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ABSTRACT

Aims. This paper examines the outflows associated with the interaction of a stellar magnetosphere with an accretion disk. In particular,
we investigate the magnetospheric ejections (MEs) due to the expansion and reconnection of the field lines connecting the star with
the disk. Our aim is to study the dynamical properties of the outflows and evaluate their impact on the angular momentum evolution
of young protostars.
Methods. Our models are based on axisymmetric time-dependent magnetohydrodynamic simulations of the interaction of the dipolar
magnetosphere of a rotating protostar with a viscous and resistive disk, using alpha prescriptions for the transport coefficients. Our
simulations are designed to model the accretion process and the formation of accretion funnels, the periodic inflation/reconnection of
the magnetosphere and the associated MEs, and the stellar wind.
Results. Similar to a magnetic slingshot, MEs can be powered by the rotation of both the disk and the star so that they can efficiently
remove angular momentum from both. Depending on the accretion rate, MEs can extract a relevant fraction of the accretion torque
and, together with a weak but non-negligible stellar wind torque, can balance the spin-up due to accretion. When the disk truncation
approaches the corotation radius, the system enters a “propeller” regime, where the torques exerted by the disk and the MEs can even
balance the spin-up due to the stellar contraction.
Conclusions. Magnetospheric ejections can play an important role in the stellar spin evolution. Their spin-down efficiency can be
compared to other scenarios, such as the Ghosh & Lamb, X-wind, or stellar wind models. Nevertheless, for all scenarios, an efficient
spin-down torque requires a rather strong dipolar component, which has seldom been observed in classical T Tauri stars. A better
analysis of the torques acting on the protostar must consider non-axisymmetric and multipolar magnetic components consistent with
observations.

Key words. stars: rotation – stars: magnetic field – accretion, accretion disks – ISM: jets and outflows –
magnetohydrodynamics (MHD) – methods: numerical

1. Introduction

Classical T Tauri stars (CTTS) are pre-main sequence stars that
show clear signatures of accretion from a surrounding accretion
disk (Edwards et al. 1994; Hartmann et al. 1998) and ejection
in the form of collimated jets (Cabrit et al. 1990; Burrows et al.
1996). The evolution of their rotation period represents an inter-
esting puzzle. As soon as they become visible after the Class 0-I
embedded phases, a relevant fraction of CTTS appears to rotate
well below their break-up limit, with rotation periods around one
to ten days (Bouvier et al. 1993). Besides this, their rotation rate
appears to be fairly constant during the accreting evolutionary
phases lasting a few million years (Irwin & Bouvier 2009). On
the other hand, these protostars are still actively accreting and
contracting so that they would be expected to spin-up at break-
up in ∼106 years. Clearly, CTTS require an efficient spin-down
mechanism to explain their rotational evolution.

Since CTTS are known to be magnetically active (see e.g.
Johns-Krull 2007; Yang & Johns-Krull 2011), different magne-
tohydrodynamic (MHD) mechanisms of angular momentum re-
moval have been proposed. In the Ghosh & Lamb (1979) model,
originally developed for pulsars, the disk itself extracts angular

momentum from the star along the field lines connecting the star
with the disk in the region beyond the corotation radius, where
the disk rotates slower than the star. On the other hand, it has
been shown that the efficiency of the Ghosh & Lamb mecha-
nism is drastically reduced because of the limited size of the con-
nected magnetosphere (Matt & Pudritz 2005a) and of the dilu-
tion of the poloidal field beyond the corotation radius (Agapitou
& Papaloizou 2000; Zanni & Ferreira 2009, hereafter Paper I).

Other solutions are based on the presence of outflows, draw-
ing out angular momentum from the star-disk system, instead of
transferring it back to the disk. Shu et al. (1994) proposed that
an “X-wind” launched along the open stellar magnetic surfaces
threading the disk around corotation can extract a substantial
amount of angular momentum from the disk before it is trans-
ferred to the star, so as to cancel at least the spin-up torque due
to accretion. Even if models of wide-angle X-winds are feasible
(Anderson et al. 2005; Cai et al. 2008), a fully self-consistent cal-
culation of the disk-outflow dynamical connection is currently
missing.

Ferreira et al. (2000) investigated a different magnetic con-
figuration, where a magnetic neutral line is formed at the star-
disk interface due to the cancellation of the stellar dipolar field
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by the disk field. Such a reconnection site has been envisioned
as driving massive unsteady ejection events, mainly powered
by the stellar rotation. These “reconnection X-winds” provide
a very efficient spinning down mechanism for early low-mass
protostars (Class 0 and I objects), which are able to brake a
maximally rotating initial core, slowing it down to observed val-
ues. However, this model has not been designed for CTTS and
requires a specific magnetic topology, not addressed here.

Stellar winds provide a spin-down torque extracting angu-
lar momentum along the open magnetospheric field lines an-
chored onto the stellar surface (Matt & Pudritz 2005b; Sauty
et al. 2011). Matt & Pudritz (2008b) estimate that the wind mass
flux is likely to be ∼10% of the accretion rate in order to balance
at least the torque due to accretion. These stellar winds would
carry the entire mass flux typically observed in T Tauri jets,
which seems unlikely (Cabrit 2009). Indeed, such high ejection
efficiency presents a serious energetic problem (Ferreira et al.
2006): since CTTS are slow rotators and their centrifugal push
is not strong enough to drive these outflows, an extra energy in-
put is required. Matt & Pudritz (2005b) propose that it could
come from the accretion power carried onto the star by the ac-
creting material. But how to transfer this power to a sizable frac-
tion of ejected material remains a critical issue. It is now clear
that the required driving power cannot be of thermal origin (Matt
& Pudritz 2007). On the other hand, the push provided by tur-
bulent Alfvén waves, such as those excited by the impact of the
accretion streams onto the stellar surface, is likely to remain in-
sufficient to drive massive stellar winds (Cranmer 2008, 2009).
But more important, it is quite tricky to assume that some accre-
tion energy would be missing (the fraction that would possibly
feed the stellar wind), while still explaining the observed UV lu-
minosity. Indeed, it would imply an even higher mass flux onto
the star, hence a higher spinning up torque (Zanni & Ferreira
2011).

Another class of ejection phenomena is expected to arise
because of the expansion and subsequent reconnection of
the closed magnetospheric field lines. The inflation process is
the result of the star-disk differential rotation and the consequent
build-up of toroidal magnetic field pressure. This is the same
phenomenon that bounds the size of the magnetosphere connect-
ing the star with the disk and limits the efficiency of the Ghosh
& Lamb mechanism. While semi-analytical models have fore-
seen the magnetic field expansion (see e.g. Aly & Kuijpers 1990;
Uzdensky et al. 2002), different numerical experiments have
shown that plasma ejection is actually associated with the in-
flation process (Hayashi et al. 1996; Goodson et al. 1997; Miller
& Stone 1997; Romanova et al. 2009). Some observable prop-
erties of this phenomenon have been discussed, for example, by
Hartmann (2009) and Gómez de Castro & von Rekowski (2011).
Besides this, Hartmann (2002, 2009) suggests that this mecha-
nism could enhance the angular momentum loss from the star-
disk system.

In this paper we present the results of a series of numeri-
cal MHD time-dependent simulations to analyze the energetics
and dynamics of these magnetospheric ejections in different ac-
cretion regimes and evaluate their impact on the angular mo-
mentum balance of the star-disk system. At the same time, we
are able to include in our models the effects of stellar winds. In
Sect. 2 we present the numerical method and provide the initial
and boundary conditions employed to carry out the numerical
experiments. In Sect. 3 we present the outcome of a reference
case in detail: we characterize the dynamical properties of the
simulated outflows (Sects. 3.1 and 3.2) and determine their in-
fluence on the angular momentum of both the disk (Sect. 3.3)

and the star (Sect. 3.4). In Sect. 4 we study the impact of the
disk accretion rate onto the dynamics of the outflows and the
stellar spin evolution. In Sect. 5 we discuss the outcome of our
models making a comparison with the other scenarios proposed
to solve the stellar spin conundrum. In Sect. 6 we summarize our
conclusions.

2. Numerical setup

The models presented in this paper are numerical solutions of
the MHD system of equations, including resistive and viscous
effects:

∂ρ

∂t
+ ∇ · (ρu) = 0

∂ρu
∂t
+ ∇ ·

[
ρuu +

(
P +

B · B
8π

)
I − BB

4π
− τ

]
= −ρ∇Φg

∂E
∂t
+ ∇ ·

[(
E + P +

B · B
8π

)
u − (u · B) B

4π

]
(1)

+ ∇ · [ηm J × B/4π − u · τ] = −ρ∇Φg · u − Λcool

∂B
∂t
+ ∇ × (B × u + ηm J) = 0.

This system expresses the conservation of mass, momentum, and
energy and includes the induction equation to describe the evo-
lution of the magnetic field. In the system of Eqs. (1) ρ is the
mass density, u the flow speed, P the plasma thermal pressure,
B the magnetic field, Φg = −GM�/R is the gravitational poten-
tial, J = ∇ × B/4π is the electric current, and ηm the magnetic
resistivity, where νm = ηm/4π defines the magnetic diffusivity.
The total energy density E is defined as

E =
P
γ − 1

+ ρ
u · u

2
+

B · B
8π
,

where γ = 5/3 is the polytropic index of the plasma. The viscous
stress tensor τ is given by

τ = ηv

[
(∇u) + (∇u)T − 2

3
(∇ · u) I

]
, (2)

where ηv is the dynamic and νv = ηv/ρ the kinematic viscos-
ity. The anomalous transport coefficients ηm and ηv are assumed
to be of turbulent origin and are parametrized according to an
α prescription (Shakura & Sunyaev 1973). The cooling term
Λcool = ηm J · J+Tr

(
ττT

)
/2ηv is included to balance the viscous

and Ohmic heating, so that the system should evolve adiabat-
ically, modulo numerical dissipative effects. We employed the
MHD module provided with the PLUTO code1 (Mignone et al.
2007) to solve the system of Eq. (1). For a precise description of
the employed algorithm, we refer the reader to Paper I.

2.1. Initial and boundary conditions

We employ the same initial and boundary conditions, computa-
tional domain, and resolution of the simulations as presented in
Paper I, where a more extensive discussion about the numerical
setup can be found. For the sake of completeness, we recall here
the main characteristics of our setup.

The two-dimensional simulations are carried out in spheri-
cal coordinates (R, θ) assuming axisymmetry around the rotation

1 PLUTO is freely downloadable at http://plutocode.ph.unito.
it
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axis of the star. We indicate the cylindrical radius r = R sin θ
and the height z = R cos θ with lower-case letters. We initially
consider a viscous accretion α-disk surrounded by a rarefied
corona threaded by the stellar magnetosphere. The Keplerian ac-
cretion disk is modeled after the polytropic solution presented
in Kluźniak & Kita (2000, see also Regev & Gitelman 2002;
Umurhan et al. 2006). The density, pressure, toroidal and ac-
cretion speed, and kinematic viscosity of the disk are given
respectively by

ρd = ρd0

{
2

5ε2

[
R�
R
−

(
1 − 5ε2

2

)
R�
r

]}3/2

Pd = ε
2ρd0V2

K�

(
ρd

ρd0

)5/3

(3)

uφd =
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√

1 − 5ε2

2
+

2
3
ε2α2

vΛ

(
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)⎤⎥⎥⎥⎥⎥⎦
√

GM�
r

uRd = −αvε
2

[
10 − 32

3
Λα2

v − Λ
(
5 − 1

ε2 tan2 θ

)] √
GM�

R sin3 θ

νv =
2
3
αv

[
C2

s (r)
∣∣∣
z=0
+

2
5

(GM�
R
− GM�

r

)] √
r3

GM�
,

where αv is the anomalous viscosity coefficient, Λ =(
5/11 + 64/55α2

v

)−1
, Cs =

√
P/ρ is the isothermal sound speed,

VK =
√

GM�/r is the Keplerian speed, ε = Cs/VK|z=0 is the disk
aspect ratio, ρd0 and VK� are the density and Keplerian speed on
the midplane of the disk at R = R�. The magnetic diffusivity is
assumed to be proportional to the kinematic viscosity:

νm = αm
3
2
νv

αv
, (4)

so that the magnetic Prandtl number is equal to Pm = νv/νm =
2αv/3αm.

The corona is represented by a polytropic hydrostatic atmo-
sphere whose density and pressure distributions are given by

ρa = ρa0

(R�
R

)3/2

Pa =
2
5
ρa0

GM�
R�

(R�
R

)5/2

,

where ρa0 � ρd0 is the density of the corona on the spherical
surface R = R�.

We model the stellar magnetosphere as a purely dipolar field
aligned with the stellar rotation axis. Given the flux functionΨ�,

Ψ� = B�R3
�

sin2 θ

R
, (5)

the field components are defined as

BR =
1

R2 sin θ
∂Ψ�
∂θ

Bθ = − 1
R sin θ

∂Ψ�
∂R
,

where R� is the stellar radius and B� the magnetic field inten-
sity at the stellar equator. The magnetic flux through one stellar
hemisphere is equal to

Φ� = 2πR2
�

∫ π/2

0
BR (R�, θ) sin θ dθ (6)

= 2π [Ψ� (R�, π/2) − Ψ� (R�, 0)] = 2πB�R2
�.

The disk surface is determined by the pressure equilibrium Pd =
Pa, while the disk is initially truncated where B2/8π = Pd. To

minimize initial transient effects of the differential rotation be-
tween the disk and the corona, we set the magnetic surfaces an-
chored inside the Keplerian disk to corotate with it. The coronal
density is corrected so as to nullify the centrifugal acceleration
perpendicularly to the magnetic surfaces.

The computational domain encompasses a spherical sector
going from the polar axis (θ = 0) to the disk midplane (θ = π/2)
and from an inner radius R = R� up to R = 28.6 R�. The do-
main is discretized with a grid of Nθ × NR = 100 × 214 cells.
The grid is stretched in the radial direction so that the cell sizes
satisfy the condition ΔR ∼ RΔθ. Suitable boundary conditions
are imposed to satisfy the axial and equatorial symmetries. The
boundary conditions on the stellar surface R = R� are carefully
chosen to model a perfect conductor rotating with an angular
speed Ω� so that, in the rotating frame of reference, the elec-
tric field E|Ω=Ω� = B × (u −Ω� × R) = 0 is zero. Likewise,
the boundary is designed to absorb the accretion funnels while
forcing the rarefied plasma of the surrounding corona to have
a density and enthalpy suitable for driving a light stellar wind.
At the outer boundary, the variables are extrapolated, also en-
suring that the area of this boundary directly connected to the
central star exerts no artificial torques on the latter. A detailed
description and discussion of the boundary conditions is given
in Paper I.

2.2. Units and normalization

We performed the simulations and now present their outcome in
dimensionless units. We here provide the normalization factors
needed to express the results in physical units, taking the typ-
ical case of a young, forming star into account. The stellar ra-
dius R� is employed as unit length, while given the stellar mass
and radius, the velocities are expressed in units of the Keplerian
speed at the stellar surface VK� =

√
GM�/R�. Taking ρd,0 as

the normalization density, the magnetic field is given in units

of
√
ρd0V2

K�, time in units of t0 = R�/VK�, accretion and ejec-

tion rates in units of Ṁ0 = ρd0R2
�VK�, powers in units of Ė0 =

ρd0R2
�V3

K�, and torques in units of J̇0 = ρd0R3
�V2

K�. Assuming
M� = 0.5 M�, R� = 2 R� and ρd0 = 8.5 × 10−11 g cm−3, we
find that

VK� = 218

(
M

0.5 M�

)1/2 (
R�

2 R�

)−1/2

km s−1

B0 = 200

(
ρd0

8.5×10−11 g cm−3

)1/2 (
M

0.5 M�

)1/2 (
R�

2 R�

)−1/2

G

t0 = 0.074

(
M

0.5 M�

)−1/2( R�
2 R�

)3/2

days (7)

Ṁ0 = 5.7×10−7

(
ρd0

8.5×10−11 g cm−3

) (
M

0.5 M�

)1/2 (
R�

2 R�

)3/2

M� yr−1.

In order to directly provide the characteristic spin-up/spin-down
timescales, the torques acting onto the star will be divided by
the stellar angular momentum, expressed in units of J�0 =
M�R�VK�. The inverse of the characteristic braking timescale
will therefore be expressed in units of2

J̇
J�

∣∣∣∣∣∣
0

= 10−6

(
ρd0

8.5×10−11 g cm−3

) (
M

0.5 M�

)−1/2 (
R�

2 R�

)3/2

yr−1· (8)

2 This normalization differs from the one employed in Paper I, where
we normalized the stellar angular momentum in units of J�0 =
ρd0 R4

�VK�, so that the braking timescale would be given in units of t0.
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Table 1. Parameters of the simulations.

Simulation αv αm Pm Ṁd/Ṁ0

C1 1 0.1 6.7 1.4 × 10−2

C03 0.3 0.1 2 4.2 × 10−3

C01 0.1 0.1 0.67 1.4 × 10−3

E1 1 1 0.67 1.4 × 10−2

2.3. The simulations

Once the initial conditions are normalized, the problem depends
on six dimensionless parameters: the disk thermal scale height ε,
the equatorial stellar field intensity B�/B0, the stellar rotation
rate δ� = R�Ω�/VK�, the coronal density contrast ρa0/ρd0, and
the viscous and resistive coefficients αv and αm. Except for the
transport coefficients, the other parameters are the same as were
used in the simulations of Paper I: ε = 0.1, B� = 5B0, δ� = 0.1,
and ρa0/ρd0 = 10−2. Using the standard normalization given in
Sect. 2.2, this corresponds to a stellar magnetic field B� = 1 kG
and a period of rotation of the star P� = 2πt0/δ� = 4.65 days
with a Keplerian corotation radius Rco = R�/δ

2/3
� = 4.64 R�.

The transport coefficients αv and αm control, respectively,
the intensity of the viscous torque, allowing the disk to accrete,
and the strength of the coupling of the stellar magnetic field with
the disk material. As discussed, for example, in Uzdensky et al.
(2002) and Matt & Pudritz (2005a), the disk magnetic resistivity
controls the extent of the disk region that is steadily connected to
the star: since the opening of the magnetosphere is determined
by the star-disk differential rotation and the consequent buildup
of toroidal magnetic pressure, a weaker magnetic coupling (i.e.
a higher αm) limits the growth of the toroidal field and there-
fore increases the size of the connected region. For example, in
Paper I we had to assume a value αm = 1 in order to maintain the
magnetic connection beyond the corotation radius (“extended”
magnetosphere).

Since the main aim of this paper is to study the dynamical
processes associated with the inflation and opening of the mag-
netospheric field lines, we assume a stronger magnetic coupling
(αm = 0.1), so that the magnetic configuration opens up closer to
the stellar surface (“compact” magnetosphere), where these phe-
nomena can strongly affect both the disk and the stellar dynam-
ics. Besides, we consider different values of the viscosity coeffi-
cient αv = 1, 0.3, 0.1 to study the evolution of star-disk systems
characterized by different accretion rates. The summary of the
cases presented in this paper is given in Table 1. For each sim-
ulation we show the viscosity coefficient αv, the magnetic resis-
tivity coefficient αm, the magnetic Prandtl number Pm = ηv/ηm,
and the initial viscous accretion rate of the disk Ṁd. We also in-
clude the parameters characterizing the reference case of Paper I
(case E1) that will be considered to do some comparisons.

3. Star-disk interaction and magnetospheric
ejections

Using case C03 as a representative example, we analyze the dy-
namical properties of a interacting star-disk system in which the
stellar magnetic field is strongly coupled to the accretion disk.
As already pointed out, in such a situation the star-disk differ-
ential rotation generates a strong toroidal field component and,
due to its pressure, the magnetic structure relaxes by inflating
and opening the initial dipolar configuration close to the trun-
cation radius. The overall picture illustrating the outcome of
this process is given in Fig. 1. Four groups of field lines can

Fig. 1. Global view of the star-disk interacting system. A logarithmic
density map is shown in the background. Poloidal speed vectors are
represented as blue arrows. The dotted line marks the Alfvén surface,
where up = Bp/

√
4πρ. Sample field lines are plotted with white solid

lines. Thick yellow field lines, labeled as (a), (b), and (c), delimit the
different dynamical constituents of the system indicated in the figure.
The image has been obtained by averaging in time the simulation out-
come over 54 stellar periods.

be distinguished: (1) the field lines steadily connecting the disk
with the star below the magnetic surface (b); (2) the open field
lines anchored on the surface of star at latitudes higher than the
position of the surface (a); (3) the open field lines attached to
the accretion disk beyond the surface (c); (4) the field lines en-
closed between surfaces (a), (b), and (c) connecting the disk with
the star, periodically evolving through stages of inflation, recon-
nection, and contraction. An example of this periodic process is
represented in Fig. 2. The periodicity of these phenomena corre-
sponds to about two stellar rotation periods. Since the reconnec-
tion processes that are involved are driven by numerical resis-
tivity, this periodicity has to be considered with caution. On the
other hand, this almost periodical behavior allows us to use time
averages to characterize the long-term evolution of the system
and smooth out transient features. For example, Fig. 1 has been
obtained by averaging snapshots over 54 rotation periods of the
star, and because of the time average, the fleeting reconnection
phenomena are not visible.

Different dynamical processes are associated with the four
groups of field lines. In the region inside the magnetic sur-
face (b), (“connected disk”) the star and the disk can directly
exchange angular momentum, the disk is truncated, and the ac-
cretion curtains form. This region extends within the Keplerian
corotation radius Rco = 4.64 R� so that, beyond this radius,
the disk and the star do not have a direct magnetic connection.
Therefore, the Ghosh & Lamb scenario cannot be applied di-
rectly: the disk region beyond corotation, which rotates more
slowly than the star, cannot exert any direct spin-down torque
onto the star. Three classes of outflows correspond to the other
groups of field lines. A stellar wind flows along the open mag-
netic surfaces anchored at high stellar latitudes. A disk wind can
be accelerated along the disk open field lines, but only the field
lines closer to the star are characterized by a field strong enough
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Fig. 2. Temporal evolution of the periodic inflation/reconnection process which characterizes the dynamics of the magnetospheric ejections in
case C03. We show logarithmic density maps with sample field lines (white solid lines) and poloidal speed vectors (blue arrows) superimposed.
The yellow solid lines follow the evolution of a single magnetic surface showing clearly the dynamics of the phenomenon. Time is given in units
of rotation periods of the central star.

Table 2. Magnetic flux distribution in the star-disk system.

C1 C03 C01 (acc.) C01 (pro.) E1
ΦSW/Φ� 0.052 0.066 0.091 0.109 0.091
ΦME/Φ� 0.023 0.035 0.039 0.053 0.009
ΦCD/Φ� 0.269 0.180 0.135 0.102 0.239
ΦMC/Φ� 0.656 0.719 0.735 0.736 0.661
ΦAC/Φ� 0.194 0.135 0.087 0. 0.152
S AC/S � 0.110 0.075 0.049 0. 0.088
Rt/R� 1.9 2.7 3.0 4.4 2.5
Rcm/R� 2.7 3.7 3.8 4.7 11.9
Rom/R� 3.1 4.7 4.2 5.7 15.1

for this outflowing component to play a relevant role, as is shown
in Sect. 3.3. Finally, the inflation at mid-latitudes of the dipolar
field lines is very dynamic, and it is accompanied by outflows
that can in principle extract mass, energy, and angular momen-
tum from both the disk and the star. On a relatively large scale
(10–20 R�, see Fig. 2), these ejections detach from the mag-
netosphere in a reconnection event and continue their propaga-
tion as magnetic islands disconnected from the central part of
the star-disk system, in between the open magnetic surfaces an-
chored into the star and those anchored into the disk. In the fol-
lowing we refer to this type of outflow associated with the pro-
cess of inflation/reconnection of the magnetospheric field lines
as magnetospheric ejections (MEs).

The different regions outlined in Fig. 1 can also be charac-
terized by the amount of poloidal magnetic flux that participates
in each of them. In Table 2 we show, for all the discussed cases,
the fraction of magnetic flux Φ =

∫
Bp · dS which crosses each

region relative to the total stellar flux through one hemisphere,
Eq. (6): we display the stellar wind flux ΦSW, also equal to the
open magnetic flux of the disk wind, the MEs flux ΦME, the flux
of the connected disk ΦCD, and the flux contained in the mag-
netic cavity inside the truncation radiusΦMC. Obviously we have
ΦSW + ΦME + ΦCD + ΦMC = Φ�. Since not all the field lines
steadily connecting the star to the disk are mass-loaded to form
the accretion funnels, we also show the amount of magnetic flux
threading the accretion columnsΦAC, which is clearly equal to a
fraction ofΦCD, and the corresponding surface covering fraction
S AC/S �. To give an indication of the size of the different inter-
action regions, we also provide the position of the disk trunca-
tion radius Rt, the anchoring radius Rcm of the outermost steadily
connected magnetic surface (labeled as (b) in Fig. 1), and the
anchoring radius Rom of the innermost open magnetic surface

(labeled as (c) in Fig. 1) at the disk midplane. While the magnetic
flux is frozen into the stellar surface, its distribution can change
on the disk midplane. Different estimates have been made for
the accretion and propeller phases of case C01 (see Sect. 4.2).
Besides providing a clear indication of the relative importance
of the different dynamical components, these quantities can be
directly compared to the predictions of other models, such as the
X-wind.

3.1. Dynamical properties of magnetospheric ejections

We now characterize the properties of the MEs by inspecting
their mass, angular momentum, and energy fluxes. By defin-
ing a surface S perpendicular to the poloidal flow, these are
respectively defined as

Ṁ =

∫
S
ρup · dS (9)

J̇ =
∫

S

(
rρuφup − rBφBp

4π

)
· dS (10)

Ė =
∫

S

[(
1
2
ρu2 +

γP
γ − 1

− GM�
R

)
up + E × B

∣∣∣
p

]
· dS. (11)

As already pointed out, this type of ejection can exchange mass,
angular momentum, and energy with both the star and the disk.
We can therefore define different contributions to the budget of
the MEs. Taking for example the mass flux, we can estimate the
stellar mass input as

ṀME,s = 4πR2
�

∫ θb

θa

ρuR sin θ dθ, (12)

where θa and θb are the anchoring angles onto the stellar surface
of the lowest open and the outermost, steadily closed magnetic
surfaces, respectively, labeled as (a) and (b) in Fig. 1. The disk
contribution can be calculated as

ṀME,d = −4π
∫ Rout

Rin

ρ+u+p rdr, (13)

where Rin and Rout are the anchoring radii at the disk sur-
face of the outermost steadily closed magnetic surface and
the innermost open field line threading the disk, labeled as
(b) and (c) in Fig. 1, whose footpoint radii at the disk mid-
plane are Rcm and Rom, respectively (see Table 2). These
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Fig. 3. Temporal evolution of mass fluxes of the different accretion and
ejection phenomena present in the system: mass accretion rate mea-
sured at the stellar surface (solid line), total mass outflow rate of magne-
tospheric ejections (dot-dashed line), mass flux fueling the MEs coming
from the star only (long-dashed line), stellar wind outflow rate (dashed
gray line), disk wind mass outflow rate (dotted line). The image refers
to case C03. Time is given in units of rotation periods of the central star.

radii are marked in the panels of Figs. 7 and 10. The + su-
perscript indicates a quantity evaluated at the disk surface
H (r) = 2Cs/ΩK, proportional to the thermal heightscale.
The poloidal vectors labeled with a + are defined as the
components perpendicular to the surface of the disk: for ex-
ample, in the case of the speed, u+p = −uz + urH′|H(r) =
uθ (sin θ + cos θH′) − uR (cos θ − sin θH′)|H(r). The total mass
flux of the MEs can be evaluated by choosing a surface crossing
both magnetic field lines (a) and (c); for example, by selecting
a spherical zone with a radius R ≥ 6R�, so that it crosses both
magnetic surfaces (a) and (c), we define

ṀME,tot = 4πR2
∫ θc

θa

ρuR sin θ dθ, (14)

where θa and θc are the angles at which magnetic surfaces (a)
and (c) intercept the sphere with radius R. When calculating
the time evolution of the previous fluxes, the anchoring angles
and radii can vary with time. In a steady situation or consid-
ering time-averaged quantities for a system that evolves peri-
odically (as in the considered case), we find that ṀME,tot =
ṀME,s + ṀME,d. Analogous expressions can be derived for
the angular momentum (J̇ME,s, J̇ME,d, J̇ME,tot) and energy fluxes
(ĖME,s, ĖME,d, ĖME,tot) by integrating Eqs. (10) and (11) on the
same surface elements employed to define the mass fluxes. We
exploited the midplane symmetry of our simulations so that the
flux integrals are related to two-sided outflows.

3.1.1. Mass fluxes

In Fig. 3 we plot the temporal evolution of the mass-loss rates
of the different outflowing components and compare them to
the mass accretion rate measured on the surface of the star, de-
fined as

Ṁacc,s = −4πR2
�

∫ π/2

θb

ρuR sin θ dθ. (15)

jacc,Rout

jSW

jME,d

jME,tot

Fig. 4. Temporal evolution of the specific angular momentum carried by
different accretion and ejection components of the system in case C03:
specific angular transported by the accretion flow through Rout (upper
panel); total specific angular momentum carried by the MEs (second
panel); specific angular momentum extracted by the MEs from the
disk only (third panel); specific angular momentum of the stellar wind
(lower panel). Dashed lines show the temporal averages of the quan-
tities over the plotted lapse of time. Time is given in units of rotation
periods of the star.

After an initial transient lasting around 20 stellar rotation peri-
ods, the total outflow rate of the MEs, calculated using Eq. (14)
with R = 7 R�, regularly oscillates around a value corresponding
to ≈18% of the accretion rate at the stellar surface. This corre-
sponds to ≈15% of the disk accretion rate measured at Rout. The
oscillations correspond to the periodic inflation and reconnec-
tion phenomena. The stellar contribution to the MEs, Eq. (12),
is a few percent of the accretion rate. This means that MEs are
essentially mass-loaded from the disk, and their inertia is domi-
nated by material coming from the accretion disk. The stellar and
disk wind mass fluxes plotted in Fig. 3 are defined and discussed
in Sect. 3.2.

3.1.2. Angular momentum fluxes

Since the MEs are magnetically connected both to the star and
the disk, they can potentially extract angular momentum from
both. In the second panel from the top in Fig. 4 we plot the tem-
poral evolution of the normalized total specific angular momen-
tum carried by the MEs, defined as

jME,tot =
J̇ME,tot

ṀME,tot
≈ J̇ME,tot

ṀME,d
, (16)
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while in the third panel from the top we have evaluated the
specific angular momentum extracted by the MEs from the
disk only:

jME,d =
J̇ME,d

ṀME,d
· (17)

Plots are in units of
√

GM�R�. Both quantities oscillate regu-
larly in time but, if we look at the time averages, we clearly see
that the specific angular momentum extracted from the disk is
around jME,d ≈ 7

√
GM�R�, while the total angular momentum

of the MEs is approximately jME,tot ≈ 10.5
√

GM�R�. Clearly,
the total angular momentum of the MEs is greater than the angu-
lar momentum extracted from the disk alone, meaning that a sub-
stantial fraction also comes from the star. In Sects. 3.3 and 3.4
we discuss the effects of these torques on the angular momentum
evolution of the disk and the star, respectively.

3.1.3. Energy fluxes

Concerning the energy budget of the MEs, the power extracted
from the disk only corresponds to ĖME,d ≈ 0.2GM�Ṁacc,s/Rin ≈
0.05GM�Ṁacc,s/R�. It is important to point out that the mechan-
ical power released by the material accreting from Rout down
to Rin, defined as

Ėacc ≈ Ṁacc

(
u2

2
+ Φg

)∣∣∣∣∣∣
Rout

− Ṁacc

(
u2

2
+ Φg

)∣∣∣∣∣∣
Rin

, (18)

is sufficient to power the part of the MEs coming from the disk.
The power extracted from the star is comparable and largely de-
termined by the Poynting flux associated with the spin-down
torque J̇ME,s. The enthalpy flux, needed in our simulations to
give the initial drive to any stellar outflow, is a small fraction
(≈0.01GM�Ṁacc,s/R�) of the accretion power. In case C03, the
MEs operate as a magnetic sling, powered by both the stellar and
disk rotation.

To better understand the asymptotic properties and the accel-
eration efficiency of MEs, we can inspect the energy conversion
along the flow. In Fig. 5 we plot the evolution along the flow of
the total specific energy of the MEs as a function of the radial
coordinate R:

eME,tot =
ĖME,tot

ṀME,tot
· (19)

This plot has been obtained by averaging the mass and energy
fluxes over 54 stellar periods, and it starts from the cusp of field
line (b), located at ≈5 R�. In a stationary situation this definition
obviously corresponds to an average of the Bernoulli invariant
over a section of the outflow,

e =
1
2

u2 + h − GM�
R
− rΩ�BφBp

4πρup
, (20)

given by the sum of kinetic energy, enthalpy h = γP/(γ − 1)ρ,
gravitational and magnetic (Poynting) energy. On the other hand,
the more general definition Eq. (18) allows us to define an en-
ergy conversion efficiency in the case of nonstationary MEs. We
can clearly see that the total energy is not conserved along the
flow, mainly because of the dissipation of the magnetic energy
owing to the reconnection events. Even if the reconnection is
controlled by numerical dissipation and therefore is not physical,
it leads to a temperature increase, visible at lower radii in Fig. 5.
The outflow cools down subsequently. Since we did not include

Fig. 5. Radial evolution of the total specific energy carried by the MEs
in case C03. The total specific energy (solid line) is given by the sum
of Poyinting-to-mass flux ratio (dot-dashed line), kinetic energy (long-
dashed line), specific enthalpy (triple-dotted-dashed line) and potential
gravitational energy (dotted line, plotted in absolute value). The spe-
cific poloidal kinetic energy is also plotted (dashed line). The slow- and
fast-magnetosonic surfaces are marked by a vertical line. The plot starts
from the cusp of the innermost magnetic surface that steadily connects
the disk and the star (labeled as (b) in Fig. 1). The figure has been ob-
tained by time averaging the energy and mass fluxes over 54 rotation
periods of the star, from time t = 38 up to t = 92.

any realistic cooling function, we simply limited the maximum
specific entropy (P/ργ) that can be attained by the outflow in
order to preserve code stability. We notice that the kinetic en-
ergy stops increasing after ∼10 R�: this reflects the fact that, af-
ter the plasmoids have detached from the inner magnetosphere,
the acceleration process stops and the propagation of the out-
flow becomes ballistic. These aforementioned effects limit the
acceleration efficiency of the outflow, whose terminal speed is
around 0.5 VK�. Finally, consistent with their ballistic propaga-
tion, MEs cannot be self-collimated thanks to magnetic stresses,
as usually envisaged for magnetically driven outflows. This con-
fers the characteristic “conical” shape to these magnetospheric
outflows, as already pointed out by Romanova et al. (2009). On
the other hand, they can in principle be confined by some exter-
nal agent, as discussed in Appendix A.

3.1.4. Forces

To complete the analysis of the dynamical properties of the MEs
for the reference case C03, we take the forces that drive these
outflows into account. Since mass is accelerated both from the
disk and the star, we consider an inflating field line anchored in
the disk at R = 4.3 R� still connecting the disk and the star: we
plot the component of the poloidal forces parallel to this field
line from the disk midplane up to the field line cusp (left panel
in Fig. 6) and from the stellar surface up to the cusp (right panel
in Fig. 6) to analyze the driving mechanism of the MEs from
the disk and from the star, respectively. The forces have been
obtained from a time-averaged snapshot, in order to smooth out
transient features.

In the lefthand panel of Fig. 6 we show that the accelera-
tion of the mass of the MEs coming from the disk is largely
due to a combination of centrifugal and magnetic effects, as in a
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Fig. 6. Forces acting along a field line connecting the star and the disk that is mass-loaded by the MEs in case C03. The left panel refers to the
forces acting from the disk midplane up to the cusp of the magnetic surface, while the right panel shows the forces from the stellar surface up
to the cusp. We selected a magnetic surface anchored at 4.3 R� on the disk midplane. The plots have been obtained by time averaging the forces
over 54 stellar rotation periods. We plot the thermal pressure gradient (solid line), the centrifugal term (dot-dashed line), the Lorentz force (dashed
line), and the gravitational pull (dotted line). Vertical lines mark the position of the disk surface (DS) and the slow-magnetosonic point (SM).

typical disk-driven outflow. In addition, the thermal pressure gra-
dient −∇‖P is comparable to the centrifugal acceleration at the
disk surface (DS, defined as the point where the Lorentz force
J × B‖ changes sign) and crucially contributes to the outflow
acceleration. As shown in Sect. 3.3, this enhanced thermal pres-
sure gradient is due to the push of the accretion flow against the
magnetospheric wall and is responsible for the high mass-load
of the MEs coming from the disk. Thermal effects are important
since the centrifugal term ρu2

φ/r‖ is not sufficient to counteract
the gravitational pull ρg‖ at the base of the flow: as more exten-
sively discussed in Sect. 3.3, the disk rotation becomes strongly
sub-Keplerian in the disk acceleration region of the MES.

The righthand panel of Fig. 6 shows that the pressure gra-
dient provides the initial thrust of the mass of the MEs coming
from the star. Even if this term is most probably not of ther-
mal origin, as assumed in our simulations, it is needed to drive
any kind of stellar outflow from slowly rotating stars, where
magneto-centrifugal effects are not strong enough to give the
initial push. The sudden change in the profile of the forces
at r ≈ 7 R� happens when the material accelerated from the
star comes across the mass coming from the disk. The latter is
characterized by higher density (see, for example, the change in
the centrifugal push and gravitational pull), confirming that the
MEs inertia is dominated by the mass loaded from the disk, as
already discussed in Sect. 3.1.1. The profile of the Lorentz force
has some interesting features. We first recall that the Lorentz
force parallel to a field line in the poloidal plane is related to the
toroidal component of the force, according to the relation

(J × B) · Bp = − (J × B) · Bφ,
which shows that a Lorentz force accelerating (braking) along
a field line also accelerates (brakes) in the toroidal direction.
Therefore we can see that the mass loaded from the star is sub-
ject to a toroidal acceleration close to the stellar surface, while it
is spun down as it gets closer to the part of the MEs coming from
the disk, between 5 R� < r < 7 R�. This clearly indicates that
the star is trying to spin the plasma attached to this field line up,
therefore losing angular momentum, while countering the ma-
terial of the MEs coming from the disk that is trying to spin it
down.

3.2. Dynamical properties of stellar winds and disk winds

In our simulations, a stellar wind is accelerated along the open
field lines anchored in the stellar surface. Due to the energetic
limitations illustrated in the Introduction, we limit the mass out-
flow rate of the stellar wind to a few percent of the mass accre-
tion rate, so that the energy needed to initially drive the outflow
corresponds to a small fraction (less than 10%) of the power dis-
sipated by accretion onto the stellar surface. In Fig. 3 the tempo-
ral evolution of the stellar wind mass outflow rate is also plotted,
calculated as

ṀSW = 4πR2
�

∫ θa

0
ρuR sin θ dθ, (21)

where θa corresponds to the anchoring angle of the last open
stellar magnetic surface. The outflow rate corresponds, on av-
erage, to ≈1.6% of the mass accretion rate measured onto the
surface of the star (Eq. (15)). Comparing the mass outflow rate
of the reference case with the stellar wind of case E1, we find
that the mass loss rate of case C03 corresponds approximately
to ∼30% of the outflow rate of case E1, even though in the two
cases we assumed approximately the same injection speed, den-
sity, and temperature. The mass ejection rate difference is there-
fore due to a different size of the launching area. Table 2 shows
that in cases C03 and E1 the closed magnetosphere contains ap-
proximately the same amount of stellar flux (ΦMC + ΦCD), even
if in case C03 this flux is compressed into a much smaller re-
gion closer to the star (see Rcm in Table 2); the presence of the
MEs, which are almost absent in case E1, reduces the amount of
magnetic flux and stellar surface that is available to launch the
stellar wind. This example shows that a self-consistent model of
stellar winds from accreting protostars must take the presence
of the accretion funnels into account, which can strongly affect
the geometry of the launching region and the morphology of the
magnetic surfaces along which the wind flows.

We also estimate the specific angular momentum extracted
by the stellar winds from the star (lower panel in Fig. 4)
defined as

jSW =
J̇SW

ṀSW
= r2

AΩ�, (22)
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where the stellar wind torque J̇SW has been obtained by inte-
grating Eq. (10) over the stellar surface from which the wind is
launched, as in Eq. (21). This last equation also provides the defi-
nition of the average magnetic lever arm rA. The average specific
angular momentum of the case considered, jSW ≈ 44

√
GM�R�,

corresponds to a lever arm rA ≈ 21 R�. This value is slightly
higher than the value found in case E1 (rA ∼ 19 R�). Since the
mass-to-magnetic flux ratio (η = ρvp/Bp) of the stellar winds
of these two cases are comparable, the different topology of the
magnetic surfaces due to the interaction with the accretion fun-
nels and the MEs likely determines the different lever arm. We
just point out that the magnetic configuration found in case E1
allows wide opening winds, while in case C03 the stellar wind
assumes a more conical shape, where the presence of the MEs
focuses the open magnetic flux towards the rotation axis.

We can estimate the energy content of the stellar wind by
evaluating Eq. (20) at the stellar surface. It can be shown that
this expression can be rewritten as

eSW

V2
K�

=

(
rA

R�

)2

δ2
� −

1
2

sin2 θ δ2
� +

h�
V2

K�

− 1· (23)

The first term on the righthand side, corresponding to the mag-
netic flux, is the dominant one. Besides, the stellar boundary
conditions on the outflowing material impose h� ≈ V2

K,�, so
that the enthalpy provides the initial drive to the stellar wind:
even if this term must have a different origin, it is just meant to
mimic the effect of an extra pressure term. Therefore, we find
that eSW ≈ 4.4 V2

K,�. This specific energy would correspond to
a maximum asymptotic speed up,∞ ≈ 2.9VK�, but the outflow
has attained a poloidal speed ≈VK� at the end of the computa-
tional domain. The stellar wind therefore has the potential to be
a light and very fast outflowing component, provided an efficient
magnetic-to-kinetic energy conversion can be attained, and this
crucially depends on the asymptotic magnetic flux distribution.
The total specific energy of the stellar wind is much higher than
the one of the MEs (see Fig. 5), almost one order of magnitude,
mostly since the MEs are much more massive and therefore have
less energy per particle available. This translates into a lower
limit on the maximum terminal speed achievable by the MEs.

We are not going to describe the properties of the disk wind
accelerated along the open magnetic surface threading the ac-
cretion disk in great detail. Its mass outflow rate, obtained by
integrating the mass flux equation Eq. (9) at the disk surface
beyond Rout, is rather small, see Fig. 3, and mostly concen-
trated close to radius Rout, where the magnetic field is stronger.
Besides, it is clear from Fig. 1 that the Alfvén surface lies very
close to the disk. This means that the disk wind is characterized
by a fairly small Alfvén radius, it extracts a limited amount of
angular momentum from the disk, and therefore it has a negligi-
ble impact on the angular momentum distribution of the star-disk
system. This will be shown more quantitatively in the following
section.

3.3. The disk’s angular momentum

In this section we analyze the impact of disk-driven outflows,
MEs and disk winds, on the angular momentum distribution of
the accretion disk. We start our analysis by taking the torques
acting on the circumstellar disk into account and their effects
on the disk dynamics. Accretion can be triggered (or hampered)
by internal torques, which redistribute angular momentum radi-
ally inside the disk, or else by external torques, which extract
or supply angular momentum at the disk surface. This balance

can be expressed in a steady situation by considering the angular
momentum conservation inside an annulus of the disk of radial
width dr and thickness 2H. Following the notation of Paper I,
the angular momentum conservation can be formulated as

Γacc = Γint + Γmag + Γkin, (24)

where

Γacc =
d
dr

(
Ṁaccr

2Ωdisk

)
(25)

gives the angular momentum advection through the annulus. The
mass accretion rate Ṁa is defined as

Ṁacc = −2πr
∫ +H

−H
ρur dz. (26)

We express the internal torque Γint = Γvisc +ΓB as the sum of the
viscous “turbulent” torque:

Γvisc = −2π
d
dr

(
r2

∫ +H

−H
τrφ dz

)
, (27)

and the radial magnetic transport

ΓB = − d
dr

(
r2

2

∫ +H

−H
BφBr dz

)
· (28)

We included this last term for the sake of completeness; never-
theless, the internal torque Γint is dominated by the viscous term.
The torque exerted by the large-scale magnetic field, extracting
angular momentum at the disk surface, is defined as

Γmag = r2B+φB+p . (29)

The kinetic torque, determined by the mass exchange at the disk
surface, is given by

Γkin = −4πr3ρ+Ω+u+p . (30)

According to these definitions, a positive torque on the righthand
side of Eq. (24) extracts angular momentum from the annulus,
thus favoring accretion.

In Fig. 7 we show the righthand side torques of Eq. (24) as
a function of the radius r (lower panel), in the middle panel the
effect of these torques on the disk structure (disk angular speed,
accretion sonic Mach number, Ms = |ur | /

√
P/ρ

∣∣∣
z=0

and plasma

beta, β = 8πB2/P
∣∣∣
z=0

), while in the upper panel we display the
corresponding density maps with field and stream lines super-
posed. The three panels are not snapshots at a given time, but
have been obtained by averaging over 54 rotation periods of the
star, from time t = 38 up to t = 92, in order to smooth out
possible transient features. Likewise, we marked three radii cor-
responding to the truncation radius (Rt), the anchoring radius
onto the disk surface of the outermost magnetic field line steadily
connecting the disk with the star (Rin), and the innermost open
field line threading the disk (Rout). These radii allow three differ-
ent zones to be distinguished: in the region between Rt and Rin,
shaded in red in the middle panel, the disk can directly ex-
change angular momentum with the star and form the accretion
columns; the region between Rin and Rout, shaded in green in the
middle panels, despite being magnetically linked to the star, does
not exchange angular momentum directly with it, since the mag-
netic surfaces have expanded too much to be causally connected
directly with the star. The material ejected from this region es-
capes the stellar potential well instead of being accreted, and the
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Γmag

Γint

Γkin

Ωdisk/Ω

Ms

β

Fig. 7. Upper panel. Logarithmic density map with sample field lines
(yellow solid lines) and speed vectors (blue arrows) superimposed.
Middle panel. Radial profiles at the disk midplane of the rotation speed
of the accretion disk Ω/Ω� (solid line), accretion sonic Mach num-
ber (dot-dashed line) and plasma β (dotted line). The Keplerian and
the Ω = Ω� rotation profiles are plotted with a dashed line. Lower
panel. Radial profiles of the specific torques acting on the disk (see the
text for definitions): magnetic (Γmag, solid line), internal (Γint, dashed
line), and kinetic (Γkin, dot-dashed line) torques. In the three panels we
marked with vertical lines the position of the truncation radius (Rt) and
the anchoring radii at the disk surface of the outermost magnetic sur-
face steadily connecting the star and the disk (Rin) and of the innermost
open field line threading the disk (Rout). The panels represent temporal
averages over 54 stellar rotation periods.

angular momentum extracted at the disk surface is transferred to
the outflowing material. As already pointed out, this is the region
from which the mass coming from the disk is accelerated to fuel
the MEs. The disk region outside Rout is threaded by open field
lines along which a disk wind can be accelerated, depending on
the magnetic field strength.

The lower panel shows that the internal turbulent transport is
responsible for driving accretion on a large scale (r � 8 R�).
Even if the disk is threaded by the magnetic flux left by the
opening of the dipolar magnetosphere, at this distance from the
star the large-scale field is too weak to accelerate a powerful
enough disk wind to exert a noticeable torque. Getting closer to
the star, the large-scale open magnetic field threading the disk
starts to be strong enough to influence the accretion dynam-
ics. Starting already in the region outside Rout, the magnetically-
driven disk wind increasingly contributes to drive the accretion
flow. Correspondingly, the disk dynamics start to change behav-
ior (middle panels): the rotation profile is still Keplerian but the
growing magnetic torque forces the accretion Mach number to
increase towards trans-sonic values. Since these outflows do not
affect the disk angular momentum distribution in a relevant way
(the rotation stays Keplerian) and extract a negligible amount of
accreted mass, they will not be discussed in greater detail.

The magnetic torque progressively becomes dominant in the
disk region connected to the star from which the MEs arise
(Rin < R < Rout). The middle panel shows that, in this region, the
accretion Mach number starts to decrease after it has attained a
maximum, almost sonic value. This corresponds to an adiabatic
compression due to the push of the accretion flow against the
stellar magnetosphere, which is acting as a magnetic wall. This
compression determines the enhanced mass-loading of the mag-
netospheric ejections, as the kinetic torque curves show clearly
in the lower panel. As already noticed in Paper I, this same ef-
fect is crucial for mass-loading the accretion funnels. The ejec-
tion torque (kinetic plus magnetic) becomes strong enough so
that in this region the disk rotation becomes sub-Keplerian and
even sub-stellar. To provide a more precise idea of the amount
of angular momentum extracted by the MEs from the star-disk
system, we can consider the angular momentum flux carried by
the accretion flow through a vertical section of the disk at Rout:

J̇acc,Rout = −2πr2
∫ +H

−H

(
ρuruφ − τrφ − BφBr

4π

)
dz

∣∣∣∣∣∣
Rout

· (31)

Without any other interaction of the disk with the surroundings
inside Rout, this would be the spin-up torque exerted by the ac-
cretion flow onto the star. We plot in the upper panel of Fig. 4
the time evolution of the specific angular momentum carried
through Rout,

jacc,Rout =
J̇acc,Rout

Ṁacc,Rout

, (32)

where the disk accretion rate Ṁacc,Rout has been obtained by
evaluating Eq. (26) at Rout. The specific angular momentum
jacc,Rout is equal, on average, to jacc,Rout = 1.8

√
GM�R�. Since

the definition of J̇acc,Rout (Eq. (31)) includes the viscous and
magnetic torques, jacc,Rout (Eq. (32)) is lower than the specific
angular momentum expected from the advection process only
(≈√GM�Rout ≈ 2.6

√
GM�R�). Using the estimates done in

Sect. 3.1, we can see that the MEs extract directly from the disk
a fraction

(
ṀME,d jME,d

)
/
(
Ṁacc,Rout jacc,Rout

)
≈ 53% of the angular

momentum carried by the disk through Rout, forcing the accre-
tion disk to rotate at a substellar rate. These ejections therefore
have the important effect of extracting a relevant fraction of the
disk angular momentum and consequently reducing the accre-
tion torque. Besides this, the material ejected from the disk to
fuel the MEs clearly rotates slower than the star: since the mass
ejected from the disk is also magnetically connected to the star
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and largely dominates the MEs inertia, it can extract angular mo-
mentum from the star thanks to a differential rotation effect.

The disk region inside Rin can exchange its angular momen-
tum directly with the star. Therefore, all the angular momentum
that flows in across Rin is eventually accreted by the star and
determines a spin-up torque. In this magnetically connected re-
gion, the stellar rotation tries to force the disk to corotate with
it. Since in this example the disk rotates slower than the star at
Rin, the stellar rotation spins the disk back up to Ω�, thus exert-
ing a negative magnetic torque on the disk (see the Γmag curve in
the lower panel of Fig. 7) and extracting a fraction of the stellar
angular momentum back to the disk. The Γmag curve becomes
positive again close to the truncation region and the disk starts
to transfer angular momentum to the star. The truncation region
is dominated by the kinetic torque, due to the mass loaded onto
the base of the accretion funnels3. The external torque (magnetic
plus kinetic) is characterized by a double-peaked profile, the in-
ner positive peak being associated with the star-disk angular mo-
mentum exchange and the outer one with the torque exerted on
the disk by the magnetospheric ejections.

3.4. The stellar angular momentum

In this section we evaluate the impact of accretion and stellar
outflows (MEs and stellar winds) on the temporal evolution of
the angular momentum of the central star. We can express the
time derivative of the stellar angular momentum J� by integrat-
ing the angular momentum conservation equation over the stellar
volume:
dJ�
dt
= J̇acc,s + J̇ME,s + J̇SW, (33)

where we separated the contributions to the torque of accretion,
magnetospheric ejections and stellar winds. A positive (nega-
tive) angular momentum flux on the righthand side of Eq. (33)
corresponds to a spin-up (spin-down) torque. The three torques
have been obtained by integrating Eq. (10) over three differ-
ent parts of the stellar surface: the area threaded by open field
lines to evaluate the stellar wind torque J̇SW (see Sect. 3.2); the
area threaded by magnetic surfaces that undergo periodic infla-
tion/reconnection events to evaluate the MEs contribution J̇ME,s
(see Sect. 3.1); the area threaded by field lines steadily connect-
ing the star with the disk to evaluated the accretion torque J̇acc,s.
As already pointed out in Paper I, the contribution of the ki-
netic terms is completely negligible at the stellar surface, both
for accreting and outflowing components, which are completely
dominated by the magnetic torque. In the following discussion
we will consider the total torques, keeping in mind that the mag-
netic contribution is prevailing. In Fig. 8 we show the temporal
evolution of the torques acting on the star, normalized to the stel-
lar angular momentum J� = I�Ω�, where I� = k2M�R2

� is the
stellar moment of inertia. We assumed the typical normalized
gyration radius of a fully convective star, i.e. k2 = 0.2. Using this
normalization, the curves in Fig. 8 directly provide the inverse of
the characteristic braking (or speed-up) timescale. To retrieve the
physical units, the plots must be multiplied by Eq. (8) that, ex-
pressed in terms of the stellar magnetic field intensity, takes the
form

J̇
J�

∣∣∣∣∣∣
0

= 10−6
( B�
1 kG

)2 (
M�

0.5 M�

)−3/2 (
R�

2 R�

)5/2

yr−1. (34)

3 For a discussion on the dynamics of the truncation region and the ac-
cretion funnels we refer the reader to Bessolaz et al. (2008) and Paper I
(Sect. 3.1).

J̇ME,s

J̇acc,s

J̇SW

Fig. 8. Temporal evolution of the torques acting directly onto the star,
normalized to the stellar angular momentum. Plotted are the accre-
tion torque (solid line), the stellar wind torque (dotted line), and the
torque exerted by the MEs onto the stellar surface (dashed line).
Conventionally, a positive (negative) torque spins the stellar rotation up
(down).

3.4.1. Accretion torque

A rotating accretion disk is likely to exchange angular mo-
mentum besides mass with the central object, thus providing a
spin-up torque to the latter. The accretion spin-up torque can
be parametrized as J̇acc,s = Ṁacc,s jacc,s, where jacc,s is the spe-
cific angular momentum transported by the accretion streams
and along those magnetic surfaces connected to the disk that
are not mass-loaded. A common parametrization for the specific
accreted angular momentum is jacc =

√
GM�Rt, implying that

a Keplerian accretion disk transfers to the star the angular mo-
mentum possessed in the truncation region. In our simulations
we can estimate the accuracy of this approximation. For exam-
ple, the specific angular momentum transferred by the disk to
the star in case E1 from Paper I is greater than this reference
value, jacc,s ∼ 1.2

√
GM�Rt. Since in this case the stellar mag-

netosphere is connected to the accretion disk over a large extent,
even beyond the corotation radius, the star can extract angular
momentum from the disk in the entire region from Rt up to Rco.
On the other hand, in the “compact” magnetic configuration de-
picted in Fig. 1, the accretion torque is given by the angular mo-
mentum flux through a disk surface from Rt up to Rin < Rco. In
case C03, the average accreted angular momentum is approxi-
mately equal to 60% of the reference Keplerian value

√
GM�Rt.

This effect is due the presence of MEs, which are extracting a
consistent fraction of the angular momentum of the accretion
disk before it is accreted onto the star.

3.4.2. Stellar wind torque

In Sect. 3.2 we estimated the mass outflow rate and the specific
angular momentum extracted by the stellar wind from the star
in the reference case C03. We can now compare the stellar wind
torque with the accretion torque. On average, the stellar wind
spin-down torque extracts around 66% of the accretion torque.
This efficiency seems to be rather high, given the low ejection ef-
ficiency of the wind. For example, we recall that the stellar wind
of case E1 from Paper I was able to balance only 20% of the
accretion torque. Three effects have enhanced the efficiency of
the spin-down torque: the mass ejection efficiency in case C03
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is slightly higher than in case E1 (1.6% vs. 1.2%); in case C03,
the magnetic lever arm is longer (rA ≈ 21 R� vs. rA ≈ 19 R�).
But the most important and interesting effect is that, in case C03,
the MEs have already extracted a substantial amount of the disk
angular momentum, reducing the accretion torque by a factor
around 50% (see Sect. 3.3) and therefore enhancing the effi-
ciency of the stellar wind torque.

3.4.3. Magnetospheric ejections torque

As we show in Sect. 3.1, besides reducing the accretion spin-up
torque, MEs are able to exchange angular momentum directly
with the star. The angular momentum exchange with the star is
mainly controlled by the differential rotation between the star
and the MEs: if at the cusp of the field line the mass loaded
from the disk rotates more slowly (faster) than the star, the MEs
exert a spin-down (spin-up) torque. Consistent with that, since
we find that in case C03 MEs rotate more slowly than the star
(see Sect. 3.3), they exert a net spin-down torque, equal to ≈74%
of the accretion torque.

Summarizing, in case C03 the combined action of MEs and
stellar winds is able to balance the spin-up due to the accretion
torque. We notice that, even if MEs represent the dominant ef-
fect, by extracting in total ≈88% of the disk angular momen-
tum accreted through Rout, the stellar wind can contribute signif-
icantly, by extracting, in our example, around 31% of the disk
angular momentum flux through Rout. Therefore, in the specific
example analyzed in the previous sections, the star is subject to
a net spin-down torque: using Eq. (34) to normalize to physi-
cal units the sum of the three torques plotted in Fig. 8, we can
estimate a characteristic spin-down timescale of ≈5.5 × 106 yr.

4. Varying the mass accretion rate

In this section we analyze cases C1 and C01 and compare them
with the results obtained from case C03, extensively presented
in Sect. 3. We recall that these two cases are characterized by a
different disk viscosity coefficient αv (see Table 1), with all the
other parameters of the problem left unchanged. Primarily, we
use the αv parameter to change the mass accretion rate of the
disk. On the other hand, this also modifies the magnetic Prandtl
number Pm = νv/νm of the disk. Therefore, we bear in mind
that our cases are not just characterized by different accretion
rates and that other important aspects of the disk physics change.
For example, the viscous accretion timescale varies from case to
case, while the different Prandtl number can have an impact on
the inclination of the field lines at the disk surface and on the
advection of the magnetic flux in the part of the disk dominated
by the viscous torque. Different accretion rates could also have
been obtained by varying the disk density with a fixed Prandtl
number, possibly giving somewhat different results.

4.1. High accretion rate and stellar spin-up

Case C1 is characterized by a value αv = 1, determining
an accretion rate around three times higher than the reference
case C03, as confirmed by the temporal evolution of the ac-
cretion rate measured onto the stellar surface plotted in Fig. 9.
There is another feature that is worth noticing: while in case C03
the accretion rate attains a rather constant asymptotic value, in
case C1 it slowly grows in time. We have already shown in
Sect. 3.3 that the accretion flow is controlled by the internal
viscous torque far from the star, while it is determined by the

ṀSW

Ṁacc,s

ṀME,tot

ṀME,s

ṀDW

Fig. 9. Same as Fig. 3, but for case C1.

external magnetic torques in the region of magnetospheric inter-
action. A mismatch between the two torques can trigger long-
term variability. For example, it seems that in case C1 the mag-
netosphere cannot sustain the accretion rate of the outer disk.
This determines a density and pressure buildup inside the disk
that, due to the α parametrization, causes an increase in the vis-
cous torque and therefore in the accretion rate. The constant
asymptotic value of the accretion rate in case C03 is likely to
come from a better matching between the inner magnetic and
outer viscous torques.

The global magnetic configuration of case C1 is very sim-
ilar to case C03 (see Fig. 1) and the same dynamical features
can be found. Regarding the MEs, their total mass outflow rate
corresponds to around 6% of the disk accretion rate, and as
in case C03, the mass extracted from the disk largely domi-
nates the mass content of the MEs (see Fig. 9). In the bot-
tom panel of Fig. 10 we can see that the MEs are accelerated
from a region of the disk located inside the Keplerian corota-
tion radius, which is more compact than in case C03, probably
because of the higher magnetic Prandtl number. Outside Rout,
accretion is mainly triggered by the viscous torque, with a rel-
atively small contribution from a weak disk wind, which, nev-
ertheless, accelerates the accretion flow towards an almost sonic
accretion speed (middle panel in Fig. 10), without modifying
the Keplerian structure of the disk. Inside the launching region
of the MEs (Rin < R < Rout), the torque due to the MEs becomes
dominant. To estimate the efficiency of this torque, we calcu-
lated the specific angular momentum carried by the accretion
flow through Rout (see Eq. (31)) and the specific angular momen-
tum extracted by the MEs from the disk (see Eq. (17)) and plot-
ted them in the upper and third panels in Fig. 11, respectively:
MEs extract about

(
ṀME,d jME,d

)
/
(
Ṁacc,Rout jacc,Rout

)
≈ 20% of the

angular momentum carried by the disk through Rout. The lower
torque efficiency measured in case C1 is due to a lower mass
ejection efficiency but also to smaller specific angular momen-
tum extracted from the disk. This is consistent with the fact that
in case C1 the magnetic surfaces along which the MEs are ac-
celerated have a larger inclination angle with respect to the disk
surface (compare the upper panels of Figs. 7 and 10), thus de-
termining a smaller magnetic lever arm. Nevertheless, the MEs
torque is strong enough so that the disk rotation speed becomes
sub-Keplerian (middle panel in Fig. 10), but not substellar as in
case C03.
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Ωdisk/Ω�

Ms

β

Γmag

Γint

Γkin

Fig. 10. Same as Fig. 7, but for case C1.

The angular momentum carried by the disk through Rin is fi-
nally transferred to the star and exerts a spin-up torque. In the
lower panel of Fig. 10 it is possible to see that, in the disk re-
gion directly connected to the star below Rin, the angular mo-
mentum is extracted from the disk and transferred to the star by
a combination of magnetic and kinetic torques, where the peak
of the latter corresponds to the angular momentum loaded onto
the base of the accretion funnels. The external torque (magnetic
plus kinetic) in the region R < Rout qualitatively presents the
same double-peaked profile of case C03, with the inner peak
corresponding to the angular momentum exchange with the star,
while the outer one representing the torque exerted by the MEs
onto the disk. Using the same parametrization as employed in
Sect. 3.4.1, we can estimate that the specific angular momentum
transferred to the star corresponds to jacc,s ≈ 0.8

√
GM�Rt of

the reference “Keplerian” value. This clearly shows that also in
case C1 one important effect of the MEs is to reduce the amount
of angular momentum that the disk transfers to the star, although
less efficiently than in case C03.

jacc,Rout

jSW

jME,d

jME,tot

Fig. 11. Same as Fig 4, but for case C1.

The temporal evolution of the accretion torque is plotted in
Fig. 12, together with the torques exerted by the MEs and the
stellar wind onto the stellar surface. The asymptotic increase
in the accretion torque is clearly linked to the temporal growth
of the mass accretion rate discussed previously. The spin-down
torque exerted by the stellar wind only corresponds to 7.5% of
the accretion torque. Despite carrying a specific angular mo-
mentum comparable to and even slightly larger than case C03
(see bottom panels of Figs. 4 and 11), the low ejection rate
(ṀSW ≈ 2 × 10−3 Ṁacc,s) strongly limits the efficiency of the
spin-down torque. By inspecting Table 2, it is possible to no-
tice that the connected magnetosphere contains more magnetic
flux (ΦCD + ΦMC) in case C1 and it is even more compressed
(see Rcm) than in case C03. The accretion funnels end at slightly
higher latitudes, leaving less room for the acceleration area of
MEs and stellar winds.

The stellar wind torque slowly drops in time owing to the
decrease in the stellar wind specific angular momentum (lower
panel in Fig. 11). This is likely associated with the increase in the
mass accretion rate, which can modify the shape of the magnetic
nozzle at the base of the stellar wind, the acceleration efficiency
of the outflow, and therefore its magnetic lever arm. The torque
exerted by the MEs directly onto the star is almost completely
negligible. It is possible to see in Fig. 12 that for t > 60 it even
becomes positive, contributing to the spin-up torque, even if to a
very small extent. As pointed out in Sect. 3.4.3, the angular mo-
mentum exchange between the MEs and the star depends on a
differential rotation effect between the star and the mass loaded
from the disk onto the MEs. We saw in Fig. 10 that the base of
the MEs rotates at a sub-Keplerian but still super-stellar angu-
lar speed in case C1; the MEs do not directly brake the stellar
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J̇ME,s

J̇acc,s

J̇SW

Fig. 12. Same as Fig. 8, but for case C1.

rotation and can actually spin it up. The same effect can be no-
ticed in the two central panels of Fig. 11, which show that the
total specific angular momentum carried by the MEs (second
panel) is smaller than the specific angular momentum extracted
from the disk (third panel). In case C1, unlike case C03, the MEs
can extract energy and angular momentum from the disk but then
transfer a small fraction back to the star.

Since in this case the spin-down torques are very inefficient,
the star experiences a strong spin-up torque due to accretion.
Normalizing the torques plotted in Fig. 12 with Eq. (34), we
estimate a characteristic spin-up timescale around 5.5 × 105 yr.

4.2. Low accretion rate: transition to a “propeller” regime

Case C01 is characterized by a lower disk turbulent viscosity
(αv = 0.1), hence a lower mass accretion rate. Consistent with
the results of cases C03 and C1, in case C01 the viscous torque
likely supports an accretion rate, which is smaller than the one
determined by the inner magnetospheric torques. Therefore, the
disk tends to empty, reducing its surface density and pressure,
thus decreasing the α torque and its accretion rate. Besides, the
α-disk model that we employed as initial condition presents a
large-scale meridional circulation pattern for low αv values, with
the disk accreting only along the surface layers and excreting
along the midplane. Especially for low αv values, this model
becomes very sensitive to local changes in thermal pressure
gradients, and its accretion rate is difficult to control.

Due to these effects, the disk accretion rate in this case is
rather low and slowly decreases in time. This is clearly visible
in the lefthand panel of Fig. 13, where, after a strong initial tran-
sient peak, the accretion rate diminishes steadily, subsequently
it starts to oscillate and, at last (t > 60), it becomes highly un-
steady and intermittent, varying periodically between relatively
high and extremely low values. The system evolution during one
of these cycles is depicted in Fig. 14, which clearly shows how
the accretion cycles correspond to a periodic oscillation of the
truncation radius.

The low-accretion phases correspond to the truncation ra-
dius moving close to the Keplerian corotation radius. In this sit-
uation it is hard to form the accretion funnels, since the cen-
trifugal barrier raised by the rotating magnetosphere prevents the
disk material from falling towards the star, and an extra thermal
pressure gradient would be required to cross the barrier (Koldoba
et al. 2002). As extensively discussed by Bessolaz et al. (2008),

the disk truncation is primarily determined by a pressure equi-
librium between the disk and the magnetosphere. Therefore in
case C01, as the accretion rate decreases, the disk reduces its
push against the magnetosphere and the truncation radius pro-
gressively moves outwards closer to corotation. A consequence
of the disk being truncated beyond the corotation radius is that,
since in this region a Keplerian disk rotates more slowly than
the star, the stellar rotation tries to increase (“propel”) the disk
angular speed in the region directly connected to the star, hence
the appellative “propeller” regime (Illarionov & Sunyaev 1975;
Ustyugova et al. 2006). In our simulations, a propeller effect can
be present even below the Keplerian corotation radius, when-
ever the disk rotation becomes substellar, see for example Fig. 7.
Despite the propeller effect, the angular momentum extracted
from the star is likely not to have enough energy to gravitation-
ally unbind all accreting matter (Spruit & Taam 1993). As the
disk moves farther from the star, the stellar magnetic field weak-
ens and the magnetosphere is inflated more and more, losing
part of its connection with the disk. As the field lines open up,
a massive magnetospheric outflow is launched along the open-
ing magnetic surfaces. These ejections are analogous to the MEs
described in the previous sections; in a propeller phase, they can
be even stronger and can extract a large fraction of the angular
momentum of the disk. Because of the torque exerted by these
strong ejections, the disk temporarily increases its accretion rate
and its drive against the stellar magnetosphere. The truncation
radius can therefore move closer to the star, the funnel flows are
fueled again, and the accretion rate onto the surface of the star
increases. At the same time, the inflated field lines along which
the MEs have been launched tend to close again and quench the
outflow (see the lower central panel in Fig. 14). Instead of losing
angular momentum to the outflow, the disk can now acquire it
from the star along the field lines that are connected to the star,
since, due to the action of the MEs, the disk rotation is at least
in part substellar, analogous to case C03. The disk therefore de-
creases its drive against the compressed magnetosphere, which
pushes back the disk towards the corotation region and the cy-
cle repeats. The disk can move outwards not only if it becomes
super-Keplerian, but since the closed magnetosphere is strongly
compressed during the accretion phase (see for example Fig. 8
in Paper I), the poloidal magnetic pressure can also effectively
push the disk outwards whenever the latter reduces its thrust.

These accretion/ejection cycles have been observed in other
numerical works (e.g. Goodson et al. 1999b; Ustyugova et al.
2006): we notice that the range of timescales and amplitudes of
the oscillations observed in these papers can be simply the re-
sult of different parameters of the models, i.e. stellar rotation
period, magnetic field intensity, and disk accretion rate. The ac-
cretion cycles of a disk truncated close to corotation have also
been predicted by Spruit & Taam (1993, see also D’Angelo &
Spruit 2010). They show how an accretion disk truncated beyond
the Keplerian corotation radius can possibly readjust its temper-
ature and density structure so that the viscous stresses get rid of
the excess angular momentum coming from the star, and the ac-
cretion flow can cross the corotation radius and cyclically form
the accretion funnels. The characteristic period of their cycles
is obviously associated with the viscous accretion timescale in
the corotation region. In our simulation the timescale of the ac-
cretion cycles is much shorter. Since the oscillations are mainly
driven by the torque exerted by the MEs, the typical period is a
few Keplerian orbits around the corotation radius.

The torques exerted onto the star are plotted in the righthand
panel of Fig. 13. Clearly, during the “propeller” phases charac-
terized by an extremely low accretion rate, there is no spin-up
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Ṁacc,s

ṀME,s

ṀSW

J̇ME,s

J̇acc,s

J̇SW

Fig. 13. Left panel. Temporal evolution of different mass fluxes in case C01. Plotted are the mass accretion rate onto the stellar surface (solid line),
the stellar wind outflow rate (dashed gray line), and the stellar mass flux contribution to the MEs (dashed line). Right panel. Temporal evolution
of the torques acting onto the stellar surface, normalized to the stellar angular momentum. Plotted are the spin-up torque associated with accretion
(solid line), the spin-down torque exerted along the magnetic surfaces connecting the star and the disk (dashed line) and the spin-down torque due
to the stellar wind (dotted line).

Fig. 14. Time evolution of an accretion cycle during the propeller phase of case C01. We show logarithmic density maps with sample field lines
(solid lines) and speed vectors (blue arrows) superimposed. The yellow solid line follows the evolution of a single magnetic surface, clearly
showing the periodicity of the accretion-ejection cycles. Time is given in units of the stellar rotation period.

torque associated with accretion. A strong spin-down torque is
exerted along the field lines connected to the disk. Because of
the large amount of angular momentum extracted by the magne-
tospheric ejections, both the accretion disk and the MEs rotate
more slowly than the central star, even in the subcorotation re-
gion. Therefore the star can be efficiently spun-down along the
magnetic surfaces directly connected with the disk and the MEs.

During the high-accretion phases, the disk can deposit its an-
gular momentum along the funnel flows, exerting a small but
noticeable spin-up torque. The spin-down torque exerted along
the closed magnetosphere is reduced, since the MEs, which are
the main cause of this torque, are weaker during the accretion
phases; nevertheless, it is still possible to balance the torque due
to accretion. The accreting phases of case C01 resemble, at least
qualitatively, the steadily accreting case C03.

Finally, it is important to notice that a stellar wind is also
present in case C01, exerting a strong spin-down torque onto the
star. Table 2 shows that in this case the stellar wind can exploit
a larger amount of open stellar flux, which further increases dur-
ing the nonaccreting phases, when the stellar wind torque seems
to become even stronger. This is obviously not consistent with

having a stellar wind fueled by the accretion power. In case C01
the stellar wind would require a considerable driving power,
even during the phases during which the disk is not accreting.
On the other hand, in this case the role played by the stellar wind
can be neglected, since the torque exerted by the star-disk-MEs
interaction is generally sufficient to brake the stellar rotation.
Even neglecting the stellar wind torque, we can estimate that,
on average, the characteristic spin-down timescale in case C01
is approximately equal to 8 × 105 yr.

5. Discussion

In this section we compare our findings with works that have
described related scenarios and addressed similar issues. First
of all, we point out that phenomena qualitatively similar to the
MEs have been observed in a number of simulations of magnetic
star-disk interaction. In spite of differences in interpreting the re-
sults, we have the feeling that these numerical experiments es-
sentially show the same process. For example, Hayashi et al.
(1996) observed a plasmoid ejection associated with the ex-
pansion of the magnetosphere and associated the reconnection
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episodes to the X-ray flares observed in young stars. A series of
papers (Goodson et al. 1997, 1999a,b; Matt et al. 2002) propose
the “episodic magnetospheric inflation” mechanism (EMI, Matt
et al. 2003) to explain the origin of jets from young stars. This
is probably due to the fact that, besides the presence of uncol-
limated outflows commonly related to this phenomenon, these
simulations show the formation of a dense, axially collimated
jet, fueled during the inflation phases by mass coming from the
accretion streams and focused on the rotation axis by the ex-
pansion of the closed magnetosphere. While their description of
this mechanism is very phenomenological, this dense collimated
axial feature has not been observed in our numerical models.
Additionally, the periodic behavior of the mass accretion rate
suggests that these solutions might be in a “propeller” regime.
More recently, Romanova et al. (2009) have developed both ax-
isymmetric and three-dimensional nonaxisymmetric simulations
that describe the formation of uncollimated outflows (“conical
winds”) coming from the boundary of the closed magnetosphere,
both for slowly and fast-rotating stars. Despite clear similarities
between these results and the scenario proposed in this paper, we
have performed a much more detailed analysis of the dynamics
and the energetics of MEs, which allowed us to obtain precise
results about how they can affect the angular momentum of the
star-disk system. For example, we showed how MEs can extract
angular momentum from both the disk and the star so that their
action can be compared to that of X-winds, on one hand, and
stellar winds, on the other.

Similar to X-winds, we showed that MEs can extract a rel-
evant fraction of the disk angular momentum in order to re-
duce the spin-up torque exerted by accretion. In fact, the X-wind
model represents an extreme solution in which all the angular
momentum carried by the accretion flow is extracted from the
disk, so as to at least cancel the accretion torque. For the MEs we
estimated a lower efficiency, e.g. 53% in the fiducial C03 case.
Owing to the lower torque efficiency, the energy needed to drive
MEs is compatible with the mechanical power released by the
accretion flow, while the latter is likely to be insufficient for driv-
ing an efficient X-wind (Ferreira & Casse 2013). In addition, the
MEs can also extract angular momentum directly from the star,
similar to stellar winds. The main difference is that, while the
spin-down torque exerted by stellar winds strongly depends on
the mass flux of the wind (Matt & Pudritz 2008a), the torque of
the MEs is determined by a differential rotation effect between
the star and the material ejected from the disk. Therefore, MEs
do not seem to suffer the energetic problems associated with the
mass-loading of the stellar winds. The idea of having an outflow
mass-loaded from the accretion disk capable of extracting angu-
lar momentum from the central star is close to the “Reconnection
X-wind” model (Ferreira et al. 2000), even if this scenario had
been envisaged for a different magnetic configuration.

An important difference between MEs and stationary winds
is represented by their asymptotic behavior. While the large-
scale acceleration and collimation properties of steady outflows,
whether coming from the star or the disk, depend on the global
distribution of their poloidal magnetic flux and electric cur-
rent, we showed that MEs rapidly disconnect from the central
region of the disk-star system because of reconnection events
and propagate ballistically afterwards, without accelerating any
further. Flowing in between a stellar wind and a disk wind
(see Fig. 1), the confinement of the MEs depends on the col-
limating/decollimating behavior of the other two outflows (see
discussion in Appendix A).

A final comparison can be made between the poloidal
magnetic configuration found in our simulations and the one

expected from the X-wind model, at least in its “dipolar” formu-
lation (see e.g. Ostriker & Shu 1995). The amount of magnetic
flux contained in the magnetic cavity is fairly consistent with
our results (ΦMC in Table 2). The X-wind model also predicts
that the remaining flux (see Eq. (11) in Mohanty & Shu 2008)
is trapped in the disk in a small region around the corotation ra-
dius and is evenly shared among the accretion funnels (ΦAC), the
open flux (ΦSW), and the remaining closed field lines that do not
accrete (ΦME + ΦCD − ΦAC). In our simulations the flux reparti-
tion can noticeably vary from case to case, but it can actually be
similar to the X-wind distribution in cases close to the spin equi-
librium (e.g., during the accretion phases of case C01). Three im-
portant differences can be pointed out: (1) in our simulations the
magnetic flux involved in the star-disk interaction is distributed
over a sizable region of the disk, as shown by the anchoring radii
of the different magnetic surfaces given in Table 2; (2) there is
no magnetically “dead zone”, namely a magnetic zone with nei-
ther mass nor angular momentum exchanges, as proposed in the
X-wind scenario: in contrast, we obtain an extremely active, out-
bursting zone where MEs take place; (3) the steadily open mag-
netic surfaces threading the disk, where the X-wind should be
accelerated, play a marginal role in our solutions.

In the following section we compare the efficiency of the
spin-down torques found in our simulations more quantitatively
with the outcome of other scenarios proposed in the literature.

5.1. Zero-torque condition

By progressively lowering the disk accretion rate, the three sim-
ulations analyzed in this paper show a transition from a strong
spin-up (case C1) to an efficient spin-down state (case C01).
This trend also corresponds to a different distribution of the stel-
lar magnetic flux among the spin-down/spin-up phenomena (see
Table 2), where the magnetic flux associated with the accretion
spin-up torque (ΦAC and ΦCD) decreases at the expenses of the
spin-down mechanisms (ΦME andΦSW). In case C03, the torques
exerted by the MEs, with a weaker but non-negligible contribu-
tion from a light stellar wind, are able to balance the accretion
torque, so that the net total torque is approximately zero (actually
slightly negative in this specific case). Correspondingly, the trun-
cation radius moves from Rt ≈ 0.45 Rco (case C1) to Rt ≈ 0.8 Rco
(case C01), with the zero-torque configuration located approxi-
mately at Rt ≈ 0.6 Rco. The simulations confirmed the results of
Bessolaz et al. (2008) and of Paper I, showing that the Alfvén
radius for a spherical free-fall collapse (Elsner & Lamb 1977),
namely

RA =

(
B4
�R12
�

GM�Ṁ2
acc

)1/7

, (35)

is a good parametrization of the truncation radius. In our simu-
lations we have found Rt ≈ 0.4 RA. Therefore the zero-torque
state corresponds roughly to a situation where Rco ≈ 0.67 RA.
A proportionality relationship between Rco and RA has been
used in different scenarios to estimate the stellar rotation period
corresponding to a zero-torque situation:

Peq = 10.3 K
( B�
1 kG

)6/7 (
R�

2 R�

)18/7 (
M�

0.5 M�

)−5/7

×
(

Ṁacc

10−8 M� yr−1

)−3/7

days, (36)

where K = (Rco/RA)3/2. Obviously, the longer the equilibrium
rotation period, the more efficient the spin-down mechanism.

A99, page 16 of 20



C. Zanni and J. Ferreira: MHD simulations of accretion onto a dipolar magnetosphere. II.

We have already shown that our simulations suggest a value
K ≈ 0.54. We can compare this result with the outcome of other
popular scenarios.

Applying the classical Ghosh & Lamb scenario to the case
of T Tauri stars, Königl (1991) used a value K = 0.87. On the
other hand, the corrections brought to the Ghosh & Lamb model
by Matt & Pudritz (2005a) provide an upper limit K < 0.3, keep-
ing in mind that, according to Paper I, the Ghosh & Lamb spin-
down torque is likely to be even weaker than the Matt & Pudritz
(2005a) estimate. In the case of the X-wind model, Ostriker &
Shu (1995) employed a value K = 0.89, even if we recall that
many properties of the scenario are based on ad-hoc assump-
tions and are not the result of a detailed dynamical calculation.
The results of the time-dependent axisymmetric simulations by
Long et al. (2005) have been recently re-examined, suggesting
a value K = 0.52 (Romanova, priv. comm.), in good agreement
with our findings.

For the accretion-powered stellar wind scenario, it is possi-
ble to derive an expression analogous to Eq. (36) by equating
the spin-down torque of a stellar wind

(
J̇SW = ṀSWr2

AΩ�
)

with

the accretion torque of the disk
(
J̇acc ∝ Ṁacc

√
GM�Rt

)
. Using

Eq. (12) from Matt & Pudritz (2008a) to determine the aver-
age Alfvén radius rA and assuming the accretion torque found in
our case E1, since it is not affected by the presence of the MEs(
J̇acc = 1.2 Ṁacc

√
GM�Rt withRt = 0.4 RA

)
, we obtain

Peq ≈ 5.8
( B�
1 kG

)0.61 (
R�

2 R�

)2.26 (
M�

0.5 M�

)−0.65

×
(

Ṁacc

10−8 M� yr−1

)−0.3 (
ṀSW/Ṁacc

0.1

)0.55

days, (37)

similar to Eq. (17) in Matt & Pudritz (2008b). This equation
clearly shows that an ejection efficiency ṀSW/Ṁacc ∼ 0.1 is
needed to give a characteristic rotation period that is comparable
to the other scenarios, as discussed in Matt et al. (2012).

Since Eqs. (36) and (37) describe an equilibrium between
accretion and spin-down torques, the same zero-torque condi-
tion (i.e. the same Peq) can be obtained by varying the mass ac-
cretion rate, proportional to the accretion torque, and the stellar
magnetic field intensity, mainly related to the spin-down torque.
This implies that stars with a comparatively lower accretion rate
need a weaker dipolar field to balance the accretion torque.

5.2. Stellar contraction and spin-down

The zero-torque condition discussed in the previous section is
fairly challenging to obtain for all the discussed models, but it
is obviously not sufficient to keep the rotation period of a con-
tracting star constant. The time derivative of the stellar angular
velocity,

I�
dΩ�
dt
=

dJ�
dt
− J�

(
Ṁ�
M�
+

2 Ṙ�
R�

)
, (38)

also depends on the temporal evolution of the stellar mass and ra-
dius. The righthand side of Eq. (38) defines three timescales: the
term Ṁ�/M� ∼ 1/tacc is associated with the accretion timescale,
typically tacc ∼ 107−1010 yr for a CTTS. The term Ṙ�/R� ∼
−1/tKH is associated with the the Kelvin-Helmholtz contraction
timescale:

tKH = 1.8 × 106

(
R�

2 R�

)−3 (
M�

0.5 M�

)2 ( Teff

4000 K

)−4

yr. (39)

Clearly, it is necessary to exert a net negative torque onto the
star with a characteristic spin-down timescale J�/J̇� < 0 that
is at least comparable to the contraction timescale to maintain a
steady stellar rotation period. In our simulations this condition
is clearly satisfied during the propeller phases of case C01. This
regime occurs whenever the disk is truncated close enough to
the corotation radius (Rt � 0.8 Rco in our simulations); how-
ever, this condition is necessary but not sufficient to have a
strong enough spin-down torque to balance the stellar contrac-
tion. While different B�− Ṁacc combinations can satisfy the con-
dition Rt ≈ 0.8 Rco, as in the case of a null torque configuration,
a strong magnetic field is needed to provide a spin-down torque
able to balance the stellar contraction. This is clearly shown by
Eq. (34), used to normalize the torques plotted in Figs. 8, 12,
and 13. In case C01 we must assume a kG dipolar magnetic
field to obtain a short enough spin-down timescale. This result
shows that, even if stars characterized by a low accretion rate
(e.g. <10−9 M� yr−1) need a dipolar field weaker than a kG to
cancel the accretion torque, they still need a kG dipole to balance
their contraction.

6. Summary and conclusions

In this paper we presented axisymmetric MHD time-dependent
simulations of the interaction of a dipolar stellar magnetosphere
with a surrounding viscous and resistive accretion disk (using α
prescriptions). We assumed a magnetic coupling that is strong
enough (i.e. a resistivity sufficiently low) so that the buildup of
the toroidal field magnetic pressure due to the star-disk differ-
ential rotation inflates and opens up the dipolar structure close
to the central star and the truncation region. In particular, the
strong coupling prevents the closed magnetosphere to extend be-
yond the Keplerian corotation radius, so that the Ghosh & Lamb
spin-down model, studied in Paper I, can no longer be applied.
On the other hand, the simulations showed that magnetospheric
ejections naturally arise because of the process of expansion and
reconnection of the magnetospheric field lines connected to the
disk. We extensively studied the dynamical properties of these
ejections with a special focus on their impact on the angular
momentum of the star-disk system. At the same time we have
included in our models the spin-down torque exerted by a stel-
lar wind. We here summarize the main results of our numerical
experiments.

1. MEs can exchange mass, energy and angular momentum
with both the star and the disk. Their inertia and mass con-
tent are largely dominated by the material loaded from the
accretion disk. If the mass load rotates more slowly than the
star, the ejections can be powered by both the stellar and disk
rotation, as in a huge magnetic slingshot.

2. MEs cannot explain the jet phenomenon in T Tauri stars:
(1) their terminal speed is unlikely to be higher than the
gravitational escape speed; (2) after they disconnect from
the star-disk system, they propagate ballistically as uncol-
limated plasmoids. Their confinement depends on the colli-
mation properties of the outflows between which they prop-
agate, stellar and disk winds.

3. MEs crucially contribute to control the stellar rotation pe-
riod. On one hand, they efficiently extract angular momen-
tum from the disk close to the truncation region so that the
spin-up accretion torque is noticeably reduced. On the other
hand, if the torque exerted onto the disk is strong enough
so that the ejected plasma rotates more slowly than the star,
MEs can extract angular momentum directly from the star
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Fig. 15. Poloidal current circuits flowing in the star-disk system in cases C1 (left panel) and C03 (right panel). Dark (red) circuits circulate
clockwise along isosurfaces of rBφ > 0. Yellow (light) circuits circulate counterclockwise along isosurfaces of rBφ < 0. Current circuits are
superimposed on a logarithmic density map. The figures have been obtained by time averaging over 54 stellar rotation periods.

thanks to a differential rotation effect (slingshot effect). We
found a balance between the accretion torque and the spin-
down torque for Rt ≈ 0.6 Rco.

4. The efficiency of the spin-down torque of MEs is compara-
ble to other scenarios proposed in the literature, keeping in
mind that (1) the Ghosh & Lamb (1979) spin-down torque
is highly overestimated (see Matt & Pudritz 2005a; Zanni &
Ferreira 2009); (2) a fully self-consistent dynamical model of
the X-wind scenario is currently not available; (3) the mass
ejection efficiency of a stellar wind capable of balancing at
least the accretion torque is energetically very demanding.
While the torques exerted by MEs onto the disk and the
star share some similarities with the X-wind and stellar wind
models, respectively, MEs do not seem to be affected by the
energetic limitations that concern the other two scenarios.

5. We limited the mass ejection efficiency of the stellar winds to
a few percent. Consistently with the Matt & Pudritz (2008b)
results, these winds are not strong enough to balance the
spin-up due to accretion and contraction. Nevertheless, we
found that for a wind mass flux around 1–2% of the accre-
tion rate, the spin-down torque corresponds to 20–30% of the
accretion torque. We found that a light disk wind is launched
along the open magnetic surfaces threading the disk but, due
to the weakness of the field, the impact of this outflow on
the angular momentum structure of the Keplerian disk is
negligible.

6. In a propeller phase, when the truncation radius gets close
enough to corotation (Rt � 0.8 Rco), the spin-down torque
exerted by the disk and the MEs can even balance the spin-
up due to contraction. On the other hand, during the propeller
phases the accretion becomes intermittent on a dynamical
timescale, corresponding to a few rotation periods of the star.
Even if this effect is enhanced by the axial symmetry of our
models, there is no observational evidence of such behavior.

We want to conclude by pointing out a limit that affects all the
scenarios discussed in this work, including the model presented
in this paper. All of them are based on axisymmetric models
of purely dipolar stellar magnetospheres, and they all lead to
the conclusion that, for typical slowly rotating CTTS, a dipo-
lar component around ∼1 kG is needed to balance, at least, the

spin-up torque due to accretion. While this has been observed,
for example, in the case of AA Tau (Donati et al. 2010b), such
a strong dipolar component does not seem to be a common fea-
ture among T Tauri stars (Donati et al. 2007, 2010a, 2011a,b,c;
Hussain et al. 2009). While a larger sample of magnetic field
measurements is clearly needed, stellar torque models must start
to consider more realistic magnetic field configurations, includ-
ing nonaxisymmetric and multipolar components (see e.g. Long
et al. 2011; Romanova et al. 2011; Vidotto et al. 2011).
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Appendix A: Global magnetic coupling

Since the star-disk interaction is mainly controlled by magnetic
stresses, the best way to have a general view of the magnetic
coupling between the different parts of the system, the accretion
disk, the star, and the outflows, is to look at the poloidal elec-
tric currents Jp, circulating along the rBφ = const. isosurfaces.
The poloidal component of the Lorentz force Jp × Bφ is per-
pendicular to these surfaces, while the toroidal force Jp × Bp is
obviously proportional to the magnetic torque. Besides, in the
region close to the star, the dominant components of the angu-
lar momentum and energy poloidal fluxes are directed along the
poloidal magnetic field and are proportional to ∝ −BφBp: the
sign of Bφ therefore gives an information about the direction
of the Poynting flux. In Fig. 15 we plot sample rBφ = const.
isosurfaces to outline the poloidal current circuits characteriz-
ing cases C1 and C03. The two panels of Fig. A.1 refer to the
current configuration during the high-accretion (left panel) and
low-accretion phases (right panel) of the propeller stage (t > 60)
of case C01. We can distinguish three main current circuits la-
beled as A, B, and C in the four panels. In circuits A and C the
currents circulates clockwise, and counterclockwise in circuit B.
Different colors correspond to negative or positive values of Bφ:
dark-red circuits (Bφ > 0) are responsible for extracting angu-
lar momentum and energy from the disk, while the light-yellow
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Fig. A.1. Poloidal current circuits flowing in the star-disk system in case C01. Color codes are the same as in Fig. 15. The left panel refers to
the accretion phases, while the right panel represents the strictly propeller phases. The left (right) panel has been obtained by averaging in time
current and density during the maxima (minima) of the accretion rate for t > 60, see Fig. 13.

circuits (Bφ < 0) extract angular momentum and energy from
the star.

The electromotive force of A-labeled circuits is due to the
star-disk differential rotation: the current flows out from the
stellar surface towards the disk, flows back along the accretion
funnels and closes inside the star. This current circuit exerts a
toroidal braking force inside the disk and the accretion columns
and a spinning-up force inside the star, thus transferring angu-
lar momentum from the disk and the funnels to the star. It is
therefore responsible for the accretion spin-up torque plotted in
Figs. 3 and 9. We notice how this circuit becomes smaller and
smaller as the accretion torque decreases, going from case C1
to the high accretion phases of case C01, and completely disap-
pears in the low accretion stages of case C01, during which the
accretion torque is completely negligible.

Circuit C brakes the disk rotation and is responsible for the
magnetic driving of outflows launched from the disk, in particu-
lar for the magnetic acceleration of the part of the MEs mass-
loaded from the disk. In the launching region of the MEs, it
provides a strong vertical force that uplifts matter at the disk
surface (see Fig. 6), thus contributing to the high mass-ejection
efficiency of these outflows. This circuit corresponds to the in-
nermost part of the butterfly-shaped current circuits characteris-
tic of extended disk winds, see Ferreira (1997).

Current circuit B is associated with the energy and angular
momentum extraction from the star. The current flows out from
the stellar surface at mid latitudes and flows back to the star at
higher latitudes. In Case C1 the current flows mostly along the
open field lines anchored onto the stellar surface, therefore fu-
eling the stellar wind. There is no spin-down circuit associated
with the MEs or the disk inside the closed magnetosphere. On
the other hand, the other cases show clearly that the spin-down
circuit B couples the star with the disk, the MEs, and the stellar
wind. These three dynamical constituents can in fact extract a
fraction of the stellar angular momentum. The current flowing
inside the disk, the MEs, and the stellar wind in fact provides
a J × B force that tries to spin-up the material rotating at sub-
stellar rates, so that the star loses its angular momentum. Circuit

B clearly identifies the parts of the disk still magnetically con-
nected to the star that rotate more slowly than the star.

Altogether, the four panels show how the spin-up ef-
fects weaken and the spin-down action strengthens going from
case C1 to case C01. We can actually see that in case C1 the
MEs, which are efficiently extracting angular momentum from
the disk, are transferring energy and angular momentum to the
star, thus providing a spin-up torque, as we saw in Sect. 4.1. In
case C03, MEs extract energy and angular momentum both from
the star and the disk, and the two fluxes converge at the cusp of
the field line. In the propeller phases of case C01, MEs seem to
be powered almost exclusively by the stellar rotation.

Finally, these figures clearly show that MEs tend to prop-
agate on a large scale along the current sheet at the interface
between circuits B and C. While circuit B provides a decolli-
mating Lorentz force, circuit C tries to collimate towards the
axis. Therefore, since MEs propagate ballistically after they
have disconnected, their collimation properties depend on the
equilibrium between the decollimating inner field lines and the
collimating outer ones, i.e. on the equilibrium between the in-
ner stellar wind and an outer disk wind. A proper treatment of
this issue therefore requires simulations covering larger spatial
scales, properly treating all the outflows present in the system.
For example, the large-scale simulations presented by Goodson
et al. (1999a) suggest that an inertial confinement due to a very
thick disk and a rather dense corona can help to focus the closed
magnetosphere expansion and the propagation of the magneto-
spheric outflows towards the axis (see also Li et al. 2001). Matt
et al. (2003) show how a strong enough outer poloidal magnetic
field anchored in the disk can confine the EMIs. More recently,
Lii et al. (2012) have shown that, at least for high-mass accre-
tion rates, more typical of EXORs and FUORs, the innermost
open disk field lines can be mass loaded enough so that the cor-
responding disk wind can collimate the inner outflows.
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