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ABSTRACT

Magnetorotational turbulence and magnetically driven disc winds are often considered as separate processes. However, realistic as-
trophysical discs are expected to be subject to both effects, although possibly at different times and locations. We investigate here
the potential link between these two phenomena using a mixed numerical and analytical approach. We show in particular that large-
scale magnetorotational instability modes which dominate strongly magnetised discs (plasma β ∼ 10) naturally produce magnetically
driven outflows in the nonlinear regime. We show that these outflows share many similarities with local and global disc wind solutions
found in the literature. We also investigate the 3D stability of these outflows and show that they are unstable on dynamical timescales.
The implications of these results for the transition between a jet-emitting disc and a standard “viscous” disc are discussed.

Key words. magnetohydrodynamics (MHD) – instabilities – ISM: jets and outflows

1. Introduction

Accretion discs are found around several kinds of astrophysical
objects: from young stars (protoplanetary discs) to supermassive
black holes in active galactic nuclei. The dynamics of these discs
is however poorly understood. It is known that, on average, mat-
ter moves inward resulting in the accretion of material onto the
central object. Dynamically, one can show easily (Lynden-Bell
& Pringle 1974) that this accretion is controlled by the loss of
angular momentum of the falling gas. Hence, if one is to pre-
dict the accretion rate and survival time of discs, one needs to
understand the angular momentum dynamics of these objects.

For accretion to happen on timescales compatible with ob-
servations, angular momentum must be transported rather effi-
ciently. This has led to the α disc model (Shakura & Sunyaev
1973) in which angular momentum is transported radially out-
ward in the disc by a prescribed “turbulent viscosity”. The origin
of this turbulent viscosity has been debated for several decades
and remains even today rather unclear. The magnetorotational
instability (MRI: Balbus & Hawley 1991; Hawley et al. 1995)
appears as the most promising way of producing turbulence in
discs, though other processes might also be at work in some
regions (see Armitage 2011, for a review). However, transport-
ing angular momentum in discs is not the only way to cause
accretion. Instead, one can suppose that angular momentum is
“extracted” from a disc by a large-scale magnetic structure an-
chored in the disc midplane (Blandford & Payne 1982; Pudritz &
Norman 1983). This sort of mechanism usually produces mag-
netically driven outflows, also known as disc winds.

It is most likely that these two mechanisms (angular momen-
tum transport through turbulence and extraction by winds) actu-
ally coexist in astrophysical objects. However, this link is, from
a theoretical point of view, poorly understood. The first reason is
that stationary disc wind models require a strong magnetisation
(plasma β ∼ 1, Ferreira & Pelletier 1995) which quenches the
MRI by magnetic tension effects (Balbus & Hawley 1991). At
first sight, the conditions of existence for MRI turbulence and

disc winds are therefore mutually exclusive. Moreover, a numer-
ical computation including both a large-scale wind and small-
scale turbulence in the disc midplane is technically very chal-
lenging: resolving turbulence in the bulk of the disc requires
a large resolution in the disc midplane and fully 3D simula-
tions, whereas computing the wind itself requires a very large
computational domain. Several authors have therefore computed
disc winds using a prescription to take into account the effects
of disc turbulence (essentially a turbulent viscosity and resis-
tivity), both analytically (Casse & Ferreira 2000) and numeri-
cally (Zanni et al. 2007). On the MRI side, most of our knowl-
edge comes from shearing box simulations (Hawley et al. 1995;
Stone et al. 1996; Longaretti & Lesur 2010), although several au-
thors have also considered global configurations (Hawley 2000;
Fromang et al. 2011; Flock et al. 2011). These global config-
urations are however limited to situations without any poloidal
magnetic structure (or very weak mean poloidal magnetic fields)
which precludes the production of outflows.

More recently the production of outflows from MRI turbu-
lence in shearing boxes has been studied in the limit of weak
poloidal fields, β = 105−104 (Suzuki & Inutsuka 2009). A
magnetocentrifugal mechanism similar to Blandford & Payne
(1982) has been identified in these simulations, with non-steady
outflows starting about two scale heights above the midplane,
both in the weak field regime β = 104 (Fromang et al. 2013)
and in the moderate field regime β = 102–103 (Bai & Stone
2013). However, the outflow mass loss rate was shown to de-
pend strongly on the box vertical size and aspect ratio. Moreover,
the outflow for such a weak mean field is dynamically insignif-
icant for the disc as it extracts a very small amount of angular
momentum. In the strong poloidal field regime (β � 1) which
is stable to MRI modes, Ogilvie (2012) studied the produc-
tion of quasi 1D steady outflows in shearing boxes. This study
demonstrated that some properties of global solutions were re-
covered in shearing boxes, although the procedure used in this
work was not used to look in the parameter regime unstable
to the MRI. More recently, a related set of simulations in 2D
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(axisymmetric) shearing boxes was presented by Moll (2012)
who founds that the wind became striped and unsteady due to an
unknown instability.

The aim of this paper is to study the potential link between
the MRI and quasi-steady outflows which are found in global
models and simulations. To this end, we study stratified shear-
ing boxes threaded by a strong poloidal field (β ∼ 10) which are
not far from the steady solutions of Ogilvie (2012) but are lying
in the MRI unstable regime. We first present the shearing box
model and the numerical methods we have used in this investiga-
tion. We then look at the saturation of 1D MRI modes which nat-
urally produce outflows. These “MRI-outflows” are compared
to other solutions found in the literature, both local and global.
We then study the 3D stability of these outflows and demon-
strate that they are unstable on dynamical timescales. The con-
sequences of this instability and its nature are briefly discussed.
Finally, we summarise our findings and discuss their potential
implications for astrophysical outflows and jets.

2. Local model

2.1. Equations

MRI-related turbulence and the shearing box approximation
have been extensively described in the literature. However, since
the physics we are looking for involves outflows and mass losses,
we recall here briefly the basic equations for the shearing box
model. Interested readers may also consult Hawley et al. (1995),
Balbus (2003) and Regev & Umurhan (2008) for an extensive
discussion of this approximation.

The shearing-box equations are found by considering a carte-
sian box centred at a fiducial radius R0, rotating with the disc at
constant angular velocity Ω = ΩK(R0) and having dimensions
(Lx, Ly, Lz) with Li � R0. We define r − R0 → x, R0φ → y sim-
ilarly to Hawley et al. (1995). Furthermore, we assume the disc
follows an isothermal equation of state with a constant sound
speed c. In this approximation, the MHD equations read:

∂tρ + ∇ · ρu = 0, (1)

∂tρu + ∇ · (ρu ⊗ u) = −c2∇ρ + (∇ × B) × B (2)

− 2ρΩ × u − ρ∇ψ,
∂t B = ∇ × (u × B), (3)

where we have chosen the units so that μ0 = 1 and ψ is a local
expansion of the effective gravitational potential around R0:

ψ = −qΩ2x2 +
1
2
Ω2z2 (4)

in which we have considered a Keplerian disc having a rotation
profile ΩK(r) ∝ r−q with q = 3/2.

One should note that the above set of equations admits a so-
lution as a linear shear flow which is a local approximation to
the Keplerian profile, u = −qΩxey. In the following, we will
consider perturbations u (not necessarily small) to this Keplerian
profile so that u = u − qΩxey.

We consider a shearing box of size (Lx, Ly) = (16, 16), the
unit of length being defined by the disc scale height: H = c/Ω.
The time unit is Ω−1 and the velocity unit is c. We will assume
ρ = 1 in the disc midplane at the hydrostatic equilibrium which
sets our unit of mass. As shown below, we only consider the up-
per half of the disc, so that z ∈ [0, zB] where zB is the altitude
of the upper z boundary condition. Unless otherwise stated, we

assume zB = 6. Because the total vertical magnetic flux is con-
served, we introduce the dimensionless magnetisation

μ =
B2

z

ΣΩc
, (5)

as a control parameter1 of our simulations, where Σ =∫
dV ρ/(LxLy) is the equivalent surface density of the box.

In this study, we only consider the ideal MHD approxima-
tion presented above, in which we neglect all non-ideal effects
such as viscosity and Ohmic resistivity. It is known that these
non-ideal effects have a strong impact on the saturation level of
MRI turbulence (Lesur & Longaretti 2007; Fromang et al. 2007;
Longaretti & Lesur 2010; Simon et al. 2011; Fromang et al.
2013). However, much of this work is dedicated to the study
of quasi-stationary 2D smooth outflows, for which viscosity and
resistivity effects should be negligible. Some physical processes
not discussed here, such as the saturation of 3D instabilities pre-
sented in Sect. 4, might depend on these non-ideal effects. These
processes will be the subject of a separate paper.

2.2. Numerical model

2.2.1. Numerical method

To investigate the above system of equations, we use the PLUTO
code (Mignone et al. 2007). PLUTO uses a finite volume method
with a Godunov scheme to integrate the equations in their con-
servative form. MHD terms are computed using the constrained
transport method of Evans & Hawley (1988) which enforces
∇ · B = 0 at machine precision during the evolution of the phys-
ical system. In this procedure, the electromotive forces are re-
constructed using the UCTCONTACT scheme (Gardiner & Stone
2005) which have been shown to accurately reproduce analytical
MRI growth rates in PLUTO (Flock et al. 2010). We use the Roe
method to solve the Riemann problem at cell boundaries. This
choice was dictated by the presence of strong numerical instabil-
ities with the HLLD solver when the plasma beta β = 2ρc2/B2

was too small (typically β < 1). Moreover, in order to stabilise
the code, we switch to an HLL solver (more diffusive) and a
minmod slope limiter whenever the magnetisation is very large
(typically β < 10−4) in 3D runs. Only a few cells have such a
small β and the precise value of the threshold does not signifi-
cantly change the outcome of the simulations. This however pre-
vents the code from failing when the Alfvén speed becomes too
large. Similar techniques have been used in numerical studies
of supersonic interstellar turbulence (Lemaster & Stone 2009).
All the simulations discussed in this paper are summarised in
Table 1.

2.2.2. Boundary conditions

To reduce the computational costs of the simulations, we com-
pute only the upper half of the disc. The lower half is deduced
by symmetry: ρ(−z) = ρ(z); uH(−z) = uH(z); vz(z) = −vz(z);
BH(−z) = −BH(z) and Bz(−z) = Bz(z) where H stands for the
horizontal (x, y) component of a vector. It should be noted that
this symmetry is a natural symmetry of the equations of motion.
This implies that if the initial conditions satisfy this symmetry,
the resulting solution will verify this symmetry at all times.

The boundary conditions we impose are shear-periodic in
the radial direction and periodic in the azimuthal direction. The

1 Note that this parameter is constant because we assume the total mass
in the box to be constant.
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Table 1. List of the simulations discussed in this paper.

Run Resolution Box size Mass injection Smoothed potential Boundary condition Outflow
1DRef 1 × 1 × 256 1.0 × 1.0 × 6.0 Yes No Bx(zB) = 0 Yes
1Dz4 1 × 1 × 170 1.0 × 1.0 × 4.0 Yes Yes Bx(zB) = 0 Yes
1Dz6 1 × 1 × 256 1.0 × 1.0 × 6.0 Yes Yes Bx(zB) = 0 Yes
1Dz8 1 × 1 × 340 1.0 × 1.0 × 8.0 Yes Yes Bx(zB) = 0 Yes
1Dz12 1 × 1 × 512 1.0 × 1.0 × 12.0 Yes Yes Bx(zB) = 0 Yes
1Dz16 1 × 1 × 684 1.0 × 1.0 × 16.0 Yes Yes Bx(zB) = 0 Yes
1Dz20 1 × 1 × 856 1.0 × 1.0 × 20.0 Yes Yes Bx(zB) = 0 Yes
1DZG 1 × 1 × 256 1.0 × 1.0 × 6.0 Yes No ∂zBx(zB) = 0 No

1DInc 1 × 1 × 256 1.0 × 1.0 × 6.0 Yes No

{
Bx(zB) = Bz(zB)
By(zB) = 0 Yes

1DNoMass 1 × 1 × 256 1.0 × 1.0 × 6.0 No No Bx(zB) = 0 Noa

1DNoMassInc 1 × 1 × 256 1.0 × 1.0 × 6.0 No No

{
Bx(zB) = Bz(zB)
By(zB) = 0 Yes

3DRef 128 × 128 × 256 16.0 × 16.0 × 6.0 Yes No Bx(zB) = 0 Yes
3DLin b 128 × 128 × 256 16.0 × 16.0 × 6.0 Yes No Bx(zB) = 0 Yes

Notes. (a) The outflow disappears when the Alfvén point gets out of the simulation box (Sect. 3.6). (b) The initial condition for this simulation
corresponds to the final state of 1DRef to which small amplitude 3D white noise was added (Sect. 4.2) .

midplane symmetry described above is imposed at z = 0. The
upper boundary condition (z = zB) is the most delicate part of
the setup. Unless otherwise stated, we consider modified out-
flow boundary conditions where we enforce a strictly vertical
poloidal field at the boundary:

∂zρ(zB) = ∂zuH(zB) = ∂zBy(zB) = 0 (6)

Bx(zB) = 0. (7)

Surprisingly, strict outflow boundary conditions (zero gradient
for all fields) prevent MHD driven winds to be produced. This
point is discussed more extensively in Sect. 3.4. Boundary con-
ditions used for each run are specified in Table 1.

Because many of the simulations described here show an
MHD-driven wind, a significant amount of mass is lost in our
model. To mimic the mass inflow due to the material which
would be accreted in a realistic disc including curvature effects,
we have chosen to add mass in the midplane to compensate for
wind losses. This is accomplished by adding mass at z � zinj
at each numerical time step, modifying the mass conservation
so that:

∂tρ + ∇ · ρu = ρ0 exp

[
−
( z
2zinj

)2]
, (8)

where ρ0 is adjusted so that
�

ρ dV is constant in time. This
mass addition can be done in several ways. We have chosen to
keep the velocity field of the gas constant while adding mass.
This obviously implies that conservation of momentum and en-
ergy are broken in the injection region z � zinj. However, this
choice has a little impact on the numerical results presented here:
using a momentum conserving mass injection procedure did not
modify significantly the outcome of the run 1DRef. In all the
simulations discussed below have zinj = 0.1, unless otherwise
stated. Tests with zinj = 0.05 have shown that none of the results
we discuss thereafter are significantly affected.

2.2.3. Modified potential

The vertical hydrostatic equilibrium described by (2) leads to a
gaussian vertical density profile:

ρ(z) = exp

[
− z2

2H2

]
· (9)

Assuming a constant Bz in the box we get an Alfvén speed
VA = Bz/

√
ρ ∝ exp(z2/4H2) which increases very steeply as z

increases. Because of the CFL condition, this leads to very small
timesteps which dramatically increase the computational time.
To reduce the computational costs, several of our simulations
were performed using the modified potential:

ψ′ = −qΩ2x2 +
z2

0

2
Ω2
[
1 − exp

(
−z2/z2

0

)]
· (10)

This modified potential is roughly identical to the real potential
for z < z0 but is less steep for z > z0 leading to a smoother den-
sity profile in the hydrostatic equilibrium and therefore smaller
Alfvén velocities. It should be noticed that this problem arises
only in the hydrostatic equilibrium without outflow. As we will
show below, when an outflow is produced, the density profile
is much smoother and we do not need a modified potential
anymore.

We have used the above modified potential with z0 = 4 in
our 1D simulations to initiate the MHD wind in the tall box sim-
ulations (zB ≥ 8). Once the quasi steady wind was formed, we
relaxed back the potential to the original shearing box potential.
Comparisons between the solutions obtained with and without
the modified potential in the case zB = 6 have shown no differ-
ence once the potential has been relaxed (runs 1DRef-1Dz6).

3. One-dimensional MRI outflows

In this section, we look at one-dimensional solutions of equa-
tions (1)−(3) i.e. (ρ(z, t), u(z, t), B(z, t)). This simplification al-
lows us to isolate the physical mechanisms responsible for the
MHD-driven outflows.

We initialise our box with a disc in vertical hydrostatic equi-
librium (9). We add a mean vertical field Bz so that μ = 8×10−2.
To initialise the growth of MRI modes, we add a small pertur-
bation Bx = 0.02 sin(z) to the system. We show the temporal
evolution of this run (1DRef) in Fig. 1.

3.1. From MRI modes to steady outflows

At it can be seen from Fig. 1, we first observe the development
of a linear MRI mode in the simulation box (t = 4.0). These lin-
ear modes were described extensively by Latter et al. (2010) for
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Fig. 1. Time evolution of the fiducial 1D model 1DRef. Left: magnetic field profile, right: Velocity and density profile. From top to bottom: t = 4.0;
7.0; 8.0; 60.0.
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Fig. 2. Growth rates of the largest stratified MRI eigenmodes as a func-
tion of the magnetisation parameter μ. These growth rates were deduced
from Eq. (18) in Latter et al. (2010).

stratified shearing boxes. The mode we observe in our particu-
lar setup is the n = 2 mode. This can be easily checked look-
ing at the shape of the perturbation and comparing to the eigen-
modes of Latter et al. (2010). Moreover, for μ = 8 × 10−2, the
n = 2 mode is the most unstable mode in the system (Fig. 2).
Because the magnetic fluctuations are localised at z ∼ H, the
magnetic pressure tends to increase at that location, pushing to-
ward the midplane the bulk of the disc and pushing up the disc
atmosphere. At t = 7.0−8.0, the magnetic pressure is sufficiently
large to push the atmosphere, creating a “bubble” of material. At
this stage, the flow is no longer in a linear regime: the eigenmode
is modified by nonlinear (e.g. magnetic pressure) terms. In the
end, the system relaxes toward a quasi stationary state (t = 60).
This implies that energy which is in injected by the MRI into the
eigenmode is evacuated at the same rate in the outflow.

It should be pointed out that we have totally ignored sec-
ondary instabilities in this description. These secondary insta-
bilities are usually x, y dependent modes which grow on the top
of MRI eigenmodes (Goodman & Xu 1994; Latter et al. 2009;
Pessah & Goodman 2009; Pessah 2010). It is widely believed
that parasitic modes are responsible for the breakup of MRI
modes into 3D turbulence, although the exact role they play is
still controversial (Lesur & Longaretti 2011). Evidently in our
1D model, parasitic instabilities are inhibited, allowing the pri-
mary MRI mode to grow virtually for ever. To allow for the
growth of parasitic modes, we have reproduced the same setup
in 3D, adding 3D noise at moderate level (〈v2〉 ∼ 10−2) to the
1D perturbation described above. This systematically led to the
production of an outflow before parasitic instabilities could do
anything to the MRI eigenmodes.

Although surprising at first sight, this result can be under-
stood using the phenomenology of parasitic modes. First, it
should be noted that the most unstable parasitic modes are usu-
ally Kelvin-Helmholtz modes (Latter et al. 2009) growing on
MRI modes. The maximum growth rate of Kelvin-Helmholtz
modes can be estimated by the local vertical shear rate. If we
consider a primary MRI mode of amplitude δv with a character-
istic vertical size δl, then the maximum growth rate of the sec-
ondary mode is γS ∼ δv/δl. For the secondary mode to have
an impact on the MRI mode, we require γS > γ which im-
plies δv > δlγ. Moreover, following Latter et al. (2010), we
have δb ∼ Bz0δv/ΩH where δb is the magnetic perturbation of
the MRI mode and Bz0 is the mean vertical field. Therefore, the

parasitic mode can destroy the MRI mode only if

δb
Bz0

>
δl
H
γ

Ω
· (11)

In our system, the MRI mode characteristic length δl, growth
rate γ and the mean field amplitude are all of the order of 1 (in
code units, see Sect. 2.1). This implies that parasitic modes will
appear only when δb > 1. However, as can be seen in Fig. 1,
the outflow starts when δb � 1, i.e. before parasitic modes could
act on the MRI mode. This result is due to the relatively large
magnetisation used in these simulations (μ � 1) compared to
traditional MRI setups (μ � 10−3) . This large magnetisation im-
plies the production of a large scale MRI mode whose growth
rate is of the order of the orbital timescale. This makes the out-
flow more favourable compared to secondary instabilities. On
the contrary, when the magnetisation is small, dominant MRI
modes are found at smaller scale (large n, see Fig. 2). In this case,
parasitic modes are favoured and a turbulent flow is obtained.

We should emphasize that the presence of an outflow does
not mean that parasitic instabilities are totally absent from this
picture. As we will show later (Sect. 4), solutions exhibiting an
outflow are themself subject to parasitic instabilities. However,
these instabilities have nothing in common with the traditional
parasitic instabilities of MRI eigenmodes.

We have seen above that the evolution of a large-scale
MRI mode in a strongly magnetised shearing box leads naturally
to the production of a magnetically-driven outflow. This steady
outflow is essentially one-dimensional and can be described by
u(z), ρ(z), B(z). In the following we will concentrate on the struc-
ture of this outflow: phenomenology, critical points, boundary
conditions and conserved quantities.

3.2. Outflow phenomenology

As we have shown above, the outflow is primarily produced
by the magnetic pressure gradient. The magnetic pressure be-
ing maximum at z ∼ 1.5, it pushes up the outflow at z > 2.0
but it also compresses the bulk of the disc. An alternative view
of this effect can be obtained looking at currents. The outflow
is in this case due to horizontal currents which are reversed at
z ∼ 1.5. We typically have Jx > 0 and Jy > 0 in the bulk of the
disc whereas Jx < 0 and Jy < 0 in the atmosphere z > 2. It is
important to note that the outflow acceleration can occur only if
these currents are non-zero and change sign. This remark justi-
fies the absence of any outflow with “zero gradient” boundary
conditions (see Sect. 3.4).

It is of interest to put these outflow solutions in the context
of the Blandford & Payne (1982) disc wind paradigm. In this
model, the outflow is initiated by a magnetocentrifugal effect:
the poloidal magnetic field lines are considered as rigid wires
anchored in the bulk of the disc and fluid particles are allowed to
drift along these wires. If the field lines are sufficiently inclined
(typically more than 30◦ with respect to the vertical axis), then
the particles are azimuthally accelerated by the anchored field
lines. This leads to a centrifugal effect which ejects fluid parti-
cles along field lines. In this picture, the ejection is driven by
an exchange of angular momentum: angular momentum is taken
from the disc by the field line and it is then released in the ejected
material.

To compare this mechanism to outflow solutions driven by
MRI modes, we show in Fig. 3 the poloidal streamlines and field
lines of such a solution. We first note that poloidal streamlines
and fieldlines are not aligned. This property is allowed by the
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Fig. 3. Streamlines (red dashed lines) and field lines (blue plain lines)
of our steady solution obtained at t = 95.

shearing box boundary conditions, but it physically means that
magnetic flux is “accreted” toward the centre of the disc2. In a
more realistic model including curvature, such a state could not
be sustained for a long time because magnetic flux would get
accumulated at the disc centre, thereby modifying the disc prop-
erties (especially its rotational profile). This is the principal moti-
vation for the presence of a strong “magnetic diffusivity” in disc
wind models, either assuming the presence of small scale turbu-
lence (Ferreira & Pelletier 1993a), ambipolar diffusion (Wardle
& Königl 1993) or Hall and Ohm diffusion (Königl et al. 2010).

Despite this difference, we recover most of the phenomeno-
logical properties of the Blandford & Payne (1982) paradigm:
field lines are inclined and drive an outflow which is inclined to-
wards the same direction. This indicates that angular momentum
is exchanged between the field and the flow. As we will see be-
low (Sect. 3.5.3), angular momentum is effectively taken away
from the disc by the field and then released to the ejected mate-
rial. This effect is actually inevitable since the current configura-
tion described previously inevitably leads to a positive magnetic
torque ∝ JzBx − JxBz in the outflow (and a negative one in the
disc midplane). Because angular momentum is taken from the
disc by the field, a strong radial flow is produced which explains
the streamlines’ orientation for z < 1. Finally, we find an inclina-
tion angle of ∼40◦ for the poloidal magnetic field lines and ∼25◦
for the poloidal velocity field at the top of the box. This last value
is very close to the critical value of Blandford & Payne (1982).

3.3. Critical points

In principle, it is possible to look systematically for a steady 1D
solution of Eqs. (1)−(3). This is done writing the equations of
motion in the form M · X = Y, where

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vz 0 0 ρ 0 0
0 ρvz 0 0 −Bz 0
0 0 ρvz 0 0 −Bz

c2 0 0 ρvz Bx By

0 −Bz 0 Bx vz 0
0 0 −Bz By 0 vz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(12)

X = ∂z

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
vx
vy
vz

Bx
By

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
2Ωρvy

−(2 − q)Ωρvx

−ρΩ2z
0

−qΩBx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(13)

2 In a shearing box, the flux coming in the box through the x = +Lx/2
boundary condition is equal to the flux leaving the box through the
x = −Lx/2 boundary condition, making the magnetic field configura-
tion overall stationary. Such a solution is however very specific to the
shearing box and does not represent a steady situation in an accretion
disc.
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Fig. 4. Vertical velocity and MHD wave speeds for the fiducial outflow
solution at t = 60.

where M and Y are a matrix and a vector which do not contain
any spatial derivative. To solve this nonlinear system, one then
inverts the above system of equations to get a set of ordinary
differential equations X = M−1 · Y. However, when a critical
point is reached, M is singular and the system cannot be inverted
anymore. In this case, the physical system needs to satisfy an
extra condition in order to get through the critical point.

In the shearing box, we find three types of singular points:

– two slow magnetosonic points

v2
z =

1
2

⎡⎢⎢⎢⎢⎢⎣V2
A + c2 −

√(
V2

A + c2
)2 − 4c2V2

Az

⎤⎥⎥⎥⎥⎥⎦ , (14)

– two Alfvén points

v2
z = V2

Az, (15)

– and two fast magnetosonic points

v2
z =

1
2

⎡⎢⎢⎢⎢⎢⎣V2
A + c2 +

√(
V2

A + c2
)2 − 4c2V2

Az

⎤⎥⎥⎥⎥⎥⎦ , (16)

where VA =
√

B2/ρ and VAz = Bz/
√
ρ. In the following, thanks

to symmetries, we will only consider solutions with vz > 0 so
that only one critical point of each kind will be present.

We present the MHD wave speeds and flow speeds in Fig. 4.
We find that the slow point is located around z = 0.52 and the
Alfvén point is found at z = 2.47. The flow does not cross the fast
point, however we find that the fast speed and the flow vertical
speed tend to converge more rapidly close to the upper bound-
ary. Note that a very similar behaviour was observed in a global
self-similar solution close to the fast surface (Casse & Ferreira
2000, Fig. 1). This result indicates that the flow is still causally
connected to the disc and therefore the boundary condition we
impose at the top of the box still has an impact on the flow struc-
ture itself. This point will be discussed in the next section.

3.4. Influence of the upper boundary condition

We have seen above that the outflow is still physically connected
to the disc since it is not super-fast. Moreover, it looks as if the
fast magnetosonic point is located close to the imposed upper
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Table 2. Evolution of the mass loss rate ρvz, slow point zS and Alfvén
point zA as a function of the altitude of the boundary condition zB.

Run zB ρvz zS zA θB(zA) ( ◦) θV (zA) ( ◦)
1Dz4 4 0.147 0.583 2.03 56.8 8.0
1Dz6 6 0.123 0.530 2.47 58.6 16.4
1Dz8 8 0.105 0.509 2.94 58.8 22.1
1Dz12 12 0.086 0.483 3.83 58.7 28.0
1Dz16 16 0.072 0.475 4.77 57.9 31.4
1Dz20 20 0.063 0.470 5.86 56.5 32.8

Notes. We also show the inclination angle with respect to z of the
poloidal field lines and stream lines at the Alfvén point (θB(zA), θV (zA)).

boundary condition. One might wonder what is the exact role
played by this boundary condition. To investigate this issue, we
have performed two kinds of test, either modifying the altitude
zB of the vertical boundary condition or modifying the nature of
the upper boundary condition we apply.

First, varying the altitude of the vertical boundary condi-
tion zB led to the results presented in Table 2. One finds that
modifying the altitude of the boundary condition strongly mod-
ifies the outflow properties. In particular, we find that increas-
ing the altitude of the boundary condition leads to a decrease
in the flow ejection rate. This evolution is accompanied by a
slow point moving closer to the midplane and an Alfvén point
moving higher up in the atmosphere. This result clearly demon-
strates that because the flow has not crossed the fast magne-
tosonic point, the solution we obtain is still constrained by the
boundary condition we impose at zB. In all the solutions de-
scribed in Table 2, we have observed a “convergence” of the fast
magnetosonic speed and the flow speed when approaching zB,
similarly to what we find in Fig. 4. This surprising result tends
to indicate that our boundary conditions somehow force the fast
point to be close to the upper boundary.

The fact that the slow point moves closer to the disc mid-
plane when the mass loss rate decreases might look dubious
to readers familiar with the phenomenology usually associ-
ated with the slow point. In particular, it is often said that the
slow point “sets” the wind escape speed through the relation
ρvz = ρ0(zs)c where ρ0 is taken as the hydrostatic density pro-
file (Spruit 1996). This argument predicts that smaller mass loss
rate should be associated to slow points located higher up in the
atmosphere, which is exactly the opposite of what we find. This
simple argument is however not valid in the present case since
the density profile deviates significantly from the hydrostatic
equilibrium. In particular, configurations 1Dz16 and 1Dz20 ex-
hibit strongly compressed discs due to a large magnetic pressure
gradient in the atmosphere which most probably prevents signif-
icant ejection from happening.

We have also tried to modify the nature of the upper bound-
ary conditions. First, instead of imposing Bx(zB) = 0, we have
imposed a fixed angle to the poloidal field, i.e. Bx(zB) = tan(θ)Bz
with θ = 30◦; 45◦ as in Ogilvie (2012). Surprisingly this did not
modify significantly the outflow solution we obtained: the field
values are modified by less than 5%. This can be explained by
the fact that the outflow is super-Alfvénic when it reaches the
top boundary. As we will see below (Sect. 3.6), sub-Alfvénic
outflows are effectively very sensitive to the field configuration
at the boundary, but super-Alfvénic outflows are not. We con-
clude from this that the inclination angle of the poloidal field
line is set by the Alfvén point crossing condition. This result is
corroborated by the constant inclination angle at the Alfvén sur-
face found when one changes the box vertical size (Table 2)

We have finally tried to impose a zero gradient condition
on Bx and By (classically called “outflow” boundary condition).
This results in the suppression of the outflow solution. We ob-
serve instead a constant increase of the magnetic pressure in
the atmosphere which results in a strong compression of the
disc material in the midplane until the disc occupies one nu-
merical grid cell. This result is similar to the low β simulations
of Hawley et al. (1995) with mean vertical flux. This was to
be expected since the outflow is driven by horizontal currents.
Imposing a zero gradient condition means that no horizontal cur-
rent is allowed at the boundary, blocking any potential outflow
by cancelling the vertical component of the Lorentz force and
the change of sign of the magnetic torque (Ferreira & Pelletier
1993b).

3.5. Conserved quantities

In the following, we assume all the quantities u, B and ρ depend
only on z, as found in the steady ejection above. With this hy-
pothesis, we reconstruct the conserved quantities used in global
disc wind models (Blandford & Payne 1982; Pelletier & Pudritz
1992; Casse & Ferreira 2000).

3.5.1. Frozen field condition

We first note that under the above conditions, Bz and ρvz are
constant in the box thanks to flux and mass conservation. We
therefore introduce a proportionality constant between these
quantities:

ρvz = αBz. (17)

Thanks to the x induction equation, we also have vxBz − vzBx =
Ey = const., which can be simply written as:

v∗x = vx − vz
Bx

Bz
(18)

where v∗x is a constant. Physically, v∗x is the advection speed of
the poloidal magnetic field. In global models, this quantity is
implicitly set to 0 in order to avoid flux accumulation at the disc
inner edge and potential singularities at R = 0 (Chandrasekhar
1956; Mestel 1961; Pelletier & Pudritz 1992). This is not re-
quired here as we are using a shearing-box model. However, one
should keep in mind that our model implicitly allows radial ad-
vection of magnetic field lines. The existence of this conserved
quantity allows us to define a relation between the poloidal field
and the poloidal velocity, namely:

up =
α

ρ
Bp − v∗xex, (19)

where up and Bp are the poloidal (x, z) components of the ve-
locity and magnetic fields. This equation shows a major differ-
ence between the global approach and the local approach. In the
global approach, v∗x = 0 (no advection of magnetic field lines),
which implies that poloidal streamlines and magnetic field lines
are aligned. This is not the case in our solutions, for which
v∗x = vx(z = 0) < 0.

3.5.2. Magnetic surface rotation

A relation, known as the magnetic surface rotation speed, can be
deduced from the y component of the induction equation. Since
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Fig. 5. Angular momentum along one streamline computed according
to Eq. (23). The angular momentum is initially stored in the torooidal
field before being transferred to the flow.

By does not depend on x, we get after some algebra

Bp · ∇
[
α

ρ
By − vy + qΩx

]
= 0. (20)

Note that the above relation is only valid along a poloidal mag-
netic field line. In contrast to Pelletier & Pudritz (1992), no
equivalent relation is found along poloidal streamlines. This al-
lows us to define a new conserved quantity

v∗y = vy − qΩx − α
ρ

By (21)

which is conserved along a magnetic field line. It should be
pointed out at this stage that Ex = uyBz − uzBy = Bzv

∗
y where

Ex is the x component of the electromotive force. Therefore, in
the frame translating at v∗y, the x component of the electromotive
force is zero, which justifies the naming of this invariant.

3.5.3. Angular momentum conservation

The angular momentum conservation equivalent is derived from
the y component of the equation of motion (2). It should first be
noted that this equation can be written:

ρup · ∇L − Bp · ∇By = 0 (22)

where L = vy + (2 − q)Ωx is the local equivalent of the spe-
cific angular momentum. Since By does not depend on x, we can
rewrite the above equation using the flux freezing condition:

ρup · ∇
[
L − By

α

]
= 0, (23)

which indicates that f = L − By

α
is conserved along streamlines.

The angular momentum along one streamline is shown in
Fig. 5. This allows us to check that the angular momentum is
effectively conserved in our simulations. Moreover, we find that
most of the angular momentum is initially extracted from the
disc by the toroidal field By. Higher above the disc (z ∼ 2H), the
angular momentum is exchanged between the toroidal field and
the accelerated gas. This demonstrates that the magnetocentrifu-
gal acceleration effect, present in the Blandford & Payne (1982)
phenomenology, is also found in our outflow solutions.
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Fig. 6. Bernoulli invariant computed according to Eq. (25). EK: kinetic
energy, ET: thermal energy (enthalpy), Eψ: potential energy, EB: con-
servative magnetic energy, EBnc: non-conservative magnetic energy.

3.5.4. Bernoulli invariant

The Bernoulli invariant is derived from Eq. (2) after a scalar mul-
tiplication by u. One gets:

ρup · ∇
[
u2

2
+ H + ψ

]
= J × B · u (24)

where H is the flow enthalpy. The right-hand side of this equa-
tion corresponds to the work done by magnetic forces. This term
can be calculated as a function of the previously defined invari-
ants which, after some algebra leads to:

ρup · ∇
[
u2

2
+ H + ψ − Byv

∗
y − Bxv

∗
x

α

]
= −qΩρByv

∗
x. (25)

Because up and Bp are not strictly speaking collinear, Bernoulli’s
equation is left with a non conservative term. However, as we
will see later, this term is important only in the bulk of the disc,
so that the flux defined above will be approximately invariant
along a streamline. Comparing this invariant to the one defined
in global geometry, we note the presence of a new term in our
case, Bxv

∗
x/α. As shown before, this term describes the energy

associated with the field lines being advected.
We show the different terms involved in the Bernoulli in-

variant Eq. (25) in Fig. 6. One should note that the magnetic
contribution is separated in two parts: (i) the conservative part
(Byv

∗
y − Bxv

∗
x)/α and (ii) the non-conservative part

∫
dl qΩρByv

∗
x

where the integral is computed along a streamline.
We first find that the invariant is approximately conserved for

z > 0.2. Initially (up to z ∼ 1.5) the energy is stored in the con-
servative component of the magnetic field. The non-conservative
part is constantly decreasing, demonstrating that this term is
helping the outflow. Higher in the outflow, the magnetic energy
is converted into kinetic and potential energy. Finally, we find
that the thermal energy plays essentially no role in the ejection
energetics. This demonstrates that the isothermal approximation
used in this work does not inject a significant amount of energy
in the outflow.

The fact that potential energy increases along a streamline
might look at first surprising since in a typical Blandford &
Payne (1982) situation, one would expect the potential energy
(gravitational + centrifugal) to decrease along a field line. This
is not the case here because the inclination angle of the outflow-
ing streamlines is slightly less than 30◦ (see Sect. 3.2).
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case without mass injection. The flow becomes sub-Alfvénic at t � 20
(see text).

3.6. Magnetisation dependency

In the previous discussion, we kept a constant equivalent sur-
face density Σ by artificially injecting mass in the disc midplane.
This approximation, although partly motivated by the global
disc structure, should be tested more extensively. To do so, we
have performed simulations without mass injection. By defini-
tion these simulations cannot achieve a steady state. They are
however representative of an extreme case in which no mass is
coming from the outer disc.

It should first be pointed out that the outcome of these sim-
ulations depends strongly on the nature of the upper boundary
condition. This is because as the disc mass is lost, the Alfvén
point moves higher up in the atmosphere (see Fig. 7). At some
point, the Alfvén point crosses the upper boundary and the ejec-
tion becomes sub-Alfvénic. When this happens in this simplified
setting (no radial dependence), the poloidal field inclination is
not set anymore by the Alfvén point crossing condition (Ogilvie
2012, see also Sect. 3.4). Instead, it should be set manually at
the upper boundary. If we set Bx(zB) = 0, the ejection stops as
soon as the Alfvén point exits the simulation domain. This is ex-
pected since no ejection should be happening with strictly ver-
tical poloidal field lines. On the contrary, if we impose a fixed
inclination angle of 45◦ at the upper boundary condition, as in
Ogilvie (2012), the outflow is kept. In the following we will con-
sider the latter case.

Because the disc is losing mass, its magnetisation μ is in-
creasing as a function of time (see Fig. 8). We note however,
that the system appears to be approaching a steady state with
μ � 2.3. Looking at the correlation between the mass loss rate
due to the wind ṀW = (ρvz)z= zB and the magnetisation μ (Fig. 9),
we find that the mass loss rate decreases steeply for μ > 1, which
explains the quasi-steady state we observe. We note that this last
result is very similar3 to Ogilvie (2012) (Fig. 4). This demon-
strates a plausible causal transition between MRI-driven outflow

3 Note that our definition of ṀW differs from Ogilvie (2012) by a fac-
tor
√

2π. Moreover, our ṀW is normalized by the initial density in the
midplane, whereas Ogilvie (2012) normalized ṀW by the instantaneous
surface density, which in our case would decrease in time.
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Fig. 8. Flow magnetisation μ as a function of time in a case without
mass injection.
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Fig. 9. Mass loss rate due to the wind as a function of the magnetisa-
tion μ. Deduced from a case without mass injection.

solutions described here and the solutions found by Ogilvie
(2012) in the MRI stable regime.

3.7. Comparison with a global outflow solution

Because the shearing box model is subject to several restric-
tive hypothesis, it is useful to compare the MRI driven out-
flows found here with global steady self-similar solutions of
disc winds. The idea here is not to have a quantitive agree-
ment between these solutions since they are computed in very
different different configurations. Instead, we look for qualita-
tive similarities which could indicate that the physical processes
at work are similar. To this end, we have used the numerical
procedure described by Ferreira & Pelletier (1995) and Casse
& Ferreira (2000) to compute an isothermal “cold” solution
with the following parameters4: ε = 0.1; αm = 1.0; Pm = 0;
μ = 0.7268; ξ = 9.92 × 10−3. This last parameter is connected
to the radial dependence of the accretion rate through the re-
lation ṀA(r) ∝ rξ. Although this solution depends explicitly
on r and z through a self-similar ansatz, the radial dependence
is much weaker than the vertical one up to a few scale heights.

4 The precise definition of these parameters can be found in Casse &
Ferreira (2000). Note that the definition of the μ parameter used in these
solutions differs slightly from the μ used in this paper.

A61, page 9 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220395&pdf_id=7
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220395&pdf_id=8
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220395&pdf_id=9


A&A 550, A61 (2013)

0 1 2 3 4 5 6

−0.2

0

0.2

0.4

0.6

0.8

1

z

 

 
B
x
B
y
B
z

0 1 2 3 4 5 6

−2

0

2

4

6

8

10

z

 

 

V
x

V
y

V
z

ρ

Fig. 10. Global solution computed following Ferreira & Pelletier (1995) in the z = 0 . . . 6H region (see text). Colours and units identical to Fig. 1.

Therefore, we only show the z dependence of the resulting solu-
tion in Fig. 10. We have zoomed on the region from z = 0 . . .6H
to allow a comparison with shearing box solutions (Fig. 1), al-
though the actual global solution extends up to 25H (fast mag-
netosonic point).

The direct comparison between this global solution and the
shearing box solutions shows several differences: the velocities,
and in particular vz, are larger in the global solution. On the other
hand, the horizontal magnetic field strength is weaker compared
to the shearing box solution. However, we recover most of the
physical properties found in global solutions in the shearing box
solution: a strong magnetic shear close to the midplane accom-
panied by a magnetically compressed disc (compared to a purely
hydrostatic equilibrium) and a strong accretion flow in the disc
midplane (vx ∼ −2c).

It should be noted that the global solution presented here has
a much weaker mass loss rate (ρvz ∼ 5 × 10−3) compared to
the shearing box solution (ρvz � 0.1). This can be partly due to
the stronger mean vertical field required by the global solution
(μ ∼ 0.24), although this difference is not enough to explain
entirely this discrepancy (Fig. 9). The fact that the mass loading
is much smaller in the global solution explains the faster escape
velocity found in this solution.

4. Three-dimensional solution and stability

4.1. Outflow evolution in 3D

To investigate the 3D evolution of the 1D outflow described in
Sect. 3.1, we have perform the outflow simulations in 3D. The
initial condition consists of the 1D initial perturbation described
in Sect. 3 plus a random 3D noise added to vx with max(|vx|) =
0.02. We show in Fig. 11 the temporal evolution of simulation
3DRef for μ = 8 × 10−2. These figures represent the evolution
of the density, poloidal magnetic field inclination and vertical
velocity averaged in the (x, y) plane in a (z, t) diagram. We first
observe the presence of a strong outburst (t ∼ 8) followed by a
rather steady state during which the flow does not evolve rapidly.
This state corresponds to the 1D solution described in Sect. 3
and is essentially a 1D outflow solution. However, after some
time, this 1D outflow goes unstable (t ∼ 40) and rapid variations
in all quantities are observed. Surprisingly, the global structure
of the 1D outflow is conserved: on time and horizontal aver-
ages, the typical vz vertical and poloidal inclination profiles are

consistent with the 1D steady solution (Fig. 1). We therefore pro-
duce a turbulent outflow driven by the Blandford & Payne (1982)
magnetocentrifugal effect. We have additionally performed sim-
ulations similar to 3DRef removing the symmetry condition at
z = 0. An unstable pattern having a similar growth rate as the one
described here is found in these cases, demonstrating that this in-
stability is neither driven nor limited by the symmetry condition
we impose at z = 0.

We show in Fig. 12 snapshots of the same simulation taken
at t = 20, t = 40 and t = 270. At t = 20, we confirm the 1D
nature of the solution: no dependence can be seen in x or y.
This also shows that the outflow is produced before parasitic
modes get significantly excited. At t = 40 we see the develop-
ment of a “secondary” instability of the outflow solution which
produces a x-dependent structure. The physical processes re-
sponsible for this instability will be discussed in Sect. 4.2. When
the “secondary” modes reach a significant amplitude, the struc-
tures break down into non-axisymmetric turbulent motions in
which the main outflow properties are maintained (field line in-
clination, outflow speed). A typical example of such a state is
shown at t = 270.

4.2. Outflow solution stability

We have shown above that the outflow solution is unstable to
3D perturbation, resulting in a “turbulent outflow” configuration.
Several authors have discussed the possibility of having such an
instability (Lubow et al. 1994; Lubow & Spruit 1995; Cao &
Spruit 2002) although the applicability of these stability analyses
to all outflow solutions is still uncertain (Königl & Wardle 1996;
Königl 2004).

Instabilities comparable to the one described here were also
found by Moll (2012). The evolution timescales and the global
shape of unstable perturbations (“striped wind”) look similar
in both cases, although the radial wavelength of Moll (2012)
instability seems smaller than ours. It is therefore probable that
all these instabilities have the same physical origin, though a
precise comparison of the growing eigenmodes is required to
confirm this point.

To analyse the instability observed in our outflow solu-
tions, we have performed a simulation (3DLin) starting from
the 1D solution corresponding to the final state of run 1DRef to
which a small-amplitude (10−3) 3D white noise was added. Since
the growth phase of the instability implies only x-dependent
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Fig. 11. Spacetime diagram of horizontally averaged quantities in a μ = 8 × 10−2 simulation. Top: log10(ρ), middle: poloidal magnetic field line
inclination with respect to the vertical axis(in ◦), bottom: vertical velocity.

Fig. 12. Snapshots of the μ = 8 × 10−2 solution. Logarithm of the den-
sity is represented in coloured volume rendering whereas field lines are
represented as tubes. From top to bottom: t = 20; t = 40; t = 270. x axis
is horizontal and z axis is vertical.

modes, we use a Fourier decomposition in the x direction to
characterise growing modes:

ρ = ρ0(z, t) + δρ(x, z, t) (26)

δρ(x, z, t) = �
⎡⎢⎢⎢⎢⎢⎣
∑

K

ρK(z, t) exp(ikx)

⎤⎥⎥⎥⎥⎥⎦ (27)

and similarly for u and B. In this expansion, we have assumed the
instability was growing on the top of the 1D solution ρ0(z) given
by the final state of run 1DRef. We first present the temporal
evolution of the fluctuation

√〈δρ2〉 in Fig. 13. We find that per-
turbations grow exponentially with a growth rate γ = 0.33Ω up
to t � 40 where a saturation is reached. To further investigate the
behaviour of this instability, we present the temporal evolution
of |ρK(z = 0.5)| as a function of k in Fig. 14. As it can readily be
seen, the growth is dominated by modes having n ≡ kLx/2π = 4
which is consistent with the 4 “spots” observed in Fig. 12. The
measured growth rate of this mode is γ = 0.33Ω which ex-
plains its fast appearance in 3D simulations once an outflow has
formed. However, other neighbouring modes are growing as well
(n = 3; 5; 6) although not as fast as the n = 4 mode. Finally once
the n = 4 mode reaches large amplitudes (|ρK| ∼ 1), we note
the sudden growth of the n = 8 and n = 9 modes which are
the result of nonlinear interactions of the fastest growing modes
n = 3; 4; 5; 6.

To analyse the physics underlying the n = 4 mode, we
present in Fig. 15 the density fluctuations corresponding to that
eigenmode. We first note that the density fluctuation is highly
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Fig. 13. RMS amplitude of the fluctuations δρ in run 3DLin. We ob-
serve a linear growth phase with γ = 0.33Ω.
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Fig. 14. Amplitude of the Fourier modes |ρK(z = 0.5)| during the linear
phase of the outflow instability. Mode decomposition are plotted every
Δt = 2 from t = 0 to t = 40. The instability is dominated by the n = 4
mode (see text).

localised in z around z ∼ 0.5. In addition, this eigenmode has
a tail whose inclination and shape closely follow that of the
poloidal magnetic field (Fig. 3). The localisation of the eigen-
mode is rather surprising and requires some explanation. We
first note that this localisation is much higher than the top of the
mass injection region (zinj = 0.1). However, comparing the rela-
tive vorticity component ωy = ∂zvx of the 1D outflow (Fig. 16)
to the vertical profile of the eigenmode (Fig. 17), we find that
the density perturbation is localised close to a maximum of ωy.
This tends to suggest that this instability is somehow linked to
the vertical ωy profile of the outflow solution, and therefore to a
kind of Kelvin-Helmholtz instability. This potential link is also
consistent with the growth rate γ � max(ωy) and with the shape
of the eigenmode and the vorticity profile around z = 0.5.

We would like to stress that these remarks are not a proof that
this outflow instability is of the Kelvin-Helmholtz type. Among
the effects we did not take into account in that analysis are the
magnetic field, compressibility and the presence of a large vz up
in the atmosphere. However, if we assume that the source of the
instability lies around z ∼ 0.5 as suggested by the eigenmodes,
then timescales, length scales and phenomenology match that
of a Kelvin-Helmholtz instability. To ascertain these claims, a
proper linear study taking into account all of the outflow proper-
ties is required, which is well beyond the scope of this paper.
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Fig. 15. Density fluctuations corresponding to the n = 4 eigenmode.
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Fig. 17. Eigenmode n = 4 vertical density profile.

5. Discussion

In this paper, we have shown that large scale MRI modes
which are unstable when the disc magnetisation is moder-
ately sub-thermal spontaneously produce super-Alfvénic out-
flows. The physical mechanism behind this outflow is a
Blandford & Payne-like process where angular momentum is
transferred to bending field line and then released to acceler-
ated material. We demonstrated that this outflow is qualitatively
similar to the outflow solutions found both in local boxes and in
global self-similar geometry, making a clear connection between
the MRI and the formation of disc winds. We have also shown
that MRI outflows are unstable in 3D which could be a potential
source of variability for disc winds and jets. These 3D instabili-
ties could also be the origin of the turbulent resistivity αm used in
Ferreira & Pelletier (1995) and subsequent self-similar models.
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However, the picture provided here is still incomplete. We
first note that the simulations we have performed here only
produce super-Alfvénic flows, whereas real escaping outflows
should be faster than the fast magnetosonic speed. This prob-
lem seems to be linked to the shearing box geometry, as several
other authors have noticed this in shearing boxes (Suzuki &
Inutsuka 2009; Fromang et al. 2013; Bai & Stone 2013). Indeed,
a shearing box does not allow for the opening of magnetic field
lines which is expected in realistic global geometry. We be-
lieve that such an opening is required to get super-fast flows,
which are therefore beyond the scope of our shearing box model.
The fact that the flow is only super-Alfvénic indicates that the
upper boundary condition still plays a role in determining the
outflow structure, and indeed it does, at least for the mass-loss
rate (Sect. 3.4).

We also emphasize that the shearing box model possesses a
horizontal symmetry by the transformation (vx, vy)→ (−vx,−vy),
(Bx, By)→ (−Bx,−By) and (x, y)→ (−x,−y). This symmetry in-
dicates that locally, there is no mathematical difference between
a magneto-centrifugally accelerated wind where angular mo-
mentum is transferred from the disc to the jet and a magnetically
decelerated accretion column (formally a magneto-centripetal
wind) where the angular momentum is transferred from mate-
rial falling radially inward to the disc. This symmetry is obvi-
ously broken once curvature terms are taken into account. The
presence of this symmetry implies that shearing box simulations
can spontaneously switch from one situation to the other, which
is unexpected in realistic situations. Such sudden changes in the
magnetic configuration were indeed observed in rare occasions
in our 3D runs but also by Fromang et al. (2013).

Finally, we should point out that the presence of a non-zero
toroidal electromotive force implies that magnetic field lines are
accreted. As mentioned earlier, this situation is rather unrealis-
tic in global geometry, although it is allowed in shearing boxes.
More realistic configurations, probably including a sort of resis-
tivity (either effective or molecular) are required to compensate
for this effect.

All of these points indicate that shearing boxes are not very
well suited to study globally the outflows produced by MRI
turbulent accretion discs. In particular, little can be learned re-
garding outflow mass loss rate and velocities. We note however
that our solutions can be qualitatively compared to global so-
lution and several properties are recovered by the local model.
Moreover, 3D instabilities can be studied much more easily in
boxes than in global geometry where computational costs in-
crease very rapidly.

Overall, our results tend to indicate a paradigm shift: up to
now, the MRI driving “viscous” discs and disc winds at the ori-
gin of jets have often been considered as separate processes.
Here we show that these two processes are actually intrinsically
connected: outflows are a logical consequence of the MRI in
strongly magnetised discs. Obviously, the next question is to un-
derstand what is driving the disc magnetisation. This could be
due to local dynamos, large scale field redistribution through ad-
vection and diffusion, etc. To identify these processes, shearing
boxes are clearly insufficient and global models, including both
large-scale magnetic fields and turbulence, will be required.
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