (Binney &
Tremaine 2008, p. 2–3 and Holberg et al. 2008). Further, these final
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two stages are becoming increasingly relevant given the suggestions
or discoveries of exoplanets in post-MS systems (Wolszczan & Frail
1992; Wolszczan 1994; Sigurdsson et al. 2003; Silvotti et al. 2007;
Mullally et al. 2008, 2009; Geier et al. 2009; Lee et al. 2009, 2012;
Setiawan et al. 2010; Wickramasinghe et al. 2010; Charpinet et al.
2011; Adamów et al. 2012; Farihi et al. 2012c; Lee, Han & Park
2013; Sato et al. 2013).

Explorations of exosystem evolution in the third stage include
one-planet studies (Villaver & Livio 2007, 2009; Veras et al.
2011; Kratter & Perets 2012; Mustill & Villaver 2012; Spiegel &
Madhusudhan 2012; Veras & Tout 2012; Adams, Anderson &
Bloch, in preparation), just a few of dedicated multiple-planet stud-
ies (Debes & Sigurdsson 2002; Portegies Zwart 2013; Voyatzis
et al. 2013) and studies focusing on the evolution of comets (Alcock,
Fristrom & Siegelman 1986; Parriott & Alcock 1998). Furthermore,
Bonsor & Wyatt (2010) consider the effect of post-MS evolution
on debris discs. Motivated by observations of metal-polluted WDs,
Bonsor, Mustill & Wyatt (2011), Bonsor, Augereau & Thebault
(2012) and Debes, Walsh & Stark (2012) model the interplay be-
tween a planet and a belt of smaller material amidst stellar mass-loss.

Here, we self-consistently simulate the second, third and fourth
stages together. We combine stellar evolution with planetary grav-
itational scattering amongst multiple massive planets, and extend
the work of Debes & Sigurdsson (2002) by considering full-lifetime
simulations with realistic mass-loss prescriptions at each post-MS
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phase. Following the evolution over the whole stellar lifetime means
that we can be sure that systems whose stability is investigated on
the giant and WD stages will have survived the long MS evolu-
tion. Through these integrations, we can determine what types of
planetary architectures might be expected in exoplanet-hosting WD
systems, and could allow us to extrapolate backwards in time from
observed WD systems. We restrict our explorations to two-planet
systems in this initial study given the vast phase space to explore;
three-planet simulations will be presented in a follow-up paper.
First, we briefly summarize our knowledge of planetary instability
for one- and two-planet systems during the MS (Section 1.1) and
post-MS (Section 1.2).

1.1 Instability in MS planetary systems

Dynamical instability in planetary systems is often said to occur
when a planet suffers a close encounter with the star or another
planet, or is ejected from the system. Occasionally, investigators
use stricter definitions of instability, such as when the semimajor
axis or eccentricity variation of a planet exceeds a certain per cent
of its nominal value. Additionally, a wide body of literature has
arisen characterizing chaotic orbits as a precursor to instability;
Darriba et al. (2012) and references therein summarize many of
these techniques.

1.1.1 One-planet instability

One planet orbiting an MS star will typically remain stable through-
out the star’s MS lifetime in the absence of external forces. Excep-
tions may include planets which are close enough to their parent
stars to be tidally disrupted (e.g. Gu, Lin & Bodenheimer 2003)
and possibly evaporated (e.g. Guillot et al. 1996). In the opposite
extreme, a planet which is far enough away from its parent star may
be ejected due to external forces such as passing stars (Zakamska &
Tremaine 2004; Veras & Moeckel 2012) or achieve a high enough
eccentricity through Galactic tides to cause a collision with the star
(Veras & Evans 2013a,b).

1.1.2 Two-planet instability

In addition to tidal interactions and external forces, the mutual per-
turbations between two planets may also create instability. Partially
motivated by tractable analytical solutions to the general three-
body problem, the source of this instability has been studied exten-
sively. If the orbits of two planets are guaranteed to never overlap
(precluding a collision between both planets), then they are said
to be ‘Hill stable’. Gladman (1993) pioneered the analytic use of
Hill stability for planetary systems in specific cases and has moti-
vated many subsequent analyses, as recently summarized by, e.g.,
Donnison (2009, 2010a,b, 2011). Hill stability does not guaran-
tee that the outer planet remains bound to the system, nor does it
prevent the inner planet from colliding with the star. If both plan-
ets remain bound and retain their ordering, and no collision with
the star occurs, then the system is ‘Lagrange stable’.1 Unlike Hill
stability, Lagrange stability does not benefit from a known analyti-
cal formulation, but rather empirical estimates based on numerical
simulations.

1 This type of stability has also been referred to as ‘Laplace stability’ (e.g.
Kubala et al. 1993) and featured but remained unnamed in many papers
published before the discovery of exoplanets and high-speed computing.

The analytical Hill stability boundary is conservative. Two plan-
ets whose initial separation is less than the Hill stable distance may
in fact remain stable. If the initial separation is greater than the
Hill stable distance, then the planets are guaranteed to retain their
ordering. In simulations of the HD 12661 and 47 Uma systems,
Barnes & Greenberg (2006) found that pairs of planets close to the
Hill stability boundary are not Lagrange stable, and hence are not
generally stable. They tentatively suggest that the Lagrange stability
boundary exceeds the Hill stable boundary by at least 21 per cent
as measured by the semimajor axis ratio. Subsequent work (Barnes
& Greenberg 2007) revealed how mean-motion commensurabilities
can broaden the divide between the Hill and Lagrange stable bound-
aries; Kopparapu & Barnes (2010) demonstrated how the boundary
between stable and unstable systems is not sharp. Hence, numerical
validation of analytical stability estimates is crucial.

1.2 Instability in post-MS planetary systems

Mass-loss from a dying star can trigger planetary instability in
different ways, which are outlined below. A common assumption
amongst the studies which have considered instabilities in post-MS
systems is isotropic stellar mass-loss. We also adopt this assump-
tion here, as modelling non-isotropic mass-loss would significantly
complicate both numerical and analytical modelling and is best left
to separate, dedicated studies. One such dedicated post-MS study
(Parriott & Alcock 1998) importantly observes that the speed of (ef-
fectively massless) comets near the boundary of a planetary system
may be comparable to the recoil velocity of the parent star due to
asymmetric mass-loss. That study suggests that anisotropic mass-
loss will affect the details of planets being ejected after scattering
but is unlikely to have a significant effect on the prior dynamics.
Other studies modelling planetary dynamics due to non-isotropic
mass-loss instead focus on jet accelerations present at the birth sites
of planets (Namouni 2005, 2007, 2012).

Furthermore, in all cases we assume that the planets are orbiting
a single star. Extensions to the multiple-star case (Kratter & Perets
2012; Veras & Tout 2012; Portegies Zwart 2013) are likely to be
nontrivial.

1.2.1 One-planet instability

For decades, binary star investigations revealed that stellar mass-
loss causes orbital semimajor axis expansion. Less well known is
that when the mass-loss is rapid enough, the eccentricity of the com-
panion’s orbit can change as well (Omarov 1962; Hadjidemetriou
1963, 1966; Veras et al. 2011). If the eccentricity is great enough, a
planetary companion may escape from the system.

In the more commonly used adiabatic limit, de/dt = 0 and
da/dt = −(a/μ)(dμ/dt). Here, μ ≡ G

(
M� + Mp

)
, M� and Mp

are the masses of the star and planet, a is the planet’s semimajor
axis and e is the planet’s eccentricity. This limit holds when the
mass-loss time-scale is much longer than the orbital time-scale.
Adiabaticity will be broken, even briefly, if at any point a sudden
burst of mass-loss causes the time-scales to become comparable
(Veras & Tout 2012; Veras & Wyatt 2012). Hence, characterizing
whether or not planetary evolution is adiabatic amidst mass-loss
will be important for any post-MS scattering study.

Another source of instability for one-planet systems could come
from tidal orbital decay and potentially direct engulfment by the
rapidly expanding stellar envelope. Villaver & Livio (2007, 2009)
and Villaver (2011) treat this effect in detail with additional physics
such as frictional drag, planet accretion, planet evaporation and
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spin. Mustill & Villaver (2012) model individual thermal pulses
and demonstrate how they affect planetary stability. In this study,
we only consider planets that are too distant to be affected by the
stellar envelope expansion and so are not affected by tides, accretion
or evaporation (see Section 3).

1.2.2 Two-planet instability

Debes & Sigurdsson (2002) considered adiabatic evolution of two-
planet systems while exposed to a 1 M� star losing half of its
mass over 1000 planetary orbits. This foundational study considered
circular and coplanar equal mass planets, with planet/star mass
ratios ranging from 10−3 to 10−7. They discovered importantly that
although adiabatic evolution causes both planets to move outward
and maintain their initial semimajor axis ratio, their critical Hill
separation changes.

The rate of change of the separation measured in units of Hill radii
is equal to μ−2/3 dμ/dt. This dependence causes previously Hill
stable planetary systems to become unstable, and incite gravitational
scattering which could not occur on the MS. Their simulation results
suggest that scattering instabilities may be more widespread during
post-MS evolution than during MS evolution. Here, we investigate
this claim in significant detail. For discussion on the high mass-
loss non-adiabatic multi-planet case recently presented by Voyatzis
et al. (2013), please see Section 6.4.

1.3 Paper outline

We begin in Section 2 with a description of the challenges of using
N-body numerical simulations for gravitational scattering amidst
mass-loss. In Section 3, we determine the regimes where engulfment
and tides from stellar envelope expansion can be neglected for this
study. Section 4 presents a general formulation of the Hill stability
limit and shows how it changes due to stellar mass-loss. We use
the results of Sections 2– 4 to motivate the setup for our numerical
scattering simulations. In Section 5, we perform these simulations,
and report the results. We discuss the consequences in Section 6
and conclude in Section 7.

2 N U M E R I C A L C O N V E R G E N C E

In this section, we highlight the difficulty in achieving accurate N-
body simulations that model both central star mass-loss and gravita-
tional scattering amongst multiple massive planets, and implement
a solution.

2.1 Stellar evolution code

We utilize the SSE stellar evolution code (Hurley, Pols & Tout 2000),
which adopts empirically derived algebraic formulations in order
to quickly generate a stellar evolutionary track solely from a given
progenitor mass and metallicity, and stellar model parameters such
as the Reimers mass-loss coefficient. We use the same mass-loss
prescriptions as described in section 7.1 of Hurley et al. (2000) with
their Reimers mass-loss coefficient default value of 0.5. Their choice
is observationally motivated by the horizontal branch morphology
in Galactic globular clusters (Iben & Renzini 1983), and lies in the
centre of the range recently considered by Veras & Wyatt (2012),
who discuss this choice in light of an updated version of the Reimers
law (Schröder & Cuntz 2005). The SSE code allows us to sample
many different evolutionary tracks easily, and outputs the important
parameters, M�(t) and R�(t), where R� is the radius of the star.

2.2 Planetary evolution code

We also use the MERCURY integration package (Chambers 1999),
which specializes in modelling planetary dynamical evolution. In
order to accurately model close encounters between planets and
the parent star – a necessity for this study – we use the Bulirsch–
Stoer (BS) integrator. This integrator features an adaptive time-step,
which is determined by a tolerance parameter given at the start of
the simulation. A tolerance of 10−12 is considered to be highly
accurate (Jurić & Tremaine 2008). Smaller tolerance values should
roughly converge to the same result; fig. 7 b of Smith & Lissauer
(2009) demonstrates that in crowded five-planet systems separated
by several Hill radii, tolerances of 10−12, 10−13, 10−14, 10−15 and
10−16 will yield instability time-scales which are all within the
same order of magnitude. Tolerances below 10−16 generally cannot
be achieved because in those cases the accuracy requested is greater
than machine precision.

2.3 Merging both codes

Veras et al. (2011) found that linearly interpolating SSE stellar mass
output at each MERCURY time-step adequately models the dynamical
evolution of a single planet amidst stellar mass-loss because the
numerical simulations reproduced the analytical results. For multi-
planet systems, this technique alone is inadequate. The interaction
between both planets coupled with stellar mass-loss causes a failure
of convergence of orbital parameters as the tolerance is decreased.

In order to improve the accuracy, we have performed an additional
interpolation of the SSE stellar mass output in between each MERCURY

time-step at each BS substep. The resulting finer gradation makes
a crucial difference, as demonstrated by Fig. 1. The figure plots
the final semimajor axis values for the inner 10−3 M� planet and
the outer 10−3 M� planet in a system with initial semimajor axes
of 10 and 30 au, and initial eccentricities of 0.0, 0.5, respectively.
All initial orbital angles were set to 0◦. The simulations were run
for the entire evolution of the thermally pulsing asymptotic giant

Figure 1. Difference between interpolating SSE-outputted mass at every
MERCURY time-step (blue circles) versus interpolating this mass within
MERCURY time-steps (orange squares). ‘Spliced’ indicates the latter and ‘Not
Spliced’ indicates the former. Shown are the final values of the inner planet’s
semimajor axis for a pair of 0.001 M�-planets with initial semimajor axes
of 10 and 30 au, and initial eccentricities of 0.0 and 0.5, respectively. The
parent Solar-metallicity star was modelled to lose ≈6.22 M� of its initial
≈7.66 M� at the start of an AGB phase lasting almost 5 × 105 yr. The
‘Analytical’ line refers to the final semimajor axis of the inner planet pre-
dicted by adiabatic mass-loss. The convergence properties of the spliced BS
integrator for systems with both gravitational scattering and mass-loss is a
significant improvement.
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branch (TPAGB) phase of a Z = Z� = 0.02 (Solar metallicity) star.
We chose a progenitor mass of 8 M� to model particularly violent
mass-loss. Our simulations ran during the TPAGB phase only, when
M� was reduced from 7.659 to 1.438 M� in about 492 744 yr.

The plot contains two curves from the simulation output, rep-
resenting final values of the semimajor axis due to SSE-outputted
mass interpolation at each MERCURY time-step (blue circles; ‘non-
spliced’), and with an additional interpolation in-between time-steps
(orange squares; ‘spliced’). The third, green, curve is the analytic
prediction for the final semimajor axis of the inner planet. This value
can be determined because the mass-loss is adiabatic and the planets
are not near a strong mean-motion commensurability (hence, their
semimajor axes remain secularly unaffected).

Without the additional interpolation, the results do not appear to
converge until perhaps at the machine precision limit for the BS
tolerance.2 Further, the extent of the variance in the non-spliced
curves may fundamentally change the endstate of the system if
any more close encounters occur. Therefore, we use the spliced BS
integrator throughout the rest of this work. Convergence with the
spliced integrator is achieved in this case at an accuracy of ∼10−12;
we are conservative and adopt the value of 10−13 for our integrations.

Another consideration is the ejecta-crossing lag time. Stellar
ejecta will cause the inner planet’s orbit to shift before the outer
planet’s orbit. In some cases, this ‘lag time’ between orbital shifts
may produce a noticeable change in the dynamics that is missed
by assuming that both planets simultaneously change their orbits.
The weakness of this assumption is accentuated for widely spaced
orbits and for systems which are not in the adiabatic regime. For the
(adiabatic) systems studied here, however, this assumption likely
produces a negligible effect,3 and hence is neglected for the re-
mainder of this study.

2.4 Further adaptations

All orbital elements in this work are reported in Jacobi coordinates.
Therefore, as MERCURY receives input in astrocentric coordinates,
we performed the conversion. Furthermore, we had to modify the
default version of MERCURY to account for a changing stellar mass in
the output file xv.out so that the conversion from Cartesian output
to Jacobi elements was performed correctly. Consequently, the size
of xv.out nearly triples in size. Although this increase might be
prohibitive for high-resolution studies of individual systems, here
we are interested primarily in the final stability state of each system.
Therefore, in our case, outputs at a Myr resolution are all that
is required. Independent of the paucity of outputs, MERCURY does
record the times of collisions to within a time-step.

3 TR E ATI N G TH E S T E L L A R R A D I U S

Additionally, we modified MERCURY to incorporate the stellar radius
evolution profiles from SSE. Over its lifetime, a star’s radius evolves

2 In the one-planet case, when the outer planet is removed from these par-
ticular simulations, then all three curves are visually indistinguishable from
one another on this plot. This result reinforces the finding of Veras et al.
(2011) that splicing within time-steps is generally not necessary in one-
planet simulations.
3 By using the observed mass ejecta speed in the post-MS system R Sculp-
toris of ≈14.3 km s−1 (Maercker et al. 2012), one can estimate that the ejecta
will take 121 d to travel 1 au. Thus, for an inner planet at 10 au and an outer
planet at 12 or 13 au, the travel time is less than a year, a small fraction of
the inner planet’s orbital period.

Figure 2. Maximum stellar radius as a function of progenitor mass and
metallicity. Colours denote different metallicities; the blue curve (Z = 0.02)
represents Solar metallicity. Curves end when supernovae occur. This plot
demonstrates a rule of thumb: generally, the number of au at the maximum
radius is approximately equal to the number of initial M�.

non-linearly and non-monotonically. Because these variations are
modest and all occur within 0.05 au during the MS, most previous
planet scattering studies treated the radius as static and/or negligible.
However, during the post-MS, the radius variations can be violent
and extend beyond several au.

3.1 Expansion

Because of the potential for planetary collisions, evaporation and/or
envelopment due to the expanding stellar envelope, the variations in
stellar radius must be taken into account during post-MS scattering
simulations. An important question is whether or not a planet, ex-
panding its orbit due to mass-loss, can outrun an expanding stellar
envelope. The answer is complicated by the fact that the time-
scales for and amplitudes of mass-loss and radial increase are not
completely in sync, although they often are similar. Additionally, a
star’s radius may decrease. WD radii are even more compact than
MS radii.

In order to characterize these variations, we generated Figs 2
and 3, with SSE data. The figures characterize the maximum stellar
radius for different metallicities and stellar phases, respectively.
In particular, Fig. 2 suggests that the maximum stellar radius is
largely independent of metallicity, and that roughly the number of
au at the maximum radius is equal to the number of initial M�.
Fig. 3 illustrates that the stellar radius generally increases during
post-MS phases, although for the 1 M� case, there is an order-of-
magnitude decrease after the red giant branch (RGB) stage. This
decrease becomes progressively smaller as the progenitor stellar
mass is increased until vanishing at about 3 M�.

These trends are model dependent. Other stellar evolution codes
(e.g. Vassiliadis & Wood 1993) demonstrate that as a result of
thermal pulses on the AGB the expanding stellar radius can expand
up to 1 au more than the rule-of-thumb maximum radius from the
last paragraph. Furthermore, the maximum radius at each phase
might differ depending on the model used; see, for example, Villaver
& Livio (2009).

3.2 Tides

The maximum stellar radius is just a physical boundary; stellar tides
can extend beyond the reach of the star. Because modelling tides
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Figure 3. Maximum stellar radius as a function of progenitor mass and
stellar phase. The y-axis is logarithmic, and the x-axis is monotonically
increasing in time. Symbols denote different progenitor masses, and the
stellar phases are MS = main sequence, HG = Hertzsprung Gap, RGB =
red giant branch, CoHe = core helium burning, EAGB = early asymptotic
giant branch and TPAGB = thermally pulsing asymptotic giant branch. For
Solar metallicity, stellar radii generally increase monotonically throughout
post-MS phases except for progenitor masses approximately equal to 1 M�.

is both beyond the scope of this study and remains the subject of
debate, we choose initial conditions for our numerical simulations
where we can safely neglect tidal effects. Planets are not necessarily
destroyed by tides nor by being engulfed in the stellar envelope. The
remarkable sub-10 h periods of the two planets in the hot B subdwarf
star KIC 05807616 system (Charpinet et al. 2011) provide strong
evidence that planets can survive deep immersion into the stellar
envelope.

Both Villaver & Livio (2009) and Kunitomo et al. (2011) have
analysed planet engulfment by RGB stars by including a number
of physical factors, and use more detailed stellar evolution models
than SSE. Their results indicate that, for lower mass stars, tides can
significantly affect planets with semimajor axes that are about 2.5
times as high as the maximum stellar RGB radius, and that engulf-
ment is sensitively dependent on progenitor stellar mass. However,
the RGB radius does not greatly exceed 1 au. Although AGB radii
are significantly larger (Figs 2 and 3), Mustill & Villaver (2012)
found that for higher mass stars, the most distant Jovian planet that
becomes engulfed is initially at approximately the maximum stellar
radius; tides can slightly shrink the orbits of planets for about an au
beyond this maximum. Hence, we adopt 10 au as the initial orbit of
the innermost planet in our simulations. This planet will certainly
be safe from engulfment in the envelope, and will experience no
significant tidal decay except possibly from the most massive stars.

3.3 Radius-based code modifications

Our simulation initial conditions are chosen such that stable plane-
tary systems are well beyond the influence of tidal effects. However,
instabilities which arise during the simulations may cause planets
to approach or collide with the expanding stellar envelope. If a col-
lision occurs, the system is flagged as unstable and is stopped. In
reality, if a star engulfs a planet, the star’s mass would increase
slightly and as a result its radius might change as well. Remain-
ing planets in the system would then be affected because angular
momentum must be conserved.

Additionally, the MERCURY collision detection algorithm
mce_cent checks to see if the pericentre of a planet’s orbit lies

within the star’s radius. If so, a collision is flagged. However, if the
star’s reflex velocity is sufficiently high, then a collision might not
occur. Therefore, we modified mce_cent to account for the stellar
reflex velocity. For planetary mass companions, however, the reflex
velocities are low, and are not likely to factor into collision statistics.

4 H I LL STA BI LI TY

We now make some analytical stability estimates to identify the sys-
tems of interest for our N-body runs. We particularly seek systems
that are likely to be stable on the MS and subsequently destabi-
lized during the giant or WD stages. Donnison (2011) provides
a formulation of Hill stability in Jacobi coordinates which allows
for arbitrarily inclined and eccentric orbits. His treatment is fully
general with one exception: the expression for the system energy
is the two-body approximation. This approximation is necessary
in order to obtain an analytically tractable (but not strictly correct)
solution; the intractable terms appear, for example, in equation 2.27
of Veras (2007), which provides the complete expression for the
energy of a three-body system in terms of Jacobi orbital elements.
See Section 6.5 of this paper for further discussion on this point.

In the following, the subscripts ‘1’ and ‘2’ refer to the inner and
outer planets, the subscript ‘in’ refers to the star/innermost-planet
binary, and the subscript ‘out’ refers to the outer planet properties
measured with respect to the inner binary. Let im represent the
mutual inclination of the inner and outer binaries. Then the Hill
stability curve is given by (Donnison 2011)(
1 + y2

) (
y2β2 + 2yβ cos im + 1

) =

− 2Scr (M� + M1 + M2) y2

M3
2 (M� + M1)3

(
1 − e2

out

) (1)

where

y ≡
√

ainM2 (M� + M1)

aoutM�M1
(2)

β ≡
(

M�M1

M2

)3/2
√

M� + M1 + M2

(M� + M1)4

(
1 − e2

in

)(
1 − e2

out

) (3)

and with (Donnison 2006)

Scr ≡ 1

2 (M� + M1 + M2)

(
M�M1 + M�M2

1 + xcrit
+ M1M2

xcrit

)2

× (
M�M1 + M�M2 (1 + xcrit)

2 + M1M2x
2
crit

)
(4)

such that x = xcrit is the unique real solution to the following quintic
equation:

(M� + M1) x5 + (3M� + 2M1) x4 + (3M� + M1) x3

− (3M2 + M1) x2 − (3M2 + 2M1) x = (M2 + M1) (5)

Care should be taken when choosing the root of the quartic equation
in equation (1) when solving for y.

The literature is replete with special-case solutions to equa-
tions (1)–(5) (see Georgakarakos 2008 for a review)4 but typically
treat the masses as static and define a ‘separation’ as a modulated

4 We have discovered two typographic errors in the previous literature: The
last quantity of the LHS of equation 2.13 in Veras & Armitage (2004) should
not be squared, and the sign in front of A in equation 9 of Donnison (2011)
is incorrect.
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Full-lifetime two-planet simulations 1691

ratio of the planetary semimajor axes. Equation (2) demonstrates
why. In order to model how the Hill stability curves change with
mass-loss, one need only to evaluate equations (1)–(5) at different
times during a star’s evolution.

In the circular, coplanar, equal-planetary mass case presented in
Debes & Sigurdsson (2002), the critical Hill separation is shown
to vary by a few tenths due to significant mass-loss. We have un-
dertaken a wider parameter exploration of phase space, and have
discovered that this result generally holds true for orbits of any
eccentricity, inclination and stellar mass as long as the planetary
masses are at most about 1 MJ each. Our results are presented in
Fig. 4, where each panel showcases a different parameter depen-
dence.

The variation in the Hill stability limit due to stellar mass-loss is
often equivalent to several au for planets which reside beyond about
10 au. Consequently, if planetary packing (e.g. Raymond et al. 2009)
produces planets near the Hill stability limit during the MS, then
post-MS evolution may trigger instability.

Despite these considerations, one must remember that the Hill
stability criterion is a sufficient but not necessary condition for the
planets to remain ordered. Hill stable planets may be Lagrange un-
stable, and planets failing to satisfy the Hill stability condition may
nevertheless be stable. Regarding the latter case, one outstanding
feature of Fig. 4 is that moderately eccentric or inclined orbits yield
critical semimajor axes ratios that are high – much higher, for ex-
ample, than the semimajor axis ratios of any adjacent pair of planets
in the Solar system.

Large critical semimajor axis ratios may strongly influence the
location where two planets become Lagrange stable. Veras &
Armitage (2004) show that as the mutual inclination of the circular
orbits of two equal-mass planets increases, the critical Hill stability
limit becomes a progressively worse indicator of the separations at
which planets may actually become Lagrange stable. Their fig. 5
illustrates that for im = 35◦, instability occurs effectively for values
under half of the critical separation. However, their numerical sim-
ulations were run for just 2 Myr, almost certainly missing instances
of longer term instability.

Therefore, determining how mass-loss affects the stability
prospects of the orbits of two planets is perhaps more complex
than just considering the analytic effect on the Hill stability limit.
Hence, we now turn to N-body simulations.

5 N- B O DY SI M U L ATI O N S

Ideally, we could sample the entire two-planet/single-star phase
space with numerical simulations. Realistically, we must take mea-
sures to restrict our studies to computationally feasible and insight-
ful simulations. To better understand how to restrict the phase space,
we consider typical MS lifetimes, the mass lost at each evolutionary
phase and the planetary period enhancement during the WD phase,
in Sections 5.1– 5.3. We motivate and state our initial conditions in
Section 5.4. Sections 5.5 and 5.6 present the simulation results.

5.1 MS time-scales

MS ages are given in Fig. 5. These ages may vary by Gyr depending
on stellar metallicity, and are at least 1 Gyr long for any progen-
itor mass less than 2 M�. With an MS lifetime of over 10 Gyr,
a Solar-mass, Solar-metallicity star with orbiting planets is partic-
ularly prohibitive to integrate. This long time-scale helps explain
the uncertainties in long-term evolution of the Solar system plan-
ets (Kholshevnikov & Kuznetsov 2007; Laskar et al. 2011). Fig. 6

Figure 4. Critical Hill semimajor axis ratios as a function of stellar mass for
different eccentricities (upper panel), different mutual inclinations (middle
panel) and different planetary masses (bottom panel). The purple stars on the
bottom of each plot, from right to left, represent the eventual WD mass (in
brackets in the following) for MS progenitor masses of 8 M�[1.44 M�],
7 M�[1.29 M�], 6 M�[1.14 M�], 5 M�[1.00 M�], 4 M�[0.87 M�],
3 M�[0.75 M�], 2 M�[0.64 M�] and 1 M�[0.52 M�]. The figure illus-
trates that the Hill radius is sensitively dependent on eout, ein, im, M1 and
M2, but weakly dependent on M�. For Jovian and terrestrial-mass planets,
stellar mass-loss can change the Hill stability limit by at most a few tenths
in aout/ain.
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1692 D. Veras et al.

Figure 5. The MS age of stars with Solar metallicity (blue, top curve) and
with a very low (Z = 0.0001) metallicity (red, bottom curve). Higher mass
progenitors significantly reduce the CPU time needed to integrate planets
over a star’s entire MS lifetime.

Figure 6. The number of orbits taken by an isolated planet around a star
throughout its MS phase. In each pair of equivalently coloured curves, the
top curve is for Z = 0.02 and the bottom curves is for Z = 0.0001. The
number of orbits decrease with higher stellar mass because the decreased
MS time-scale dominates the shortened orbital period. These values are
important both physically – to determine instability – and computationally
– to assess the feasibility of integrating over the entire MS phase.

provides estimates for the number of planetary orbits that would be
achieved during the MS as a function of stellar progenitor mass,
for a variety of planetary semimajor axes. The curves result from
the competition between the decreased orbital time-scale with in-
creased stellar mass, and the decreased MS lifetime with increased
stellar mass; the latter overwhelmingly wins. Note that the num-
ber of orbits tails off significantly as M�(0) is increased, for all
semimajor axes. A one order-of-magnitude change in semimajor
axis corresponds to 1.5-order-of-magnitude change in the number
of MS orbits.

5.2 Post-MS phase properties

The evolution time-scales of the intermediate post-MS, pre-WD
phases are short compared to the MS time-scale. Fig. 7 provides
time-scales for each stellar phase, and relates the phase to the per-
centage of the star’s original mass lost, for Solar-metallicity stars.
The plot demonstrates that except for the 1 M� case, most mass is
lost during the TPAGB and negligible percentages of mass are lost
in the other phases.

Figure 7. Correlating mass-loss fractions, phase durations and progenitor
masses for stars of Solar metallicity and a Reimers mass-loss coefficient
of 0.5. Each curve contains eight symbols representing stellar progenitor
masses of 8, 7, 6, 5, 4, 3, 2 and 1 M�, ordered monotonically. The green
squares represent the thermally pulsing asymptotic giant branch (TPAGB),
the brown upward-pointing triangles the early asymptotic giant branch
(EAGB), the grey downward-pointing triangles the core helium burning
phase (CoreHe), the red diamonds the red giant branch (RGB), the yellow
circles the Hertzsprung gap (HG) and the blue open squares the MS. Most
MS mass-loss is too small for this plot. Except for the 1 M� case, the most
important mass-loss phases are the TPAGB, which all last of the order of
1 Myr.

5.3 WD period enhancement

After the star has become a WD, the star stops losing mass and
gradually cools down. Compared to its MS mass, the WD mass
is greatly reduced, and cannot exceed the Chandrasekhar Limit of
≈1.4 M�. The result is that the planetary period may be drastically
increased. Assume that the planet’s evolution is entirely adiabatic.
A reduction of the star’s mass by a factor of k will cause the planet’s
semimajor axis to be increased by a factor of k. Hence, the plan-
etary period around the WD is k2 times the period around the MS
star. Fig. 8 plots this enhancement factor as a function of progenitor
stellar mass, and demonstrates both that WD planets perform fewer
orbits than MS counterparts in the same amount of time (with possi-
ble implications for scattering) and that WD numerical simulations
may proceed much more quickly than MS simulations.
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Full-lifetime two-planet simulations 1693

Figure 8. The planetary period enhancement factor due to post-MS evo-
lution, supposing that the planet has evolved entirely adiabatically and is
isolated from any other perturbations. This enhancement factor is indepen-
dent of semimajor axis. The top curve is for Z = 0.02 and the bottom curve
is for Z = 0.0001.

5.4 Initial conditions

5.4.1 Fiducial choices

The above considerations lead us to choose an integration duration
of 5 Gyr and Solar-metallicity progenitor masses of 8, 7, 6, 5, 4
and 3 M�. This mass range extends down to the upper mass-end
of the observed range of exoplanet host stars (Sato et al. 2012b).
This combination allows us to sample an ensemble of multi-planet
systems over every phase of evolution, including a substantial sam-
pling (over 4.5 Gyr) of evolution in the WD phase. Simulation
output occurs at a frequency of 1 Myr. Performing a statistically
significant simulation ensemble for 1 M� stars is well beyond our
available resources; for more details on the planetary consequences
of the possible evolutionary tracks of 1 M� stars, see Veras & Wyatt
(2012).

We adopt 1 MJ for the mass of each planet (M1 = M2 = MJ),
assume that the planets are on coplanar orbits (im = 0◦) and assume
that they have small but non-negligible MS eccentricities [e1(t =
0) = e2(t = 0) = 0.1]. These eccentricities are low compared to the
observed MS values for massive exoplanets beyond the tidal circu-
larization limit, but higher than the near-circular orbits predicted by
core accretion theory. The inner planet is initially set at a1 = 10 au
to avoid tides with the expanding stellar envelope; over 25 known
planets are thought to harbour a > 10 au.5 Also, this semimajor axis
guarantees that orbital evolution due to mass-loss will be adiabatic
unless in the presence of an event such as a supernova, which is not
modelled here.

We perform 632 simulations per ensemble, where each ensemble
features a different progenitor mass. In each individual simulation,
the orbital angles (mean anomalies and longitudes of pericentre)
of both planets are selected from a uniform random distribution.
We adopt 79 values of a2 so that we sample 8 different sets of
orbital angles for each a2 value. The range of a2 values sampled
encompasses both the ‘chaos limit’ and the Hill stability limit in
order for us to sample many different types of dynamical behaviour.

The chaos limit refers to a maximum semimajor axis ratio sepa-
ration at which mean-motion resonances do not necessarily overlap.
This limit is smaller than the Hill and Lagrange stability limits, and

5 See the Extrasolar Planet Encyclopedia at http://exoplanet.eu/

represents a fuzzy boundary within which instability occurs readily
and quickly. Wisdom (1980) found the chaos limit to be

a2 − a1

a1
≈ 1.3

(
Mp

M�

)2/7

(6)

for two equal-mass circular-orbit planets. Recently, Quillen & Faber
(2006) and Mustill & Wyatt (2012) expanded on this result by
considering bodies’ eccentricity. Mustill & Wyatt (2012) discovered
that for em > 0.21(Mp/M�)3/7, where em is the eccentricity of the
least massive planet, the chaos limit is (for Mp = M1 = M2)

a2 − a1

a1
= 1.8e1/5

m

(
Mp

M�

)1/5

. (7)

We set our minimum value of a2 to be less than the limit from the
more conservative definition (equation 6) for each progenitor mass
to help ensure that we have a tail of unstable simulations. Similarly,
we wish to have a tail of stable simulations for large separations.
Hence, we select a maximum value of a2 that exceeds the MS Hill
stability limit in each case.

5.4.2 Additional simulations

Motivated by the outcome of our fiducial simulations, we performed
two additional ensembles of simulations (632 simulations per en-
semble). In both, we adopted a stellar progenitor mass of 5 M�. The
first case assumed different planetary masses; we adopted 1 M⊕ for
each planet (M1 = M2 = M⊕). In the second, we adopted e2 = 0.5
to model a moderately eccentric outer planet. Doing so yields a
much wider Hill stability separation (see Fig. 4) than in the fiducial
case.

5.5 Simulation results: fiducial cases

5.5.1 Overview

Our goal is to identify instability and when it occurs. We define in-
stability as Lagrange instability: if the planets at any point are found
to achieve a hyperbolic orbit, cross orbits, or collide with each other
or the star. Hill instability includes just a few of these possibilities:
planet–planet collisions and crossing orbits. Therefore, Hill stable
systems may eventually be Lagrange unstable. Those that do will
feature ejection of the outer planet and/or collision of the inner
planet with the star.

We plot instability time versus initial semimajor axis ratio in
Fig. 9, which represents our main result. Dots indicate unstable
systems. No dot appears for a system that has remained stable over
the entire 5 Gyr integration. If all eight simulations for a given
semimajor axis ratio are stable over 5 Gyr, then we place a blue star
at 1010 yr in the appropriate horizontal position, even though the
vertical position of the star has no physical meaning and is selected
for visual impact.

The figure includes the six ensembles of simulations with differ-
ent progenitor stellar masses. Each post-MS phase change occurs
at different times on each plot. See Hurley et al. (2000) for detailed
physical descriptions of each phase. Although the horizontal lines
are close together in Fig. 9, they are clearly distinguishable on the
zoomed-in Fig. 10 plots. Different progenitor masses also cause
differences in the location of the Hill stability limit. On each plot
is a black vertical dashed line, representing the Hill stability limit
computed from the star’s MS mass. The black dotted lines represent
the Hill stability limits computed with the star’s WD mass (see the
caption to Fig. 4 for these values).
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1694 D. Veras et al.

Figure 9. Instability times versus initial semimajor axes ratios for full-lifetime two-planet simulations. The dots indicate individual unstable systems, and the
blue stars indicate that all eight systems at that separation ratio were stable over 5 Gyr. The blue stars not shown extend out to at least a2/a1 = 1.747 in an
unbroken string in each plot. Each coloured horizontal line represents a stellar phase change, and is at a different position on each plot. The two vertical lines
represent the Hill stability limit for the MS (dashed) and WD phase (dotted) for each progenitor mass. Any unstable systems on the MS beyond the MS Hill
stability limit (such as for the 5, 4 and 3 M� cases) or during the WD phase beyond the WD Hill stability limit are Lagrange unstable. The plot demonstrates
that instability during the WD phase can be achieved at separations that well-exceed both the MS and WD Hill stability limits.
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Full-lifetime two-planet simulations 1695

Figure 10. Zoomed-in versions of Fig. 9 to show detail at times of stellar phase changes. In ascending vertical order, the phases are ‘Hertzsprung gap’ = blue,
‘red giant branch’ = red, ‘core helium burning’ = green, ‘early AGB’ = orange, ‘TPAGB’ = purple, ‘WD’ = grey. The longest pre-WD post-MS phase is the
red giant branch; the most violent phase (with the greatest mass-loss, and causing the greatest amount of instability) is the TPAGB. The WD Hill stability limit
acts as an effective empirical boundary for pre-WD post-MS instability.

5.5.2 Physical description of Fig. 9

The Hill stability limits and the onset of post-MS evolution provide
boundaries within which one can understand the following different
regions in the Fig. 9 plots.

(1) During the MS, represented by the region under all the
coloured horizontal lines, dots appear predominately inside of
the MS Hill stability limit and predominately at times un-
der 107 yr. Hence, the limit is useful for identifying short-term
instability.
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1696 D. Veras et al.

(2) Some dots appear on the MS but outside of the MS Hill
stability limit in the plots with progenitor stellar masses of 5, 4
and 3 M�. All these dots indicate long-term instability (occurring
after ∼107 yr). The long-term MS unstable simulations with initial
separations exceeding the Hill stability limit must be (and indeed
are) Lagrange unstable: where the outer planet is ejected and/or
the inner planet collides with the star. As the progenitor mass is
decreased, the number of unstable MS systems beyond the MS Hill
stability boundary increases. One possible reason is because the
longer MS lifetimes (see Fig. 5) translate into more orbits for the
planets (see Fig. 6), and hence a greater opportunity for instability
to occur. Another potential reason is that smaller planet–star mass
ratios broaden the boundaries between Hill and Lagrange instability.

(3) MS instability beyond the MS Hill stability limit appears to
extend only as far as the WD Hill stability limit. However, this must
be coincidence – due to our choice of initial conditions – as the
planetary system has no knowledge of the post-MS mass-loss that
will occur.

(4) The WD Hill stability limits ensure that any WD instabil-
ity occurring beyond this limit must be Lagrange instability. Our
simulations corroborate this statement.

(5) Each plot in Fig. 9 demonstrates that all systems become
Lagrange stable for a2/a1 � 1.55, just inside the 2:1 commensura-
bility. Reinforcing this estimate are blue stars which were excluded
from the plot (for visual clarity) that extend all the way out in
an unbroken chain to a2/a1 ≈ [1.779, 1.775, 1.770, 1.765, 1.757,
1.747] for M�(0) = [8, 7, 6, 5, 4, 3 M�]. This sampled range
helps to establish the robustness of the Lagrange stability boundary
for our chosen 5 Gyr integration duration. This boundary lies at a
distance corresponding to approximately [178, 176, 176, 172, 167,
163 per cent] of the MS Hill stability limit and [138, 134, 133, 130,
126, 123 per cent] of the WD Hill stability limit.

In all our cases, planets with initial separations that exceed the
2:1 commensurability are stable throughout the 5 Gyr integration.6

However, the Lagrange stability limit may be higher than the values
reported here for progenitor masses lower than those sampled here.
Especially for 1 M� stars, the outcome is uncertain, given the long
MS lifetime and strong mass-loss over both the RGB and AGB
(see Fig. 7). The distribution of unstable systems in Fig. 9 shows a
wide variation of instability times, and suggests that longer simula-
tions, perhaps out to the age of the Universe, could yield additional
instability.

5.5.3 Description of Figs 10–12

Post-MS pre-WD phase changes can prompt instability, which can
be seen more clearly in Fig. 10. The phases which cause the greatest
mass-loss (see Fig. 7) also tend to be the phases which are most
likely to trigger instability. This tendency is indicated by the num-
ber of dots between the TPAGB and WD lines versus the number
of dots appearing below the TPAGB line. Note, however, that the
relatively long length of the core helium burning phase helps to
increase the number of unstable systems during that phase. The
abundance of dots just above the WD line indicates that the TPAGB
can unsettle stable systems enough to cause slightly delayed insta-
bility. In Fig. 10, the WD Hill stability limit appears to provide an

6 The strong, first-order 2:1 mean-motion commensurability perhaps plays
a role in establishing the Lagrange stability boundary (see, e.g., Barnes &
Greenberg 2007) for our fiducial cases.

effective boundary beyond which post-MS pre-WD instability does
not occur. However, this apparent boundary again must be coinci-
dence because the systems are unaware of forthcoming post-MS
mass-loss.

In support of the above claims, we quantify the types of instability
in Fig. 11 for each progenitor mass. The figure shows six normalized
bar plots. The blue, or topmost, bars represent the fraction of systems
(out of eight) that feature a collision between both planets; orange
bars represent a collision with the central star; yellow bars represent
any other type of instability (including ejection or periodic instances
of a planet attaining a hyperbolic orbit); green, or bottommost,
bars indicate systems which remained stable for 5 Gyr. Therefore,
Lagrange unstable systems are represented by orange and yellow
bars. The predominance of the yellow bars towards the right sides
of the plots indicate that any type of collisions become less likely
as the initial planet separations are increased. Any blue bars beyond
the MS Hill stability limit indicate planet–planet collisions during
the post-MS, importantly demonstrating that after leaving the MS,
planets are not restricted to (but still predominately experience)
Lagrange instability. There are no blue bars that exceed the WD
Hill stability limit, as expected. The height of the green bars around
the 3:2 commensurability demonstrates how it helps stabilize the
simulated systems.

Also of interest is the evolutionary phase at which instability
occurs. The collision of a planet with a star has been proposed to
explain both the existence of extreme horizontal branch stars with-
out stellar binary companions – as the envelope of the progenitor
giant could be removed by the planet (Charpinet et al. 2011; Bear &
Soker 2012) – and the enrichment of Lithium seen in a few per cent
of stars at all parts of the RGB (Lebzelter et al. 2012). Of particular
interest here is the planet candidate proposed orbiting the Lithium-
rich giant BD+48 740, whose eccentric orbit suggests a past strong
scattering interaction such as we are considering (Adamów et al.
2012).

Although the fraction of post-MS pre-WD instability can be de-
duced from Figs 9 and 10, we have created a separate figure, Fig. 12,
which better visualizes the result. Fig. 12 displays the fraction of
systems which are stable (green bars), and those which incur in-
stability on the MS phase (purple bars), on the WD phase (orange
bars) and in between the MS and WD phases (grey bars). Instabil-
ity during a giant branch phase occurs relatively infrequently: [4.0,
5.4, 6.9, 6.7, 8.7, 4.6 per cent] of all unstable systems for each stel-
lar progenitor mass. WD instability is not limited to systems with
initial separations beyond the Hill stability limit.

5.5.4 Potential resonance behaviour

Mean-motion commensurabilities, shown on the upper x-axes of
Figs 9–12, appear to play an important role in affecting stabil-
ity. At these locations, stability may be either enhanced or ad-
ditionally disrupted. A few suggestive instances of these com-
mensurabilities making a contribution include the 5:4 location
in the M�(0) = 8 M� simulations and the 5:3 location in the
M�(0) = 3 M� simulations. The 3:2 commensurability demon-
strably provides a protection mechanism for planetary systems in
each plot. The 4:3 commensurability seems to yield all possible
outcomes for M�(0) ≥ 5 M�, but no stable systems for M�(0) <

5 M�.
Hence, exploring the resonant character of these systems is of

potential interest. However, our 5 Gyr simulations are not well
suited to determine if a given system is locked into mean-motion
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Figure 11. Types of instability. Blue indicates the fraction of systems (out of eight per bar) that went unstable because of a collision between the two planets.
Orange represents instability due to a collision with the central star. Yellow indicates any other type of instability, which predominantly includes ejection.
Green indicates no instability. Hence, Hill unstable systems are included in the blue bars only, and Lagrange unstable systems are included in the yellow and
orange bars only. The black dashed and dotted lines are the MS and WD Hill stable boundaries, as in Fig. 9.

resonance because our output frequency of 1 Myr is over four or-
ders of magnitude greater than a typical orbital period. The sudden
and drastic changes in eccentricity and inclination which can arise
from purely three-body interactions (not including any type of dis-
sipation nor external forces) may act well within 1 Myr (e.g. Naoz

et al. 2011), and hence disrupt and/or create resonances. Addi-
tionally, resonance behaviour may manifest itself only periodically
due to repeated separatrix crossings, which yield different intervals
of libration and circulation of one or more resonant angles (e.g.
Farmer & Goldreich 2006). Recently, Ketchum, Adams & Bloch
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1698 D. Veras et al.

Figure 12. Phases of instability. Green indicates the fraction of systems (out of eight per bar) that were stable over 5 Gyr, as in Fig. 11. Purple indicates that
instability occurred on the MS. Grey indicates that instability occurred between the MS and WD phases. Orange indicates that instability occurred during the
WD phase. The plot illustrates that instability during a giant branch phase does occur, but infrequently. Also, WD instability can occur for Hill unstable planets
which survive until the WD phase. The yellow dashed and dotted lines are the MS and WD Hill stable boundaries, as in Figs 9–11.

(2013) have classified this behaviour as ‘nodding’ and analytically
characterized it.

Despite these caveats, we have considered the evolution from se-
lected resonant angles from our output. Identifying resonant systems
requires defining a libration centre, maximum libration amplitude

about this centre and a duration. Veras & Ford (2009, 2010) demon-
strated that fully characterizing potential resonant behaviour for
two massive planets may require the sampling of several libration
centres, as well as computing a mean absolute deviation or root-
mean-squared deviation about each centre, for each resonant angle.
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Full-lifetime two-planet simulations 1699

Figure 13. The geometric mean of instability times when at least one
system out of eight per semimajor axis ratio goes unstable in each fiducial
ensemble of simulations. The plot suggests that planets near strong mean-
motion commensurabilities tend to survive for longer times before going
unstable.

Here, we do not pursue any such analysis, but instead simply point
out that the majority of stable fiducial systems over 5 Gyr do not
appear to exhibit resonant libration. These systems include planets
with Hill unstable separations. Conversely, a smaller number of sys-
tems do appear to exhibit resonant libration, typically close to the
strong first-order mean-motion resonant commensurabilities. This
result is expected, as forming resonances of Jovian-mass planets
from uniformly-sampled orbital angles should be infrequent (see,
e.g., Veras 2007).

A perhaps better measure of the effect of mean-motion commen-
surabilities is by considering the geometric mean of instability times
for each semimajor axis ratio set of eight simulations that produces
at least one unstable system. We plot these mean times in Fig. 13,
where the 4:3 commensurability is shown to have a clear effect.

5.5.5 Survivor orbit properties

Of potential interest to WD pollution investigators and WD planet
hunters is the properties of planets undergoing Lagrange instability
during the WD phase. In some cases, the inner planet simply collides
directly with the WD, creating a direct pollutant. However, our
simulations suggest that these occurrences are rare, occurring [1, 0,
2, 2, 0, 0] times for M�(0) = [8, 7, 6, 5, 4, 3 M�].

In other cases, the outer planet is ejected and the inner planet
survives on a bounded orbit. A bound, eccentric inner planet may
induce pollution by scattering comets or asteroids close enough to
the WD to be tidally disrupted and ingested by the WD. To gain
insight into how an inner planet survives on an eccentric bounded
orbit, we use conservation of energy and angular momentum. Al-
though energy is not conserved in a system with mass-loss – and
certainly not in our integrations – after the parent star has become a
WD, mass-loss ceases and then energy is conserved for the future.
Thus, we can compare the states at the beginning of the WD and at
the moment of ejection (≡ tins). Furthermore, because the mass-loss
is adiabatic, we can relate the semimajor axes of the planets on the
MS and the WD phases through knowledge of how much mass is

lost. Therefore, we find that the semimajor axis of the bound planet
should be at most

a1(tins) ≤ M�(0)a1(0)a2(0)M1

M�(tWD) [a2(0)M1 + a1(0)M2]
, (8)

where M�(tWD) is the mass of the WD.
Angular momentum is conserved throughout a planetary sys-

tem’s life, even under the effects of mass-loss. Thus, in principle,
one can use conservation of angular momentum to determine the
value of e1(tins). However, doing so requires knowledge of the hy-
perbolic values of a2(tins) and e2(tins). These values are set by the
ejection velocity, which is determined by the strength of the instabil-
ity in each case. Our numerical simulations show that e1(tins) varies
considerably.

We plot the semimajor axes (blue squares) and periastra (orange
dots) of the surviving planets in systems featuring ejections in the
WD phase only, in Fig. 14. Superimposed on the plots through
aqua lines are the analytically predicted maximum values of a1(tins)
through equation (8). Also plotted as a solid black horizontal line
is the maximum stellar radius (see Figs 2 and 3) attained during
the star’s evolution. The presence of orange dots below the black
line suggests the presence of a population of highly eccentric plan-
ets orbiting WDs whose present pericentres take them inside the
maximum AGB radius. These planets cannot have been formed in
situ or anywhere near their WD locations because otherwise they
would have been destroyed or suffered radical orbital alterations
on the AGB. The fractions of orange dots below the black line for
each progenitor mass are 8.4 per cent (8 M�), 10.9 per cent (7 M�),
8.4 per cent (6 M�), 5.1 per cent (5 M�), 1.7 per cent (4 M�) and
0 per cent (3 M�).

5.6 Simulation results: additional cases

5.6.1 Terrestrial planet masses

Now we consider variations on the fiducial case. First, we set the
planet masses such that M1 = M2 = M⊕. The results of those 632
simulations are summarized in Fig. 15, which include plots for
instability time versus initial semimajor axis ratio, the types and
phases of instability, and the geometric mean of instability time. The
smaller planetary masses here shrink the chaos limit and the Hill
stability limit – as well as the difference between the MS and WD
Hill stability limits (see the bottom panel of Fig. 4) – and introduces a
different set of potentially important commensurabilities, displayed
on the top x-axis of all plots.

Earth-mass planets fail to go unstable beyond the MS Hill stability
limit in all but a few cases; the blue stars continue in an unbroken
chain out to a2/a1 ≈ 1.510. Therefore, Hill stability and Lagrange
stability appear to have almost identical boundaries in this case.

No system features a collision of a terrestrial planet with the WD.
This result should not imply that this type of collision cannot occur,
but rather that giant planet collisions are likely to be much more
frequent.

Almost all instability involves collision between both planets.
Interestingly, one planet–planet collision occurs just beyond the
WD Hill stability boundary, meaning that the real boundary must
differ from the line on the plot. This situation arises because planets
arrive on the WD phase with slightly different osculating orbital
parameters than they harboured at the start of the MS (primarily
due to their mutual interactions, and slightly due to post-MS mass-
loss). Hence, the real WD Hill stability limit for each individual
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Figure 14. Orbits of inner planets that survive the ejection of the outer planet during the WD phase. The blue squares represent semimajor axes, and the orange
dots represent periastra, all from the simulation outputs. The aqua curve represents the analytical estimate for where the maximum semimajor axis should be
(equation 8). The black curve indicates the maximum stellar radius achieved during its evolution. Dots below this curve indicate the existence of WD planets
orbiting inside the maximum AGB radius even though the planets were formed elsewhere.

system is different, and differs from the line shown in the figure that
was computed for e1 = e2 = 0.1 exactly.

Although only one system undergoes instability in the post-MS
pre-WD phases, instability during the WD phase is common, and is

in fact greatest for separations close to the tightly packed 11:10 com-
mensurability (corresponding to a2/a1 ≈ 1.066). Other instances
of WD instability occur around the 7:6 and 5:4 commensurabili-
ties, and to either side of the 4:3 commensurability, on which all

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/431/2/1686/1463884 by C
N

R
S - ISTO

 user on 23 M
arch 2022



Full-lifetime two-planet simulations 1701

Figure 15. Here, M1 = M2 = 1 M⊕. The plots are of the same format as in Figs 9–13. Instability during the WD phase occurs almost exclusively at initial
separations inside the MS and WD Hill stability limits. MS Hill unstable systems protected by mean-motion commensurabilities, many of which feature
resonant behaviour, allow for survival during the MS before becoming unstable on the WD phase.

eight systems are stable. The influence meted by these first-order
commensurabilities therefore appears to be extensive. However, the
bottom plot of the figure might suffer bias due to small number statis-
tics. An investigation of individual systems indicates that resonant

behaviour appears to be more common for these terrestrial-mass
planet systems than for the fiducial Jovian-mass systems, perhaps
demonstrating the importance of the planet/star mass ratio in creat-
ing resonance behaviour from random initial conditions.
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1702 D. Veras et al.

Figure 16. Here, e2(0) = 0.5. The plots are of the same format as in Figs 9–14. This figure importantly demonstrates that Lagrange instability can occur
readily in moderately eccentric systems.

5.6.2 Different planetary eccentricities

Next, we consider systems with an initially moderately eccentric
outer planet orbit (e2 = 0.5) and the same fiducial inner planet
eccentricity (e1 = 0.1) in Fig. 16. In this case, the analytic MS Hill
stability limit is much larger (a2/a1 ≈ 2.73) than in the fiducial
case, which is expected (see Fig. 4).

For these systems, instability beyond the MS and WD Hill limits
is extensive. In fact, the Lagrange unstable region extends out nearly
7 au from the location of the MS Hill stability boundary for a1 =
10 au. However, the Lagrange stability boundary lies at a distance
that is 143 and 135 per cent of the MS and WD Hill stability lim-
its; the former value is a much smaller factor than in the fiducial
cases.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/431/2/1686/1463884 by C
N

R
S - ISTO

 user on 23 M
arch 2022



Full-lifetime two-planet simulations 1703

Collisions with the star are infrequent and ejections are common,
perhaps because the inner planet has the much lower eccentricity.
In fact, inner planets which survive outer planet ejections largely
fail to attain high enough eccentricities to intrude within the max-
imum stellar radius achieved during the host star’s evolution: only
0.85 per cent of the orange dots are below the black line in the
bottom-right plot. In that same plot, the two outliers likely repre-
sent systems that experienced pre-WD instability that was missed
by our low output frequency. Instability during the giant phases is
uncommon, and is restricted to the region around the 4:1 commen-
surability.

6 D ISCUSSION

6.1 Consequences for WD pollution

6.1.1 Background

One potential consequence of dynamical instabilities induced due
to stellar mass-loss is WD pollution. WDs are surrounded by thin
atmospheres of either hydrogen or helium. Heavier elements sink
rapidly in such thin atmospheres and it is therefore puzzling that
such a high fraction of WDs have evidence for metal pollutants in
their spectra (25 per cent of single DA WDs; Zuckerman et al. 2003).
Such metal pollution has been associated with excess emission in
the infrared consistent with a close-in dust disc in more than a dozen
cases (e.g. Zuckerman & Becklin 1987; Becklin et al. 2005; Kilic
et al. 2005; Reach et al. 2005; Farihi, Jura & Zuckerman 2009)
and gas discs in a handful of cases (Gänsicke et al. 2006, 2008;
Gänsicke, Marsh & Southworth 2007). It has been suggested that
these observations could be explained by planetary material, moti-
vated by the similarity of the composition of the accreted material
with planetary material (Klein et al. 2010; Girven et al. 2012).

In order for a WD to be polluted by material from an outer
planetary system, comets, asteroids or planets must be scattered
at least close enough to the star (at about 1 R�) so that they are
tidally disrupted. Changes to the dynamics of the planetary system
following stellar mass-loss has been suggested as a potential cause
of increased numbers of planetary bodies scattered on to star-grazing
orbits (Debes & Sigurdsson 2002; Jura 2008; Bonsor et al. 2011;
Debes et al. 2012). Even in planetary systems where the planets
remain on stable orbits, Bonsor et al. (2011) and Debes et al. (2012)
show that sufficiently many asteroids or comets can be scattered on
to star-grazing orbits to explain some of the observations of polluted
WDs. Such mechanisms, however, struggle to explain observations
of high accretion rates in old polluted WDs (Koester et al. 2011;
Girven et al. 2012).

Instabilities in planetary systems could provide a potential ex-
planation for pollution in these, and other, WDs. Depending on
the exact nature of the instability and structure of the individual
planetary system, in many cases the number of planetary bodies
scattered on to star-grazing orbits increases significantly following
an instability. This means that the planetary systems presented in
this work in which instabilities occurred during the WD phase have
the potential to produce polluted WDs.

6.1.2 Our simulations

We qualify the following discussion by reminding the reader that we
have not probed progenitor masses between 1 and 2 M�, where the
true WD population appears to peak. The reason for not considering
this range is due to computational limitations, as tracking planetary
orbits over such long MS lifetimes is prohibitive.

Fig. 9 showcases the different types of instability which can occur
during the WD phase. First, many systems with giant planets that
were Hill stable on the MS become Hill unstable due to mass-
loss preceding the WD phase. Secondly, other systems that were
technically Hill unstable on the MS, but were protected against
instability by commensurabilities, become unstable during the WD
phase. Thirdly, some of the systems that are Hill stable during the
WD phase are actually Lagrange unstable, and experience instability
at a late time.

We can now relate the WD instability to the cooling age of the
WD, which is the time lapsed since the star became a WD. The
cooling age of real (not simulated) WDs are readily determined
from observations, and hence provide an opportunity for compari-
son with and motivation for numerical simulations. Fig. 17 displays
the number of planetary systems that become unstable during the
WD phase as a function of cooling age; each plot corresponds to a
different progenitor mass. Any instance of instability could repre-
sent a trigger for a potentially polluting event. An ejection especially
suggests that the inner planetary system will be significantly per-
turbed, and this perturbation can throw planetesimals or terrestrial
planets that were originally in the inner system on to the star.

The figure contains several notable features: (1) planet–planet
collisions tend to occur at short cooling ages (∼104–107 yr), (2) es-
cape and stellar collisions becomes prevalent only after ∼107 yr, but
tails off after a few Gyr, (3) the cooling age of this type of instability
increases as the progenitor mass increases and (4) direct collisions
with the WD are rare. The striking delay of ∼107 yr before escape
instability becomes dominant reflects the (largely unexplored) de-
pendences of Lagrange instability on number of orbits completed,
the initial values of the semimajor axes and the mass ratios. In fact,
perhaps the positive correlation of cooling age instability with pro-
genitor mass is due to more orbits being required for smaller mass
ratios for Lagrange instability to kick in, a feature also apparent on
Fig. 9 on the MS. Alternatively, the correlation may result from the
much wider orbits of the giant planets around higher mass WDs.

The few giant planets which hit the WD are particularly interest-
ing as pollution sources, and imply that some polluted WDs may
result from the disruption of giant planets rather than comets or
asteroids. Planetary material that is accreted on to WDs might be
composed of many small asteroids or comets (Jura 2003; Bonsor
et al. 2011; Debes et al. 2012), but could also be the result of a single
large object. Detailed compositional analysis of some objects con-
cludes that the accreted material resembles more closely the bulk
Earth in composition than chondritic material (e.g. Zuckerman et al.
2007; Klein et al. 2010); it is feasible that a disrupted planet would
produce high levels of pollution in a WD. Such disrupted planets
could provide the explanation for a handful of polluted WDs, in
particular old, heavily polluted WDs. However, our simulations in-
dicate that star-grazing giant planet collisions are too rare to alone
account for the abundance of observed differentiated material. This
result agrees with the implied low fraction of planetary collisions
with WDs from the finding that at most 1–5 per cent of WDs have
high accretion rates due to dust discs (Debes et al. 2011; Farihi et al.
2012a).

Observed polluted WDs can provide the inspiration for exten-
sions to our work, with numerical simulations tailored to particular
observational samples or campaigns. However, the purpose of this
paper is not to make a detailed comparison with the observed pol-
luted WD population, which is heavily biased and suffers from
uncertainty of the distribution of their progenitor masses. Our com-
putationally expensive simulations were set up to demonstrate that
full-lifetime orbital integrations including realistic mass-loss are
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Figure 17. Instability as a function of the time elapsed since the end of the of the AGB phase, when the WD was born. Planet–planet collisions occur quickly
(∼104−107 yr), whereas instances of escape or stellar collisions typically do not occur until after a few tens of Myr.

now achievable, and to explore dynamical properties of the result-
ing instability. Nevertheless, we can make a crude comparison of
the potentially WD-polluting events in our simulations (Fig. 17) and
the observed distribution of polluted WDs (in Fig 18). Data for the
observed distribution of 78 WD ages were taken from Farihi et al.
(2012b) and Girven et al. (2012).

Both the observations and simulations show a broad consensus.
Observations confidently detect pollution at cooling ages from a

few tens of Myr (e.g. Gänsicke et al. 2012) to several Gyr (Koester
et al. 2011), but cannot detect pollution at earlier times when the
WD is too hot to rule out a primordial origin for metals7 nor at later
times when the WDs are too intrinsically faint. The simulations

7 These young WDs are able to radiatively levitate metals, masking what
could be external pollution.
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Figure 18. Cooling ages for a sample of 78 observed WDs from Farihi et al.
(2012b) and Girven et al. (2012). Although this figure may be compared
with Fig. 17, the progenitor masses of these WDs are unknown, and the
sample suffers from observational bias.

begin to demonstrate ejection instability only at times greater than
tens of Myr due to a true physical effect which may be explained
by the time-scale for Lagrange instability to act on the WD phase.
This instability appears to have largely run its course after a few
Gyr have passed, so that relatively fewer systems are likely to be-
come unstable beyond the 5 Gyr integration time. Observationally,
comparing the pollution frequency at 5 Gyr with that at tens of Myr
is difficult due to intrinsic biases, despite the suggestive nature of
the distribution in Fig. 18. Nevertheless, Bonsor et al. (2011) found
that asteroidal accretion on to WDs from particles scattered due to
the overlap of mean-motion resonance exterior to the planet follows
a similar trend of being present beyond a few tens of Myr after post-
MS evolution before eventually tailing off after a few Gyr. Debes
et al. (2012) later found that asteroidal accretion on to WDs from
both exterior and interior resonances also follow this trend.

6.2 Phase space extrapolation

The results of this study raise several questions. One important
question is how robust our conclusions are to variations of the
initial conditions. Because of the computational expense of running
simulation ensembles for 5 Gyr with the BS algorithm, we could not
perform a wider phase space exploration. However, we can guess
how the outcomes would vary in other circumstances.

Varying a1 would change the number of orbits completed over the
MS; the effect is similar to varying M�. Hence, Fig. 9 demonstrates
the likely consequence: if the planets complete enough orbits, they
will be prone to long-term MS instability. If the initial planetary
separation is beyond the Hill stability limit, then this instability
must be Lagrange instability. Otherwise, the type of instability is
unrestricted.

The consequence of varying planetary eccentricities and mutual
inclinations is less clear. What is clear is that planets on eccentric
orbits will feature in post-MS systems. Observations suggest that
if giant planets are formed at several au on circular orbits, they are
unlikely to retain their primordial eccentricities on the MS. Accord-
ing to the Extrasolar Data Explorer,8 as of 2012 October 31, only

8 http://exoplanets.org/

20.4 per cent of exoplanets with Mp ≥ 0.1MJ and a ≥ 1 au have e <

0.1. This percentage shrinks to 10.4 per cent for e < 0.05.9 If one
were to include only planets in multi-planet systems, these percent-
ages become 18.0 and 14.0 per cent, respectively. Therefore, if the
planets we currently observe predominately survive until the post-
MS, the significant majority will enter those phases with non-zero
eccentricities. Nevertheless, it is of interest to determine if MS La-
grange instability can occur for planets formed on perfectly circular
orbits. Therefore, we have performed 48 additional simulations with
e1(0) = e2(0) = 0.0 for M�(0) = 3 M� at different locations beyond
the Hill stability limit. We can confirm that a few of those systems
become Lagrange unstable. A detailed statistical comparison is best
left to a more comprehensive phase space study.

We can estimate the dependence on planetary mass by extrapo-
lating from Figs 9 and 15. The trend suggests that as the test particle
limit is approached, where there is no mutual interaction between
secondaries, the difference between the Hill and Lagrange bound-
aries might tend to zero faster than the Hill boundary itself. In the
opposite limit, for two brown dwarfs and a more massive evolving
primary, we expect the stability boundaries to widen even further
than in our fiducial case. In these instances, instabilities might be
common, and could represent a significant catalyst for WD pollu-
tion.

Adding more planets to model real systems such as HR 8799 in-
troduces a significant complication, but is a viable avenue of a future
study with our numerical code (Mustill & Veras, in preparation).
If additional planets are of similar masses, then we expect them
to represent destabilizing influences, particularly in the post-MS
stages.

6.3 Comparison with radial velocity exosystems

The majority of known exoplanets are likely to be engulfed during
the post-MS phase, as the population of planets beyond 10 au is
largely unknown. Nevertheless, scaled versions of many known
systems could represent genuine test cases for our model, because of
the observed close separations of pairs of exoplanets. Furthermore,
our findings of MS instability warrant a closer look at these systems.

We have compiled a list of all pairs of planets in the same system
with a > 1 au each that were detected by radial velocity measure-
ments. We obtained the data from the Extrasolar Planets Explorer
on 2012 November 6. Using equations (1)–(5), and assuming min-
imum masses and coplanarity, we determined if the systems are
currently Hill stable.

We found that six pairs of planets are not (HD 181433 c,d;
HD 204313 b,d; 24 Sex b,c; BD +20 2457 b,c; HD 128311 b,c;
HD 200964 b,c). Hence, these planets are likely to be protected by
their proximity to mean-motion commensurabilities inside small
islands of stability, as in e.g. Wittenmyer, Horner & Tinney (2012).
This behaviour is reflective of some of our Hill unstable systems
in Figs 9, 15 and 16. BD+20 2457 is notable because its mass is
about 2.8 M�, and may be related to our 3 M� simulations. How-
ever, both planets in the system are likely instead to be classified
as brown dwarfs (M1 ≈ 22.7MJ and M2 ≈ 13.2MJ). The corre-
spondingly high mass ratios in the system, coupled with their close
separations (a2/a1 ≈ 1.39), perhaps intuitively suggest that insta-
bility should be imminent. Hence, the existence of such a system is

9 Admittedly, there is a bias towards fitting higher eccentricity values than
the true values. The disparity worsens with sparser data, which is often
associated with the most distant radial velocity planets.
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stark confirmation that Hill unstable systems can remain stable for
long periods. The system’s future prospects for stability on the MS
would require detailed modelling.

Three pairs of planets are Hill stable, but have a separation ratio
which exceeds the Hill stability limit by no more than 30 per cent
(HD 37124 c,d; 47 Uma b,c; HD 183263 b,c). Based on our simula-
tions, the close proximity of these systems to the Hill stability limit
suggests that they might not be Lagrange stable for the remainder of
their MS lifetimes. Testing this suggestion would require a detailed
suite of long-term simulations for each system. If Lagrange insta-
bility scales strongly with planet/star mass ratio, then the planets in
HD 183263 are perhaps in the greatest danger: the mass ratios in
those systems are about 9.5 times as great as any mass ratio that we
considered in our simulations.

Three pairs of Hill stable planets have separations exceeding
the Hill stability limit by between 45 and 65 per cent (HD 108874
b,c; HD 159868 c,b; HD 10180 g,h), and two planet pairs (HD
4732 b,c; mu Ara b,c) have separations that are over twice the Hill
limit. Although the Lagrange stability boundary is likely dependent
on several variables, we have performed additional simulations as
proof of concept to show that in at least one case, this boundary can
extend out to twice the Hill stability boundary. Hence, HD 108874,
HD 159868 and HD 10180 are not guaranteed to be Lagrange stable
without further detailed analyses.

If the planets in any of these observed systems are not coplanar,
then they are more likely to be Hill unstable (see the middle panel of
Fig. 4). A mutual inclination of just 12.◦3 would render the planets
in HD 37124 Hill unstable. At the opposite extreme, for the widely
separated planets in HD 4732, a mutual inclination of 61.◦0 would
be required.

6.4 Non-adiabatic mass-loss

Adiabaticity in the two-body problem with mass-loss is well defined
(e.g. Veras et al. 2011). If we were to assume the two-body definition
of adiabaticity for each of the planets in each of our simulations, then
we can claim that at no time did our stable planetary systems (with
a1(0) = 10 au) approach a regime that featured non-adiabatic mass-
loss. However, if two planets were stably orbiting at separations of
hundreds of au on the MS, then the mutual planet–planet interaction
coupled with stellar mass-loss could yield unpredictable evolution
during the post-MS.

Voyatzis et al. (2013) have recently explored non-adiabatic mass-
loss in the three-body problem. By using Lypaunov characteristic
numbers to create dynamical stability maps, they found that non-
adiabatic mass-loss can cause a stably interacting pair of planets
to shift to a chaotic region of phase space. The resulting instability
(manifested by escape or collision) may be latent, sometimes not
appearing for a time that exceeds the duration of the mass-loss by a
factor of tens. In cases where the outer planet escapes, distinguish-
ing whether the instability was triggered by Lagrange instability,
non-adiabatic mass-loss or both might require detailed follow-up
simulations.

6.5 Sharpness of the Hill stability limit

No violations of the Hill stability limit have occurred in our simu-
lations, despite us using the two-body approximation for the energy
in the analytical formulation (equations 1–5). Nevertheless, we can
estimate the error in semimajor axis as a result. Fig. 19 plots the
mean and median energy error incurred by using the two-body ap-
proximation for the energy of the system. In all cases, the energy

Figure 19. The error of using the two-body approximation to model the
total energy of the system. The black curve and filled dots indicate the mean
energy error, the blue dashed curve and filled squares the median energy
error. These curves are drawn for fiducial initial orbital parameters described
in Section 5.4.1. The orange filled diamond and upward-pointing triangle
represent the mean and median energy error for the e2 = 0.5 simulation. The
purple filled downward-pointing triangle and open dotted circle represent
the simulations with the pair of Earth-mass planets. These errors correspond
to the semimajor axis differences of the order of 10−3 au for a ≈ 10 au.

error is between 0.02 and 0.06 per cent. This range corresponds
to semimajor axis differences of several 10−3 au for planets with
a ≈ 10 au. Our gradient of semimajor axis values sampled for our
fiducial simulations exceeded this value in each case, helping to
confirm why the analytic limit was not violated and suggesting
that the unknown integration error was comparably small, if not
smaller.

7 C O N C L U S I O N

Architectures of planetary systems during each stellar phase may
represent historical tracers of formation and presage future evolu-
tionary instability and death. We have performed 5 Gyr simulations
that consistently treat the dynamics of two massive planets and ev-
ery phase of stellar evolution for a wide range of progenitor stellar
masses (3–8 M�). These computationally demanding simulations
suggest that stable MS systems are in danger of future instability.
The zone of danger is wide, reaching out to 163–178 per cent of
the MS Hill stability limit and 123–137 per cent of the WD Hill
stability limit for our low eccentricity [e1(0) = e2(0) = 0.1] sim-
ulations. The consequences for WD pollution may be significant:
For example, the inner planet can be perturbed on to a highly ec-
centric orbit which takes the planet close to the WD or hits the star
directly.
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