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ABSTRACT
Collisionless relativistic shocks have been the focus of intense theoretical and numerical in-
vestigations in recent years. The acceleration of particles, the generation of electromagnetic
microturbulence and the building-up of a shock front are three interrelated essential ingredients
of a relativistic collisionless shock wave. In this paper, we investigate two issues of importance
in this context: (1) the transport of suprathermal particles in the excited microturbulence up-
stream of the shock and its consequences regarding particle acceleration; (2) the preheating of
incoming background electrons as they cross the shock precursor and experience relativistic
oscillations in the microturbulent electric fields. We place emphasis on the importance of
the motion of the electromagnetic disturbances relatively to the background plasma and
to the shock front. This investigation is carried out for the two major instabilities involved in
the precursor of relativistic shocks, the filamentation instability and the oblique two stream
instability. Finally, we use our results to discuss the maximal acceleration at the external shock
of a gamma-ray burst; we find in particular a maximal synchrotron photon energy of the order
of a few GeV.

Key words: acceleration of particles – instabilities – relativistic processes – shock waves –
gamma-ray burst: general.

1 IN T RO D U C T I O N

The microphysics of collisionless relativistic shocks has been inten-
sively investigated in recent years, through both numerical simula-
tions and theoretical investigations. As demonstrated in particular
by Spitkovsky (2008a,b), the physics of these shock waves in the un-
magnetized limit involves the interplay of three phenomena: the for-
mation of the shock through the deceleration and reflection of par-
ticles against a microturbulent magnetic barrier, the self-generation
of this microturbulence upstream of the shock by back scattered
particles and the development of Fermi-type acceleration.

So far, particle acceleration has been observed in particle-in-cell
(PIC) simulations of unmagnetized relativistic shocks (Spitkovsky
2008b; Keshet et al. 2009; Martins et al. 2009; Sironi & Spitkovsky
2009, 2011a), and indeed one must expect the development of the
Fermi process when the magnetization is very weak, because mi-
croturbulence can then grow and provide the necessary scattering
(Lemoine, Pelletier & Revenu 2006; Lemoine & Pelletier 2010). At
larger levels of magnetization of the upstream flow, the shorter pre-
cursor scale may prevent the development of micro-instabilities, and
in the absence of cross-field scattering, Fermi power laws cannot

� E-mail: illya.plotnikov@obs.ujf-grenoble.fr (IP); Guy.Pelletier@obs.ujf-
grenoble.fr (GP)

develop (Lemoine, Pelletier & Revenu 2006; Niemec, Ostrowski
& Pohl 2006); this picture has been validated in particular by the
simulations of Sironi & Spitkovsky (2011a).

Nevertheless, the long time-scales and high energies that are in-
ferred in powerful astrophysical sources remain well out of reach of
these state of the art numerical simulations. It is therefore important
to build on the basis of these numerical experiments a theoretical
understanding of the various processes at play in these shock waves.
In this work, we are interested in the physics of the microturbulence
upstream of a relativistic weakly magnetized shock. Two fast grow-
ing micro-instabilities have received significant attention regarding
the development of microturbulence upstream of a relativistic shock
front: the filamentation (often termed Weibel) mode (e.g. Medvedev
& Loeb 1999; Wiersma & Achterberg 2004; Lyubarsky & Eich-
ler 2006; Achterberg & Wiersma 2007; Achterberg, Wiersma &
Norman 2007; Bret 2009; Lemoine & Pelletier 2010, 2011a; Ra-
binak, Katz & Waxman 2011; Shaisultanov, Lyubarsky & Eichler
2012) and the two stream instability (hereafter OTSI; e.g. Bret,
Firpo & Deutsch 2005; Bret 2009; Lemoine & Pelletier 2010,
2011a; Shaisultanov et al. 2012). Both instabilities follow from
the interpenetration of the beam of back scattered particles and the
incoming background plasma in the shock precursor (as viewed
from the shock frame). One should nevertheless mention the possi-
bility of a Buneman instability, if the returning particles carry a net
current, which turns out to grow faster than the previous two, see
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e.g. Bret (2009) and Lemoine & Pelletier (2011a) for a discussion.
However, the Buneman instability saturates through the heating of
the background electrons, so that it presumably serves as an effi-
cient source of preheating. In this work, we are mostly interested in
the properties of particle transport (and energization) in the micro-
turbulence upstream of a relativistic shock front and we will focus
our discussion on the respective roles of the filamentation and two
stream modes.

In the downstream, the microturbulence appears isotropic, mostly
magnetic and static, see e.g. Chang, Spitkovsky & Arons (2008).
The physics of transport of suprathermal particles in such a micro-
turbulence, possibly superimposed on a weak background magnetic
field, has been discussed in a previous paper (Plotnikov, Pelletier
& Lemoine 2011). Upstream of the shock, this microturbulence is
strongly elongated in the direction of the shock normal and in the
background plasma rest frame, it carries both electric and magnetic
fields. That must affect the transport properties of suprathermal par-
ticles in a non-trivial way and likely contribute to the heating of
background electrons. Furthermore, we demonstrate in this work
that the filamentation modes have a finite phase velocity in the
background plasma rest frame, an issue which to our knowledge
has not been addressed before in the present context. We find that
this motion has important consequences regarding both the transport
of suprathermal particles, in particular the acceleration time-scale,
and the preheating of the background electrons, which turns out to
be fast and efficient.

This paper is organized as follows. In Section 2, we discuss the
motion of the frame in which the Weibel filaments are static, and we
summarize previous findings on a similar issue for the OTSI mode.
We investigate the influence of the motion of the electromagnetic
modes on the reflection process at the shock front. In Section 3,
we study the transport of suprathermal particles in both Weibel
and OTSI turbulence, on the basis of numerical simulations of test
particle propagation. We place emphasis on the issue of scattering
in three dimensions. Section 4 discusses electron heating. We show
that the relativistic oscillation of the incoming background electrons
in the electric field of the microturbulence modes lead to efficient
preheating on a short time-scale. In Section 5, we apply our results
to the concrete case of the external relativistic shock of a gamma-ray
burst (GRB). We summarize our results in Section 6.

2 MI C ROT U R BU L E N C E I N T H E PR E C U R S O R
O F C O L L I S I O N L E S S W E A K LY MAG N E T I Z E D
R E L AT I V I S T I C S H O C K S

We start with some definitions of key quantities. We note μ ≡ me/mp

the electron to proton mass ratio, �s the Lorentz factor of the shock,
n the density of the background (upstream) plasma, ρ = nmpc2 the
rest-mass density, B0 the magnetic field of the background plasma;
θB the angle between the direction of B0 and the shock normal;
these quantities are defined in the upstream plasma rest frame. The
magnetization parameter is then defined as

σ ≡ B2
t|f

4π�2
s ρc2

= B2
0

4πρc2
sin2 θB , (1)

with Bt|f = �sB0 sin θB the transverse component of the background
magnetic field in the shock front rest frame. Numerical simula-
tions provide two essential parameters for astrophysical applica-
tions, namely the conversion factor ξ cr of the incoming energy into

cosmic rays (suprathermal particles), and the conversion factor ξB

into magnetic energy:

Pcr ≡ ξcr�
2
s ρc2 ,

B̄2
|f

4π
= ξB�2

s ρc2 , (2)

where the cosmic ray pressure Pcr and the level of magnetic tur-
bulence B̄|f are measured at the shock front. These two crucial pa-
rameters ξ cr and ξB are expected to be on the order of 1–10 per cent
(Sironi & Spitkovsky 2011a). Actually the cosmic rays are consid-
ered, as shown by numerical simulations and explained by theory,
as the source of magnetic, and more generally electromagnetic, tur-
bulence. In the present context of a proton–electron plasma of low
magnetization, the reference time-scale is ω−1

pi and the spatial scale
of reference is the inertial scale of protons δi ≡ c/ωpi.

In this section, we present the essential characteristics of the fil-
amentation instability and the oblique two stream instability, which
are the most important sources of turbulence in the precursor of
ultrarelativistic shocks. As briefly mentioned above, there are also
Buneman instabilities that are triggered by the compensation current
in the background plasma, which compensates the current carried
by the reflected particles either along the mean field (for a parallel
shock) or across the mean field. For instance, reflected particles of
opposite charge rotate in the opposite direction in the transverse
mean field and thus produce a very intense diamagnetic current re-
sponsible for a Buneman instability (Lemoine & Pelletier 2011a),
which grows rapidly. Those current instabilities produce a turbu-
lent heating of the electrons up to some temperature that reduces
the anisotropy of the electron distribution function, up to the point
where the instability saturates. Therefore, these current instabilities
participate in the process of preheating electrons, which then ar-
rive at the shock front with a relativistic temperature. In this paper,
we will not address the preheating effect due to Buneman instabil-
ity and focus on the Weibel and OTSI instabilities. In the picture
that we develop here, these instabilities indeed push the preheating
to higher temperatures, up to near equipartition, by the time the
electrons reach the shock front.

The first generation of reflected particles constitutes the main
content of suprathermal particles that penetrate the ambient plasma
with an energy density much larger than ρc2 as measured in the
frame of the ambient plasma. Its interaction with the background
plasma can be described perturbatively as long as the proton beam
of (apparent) density nb and Lorentz factor γ b is such that ωpb �
ωp, which amounts to nb/γ b � n/μ. Now for a beam reflected
by a shock, nb = ξcr�

2
s n and γb ∼ �2

s ; thus the weak interaction
criterium becomes ξ cr � 1/μ, which is always realized. The weak
interaction of the very energetic beam with the ambient (or up-
stream) plasma renders the calculation of the instability convenient
in the frame of the background plasma.

2.1 The frame of magnetic filaments

Consider first the growth of magnetic perturbations due to the
Weibel instability triggered by a parallel beam of velocity υb and
Lorentz factor γb = (1 − υ2

b/c2)−1/2 ∼ �2
s (upstream frame), in-

teracting with a cold background plasma of density n at rest; at a
shock wave, the beam of returning particles carries an energy density
ξcrγ

2
b nmpc2, so that the beam plasma frequency ωpb ∼ ξ 1/2

cr μ1/2ωpe,
with ωpe the background electron plasma frequency (see Lemoine &
Pelletier 2010 for details). In the upstream rest frame, the e-folding
length-scale of the instability is written as

�g ≡ c/�ω ∼ ξ−1/2
cr δi , (3)
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the detailed growth rate (see Appendix A) being

γinst ≡ �ω =
√

ξcrωpi
βbk⊥δe

(1 + k2
⊥δ2

e )1/2
. (4)

In the above expression and throughout this paper, k⊥ represents
the wavenumber component transverse to the shock normal, i.e.
tangential to the shock front, while the (longitudinal) wavenumber
component along the shock normal is written k‖. For the filamenta-
tion mode, k⊥ 	 k‖. In general, one takes the limit k‖ → 0, which
leads to an aperiodic mode, i.e. �ω = 0. However, for a small,
but finite longitudinal wavenumber k‖, the Weibel modes have a
non-vanishing real frequency which indicates that these magnetic
filaments propagate at high velocity. Considering first the above
case of a cold electron background,

ωr ≡ �ω = k‖υb

(
1 − ξcrμ

γ −2
b + k2

⊥δ2
e

1 + k2
⊥δ2

e

)
. (5)

We remark that this phase velocity is consistent with the result
obtained in the centre of mass frame of the counter streaming con-
figuration when γ b � 1; for μ = 1 and ξ cr = 1/2, we find a phase
velocity υb/2 at peak growth rate, which corresponds to a vanishing
phase velocity in the centre of mass frame.

In this work, we will often refer to the wave frame, which corre-
sponds to the frame moving at the phase velocity of the magnetic
disturbance vm ≡ βmc along the shock normal direction:

βm ≡ �ω

k‖c
. (6)

By definition, the wave is static in this frame, since the mode
frequency in that frame ω′ = γ m(ω − k‖vm) = 0, with γm =(
1 − β2

m

)−1/2
. Strictly speaking, this phase velocity is not unique

because of its dependence on k⊥; however, we consider it for the
most unstable mode, which introduces only a small dispersion
�βm/βm ∼ ξ crμ.

In the above cold background plasma limit, the Weibel filaments
can be considered as wave packets of transverse size �⊥ ∼ δe and
extension in the normal direction �‖ > δe, but necessarily finite (at
least because of the finite growth length in a precursor of finite
extent). Equation (5) indicates that these filaments move at a high
speed relatively to the ambient medium. Indeed,

γm � (ξcrμ)−1/2 ∼ 140 , (7)

where the numerical value holds for an electron–proton plasma with
ξ cr = 0.1. This is an important point, which has not been taken into
account in the literature, to our knowledge. The motion of the wave
packets indeed carries particular importance when determining the
condition for particle reflection, the level of electron preheating
and also for the analysis of the Fermi process, as discussed in the
following.

In the upstream rest frame, these waves are quasi-electromagnetic
waves with the electric field E mostly oriented along the beam
(shock normal), a dominant magnetic component perpendicular to
both k⊥ and E, and finally a small electrostatic component of E
along k⊥. The magnetic component remains the most intense com-
ponent despite a phase velocity close to c along the normal direc-
tion because E/B � (ξcr + k2

‖δ
2
i )1/2/(kδi). The fact that they have a

phase velocity close to c implies that they suffer negligible Landau
damping, at least as long as the thermal velocity of the electrons is
small.

The filaments are static in the frame moving at βm with respect
to the background plasma; however, in their rest frame they are no

longer predominantly magnetic. They actually possess an electro-
static field of almost the same intensity as the magnetic field, as
a standard Lorentz transform shows: E′

⊥ � γmB � B ′, since B′ =
γ mB, with the prime denoting the quantity in the filament rest frame.
This electrostatic field turns out to be an important source of heating
for the background electrons, as discussed in Section 4.

If the background electrons have been preheated to relativis-
tic temperatures, their electromagnetic response and therefore the
instability are modified. The maximum growth rate remains un-
changed, �ω ∼ ξ 1/2

cr ωpi, but the spatial scale at which maximum
growth occurs is now larger because the electron inertial scale is
enlarged by a factor

√
γ̄e, with γ̄e the mean electron thermal Lorentz

factor in the upstream rest frame γ̄e = 1 + 3Te/mec
2. Detailed

calculations are given in Appendix A; they include in particular
Landau damping on hot electrons, which essentially reduces the
growth rate at larger wavelengths. This latter spatial scale tends to
δi in the limit of equipartition, meaning γ̄e → mp/me. In a relativis-
tically hot background, the phase velocity of the modes along the
beam direction is slowed down, but nonetheless remains relativistic
for reasonable values. The calculations presented in Appendix A
indicate

γm � [
(γ̄eμξcr)

1/2 + 2ξcr

]−1/2
. (8)

Equipartition corresponds to γ̄eμ = 1; therefore, prior to equipar-
tition γ̄eμ < 1. For relativistically hot electrons far from equiparti-
tion, γ m � (2ξ cr)−1/2, then γm ∼ (ξcrμγ̄e)−1/4 when γ̄eμ > ξcr, and
finally the lowest value of γ m ∼ 2 is reached at equipartition. This
value is significantly smaller than that obtained in the cold electron
background, γ m ∼ (ξ crμ)−1/2, but it nevertheless plays an important
role in what follows.

Note that the filamentation instability in the upstream of a rel-
ativistic shock is quenched when �s < (ξ crμ)−1/2 as long as the
electrons are kept cold due to the finite angular dispersion of the
beam (Lemoine & Pelletier 2011a; Rabinak et al. 2011). In a hot
background, however, the filamentation instability remains strong,
even when the beam angular dispersion is taken into account.

The above discussion shows that the velocity of the filaments
depends on the degree of preheating of the background electrons,
hence on the distance to the shock front, since electrons are cold at
the tip of the precursor and hot at the shock transition, see Sironi &
Spitkovsky (2011a). Three cases deserve attention: γ m ∼ �s where
the filaments move more or less at the same speed as the shock
front, γ m < �s where the shock front catches up the filaments and
the case where the filaments can even run faster than the shock for
�s < γ m. In this latter case, the generation of filaments might lead
to shock reformation, but this issue is not discussed here.

The relative velocity of the filaments with respect of the shock
front can be written as

βm|f � γ 2
m − �2

s

γ 2
m + �2

s

, (9)

and the associated Lorentz factor

�m|f � 1

2

(
γm

�s
+ �s

γm

)
. (10)

The discussion about the motion of magnetic disturbances is also
important for their transmission to the downstream flow. Indeed, the
relative motion of the upstream flow with respect to the downstream
one is characterized by a relative Lorentz factor �r = �s/

√
2. The

Lorentz transform of the frequency and normal wavenumber of
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filaments to the downstream frame leads to

ω|d = �r(βm − βr)k‖c � 1

2
�rk‖c

(
1

�2
r

− 1

γ 2
m

)

k‖|d = �r(1 − βrβm)k‖ � 1

2
�rk‖

(
1

�2
r

+ 1

γ 2
m

)
. (11)

Thus, when γ m � �s, the modes are perceived as electromagnetic
vacuum waves in the downstream frame, propagating backwards
(ω|d � −k‖|dc). However, one should stress here that the motion of
the filament is calculated at the linear level, while the transmission
of modes downstream proceeds in the highly non-linear regime.
Therefore, it is not clear at present whether the above equation 11
applies to the transition; it should be taken with caution.

Finally, in the case of an ultrarelativistic shock in an electron
positron plasma, γ m is at most a few and the shock front catches up
the magnetic disturbances (�s 	 γ m). The behaviour is the same
in a proton–electron plasma at near equipartition.

2.2 The role of OTSI turbulence

Although the Weibel instability can produce all the effects expected
to occur at a relativistic shock, the OTSI appears unavoidable, and
it grows a little bit faster than the Weibel instability at least in the
cold background limit. The OTSI is a resonant instability of electron
plasma waves (ω � ωpe) with a sharp selection of the wavevector
component along the beam: k‖ = ωpe/c, which grows much faster
than the usual two stream instability when the transverse component
of the wavevector is also of the order of ωpe/c (e.g. Fainberg, Shapiro
& Shevchenko 1970; Bret et al. 2005). These modes are mostly
electrostatic in the background plasma frame; their frequency is
slightly shifted off resonance according to: �ω = ωpe(1 − |δ|/2)
and their growth rate �ω = √

3 2−4/3|δ|ωpe with |δ| = ξ 1/3
cr μ1/3 (e.g.

Lemoine & Pelletier 2010, 2011a). The ratio of the electromagnetic
component over the electrostatic one is of the order of |δ|.

As discussed in Lemoine & Pelletier (2011a) and Shaisultanov
et al. (2012), the two stream instability becomes inhibited once the
electrons are heated to ultrarelativistic temperatures and the Weibel
instability becomes the dominant mode.

In order to study the dynamics of particles in the modes, it is
interesting to move to the wave frame in which the particles expe-
rience a static electric field and a static magnetic field. The wave
frame velocity with respect to the background plasma βm = 1 −
|δ|/2 and the corresponding Lorentz factor:

γm � |δ|−1/2 � ξ−1/6
cr μ−1/6 ∼ 5, (12)

with respect of the background plasma. These mildly relativistic
wave packets are thus rapidly overtaken by the shock front.

As in the case of Weibel modes, the dynamics in OTSI modes is
also governed by a couple of transverse fields of similar amplitude
when one shifts to the rest frame in which these modes are static.
A crucial difference however is that the OTSI mode appears as
a high-frequency quasi-vacuum monochromatic wave in the front
frame, revealing a clear periodic pattern in the direction of the shock
normal.

2.3 Suprathermal particles, the background plasma
and the shock

In Sections 3 and 4 that follow, we address, respectively, the issues
of the scattering of suprathermal particles and the heating process of
background particles in the motional microturbulence upstream of

the shock. These actually represent two different facets of a similar
problem, namely particle transport in a time varying microturbu-
lence. However, in the test particle picture that we adopt in the
following, these two populations, the suprathermal particles and
the background electrons, differ one from the other by their wiggler
parameter:

a ≡ eĒ′�′
⊥

mec2
, (13)

as expressed in terms of the microturbulent electric field Ē′ and
transverse scale �′

⊥ in the wave frame. As discussed in the following,
in the wave frame Ē′ and B̄ ′ are of the same order, so that there is
no ambiguity in the definition of a.

Cold background electrons have a Lorentz factor γ ′ ∼ γ m in the
wave frame, so that

a

γ ′ � ξ
1/2
B

mp

me

�⊥
δi

	 1 , (14)

meaning that these electrons experience relativistic oscillations on a
coherence length-scale in the wave frame. Of course, as the electrons
near equipartition, the ratio a/γ ′ becomes closer to unity.

In sharp contrast, the same wiggler parameter for suprathermal
particles a/γ ′ � 1. To see this, consider a suprathermal electron,
with Lorentz factor γ in the upstream rest frame, becoming γ ′ �
γ /γ m in the mode rest frame (assuming γ 	 γ m). The minimal
Lorentz factor of suprathermal electrons is γmin ∼ �2

s mp/me in the
upstream frame, hence one can write

a

γ ′ � ξ
1/2
B

γ 2
m

�2
s

γmin

γ

�⊥
δi

, (15)

which is indeed expected to be much smaller than unity: recall that
�⊥ is expected of the order of δe if the background electrons are
cold (in which case γ m can be large if the Weibel instability is not
quenched by the angular dispersion of the beam), but of the order of
δi if the background electrons reach equipartition with the ions, in
which case γ m becomes of the order of a few for the Weibel modes.
Thus, a/γ ′ � 1 for suprathermal electrons, while a/γ ′ 	 1 for the
background electrons, typically.

For similar reasons, the microturbulence cannot trap the
suprathermal protons and thereby saturate the ion filamentation
instability that these particles seed. This would require that the
level of microturbulence is such that the time-scale of non-linear
oscillation τ nl in the filament becomes comparable to the growth
time-scale �ω ∼ ω−1

pb . This oscillation time-scale can be expressed
as τnl = �′

⊥(γ ′/a)1/2/c and ωpb = ξ 1/2
cr ωpi, so that one would need

a/γ ′ � ξ−1
cr (�⊥/δi)2 for suprathermal particles, which cannot be

satisfied. A similar conclusion can be drawn when one considers
the resonance broadening effect, which stems from the fact that par-
ticle scattering or diffusion broadens the resonance of modes with
the beam responsible for the instability.

Presumably, the Weibel instability in the shock precursor does
not actually saturate, but it stops growing once the incoming (back-
ground) plasma ions are turned around by the microturbulent field,
as viewed in the shock front rest frame. At this point, the shock
transition actually takes place. This notably implies that the back
scattered particles are roughly isotropic at this location (again, as
viewed in the shock front frame). This and the near isotropy of the
incoming ions, as they are turned around, then imply the end of
growth of the Weibel instability. Interestingly, this argument leads
to a level of magnetic turbulence which agrees well with current
simulations.
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1284 I. Plotnikov, G. Pelletier and M. Lemoine

This can be seen as follows, in the upstream rest frame in which
the filamentation modes are mostly static. In a first approximation,
the transverse magnetic field can be described as coherent in the
shock normal direction on a growth length-scale c/�ω. An incoming
proton is turned around on this length-scale provided

eB̄

mpc
≈ �ω , (16)

and �ω = ωpb for the filamentation instability implies a level

B̄2

4π
≈ ξcrnmpc2 , (17)

meaning ξB ≈ ξ cr at the shock front. The above agrees rather satis-
factorily with the PIC simulations of Sironi & Spitkovsky (2011a).
Of course, the actual time to reach this amplitude, starting from
some background fluctuation value far upstream, is of the order of
�ω times an e-folding factor of the order of a few to 10.

3 TR A N S P O RT O F S U P R ATH E R M A L
PA RTI C L E S I N T H E WAV E FR A M E

The properties of particle transport in microturbulence has been
already studied downstream of a relativistic shock (e.g. Chang et al.
2008; Plotnikov et al. 2011). There, the transport coefficients are
found to depend essentially on a scattering frequency, which scales
as the square of the particle energy, corresponding to small pitch-
angle scattering:

νs|d = 2

3

c

�c|d

(
eB̄|d
εd

)2

, (18)

with �c|d the coherence scale, B̄|d the total magnetic field and εd the
particle energy, in the downstream frame. In the absence of a mean
field, spatial diffusion is isotropic and is simply described by the
standard diffusion coefficient:

D � c�c|d

(
ε|d

eB̄|d�c|d

)2

. (19)

However, spatial diffusion is anisotropic in the presence of a mean
field; then, the transverse diffusion coefficient tends towards a con-
stant value as the particle energy becomes large (Plotnikov et al.
2011).

Upstream, the situation is rather different, notably because of the
anisotropy of the microturbulence.

In the upstream frame, the wavenumbers of Weibel modes obey
k⊥/k‖ 	 1 and �ω � k⊥, so that k′

⊥/k′
‖ 	 1 in the wave frame as

well. Regarding OTSI modes, one finds k⊥ ∼ k‖ in the upstream
frame, but Lorentz boosting to the wave frame gives predominance
to the transverse wavenumbers. If, in a first approximation, the
spatial dependence along the shock normal is disregarded, the nor-
mal component of the generalized momentum becomes a constant
of motion in the wave frame: p‖ + eA‖(x, y) = C (where C is a
constant, A‖ the parallel component of the electromagnetic vector
potential). In this frame, the total energy is also a constant of mo-
tion due to time translation invariance. Thus, the momentum of the
particle is confined in a subset of the energy surface determined
by �p‖ = e�A‖, where �A‖ is the rms variation of the normal
vector potential (wave frame). In short, the assumption of transla-
tional invariance along the Weibel filaments leads to an inhibition
of momentum diffusion, see also Jones, Jokipii & Baring (1998)
for similar issues. This is a crucial point which directly impacts
the efficiency of acceleration, which requires transverse scattering
in the absence of a mean field. As we discuss further below, the

transverse momentum is subject to large angular variations in the
transverse plane, which leads to spatial diffusion. In order to obtain
pitch angle diffusion, it is thus necessary to consider the full 3D
dependence of the magnetic fluctuations.

For both Weibel and OTSI modes, the analysis of particle dy-
namics is more suitable in the wave frame, because this is the frame
in which the transport coefficients can be properly defined, where
the distribution function tends to become more or less isotropized,
and fundamentally, this is the proper frame of scattering centres in-
volved in the Fermi process. Henceforth, all quantities are therefore
evaluated in the frame of magnetic disturbances, unless otherwise
stated.

The electromagnetic components in the wave frame are derived
from those calculated upstream at the linear level by the Lorentz
transforms:

E′
‖ = E‖

E′
⊥ = γm(E⊥ + βm × B⊥)

B′
‖ = B‖

B′
⊥ = γm(B⊥ − βm × E⊥) . (20)

In the case of Weibel modes, |E| � |B|, and for γ m large enough,
B′

⊥ � γm B⊥ and E′
⊥ � γmβm × B⊥ � βm × B′

⊥.
In the case of OTSI modes, in the upstream frame the modes

are almost electrostatic |B| � |E|, and E⊥ ∼ E‖ (oblique modes).
The system is quite similar to the system derived for Weibel modes
in their proper frame, since E′

⊥ � γm E⊥ and B′
⊥ � −γmβm × E⊥,

which leads to B′
⊥ � −βm × E′

⊥.
Below, we analyse the particle dynamics first in a 2D approxi-

mation, meaning E′
‖ → 0, B′

‖ → 0, and then in the complete 3D
configuration (E′

‖ = E′
⊥/γm). When going to the wave frame, the

perpendicular coherence length remains unchanged, �′
⊥ = �⊥, while

�′
‖ = γm�‖.

3.1 Transport in 2D approximation

Defining as z the direction of the shock normal, the system can be
written as:

dpx

dt
= qE′

x(1 + βmβz) (21)

dpy

dt
= qE′

y(1 + βmβz) (22)

dpz

dt
= −qβm(βxE

′
x + βyE

′
y) (23)

where the relation B′
⊥ = −βm × E′

⊥ has been inserted, and the
fields E′

‖ and B ′
‖ have been discarded in a first approximation.

Because ω′ = 0 or ω = kzvm, k′
z = γm(kz − βmω/c) = kz/γm, and

thus for large γ m the z dependence of the field can be neglected in
a first approximation. The system is the same for both Weibel and
OTSI modes.

As discussed above, there are two invariants: the total particle
energy H = ε(p) + q�(x, y) written in terms of a Hamilton function
with electromagnetic potential �, and the generalized momentum
component along z, πz = p‖ + qAz(x, y)/c. These two potentials
are related to one another: Az(x, y) = �(x, y). Since the potential
has a zero average and a finite rms value ��, the particle proper
energy ε and its z-momentum p‖ have well-defined rms variations
under the ergodic assumption: �ε = �p‖c = e�φ. These relations
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The microturbulent precursor of relativistic shocks 1285

determine confinement regions in phase space and forbid some
diffusion processes. The norm of the transverse momentum also has
bounded variations. Indeed, considering the variation from initial
values, δε = ε − ε0, δp‖ = p‖ − p‖, 0, δ p⊥ = p⊥ − p⊥,0, one exactly
finds

2(ε0 − p‖,0c)δε = c2(δ p⊥)2 . (24)

Now because p⊥,0 is small, this constraint allows large variations
of the polar angle of p⊥. Thus, the variations of the energy and
momenta are bounded, except for the angle of the transverse mo-
mentum that can vary randomly over the interval (0, 2π); those
erratic variations of the angle can occur with the βz contribution
to the transverse equations of motions that opens phase space with
another degree of freedom.

It proves convenient to define the reference energy:

ε� ≡ eĒ′�⊥ ≡ amec
2 . (25)

As discussed before, a/γ ′ � 1 for suprathermal particles, meaning
that ε� � ε. Such particles are strongly beamed forward along the
shock normal in the upstream frame; in the wave frame, p⊥,0/p‖,0 �
γm|f/�s implies p⊥,0 � p‖,0 for typical values of γ m|f, hence
ε0 � p‖, 0c initially. The transport of suprathermal particles can then
be described as the random walk of a non-relativistic particle in the
transverse plane, coupled to ballistic motion along the longitudinal
direction. In the transverse plane, the particle is described as non-
relativistic because its transverse velocity υ⊥ � p⊥/p‖ � 1 and,
given that ε� � p‖, 0c, the particle cannot exchange a large fraction
of its parallel momentum with transverse momentum due to the
invariance properties in this 2D approximation.

The transverse motion, devoid of linear resonance but governed
by a continuum of Fourier modes, is thus characterized by a single
non-linear time:

tnl ≡ �⊥
c

(
2p‖,0c

ε�

)1/2

. (26)

This is the time needed to cross a coherence cell for a particle that
gets accelerated transversely in the transverse electric field. Over a
coherence length, the electric field can be considered as constant
and the particle receives a transverse kick c� p⊥ ∼ ε�.

If the initial transverse momentum p⊥,0 � ε�/c, the spatial trans-
verse motion can be approximated by

�x⊥ � 1

2

eE⊥
p‖,0

ct2 + υ⊥,0t , (27)

since the kick remains much smaller than (ε�p‖, 0)1/2; υ⊥,0 ≡
p⊥,0/p‖,0. The non-linear time so defined is the time beyond which
the non-linear dynamics de-correlates the trajectories. It can also
be considered as the time-step for a random deflection of angle θ i

in the transverse plane since each crossing of a coherence cell in
the transverse direction is associated with a large variation of θ i

when p⊥,0 � ε�/c. Thus, after n steps of size �⊥, the trajectory has
diffused such that〈
�x2

⊥
〉

� 1

2
�2

⊥n , (28)

with n � �t/tnl, which leads to a transverse spatial diffusion coef-
ficient:

D⊥ � 1

4

�2
⊥

tnl
∝ p

−1/2
‖,0 . (29)

If p⊥,0c 	 ε�, the transverse velocity undergoes small variation
of its modulus in the crossing of a coherence cell, but it can undergo

significant angle variations. This transverse quasi-scattering can be
analysed in two regimes: (a) when p⊥,0c � (ε�p‖,0)1/2 and (b) when
p⊥,0c 	 (ε�p‖,0)1/2 but still p⊥,0 � p‖,0. In the former limit, the
particle crosses a transverse coherence cell in a non-linear time-
scale as previously, whereas in the latter case the crossing occurs on
a linear time-scale �⊥/|υ⊥|. Let us estimate the transverse diffusion
coefficient for both cases. In case (a), when crossing a coherence
cell, the particle undergoes a small transverse deflection of angle
θi ∼ ε�/ p⊥c. The scattering time is therefore longer than tnl with
tscatt ∼ θ−2

i tnl and diffusion in the transverse plane during �t > tscatt

is such that〈
�x2

⊥
〉

∼ �2
⊥
2

(
tscatt

tnl

)2
�t

tscatt
. (30)

This indicates that, in this regime of small deflection, a particle
travels over a much larger distance than �⊥ during a scattering time,
namely (tscatt/tnl)�⊥. The transverse diffusion coefficient is thus

D⊥ ∼ 1

4

�2
⊥

tnl

(
p⊥c

ε�

)2

. (31)

In case (b), the small deflection that occurs during the linear cor-
relation time leads to a scattering time tscatt ∼ θ−2

i �⊥/υ⊥. And the
transverse diffusion coefficient becomes:

D⊥ ∼ 1

4
υ⊥�⊥

(
p⊥c

ε�

)2

. (32)

3.2 Numerical results in 2D approximation

The system of equations of motions in the fields is solved by the
Bulirsch–Stoer algorithm (Press et al. 1986), together with statis-
tics over a sample of random phases and polarization directions
of plane waves. The field E′

⊥ is decomposed in plane waves with
the constraint k′ ‖ E′

⊥, which implies that k′ is in the plane (x, y),
choosing as before the normal direction along the z-direction. In this
subsection, we set k′

z = 0 and E′
z = 0 in the wave frame. Several

hundreds of modes are used. The system converges quite rapidly
with ∼103 particles. For simplicity, we investigate only the case
were the initial particle momentum is oriented along the parallel
direction, p0 = p‖,0ez.

All simulations use the following units: the spatial length unit is
mec

2/(eE′
rms) (E′

rms is the rms of the electric field strength), the time
unit is mec/(eE′

rms) and momenta are expressed in units of mec. The
coherence length �⊥ = 1 in these units, so that ε� = mec2.

Numerical results are presented in Figs 1 and 2. Fig. 1 depicts
the time evolution of spatial diffusion coefficients for different
p‖, 0/(mec) in a 2D approximate geometry. Green curves depict
the time evolution in the parallel direction and blue curves repre-
sent the same quantity in the transverse direction. Displacements
in the parallel direction are clearly ballistic: 〈�x2

‖ 〉 = υ2
‖,0t

2. In the
transverse plane, at least two regimes are identified: for t < tnl,
〈�x2

⊥〉 ∝ t4 as expected from particle acceleration by nearly con-
stant electric field over its coherence cell, see equation (27); for t >

tnl, 〈�x2
⊥〉/�t reaches a plateau (i.e. diffusion) and its value has a

power-law dependence on p‖, 0 with a slope of −1/2 (see the sub-
panel of the figure), which fits well the result of the previous section,
see equation (29). This behaviour is a direct consequence of particle
trapping in every coherence cell it encounters, with a ‘waiting time’
per cell being equal to tnl. The case where p⊥,0 is different from
zero was also investigated. In this case, there is no more trapping in
the field coherence cell but random motions in the transverse plane.
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1286 I. Plotnikov, G. Pelletier and M. Lemoine

Figure 1. Time evolution of spatial diffusion coefficients for different
p‖, 0/(mec) in 2D fields geometry approximation. Green curves: parallel
direction; blue curves: transverse direction [(x, y) plane]. Displacements in
the parallel direction are clearly ballistic: 〈�x2

‖ 〉 = υ2
‖,0t

2. In the transverse

plane, at least two regimes are identified: when t < tnl, 〈�x2
⊥〉 ∝ t4 as ex-

pected from particle acceleration by nearly constant electric field over its
coherence cell; when t > tnl, 〈�x2

⊥〉/�t reaches a plateau (i.e. diffusion)
and its value has a power-law dependence on p‖, 0 with a slope of −1/2 (see
subpanel). Subpanel: transverse diffusion coefficient (plateau) dependence
on initial particle momentum p‖, 0. The dashed line follows the power-law
slope −1/2.

Figure 2. Time evolution of 〈p2
i 〉/p2

‖,0 for different values of p‖, 0/(mec),
in 2D approximation. Green curves: parallel (z) direction; blue curves:
transverse direction. Subpanel: asymptotic values of 〈p2

i 〉/p2
‖,0 as function

of p‖, 0. 〈p2
‖〉/p2

‖,0 is slightly inferior to 1 independently from p‖, 0 (green

squares). In transverse direction (blue circles) 〈 p2
⊥〉/p2

‖,0 ∝ p−1
‖,0.

We obtain a diffusive behaviour on longer time-scales as discussed
in the previous section (e.g. equations 30, 31).

Fig. 2 presents the evolution of 〈p2
‖〉/p2

‖,0 (green curves)
and 〈 p2

⊥〉/p2
‖,0 (blue curves) as function of time for different

p‖, 0/(mec) ∈ [1, 104]. There is no diffusion in momentum space
with parallel component being bounded by the πz invariant, while
the transverse one varies as 〈� p2

⊥〉/(mec)2 ∝ p‖,0. Since the gen-
eralized momentum is constrained by this πz invariant, we expect a
transverse momentum gain 〈δ p2

⊥〉 = eE′
⊥�⊥p‖,0/c.

Finally, we can mention that the energy gain 〈�γ 〉 is independent
of p‖, 0 and corresponds to the amount of energy brought by the rms
electric field potential. It can be expressed as 〈�γ 〉 = eE′

⊥�⊥. The
energy variation from ε(p‖, 0) to ε(p‖,0) + q E′�⊥ takes place when
0 < t < tnl. For t > tnl, the particle energy remains constant.

3.3 Transport in 3D fields

We consider now the particle transport over a longer time-scale,
for the full 3D geometry, i.e. including a single resonant mode
with kz = δ−1

e in the case of OTSI and a continuum of small wave
numbers in the case of Weibel modes. In the wave frame, the longi-
tudinal coherence length �′

‖ � γm�‖, and �‖ ∼ �⊥ for OTSI modes
in the background plasma frame, so that �′

‖ � γm�′
⊥. For Weibel

modes, �‖ ∼ δi/ξ
1/2
cr and �⊥ ∼ ξ

1/2
B δi , thus �‖/�⊥ ∼ ξ−1

cr and there-
fore �′

‖/�
′
⊥ ∼ γm/ξcr 	 1.

The invariance of the generalized z-momentum is now broken and
the particle momentum can diffuse in all directions. One limitation
is the phase-space confinement due to the total energy conserva-
tion that forbids energy diffusion. Another is that the longitudinal
coherence length is significantly larger than the coherence length
in the transverse direction. With respect to the above 2D analysis,
we thus expect a change of regime when the spatial variation in
the z-direction is felt by the particle, which corresponds to time-
scales much larger than �′

‖/c. The randomization of the longitudinal
component of the momentum is then expected over a time tz, with

tz � �′
‖
c

(
p‖,0c
eE′

z�
′
‖

)2

� �′
‖

�′
⊥

�′
⊥
c

(
p‖,0c
ε�

)2

. (33)

For both OTSI and Weibel modes, E′
z�

′
‖ � E′

⊥�′
⊥ because in the

wave frame, ∇ × E′ = 0. The above is a linear estimate of the
scattering time-scale in the longitudinal direction; however, simula-
tions at low energies suggest that the dependence on �′

‖ differs from
this latter. We will take into account that the lack of knowledge by
introducing a factor χ measuring the delay, compared to the 2D
correlation time, of the full development of 3D dynamics. It turns
out to impact directly the maximal acceleration energy.

Over intermediate time-scales, we expect to recover the previous
results about the transverse diffusion and no diffusion in the longi-
tudinal direction. But on time-scale longer than tz, one expects a 3D
diffusion with

D⊥ = 1

3
�′

⊥c

(
p‖c
ε�

)2

, D‖ = �′
‖

�′
⊥

D⊥ . (34)

As before, we assumed that the deflection over a coherence cell
is small with δθ ∼ ε�/p‖, 0c. The description of the expected be-
haviours of these diffusion regimes is provided in the figures shown
in the next paragraph.

3.4 Numerical results in 3D fields

We take the same configuration as in the 2D case but with a finite
value of E′

‖ = E′
⊥/γm in the case of OTSI, with k′

‖/k
′
⊥ = 1/γm. To

simulate a Weibel turbulence, we include an ensemble of modes,
consistent with the original wave equations of Weibel modes,

E′
‖(k′

‖) = − k′
‖

k
′2
⊥

(k′
⊥ × B′

⊥) · βm , (35)

which insures the conservation of the total energy of each particle.
For this ensemble of Weibel modes, k′

‖/k
′
⊥ takes small values up to
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The microturbulent precursor of relativistic shocks 1287

Figure 3. Transverse spatial diffusion in 3D modes of OTSI type. This
graph depicts the time evolution of spatial diffusion coefficients for different
p‖, 0/(mec) in 3D fields. Green curves: parallel (z) direction; blue curves:
transverse direction [(x, y) plane]. The dashed vertical line delimits the linear
coherence time in z-direction t‖,c = γml⊥/c. Displacements in the parallel
direction remain ballistic on numerical time-scales, since the integration
time is too short to probe the diffusive behaviour in this direction. In the
transverse direction, 2D-like diffusive behaviour (see Fig. 1) disappears
gradually when tnl < t < tz.

some parameter κ < 1; consequently, E′
‖/E′

⊥ ∼ κ . Most numerical
calculations were done with the same time-scales as in the 2D case.

Fig. 3 depicts the time evolution of spatial diffusion coefficients
for different p‖, 0/(mec) in 3D OTSI fields, assuming γ m = 30. Green
curves correspond to the parallel direction and blue curves to the
transverse direction. Displacements in the parallel direction remain
ballistic on numerical time-scales and in the transverse direction the
2D-like diffusive behaviour (see Fig. 1) disappears gradually when
tnl < t < tz. It will be seen further that the diffusive behaviour is
recovered in all directions on longer time-scales (i.e. t 	 tz). Fig. 4
presents the evolution of 〈p2

i 〉/p2
‖,0 in time for p‖, 0/(mec) ∈ [1, 104].

Comparing to Fig. 2, one observes that 〈p2
‖〉/p2

‖,0 keeps the same
behaviour as in 2D and the transverse components begin to rise at
later times; longer time simulations are needed to explore its asymp-
totic behaviour. Interestingly, a different behaviour is observed for
particles with momenta satisfying tnl > t‖,c: in this 3D OTSI tur-
bulence, electromagnetic fields reverse every half coherence length
along the longitudinal direction, due to the periodicity in that direc-
tion; therefore, particles with tnl > t‖,c execute oscillations in the
transverse direction, with ballistic motion along the longitudinal
direction. Such particles are then confined in the transverse plane
because their motion is reversed before they have time to experi-
ence a decorrelated field in the transverse plane. This is particularly
important with respect to acceleration efficiency, since such par-
ticles would not return on a short time-scale (in the absence of a
mean field, of course). One can check that the condition tnl > t‖,c
amounts to p‖,0 > ε�γ

2
m/2 for p⊥,0 = 0, which is easily satisfied, or

in terms of initial transverse velocity, p⊥,0/p‖,0 < 2/γ 2
m, which is

also generically satisfied for the suprathermal particles. This means
that OTSI turbulence is inefficient from the point of view of scat-
tering suprathermal particles away from the longitudinal direction.

In order to test our estimates from Section 3.3, a simulation
with enhanced integration time was performed in the case where
p‖, 0/mec = 1. The result is presented in Fig. 5 where different statis-
tical quantities are plotted as a function of time. A slightly smaller
value γ m = 10 is adopted here to reduce the characteristic tz time.

Figure 4. Time evolution of 〈p2
i 〉/p2

‖,0 for different values of p‖, 0/(mec),
in 3D fields. Green curves: parallel (z) direction; blue curves: transverse
direction. The dashed vertical line delimits the linear coherence time in
z-direction t‖,c = γml⊥/c. Comparing to Fig. 2 〈p2

‖〉/p2
‖,0 keeps the same

behaviour as in 2D and the transverse components begin to rise at later times
but longer time simulations are needed to explore its asymptotic behaviour.
A different behaviour are observed for particles with momenta satisfying
tnl > t‖,c, which are confined in a coherence cell in the transverse plane, see
the text for details.

Figure 5. For OTSI modes, time evolution of different quantities in the
case p‖, 0 = mec with enhanced integration time. The solid curves show
the average 〈p2

i 〉/p2
‖,0, the red colour for parallel direction and the orange

colour for the transverse one. The dashed curves show spatial transport
coefficients 〈�x2

i 〉/�t . Green colour for parallel direction and blue for
transverse direction. The dot–dashed black curve shows 〈�γ 〉. The vertical
dashed lines indicate tree characteristic times relevant for particle dynamics.
As expected, spatial diffusion is present in all directions on time-scales
much longer than tz. Above the diffusion time all momenta reach isotropy:
〈p2

x〉 = 〈p2
y〉 = 〈p2

z 〉 � p2
‖,0/3.

On time-scales larger than tz the spatial diffusion is recovered in all
directions, all momenta are isotropized and energy gain is equal to
the field rms energy. Note that the ratio between the spatial diffusion
coefficients in the parallel and transverse directions is not equal to
γ m as expected in equation (33): its value is 55 > γ m and scales as
0.6γ 2

m when γ m is varied explicitly in our simulations. It remains
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1288 I. Plotnikov, G. Pelletier and M. Lemoine

Figure 6. Same as in Fig. 5, but for Weibel 3D modes. Here, we take
k′
‖/k

′
⊥ = 1/10. This choice is dictated by numerical time limitation in order

to observe the development of a 3D regime. As expected, spatial diffusion is
also present in all directions on time-scales much longer than tz. Above the
diffusion time all momentum components reach isotropy: 〈p2

x〉 = 〈p2
y〉 =

〈p2
z 〉 � p2

‖,0/3. We remark that the evolution is very similar to that obtained
with OTSI modes, despite the finite range of k′

z wavenumbers.

uncertain if this scaling depends on the choice of low-energy parti-
cles [p||, 0/(mec) = 1] and if it remains the same for highest energies.
Direct simulations for high energies, with large enough integration
time, are numerically prohibitive and are subject to severe numerical
errors. In the following, we encode this uncertainty in a parameter
χ , which is a substitute for �′

‖/�
′
⊥, such that χ = γ m if the linear

value given by equation (33) were to apply, but χ ∼ γ 2
m as indicated

by the simulations.
Finally, in the Fig. 6, we present also the same simulation but in

the case of 3D Weibel-type fields with k′
⊥/k′

‖ = 10, corresponding
to κ = 0.1. The general behaviour is similar to that observed for
transport in OTSI turbulence. In particular, one recovers a scaling
tz ∝ κ−2 and D‖/D⊥ ∝ κ−2 instead of the linear estimates given in
equations (33) and (34), which suggest a scaling in κ−1. As before,
we encode this uncertainty with a factor χ , so that D‖/D⊥ � χ , the
simulations indicating χ � (�′

‖/�
′
⊥)2.

As expected, the energy does not undergo a diffusive behaviour.
After a limited gain, the particles keep a constant momentum. This
is in agreement with theoretical predictions: stochastic acceleration
is not seen, transverse heating is bounded, the energetic particle
beam is broadened in the transverse direction, but the distribution
remains anisotropic.

4 E L E C T RO N H E ATI N G

As we discussed in Section 2, the wiggler parameter for the back-
ground electrons in the proper frame of the microturbulent mode is
very large, actually a 	 γ ′, with γ ′ the typical Lorentz factor of the
electrons in that frame. Since the modes carry a transverse electric
field that is comparable to the magnetic field, this offers a promising
source of preheating in the shock precursor. The growth of the elec-
tron temperature together with the growth of electromagnetic waves
gives rise to a DC electric field in the normal direction in order to
maintain a stationary flow of electrons in the front frame. In turn,

this slows down the incoming proton flow and electron preheating
develops at the expense of the kinetic energy of protons.

We first consider the effect of the electric field of the Weibel
waves in their proper frame. The electron temperature temporarily
increases, as long as their energy is smaller than e��′ = eĒ′�⊥,
because, in this frame, the total energy of each particle is conserved,
as discussed before for suprathermal particles. This limiting energy
is

ε̄′ = eĒ′�⊥ = ξ
1/2
B γm

�⊥
δi

mpc2 . (36)

Reverting to the background plasma frame, that energy corresponds
to a temperature which is a sizable fraction of the proton energy:

Te,lim = ξ
1/2
B γm

�⊥
δi

mpc2 , (37)

assuming that most of the electron heating is distributed along the
transverse direction. The transverse characteristic size is inflated by
the high electron temperature, so that �⊥ = √

γ̄eδe � √
3Te/mpc2δi

(see Section 2.1 and Appendix A). Therefore, the temperature in
the upstream comoving frame is finally

Te,lim|u = ξBmpc2 , (38)

and �⊥ ∼ ξ
1/2
B δi.

This transitory heating process is not in a diffusion regime, it is
rather a direct linear acceleration in the coherent electric field of
a coherent cell. Using equation (23), one can easily check that the
energy ε̄′ is obtained over a typical linear time-scale �⊥/c. This fast
heating in Weibel waves is a particular case of a situation where
thermal electrons undergo strong relativistic motions in the waves,
reaching relativistic temperatures Te ∼ a mec2. A similar process is
at work in the OTSI turbulence.

Because the transverse coherence scale is everywhere smaller
than the precursor length-scale, on which ξB varies, the above-
mentioned fast heating process brings forward a picture in which
electrons are nearly instantaneously heated to the local temperature
given by equation (38), scaling as ξB. Of course, as the electrons
near equipartition with the ions, one may expect the above heating
process to saturate, notably because the oscillation parameter then
becomes smaller compared to γ ′, as discussed in Section 2. Far from
the shock, ξB � 1 hence the electrons are heated to temperatures
well below mp/me (upstream frame), while closer to the shock,
the temperature rises. Interestingly, PIC simulations indeed show a
gradual evolution of the electron temperature over the length-scale
of the precursor (Sironi & Spitkovsky 2011a). The above preheating
process provides a concrete physical mechanism for this picture.

Note that our analysis differs from the recent proposal of Gedalin
et al. (2012), which argues that the background electrons are heated
in the inductive longitudinal electric field of the filament. In the
present scenario, the electrons oscillate in the transverse electric
field in the wave frame, which corresponds through a Lorentz trans-
form to the transverse magnetic field of the filament in the upstream
frame.

The above estimate of the electron temperature allows us to eval-
uate several quantities of interest. The transverse equilibrium of the
filament may be described through the relation δnTe + δB2/8π = 0,
assuming that electrons share everywhere the same temperature,
with δn the density contrast between the outside and the inside of
the filaments. This leads to ξB ≈ (|δn|/n)Te/(mpc2), which, when
compared to the above estimate for Te, suggests |δn|/n ∼ 1. We
also note that, using this estimate of the temperature, the filament
Lorentz factor becomes of the order of γ m ∼ (ξ crξB)−1/4 close to
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equipartition and ξ−1/2
cr for ξB ≤ ξ cr, which should thus increase

with the distance to the shock. With ξB ∼ ξ cr at the shock front, as
suggested in Section 2.3 and as indicated by PIC simulations (Sironi
& Spitkovsky 2011a), one finds γm ∼ ξ−1/2

cr close to the shock front.
The electron preheating has an important feedback on the insta-

bility: although it does not saturate the instability, it reduces the
phase velocity of the Weibel modes, at least because it increases
the small mass ratio and determines the condition for the reflection
of incoming protons. Regarding OTSI modes, the heating process
is similar but it stops with the saturation of the OTSI when the
electrons achieve a relativistic temperature.

Across the shock front, the proton heating follows from the mix-
ing of the different proton flows carrying energy of the order of
�smpc2 in the shock front frame. More puzzling is the issue of elec-
tron heating. In the previous paragraph, we saw that a significant
preheating of the electron is expected. The final stage of electron
heating across the shock front is likely related to an effective Joule
effect due to scattering. The scattering frequency of thermal parti-
cles in the shocked flow is νs∗ ∼ ξBωpi and the magnetic diffusivity
νm = ηc2/(4π) = νs∗δ2

i ∼ ξBcδi. The typical length of Joules dissi-
pation is thus �J = 3νm/c ∼ 3ξBδi, which is a quite short distance
for particle thermalization. A more detailed estimate is obtained
by looking at the absorption of each Fourier mode, which leads to
�J(λ) = 3λ2/ξBδi. All the magnetic energy that has been gener-
ated in the precursor is thus dissipated in the electron heating, and
the electron temperature remains in sub-equipartition with that of
protons, Te ∼ ξB�smpc2 (shock front frame). It turns out that both
processes, preheating and Joules heating, have a similar contribution
to the electron temperature that corresponds to the dissipation of the
magnetic energy that has been generated by the Weibel instability.

5 A P P L I C ATI O N TO AC C E L E R ATI O N
AT A G R B E X T E R NA L SH O C K

Section 3 provides the tools required to discuss the residence
time of particles upstream of a relativistic shock. As discussed in
Achterberg et al. (2001) and Pelletier, Lemoine & Marcowith
(2009), one must compare the diffusion time-scale in the micro-
turbulence with the time-scale associated with rotation in the back-
ground field and keep the shorter of the two. Let us discuss here
the implications of the microturbulence. The Weibel filaments are
likely the best sites of scattering, since the OTSI modes, at least
in their linear description, lead to the confinement of high-energy
particles along the shock normal.

The upstream residence time of suprathermal particles returning
from the shocked plasma into the upstream flow is that correspond-
ing to a deflection by an angle 1/�s beyond which the shock front
catches up the particle (Gallant & Achterberg 1999; Achterberg
et al. 2001); this provides a reasonable estimate of the acceleration
time of the Fermi process. This has to be estimated in the filament
frame first, in which the required deflection angle is ∼1/�f|m, with
�f|m the relative Lorentz factor between the shock front and the
wave frame, as determined by equation (10). The influence of a
possible background magnetic field on the return time-scale is dis-
cussed further below. For a particle of energy εm in this wave frame,
the residence time is

tres,m ∼ χ
�⊥
c

(
ε|m
ε�

)2 1

�2
f|m

, (39)

where χ is a factor large compared to unity. It accounts for the
fact that the decorrelation time in the longitudinal direction is much
larger than that in the transverse direction, as discussed above.

For OTSI modes, the simulations indicate χ ∼ γ 2
m, although the

confinement in the transverse plane leads to very ineffective scat-
tering; scattering is rather provided by the Weibel modes, for which
χ ∼ γ 2

mk⊥/k‖ > γ 2
m, in terms of the wavenumbers of the instability

measured in the background plasma rest frame.
Going to the front frame, one finds a residence time-scale:

tres,f ∼ χ
�⊥
c

(
ε|m
ε�

)2 1

�3
f|m

, (40)

with ε� = (γm/�s)eB̄|f�⊥ in terms of the turbulent magnetic field
in the front frame B̄|f , and ε|f � �f|m(1 − β f|m)εm,

tres|f ∼ χ
�⊥
c

(
ε|f

eB̄|f�⊥

)2
�s

γm
. (41)

The fact that the scattering takes place in a frame moving at high
speed shortens the residence time, but this gain is mitigated by the
anisotropy of the turbulent modes, which induces the χ factor.

5.1 Electron acceleration at relativistic shocks and radiation

We have developed arguments in favour of an efficient heating
of the electron fluid by the microturbulence, which confirms the
idea that the electrons could likely reach a sub-equipartition tem-
perature at relativistic shocks. For instance, at the external shock
of a GRB, where the afterglow radiation is produced, the elec-
trons could achieve a temperature of a few tens of GeV. Indeed,
the proton temperature is very high at the beginning of the af-
terglow, and we have Te � Tp ∼ �smpc2, which corresponds to a
few tens of GeV. Intense short-scale magnetic turbulence devel-
ops because the interstellar magnetization parameter is very low,
σ ∼ 10−9.

What kind of radiation can be expected in such a small-scale
field, much more intense than the mean field? This depends
on the wiggler parameter a, now measured in the downstream
frame:

a ≡ eB̄�c

mec2
∼ ξ

1/2
B �s

mp

me

. (42)

This parameter measures the capability of the magnetic force to
deviate a relativistic electron of Lorentz factor γ by an angle 1/γ

(this is the reason for which γ does not appear in the definition).
When a > 1 the magnetic field produces a single deviation of the
electron in the emission cone of half-angle 1/γ , whereas when a <

1 the electron can undergo several wiggles in the emission cone.
When a is large, the emission behaves like a normal synchrotron
radiation in a mean field, except that there is no polarization. When
a is small, the emission is of jitter type (Medvedev 2000). In the
present case, the large wiggler parameter ensures that the emission
caused by shocked and accelerated electrons at a relativistic shock is
synchrotron-like; the analysis of the emitted spectrum may provide
a diagnosis of the magnetic turbulence although the departures are
expected to be moderate (e.g. Fleishman & Urtiev 2010; Kirk &
Reville 2010; Medvedev et al. 2011) and actually dominated by the
decay dynamics of the microturbulence downstream, which implies
that particles of different Lorentz factors cool in regions of different
magnetic field strengths (Lemoine 2013).

As for the suprathermal electrons, we find an estimate of the
maximum Lorentz factor, measured at shock front, achieved against
synchrotron loss; since the acceleration time ∝ γ 2/B̄2 and the syn-
chrotron time ∝ γ /B̄2, the maximum Lorentz factor is independent
of the magnetic field intensity. The estimate is similar in spirit to
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that derived by Kirk & Reville (2010) up to the dependence on
γ m; note furthermore that these authors discussed the downstream
acceleration time-scale, whereas we include the transport into the
upstream. The estimate in the front frame is

γmax ∼
(

4πe2�c

σT mec2

γm

χ�s

)1/3

∼ (
μnr3

e

)−1/6
(

γm

χ�s

)1/3

∼ 7 × 106

(
γm

χ�s

)1/3

. (43)

To obtain this result, we have taken into account the electron wander-
ing upstream where it experiences a level of turbulence comparable
to the downstream one (as measured in the front frame); this level
of turbulence is comparable because the extension of the electron
trajectory upstream is much shorter than the high-energy proton
trajectories that shape the precursor. The corresponding maximum
energy of synchrotron photons is

εγ,max ∼ �sγ
2
max

�eB̄|f
mec2

∼
√

ξB
�4/3

s (γm/χ )2/3

(μnr3
e )−1/6

mpc2

αf

� 3 × ξ
1/2
B,−2�

2
s,2.5n

1/2
0

(
γm

χ�s

)2/3

GeV, (44)

with the usual notation ξB, −2 = ξB/0.01, �s, 2.5 = �s/300 and
n0 = n/1 cm−3, and αf � 1/137 the fine structure constant. The
maximum photon energy appears stronger than that given by Kirk
& Reville (s2010), because the level of magnetic energy density
in the external shock of a GRB is proportional to the proton mass
instead of the electron mass for which only the MeV range would be
reached.

The above-mentioned estimate of γ max balances the accelera-
tion time-scale against the time-scale for synchrotron losses in
the turbulent field. In principle, one should also include inverse
Compton losses, which puts strict constraints on the return time-
scale in the upstream frame, as discussed by Li & Waxman (2006)
and Li & Zhao (2011). This requires to use the scattering time-
scale discussed above and follow the proper treatment of Klein–
Nishina suppression given in these studies; this task is left for future
work.

The above discussion considers an unmagnetized shock. In the
presence of a background magnetic field, return into the upstream
can be achieved through the rotation by an angle 1/�s in the back-
ground field. The return time-scale then corresponds to tres, 0|f ∼
ε|f/(�seB0) as measured in the shock front frame, so that at the
maximal Lorentz factor determined by equation (43):

tres,0|f
tres|f

∼ 2

(
γm

χ

)2/3

ξB,−2B
−1
0,−5n

2/3
0 �

1/3
s,2.5 , (45)

with B0,−5 = B0/10 μG. This implies that the background magnetic
field starts to dominate the dynamics of the highest energy electrons
as soon as the ratio γ m/χ becomes significantly smaller than unity,
for the above fiducial values. Among others, this guarantees that
GeV photons can be produced, independently of γ m/χ .

Thus, a single synchrotron-like spectrum extending up to several
GeV, even possibly a few tens, can be expected and thus is com-
patible with observations. From that point of view, the efficiency
of relativistic shocks with respect to the production of high-energy
radiation can be regarded as high.

5.2 Relativistic shock and suprathermal protons in GRBs

As the scattering time increases with ε2, the Fermi process at rela-
tivistic shocks is not expected to be a fast accelerator at the highest
energies. For protons, acceleration is in general limited by the dy-
namical time-scale rs/c of the shock in the laboratory frame. For the
external shock of a GRB at the beginning of the afterglow phase,
the maximum energy achieved when the residence time upstream
balances the expansion time is

Emax = 2Z�s

(
γm

χ

)1/2

ξ
1/2
B

√
rs

δi
mpc2

∼ 3.7 × 1015 × Z

(
γm

χ

)1/2

�s,2.5rs,17n
1/4
0 eV . (46)

Again, the above holds for an unmagnetized shock. As usual,
rs, 17 ≡ rs/1017 cm. The performance can be improved if one takes
into account a background magnetic field, which leads to regular
rotation and a shorter return time-scale. The maximum energy can
then be written as Emax, 0 = Z�seB0rs � 1016 × Z B0, −6rs, 17�s, 2.5 eV.
Thus, although an energy of the order of 1016 eV is achieved, the
result is far from the range of so-called ultrahigh energy cosmic
rays, see also Gallant & Achterberg (1999).

6 C O N C L U S I O N S A N D P RO S P E C T S

The development of a collisionless shock involves three essential
interrelated ingredients: the generation of suprathermal particles,
the generation of magnetic turbulence, the building up of a re-
flecting barrier for a part of the incoming particles. This paradigm
applies successfully to non-relativistic as well as to relativistic
weakly magnetized shock waves. Numerical and theoretical works
have made significant progress in understanding the physics and in
providing quantitative results that become useful for astrophys-
ical investigations. This includes not only the spectrum index
and cut off of the distribution of accelerated particles, but also
the conversion factors into cosmic rays, magnetic turbulence and
radiation.

In this paper, we have presented new theoretical investigations
regarding the transport of suprathermal particles in the microturbu-
lence upstream of the relativistic shock, and the preheating of the
background electrons. We have placed emphasis on the fact that
the microturbulent modes actually move relatively the background
plasma, with a possibly large Lorentz factor depending on the back-
ground electron temperature. This motion of the microturbulence
generates a motional electric field in the frame in which the fil-
aments are static, which leads to fast heating of the background
electrons through relativistic oscillations. Despite that the Weibel
instability generates magnetic filaments – in the background plasma
frame – whereas the oblique two stream instability generates almost
electrostatic waves, they behave similarly in their proper frame, in
which they are composed of an electrostatic field and a magneto-
static field of almost the same amplitude. This heating mechanism
is particularly efficient: within a transverse coherence length of the
perturbations, it heats the electrons to ∼ξBmpc2, in which ξB should
be understood as the local (position-dependent) fraction of energy
density stored in the electromagnetic component. Because the co-
herence length is much shorter than the size of the precursor, this
brings forward the picture in which the electrons are instantaneously
heated to the above temperature, so that their temperature rises grad-
ually towards near equipartition as they approach the shock front,
a picture which appears in satisfactory agreement with the results
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of Sironi & Spitkovsky (2009) and Sironi & Spitkovsky (2011a).
As we have discussed, one should expect ξB ∼ ξcr at the shock
front, from the condition that the Weibel turbulence has become
sufficiently strong to reflect the incoming particles. The Weibel
turbulence thus apparently draws the maximum amount from the
suprathermal particle energy reservoir, in qualitative agreement with
PIC simulations.

Electron preheating modifies the generation of microturbu-
lence: it saturates the oblique two stream instability and slows
down the propagation of Weibel modes. So, we envisage that
the nose of the precursor contains fast propagating Weibel modes
and then, closer to the shock front, relativistic thermal electrons
that enlarge the characteristic scale. The oblique two stream re-
main however likely active in the cold phase at the tip of the
shock precursor, like Buneman instabilities which also preheat the
electrons.

We have also discussed in some detail the properties of transport
of the suprathermal particles in the microturbulence. The filamen-
tary nature of the magnetic filaments strongly limits the scattering
of these particles in the longitudinal direction. The acceleration pro-
cess is accordingly slowed down by the time it takes for the particle
to probe effectively the inhomogeneities in the longitudinal direc-
tion, as quantified here by the factor χ . This strongly suggests that
PIC simulations of the Fermi process in 2D probably involves mirror
effects on the shock front rather than actual upstream/downstream
scattering, especially at the ‘low’ energies corresponding to the first
Fermi cycles probed by these simulations. To probe the 3D scatter-
ing regime discussed here, one would need 3D PIC simulations with
very long integration time-scales, in order to accelerate particles to
energies such that their Larmor radius in the turbulent field becomes
larger than the coherence length.

Shocks in AGN, blazar jets, or in the internal flow of GRBs are
mildly relativistic and therefore not subject to the severe restric-
tion imposed to the Fermi process by the mean field as it happens
in the ultrarelativistic regime. Thus, as argued here and in, e.g.,
Lemoine & Waxman (2009) and Pelletier & Lemoine (2011), those
objects are better candidates as sources of ultrahigh energy cosmic
rays. In pulsar wind nebulae, reconnections likely contribute to in-
jecting high-energy particles in the shock, and a suprathermal tail
with a hard component may be generated (Lyubarsky 2003; Pétri
& Lyubarsky 2007; Sironi & Spitkovsky 2011b). At the weakly
magnetized external shock of a GRB, Fermi acceleration should
be operative and then lead to extended synchrotron spectrum up to
GeV energies; although, if the shock propagates in a sufficiently
magnetized circumburst environment, the Fermi process may be, in
a first step, quenched by the mean field, which would lead to distinct
signatures (Lemoine & Pelletier 2011b).
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APPENDI X A : W EI BEL I NSTABI LI TY W ITH A
N O N - VA N I S H I N G PA R A L L E L WAV E N U M B E R

Despite detailed analyses of the relativistic beam instability in the
Weibel regime, e.g., Wiersma & Achterberg (2004), Achterberg
& Wiersma (2007), Achterberg et al. (2007), Shaisultanov et al.
(2012) and Bret et al. (2005), the motion of filaments has not been
given attention so far. We will emphasize this issue for a cold and a
relativistically hot electron fluid.

For a cold background plasma pervaded by a cold monokinetic
beam, the wave system is described by the matrix:

�ij =
(

1 − ω2
p

ω2

)
− k2c2

ω2

(
δij − kikj

k2

)
+ χb

ij , (A1)

where χb
ij are the components of the susceptibility tensor of the

beam plasma given by

χb
ij = −ξcrμ

ω2
pe

ω2

(
δij + kiυj + kjυi

ω − k · υb
+ k2c2 − ω2

(ω − k · υb)2

υiυj

c2

)
.

(A2)
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We chose a beam velocity direction along z, υb = υbez and a
wavevector k = kx ex + kzez. Electromagnetic waves polarized in
the y-direction are decoupled. The wave system of interest reduces
to second order, such that

�xx = 1 − ω2
pe

ω2

(
1 + k2

z δ
2
e + ξcrμ

)

�xz = �zx = kxkzc
2

ω2
− ξcrμ

ω2
pe

ω2

kxυb

ω − kzυb

�zz = 1 − ω2
pe

ω2

(
1 + k2

xδ
2
e + ξcrμ

)

− ξcrμ
ω2

pe

ω2

(
2kzυb

ω − kzυb
+ k2c2 − ω2

(ω − kzυb)2
β2

b

)
. (A3)

The dispersion relation reads

D(k, ω) = �xx�zz − �2
xz = 0 . (A4)

In the case of Weibel instability, ω2 � ω2
pe, k2

xδ
2
e ∼ 1 and k2

z δ
2
e �

1, we find

ω = kzυb

(
1 − ξcrμ

γ −2
b + k2

⊥δ2
e

1 + k2
⊥δ2

e

)
+ i

√
ξcrμ

k⊥υb

(1 + k2
⊥δ2

e )1/2
,

(A5)

with k⊥ = kx. This is the result for a cold background plasma
and a cold beam. When one takes into account a dispersion of the
beam within an angle 1/�s, as previously investigated (Lemoine &
Pelletier 2011a; Rabinak et al. 2011), the instability is quenched
when �s < (ξ crμ)−1/2. However, the instability is restored when the
background electrons are sufficiently hot with both the same growth
rate and the same frequency. In the case of OTSI, electron heating
up to relativistic temperature tends to quench the instability because
the modes become superluminal and thus the resonant interaction
cannot be achieved; this effect is however delayed by the fact that
the frequency is negatively shifted by the beam, which lowers the
phase velocity.

Let us now study a problem similar to the above, albeit for a
relativistic electron temperature. As the electrons can come close
to equipartition, it is essential to account for the response of
the background ions. We thus write the components of the wave
tensor:

�xx = ε‖
k2

x

k2
+ (

ε⊥ − η2
) k2

z

k2
+ χb

xx

�xz = �zx = (
ε‖ − ε⊥ + η2

) kxkz

k2
+ χb

xz

�zz = ε‖
k2

z

k2
+ (

ε⊥ − η2
) k2

x

k2
+ χb

zz, (A6)

where the dielectric coefficients for relativistically hot electrons and
cold protons in the low-frequency approximation are

ε‖ � 1 − ω2
pi

ω2
+ 1

k2λ2
De

(
1 + i

π

2

ω

kc

)
(A7)

ε⊥ � 1 − ω2
pi

ω2
− 1

k2λ2
De

(
1 − i

π

4

kc

ω

)
. (A8)

When considering relativistically hot electrons, it is convenient to
write the Debye length λDe such that

λ2
De ≡ Te

4πne2
= μ̄δ2

i with μ̄ ≡ 1

3
γ̄eμ and γ̄e ≡ 1 + 3Te/mec

2 .

Whereas the Landau contribution (imaginary part) is a small cor-
rection to the longitudinal response, it is dominant in the transverse
response.

ω2�xx = ω2

(
1 + ω2

pi

μ̄k2c2

)
− ω2

pi (1 + ξcr)

ω2�zx = ω2

k2λ2
De

(
2 − i

π

4

kc

ω

)
kxkz

k2
+ kxkzc

2 − ξcrω
2
pi

kxυb

ω − kzυb

ω2�zz = ω2

(
1 − ω2

pi

μ̄k2c2

)
+ i

π

4

ω2
pi

μ̄

ω

kc

− ω2
pi

(
1+k2

xδ
2
i +ξcr+ξcr

2kzυb

ω−kzυb
+ξcr

k2c2 − ω2

(ω−kzυb)2 β2
b

)
,

(A9)

with �xz = �zx. An important observation is that ωpb < ωpi, so
that one can neglect |ω|2 in front ω2

pi. Furthermore, at equiparti-
tion, the ions contribute strongly to the instability and the typical
wavenumber kx ∼ ωpi, whereas for μ̄ � 1, the response of the elec-
trons dominate, and kx → μ̄−1/2ωpi, the latter corresponding to the
relativistic electron plasma frequency. Thus, the dispersion relation
can be written (omitting also a term in ξ 2

cr, and assuming k2
z δ

2
i � 1)

as:(
1 − ω2

μ̄k2c2

) [
−i

π

4

ω

μ̄kc
+ 1 + k2δ2

i + ξcr

(
k2c2

δω2
+ 2

γ 2
b

kzυb

δω

)]

+ 2ξcr
kzυb

δω

(
k2

xδ
2
i − i

π

4

ω

μ̄kc

k2
x

k2

)
= 0. (A10)

We solve that equation by setting δω = ν + iγ with the approxi-
mation |ν| � |γ | (γ should not be confused with Lorentz factors
appearing elsewhere). The growth rate is the positive root of the
equation:

π

4

γ 3

μ̄k3c3
+ (

1 + k2δ2
i

) γ 2

k2c2
− ξcr = 0 , (A11)

which gives

γ �
√

ξcrυbωpi
kxδi[

1 + (kxδi)2
]1/2 , (A12)

provided (kxδi)3 �
√

ξcr/μ̄. If μ̄ >
√

ξcr, the latter inequality is ver-
ified for kxδi � 1, which means that the filamentation instability is
of the ion–ion type, with typical wavenumber kx ∼ δ−1

i . This rep-
resents the range of wavenumbers for which the growth rate peaks,
because if (kxδi)3 <

√
ξcr/μ̄, the Landau effect on hot electrons re-

duces the growth rate to γ � (4/πμ̄ξb)1/3kc. Now, if μ̄ <
√

ξcr, the
instability is pushed towards higher values of kx, as the response of
the hot electrons dominates.

The frequency shift is obtained at the first order of the expansion
in ν:

ν � −kzυb

π
8 γ + (kxδi)3μ̄ξcrωpi

3π
8 γ + (kxδi)

[
1 + (kxδi)2

]
μ̄ωpi

. (A13)

Using the value of γ and simplifying 1 + (kxδi)2 ∼ (kxδi)2, one
obtains

ν � −kzυb

√
ξcr

π
8 + (kxδi)3μ̄

√
ξcr

3π
8

√
ξcr + (kxδi)3μ̄

, (A14)

which takes different scalings, depending on the comparison be-
tween μ̄ and ξ cr.
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If μ̄ >
√

ξcr, the filamentation instability grows at kxδi ∼ 1, so
that

ν � −kzυb
π

8

√
ξcr

μ̄

(
μ̄ >

√
ξcr, kxδi ∼ 1

)
. (A15)

If μ̄ <
√

ξcr, maximum growth takes place at kxδi � μ̄−1/2, so
that

ν �−kzυb

(π

8

√
μ̄ξcr + ξcr

) (
μ̄ <

√
ξcr, kxδi ∼ μ̄−1/2

)
,

(A16)

although it should be noted that the growth rate in-
creases weakly with kxδi, and that the frequency shift
evolves in a non-trivial way with kx in the interval
ξ 1/6

cr μ̄−1/3ωpi → μ̄−1/2ωpi.

We expect that the size of the Weibel filaments, i.e. the transverse
coherence length is determined by the maximum kx; thus, �⊥ ∼
δi

√
μ̄ far from equipartition, with �⊥ → δi close to equipartition.

For this typical size, the filament Lorentz factor goes from γm ∼
ξ−1/2

cr when μ̄ < ξcr to γm ∼ (μ̄ξcr)−1/4 when ξcr � μ̄ �
√

ξcr, and
to γm ∼ ξ−1/4

cr μ̄1/2 for μ̄ >
√

ξcr.
The wavelength in the normal direction is limited by kzυb < γ

which implies �‖ > δi/
√

ξcr, which is comparable with the growth
length.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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