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ABSTRACT

Context. With a clear circular aperture, the vortex coronagraph perfectly cancels an on-axis point source and offers a 0.9 or 1.75λ/D
inner working angle for topological charge 2 or 4, respectively. Current and near-future large telescopes are on-axis, however, and
the diffraction effects of the central obscuration, and the secondary supports are strong enough to prevent the detection of compan-
ions 10−3–10−5 as bright as, or fainter than, their host star.
Aims. Recent advances show that a ring apodizer can restore the performance of this coronagraph by compensating for the diffraction
effects of a circular central obscuration in a 1D modeling of the pupil. Our aim is to extend this work and design optimal apodizers
for arbitrary apertures in 2D in order to tackle the diffraction effects of the spiders and other noncircular artifacts in the pupil.
Methods. We fold this analytical result into a numerical optimization scheme that yields hybrid coronagraph designs that combine the
advantages of the vortex coronagraph (small in IWA) and of shaped pupils coronagraphs (robustness to central obscuration and pupil
asymmetric structures). The transmission of the apodizer is maximized, while constraints are set on the extremum values of the elec-
tric field that is computed in chosen regions of the Lyot plane through closed form expressions derived even for topological charges.
Optimal apodizers are computed for topological charges 2 and 4 vortex coronagraphs and for telescope apertures with 10–30% central
obscurations and 0%, 0.5%, and 1% thick spiders.
Results. We put the results of our numerical optimizations in perspective with the analytical solutions and show that our apodizations
converge to the ring apodizations. We then characterize the impacts of the obscuration ratio and the thickness of the spiders on the
throughput and the IWA. For the apodized charge-2 vortex coronagraph the throughputs are slightly below those of the ring apodized
vortex coronagraph, and the inner working angle is mostly unaffected by the apodization. The throughputs of the apodizers for the
charge-4 vortex coronagraph are higher than those of the ring apodized vortex coronagraph. This effect increases with the obscuration
ratio, though the inner working angle does, too, and it ranges between 2 and 3λ/D.
Conclusions. The results presented in this paper show that high contrast at small inner working angles can be obtained with a vortex
coronagraph for on-axis telescopes, in spite of the presence of a secondary mirror and its secondary support structures.

Key words. instrumentation: high angular resolution – techniques: high angular resolution – methods: analytical –
methods: numerical

1. Introduction

The spectral characterization of Earth-like planets around M, F,
G, K stars at a few tens of parsecs from our Sun requires a 10−7

to 10−10 contrast at a few tens of milliarc-seconds (mas) from
the host star in 20% bandwidths. Self-luminous planets, which
are only tens to hundred million years young, require a less de-
manding contrast to be imaged than older planets. Since the ob-
servation of the former must be preferably done in the infrared
part of the spectrum, the chromatic scaling of the point-spread
function (PSF) of the instrument partially compensates for this
advantage, however.

On-axis 30–40 m extremely large telescopes equipped with
next-generation coronagraphs may provide the contrast, the res-
olution, and the large number of photons that are mandatory for
ground-based observations. Few coronagraphs, however, can ef-
ficiently cope with the diffraction effects of the central obscura-
tion and the secondary supports.

Adapting a coronagraph to an arbitrary aperture has been
an intense research topic in the past few years. Soummer et al.
(2009, 2011) explain how the spheroidal prolate apodization of
an apodized pupil Lyot coronagraph (APLC) can be adapted it-
eratively to a given aperture. Pueyo & Norman (2013) study a
similar problem, but explicitly constrains the contrast in chosen
regions of the image plane, while in the previous case the high
contrast was adjusted by varying the radius of the Lyot mask.
Nonetheless, APLCs suffer from a rather large IWA.

Shaped pupils, which were initially optimized for high-
contrast imaging in one dimension (Spergel & Kasdin 2001;
Vanderbei et al. 2003; Kasdin et al. 2007), can be numerically
optimized in two dimensions (2D) for any telescope aperture
(Carlotti et al. 2011; Vanderbei 2012). Their versatility, robust-
ness, and achromaticity make them good candidates for compact
coronagraphic instruments: unlike APLCs, shaped pupils do not
rely on a Lyot mask or a Lyot stop to create a high contrast,
although a field stop is probably mandatory, given the limited
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dynamic range of detectors. Like APLCs, 2D-shaped pupil coro-
nagraph have relatively large IWA, usually 3–5 λ/D for apertures
with obscurations of 10–30% and for a 10−7−10−10 contrast. The
smallest IWA are usually obtained at the expense of the size of
the discovery space.

All these coronagraphs require an extreme adaptive optics
system to correct for the phase and the amplitude aberrations
of the wavefront. This system can be composed of a single de-
formable mirror (DM), but corrections occur on only one side of
the image plane (Malbet et al. 1995). As proposed in Pueyo &
Kasdin (2007) and demonstrated in Pueyo et al. (2009), a system
of two DMs in nonconjugate planes makes it possible to create
symmetric dark holes in broadband. Such a system was recently
test in JPL’s high-contrast imaging testbed where it was used to
obtain a 4 × 10−9 in monochromatic light (Riggs et al. 2013).

As suggested by Kasdin et al. (2011), it appears that the
wavefront control system can be actively used to create high
contrast with arbitrary apertures, thus relaxing the specifications
of the coronagraph. Pueyo & Norman (2013) show how to use
two DMs to spatially redistribute the energy density in the pupil
plane so as to artificially decrease the size of the spiders and, for
segmented telescopes, the gaps between the segments. Carlotti
et al. (2013) detail methods to optimize stroke commands to be
sent to a DM to create a 10−6−10−7 contrast with a centrally ob-
scured aperture.

Pupil mapping is the core principle of the phase induced am-
plitude apodization (PIAA, Guyon 2003) technique. Combined
with a complex amplitude focal plane mask (PIAACMC, Guyon
et al. 2010), it offers a very promising solution to the problem
of small inner working angles as it results in much smaller IWA
(down to 0.64λ/D), while offering about 50% throughput. The
currently investigated manufacturing process of the focal plane
mask involved in this instrumental concept remains challenging,
however (Newman et al. 2013).

With a clear circular aperture of diameter D, looking at
a wavelength λ, the four-quadrant phase mask coronagraph
(4QPM, Rouan et al. 2000) and the vortex coronagraph (VC,
Mawet et al. 2005) perfectly cancel an on-axis, unresolved point
source, and detect companions as close as 0.9–1.75 λ/D (0.9 for
the 4QPM and a vortex with a topological charge 2, and 1.75 for
a VC with a topological charge 4).

The 4QPM coronagraph is a second order coronagraph: its
off-axis transmission goes as θ2, where θ is the angular distance
to the star. This makes the 4QPM coronagraph quite sensitive to
jitter and to the finite size of the star. Like the 4QPM corona-
graph, a VC with a topological charge 2 is a second order coro-
nagraph. A charge 4 VC is a fourth order coronagraph, however:
its off-axis transmission goes as θ4 instead of θ2. It is thus much
less sensitive to the finite stellar size and to low order aberra-
tions, which would otherwise limit the performance of the VC
as they do with the 4QPM.

Another fourth order phase mask coronagraph is the eight-
octant phase mask (8OPM, Murakami et al. 2008; Carlotti et al.
2009), which is to the 4QPM, as the charge 4 VC is to the
charge 2 VC. The 4QPM and the 8OPM attenuate off-axis
sources along their phase edges, however, and this limits the ex-
tent of the discovery space space around the star, especially in
the case of the 8OPM.

Nonetheless, the performance of the 4QPM coronagraph
and the VC is greatly reduced when the telescope is on-axis.
For instance numerical simulations predict a 10−4−10−5 con-
trast between 1 and 5 λ/D from the star, for a VC used with
a 14% centrally obscured aperture such as one of the Very Large
Telescope (VLT) 8m-class unit telescopes (UT). On-sky results

Vortex 
phase mask

Plane BPlane A Plane C Plane D

Apodizer
Lyot stop

Camera,
IFS, etc.

Fig. 1. Optical layout of an apodized vortex coronagraph. The apodizer,
vortex phase mask, Lyot stop and camera are located in the successive
pupil and image planes A, B, C, and D.

have been obtained with a VC installed on VLT/NACO (Mawet
et al. 2013a). Recently the VC has also been installed at two
other telescopes: the Subaru telescope, and the Large Binocular
Telescope.

A dual-stage coronagraph can be used to cancel the diffrac-
tion effects of a circular central obscuration with a 4QPM
(Galicher et al. 2011) or a VC (Mawet et al. 2011b), but it can
only partially attenuate those of the secondary supports (or any
other artifacts in the pupil plane). It also requires twice as many
components, making the alignment more difficult and increasing
the size of the coronagraph.

It is possible to apodize the aperture to avoid the diffraction
effects that prevent the 4QPM or the VC to create high-contrast
at a small IWA with an on-axis telescope.

As a matter of fact, a proof of concept for an apodized VC
has already been successfully tested on the sky: a small, clear
circular subaperture with a 1.5 m diameter has been used at the
Palomar telescope with a VC (Serabyn et al. 2010; Mawet et al.
2011a). Unfortunately, this results in an effective resolution three
times as small and a throughput eight times as small as what
could have been obtained with the main telescope aperture.

It was shown in Carlotti (2013) that shaped pupils can be
optimally designed for a given combination of an arbitrarily-
shaped aperture and a phase mask. Examples of such designs
were numerically optimized for one of the 8 m unit telescopes
of the VLT, and for a 4QPM coronagraph, creating a few 10−10

contrast at 1 λ/D (41 mas in the H-band) from an unresolved
star with a system throughput of about 64%.

Mawet et al. (2013b) shows that a ring-apodized vortex coro-
nagraph (RAVC) can perfectly attenuate the on-axis light with a
circular aperture with a circular central obscuration. Secondary
supports are not taken into account, however. For a charge 2 VC
this apodizer is composed of two rings: one is fully transmis-
sive while the other is only partially transmissive. For a topo-
logical charge 4 vortex, a thin dark annulus separates the two
previously described rings. The obscuration ratio of the aperture
sets the radii of the rings and transmission of the outermost ring
for which the throughput of the coronagraph is maximal.

The Lyot stop is directly constrained by the optimal rings
radii. The same property characterizes the apodized 4QPM: the
throughput of the coronagraph depends on the choice of the Lyot
stop, namely the ratio of its central obscuration.

Figure 1 displays the optical layout of an apodized vortex
coronagraph: an apodizer is located in a pupil plane A. In a sub-
sequent image plane B, the Fourier transform of the electric field
that goes through the apodizer is multiplied by the complex am-
plitude of the phase mask. In the reimaged pupil plane C, i.e.,
the Lyot plane, the Lyot stop blocks the diffracted on-axis light.
Finally, the science camera could be located in a reimaged focal
plane D.
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Shaped pupils can be numerically optimized for the VC as
they have already been for the 4QPM coronagraph, but the com-
plexity of the computation process is much higher than in the
case of the 4QPM. This is due to the fact that the pupil-to-pupil
transform described in Eq. (11) of Carlotti (2013) cannot be writ-
ten as nested sums. It must be directly evaluated as a 2D sum
instead of 2 nested 1D sums.

As a consequence the memory requirements scale as the
fourth power of the number of points chosen to discretize
the pupil, while they only scale as the square for the case
of the 4QPM. While this does not fundamentally preclude
any computation, it makes the optimization of pupil apodizers
much more demanding in terms of numerical resources, than
their 4QPM counterparts (Carlotti 2013).

In this paper, we build upon and devise new methods to
solve the limitations of the early papers (Carlotti 2013; Mawet
et al. 2013b) so as to design apodizers for 2D apertures and
a VC.

A new computer dedicated to solving large scale optimiza-
tion problems has made possible the computation of apodiz-
ers for the VC, with two-fold symmetry masks computed
over 5122 points in a few hours. This computer has a four-
core 3.6 Ghz processor and 64 GB of RAM. AMPL, a mathemat-
ical programming language is used to transcribe the optimiza-
tion problem in a language that can be understood by one of the
available solvers. In addition to the LOQO solver, the CPLEX
and Gurobi solvers have been used. LOQO does not currently
use more than one core of a processor, contrary to CPLEX and
Gurobi, which can both use multiple cores. It should be noted
that AMPL itself does not support parallel computing either.

To compute apodizers for the VC, we also had to modify the
nature of the optimization problem. Indeed, there is a difference
in the constraints set in the numerical optimization of apodizers
for the VC and for the 4QPM coronagraph. Linear constraints
were used for the 4QPM in Carlotti (2013). This was possible
because, with an aperture with two axes of symmetry such as
the VLT’s, the 4QPM creates a purely real amplitude in the Lyot
plane – and applying the constraints on the amplitude or the in-
tensity does not make a difference. This is not the case with
the VC: constraints must be set on the intensity of the electric
field, which makes them quadratic.

We present in this paper the properties of apodizers opti-
mized for a charge 2 VC and charge 4 VC with a 32λ/D outer
working angle, and designed to attenuate the on-axis light that
goes through the Lyot stop by a 106 factor, which result in
a 10−8−10−10 contrast at 1–3λ/D from the star depending on
the topological charge and the telescope aperture. An exhaus-
tive number of apertures have been considered, with 10–30%
central obscurations, and for each of them 0, 0.5 and 1% thick
spiders. We compare the apodizers computed for spider-free
apertures to the ring-apodizers, and we study the impact that an
increasing spider thickness has on the performance metrics of
the coronagraph.

Section 2 details the mathematical formalism used to de-
rive the closed form expressions of the pupil-to-pupil transforms
used to compute the electric field in the Lyot plane. Section 3
presents the optimization problem, and explains the methodol-
ogy that is followed in the rest of the paper. Section 4 details
the throughput and the inner working angle of the numerical
optimizations. For spiderless apertures it compares them with
the results presented in Mawet et al. (2013b). It also addresses
the limitations of broadband observations. Section 5 tackles the
manufacturing aspects of this coronagraph. Section 6 draws a
conclusion to this paper.

2. Analytical expressions for the apodized VC

2.1. Formalism of apodized phase mask coronagraphs

Here we briefly recall the formalism introduced in Carlotti
(2013) and extend it to the case of arbitrary charge vortex The
electric field in the image plane before the phase mask is a func-
tion of the transmission of the apodized aperture A(x, y):

E(u, v) =
e2iπF/λ

iλF

" D/2

−D/2
A(x, y) e−2iπ(ux+vy) dx dy. (1)

If M(u, v) describes the phase mask, then the electric field right
after the mask is written as the product of E(u, v) and M(u, v).
The expression of the electric field in the subsequent pupil plane
is the Fourier transform of that product:

P(x̃, ỹ) = −iλFe2iπF/λ
" ∞

−∞

E(u, v) M(u, v) e2iπ(x̃u+ỹv) du dv. (2)

Equations (1) and (2) can be combined into a single expression:

P(x̃, ỹ) =

e4iπ F
λ

" D
2

− D
2

" ∞

−∞

A(x, y)M(u, v)e2iπ((x̃−x)u+(ỹ−y)v)dudvdxdy. (3)

The Fourier transform F(x, y) of the mask appears if Eq. (3) is
written in a slightly different way:

P(x̃, ỹ) = e4iπF/λ
" D/2

−D/2
A(x, y) F(x̃ − x, ỹ − y) dx dy,

where F(x, y) =

" ∞

−∞

M(u, v) e2iπ(xu+yv) du dv. (4)

Equation (4) can thus be seen as being proportional to the convo-
lution product of the aperture A(x, y) and the Fourier transform
of the mask F(x, y):

P(x̃, ỹ) = e4iπF/λA(x, y) ∗ F(x, y). (5)

If a closed form for the function F(x, y) can be derived, then
Eq. (5) can be used to compute the electric field in the Lyot
plane without explicitly computing the electric field in the inter-
mediate image plane. The calculation of F(x, y) depends on the
chosen phase mask M(u, v). It is more convenient to write the
expression of F(x, y) as a double integral with respect to ρ and θ,
where ρ and θ are the radial distance and the azymutal angle
in the (u, v) plane. For vortex phase masks, the function M(ρ, θ)
does not depend on ρ, and equals eiθl, where l is the topological
charge. This property makes it possible to proceed first with the
integration with respect to ρ:

F(x, y) =

∫ 2π

0

∫ L

0
ρM(θ) e2iπρ(x cos(θ)+y sin(θ)) dρ dθ

=

∫ 2π

0
M(θ) Ψ(x ρ cos(θ) + y ρ sin(θ)) dθ

where Ψ(r) =

∫ L

0
ρ e2iπρr dρ =

(1 − 2iπLr) e2iπLr − 1
4π2r2 · (6)

Note that L represents the radius of the image plane mask (in
units of λ/D). While it is usually assumed that the mask is in-
finitely large, it is necessary to specify its size in order to derive
the closed form expression for Ψ(r) given in Eq. (6).
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2.2. General expression for even topological charges

In order to derive this result, we start by rewriting Eq. (6), but
instead of first integrating over ρ, we integrate first over θ:

F(x, y) =

∫ 2π

0

∫ L

0
ρ eilθ e2iπ(x ρ cos(θ)+y ρ sin(θ)) dρ dθ

=

∫ 2π

0

∫ L

0
ρ eilθ e2iπrρ cos(θ−φ) dρ dθ

=

∫ L

0
ρeilφ

(∫ 2π

0
eilθ̃ e2iπrρ cos θ̃ dθ̃

)
dρ, (7)

where we have first written x = r cos φ, y = r sin φ, and then
proceeded with the change of variables θ̃ = θ − φ. We recognize
here an expression which is closely related to the definition of
the Bessel function of the lth order. The expression of F(x, y)
becomes:

F(x, y) = (−1)leilφ
∫ L

0
2πJl(2πrρ) ρ dρ, (8)

and the final expression for F(x, y) is obtained after integrating
over ρ:

F(x, y) = eilφ 2πL2(πLr)l

(2 + l)Γ(l + 1) 1F2

(
1 + l/2; 2+l/2, 1+l;−(πLr)2

)
,

(9)

where F is the generalized hypergeometric function.

2.3. Expression for the first few even topological charges

It is not difficult to derive for the first few even topological
charge closed form expressions which only use Bessel func-
tions. The expression of F(x, y) has previously been derived for
the 4QPM and a VPM of topological charge l = 2:

F(x, y) =
e2iφ(x,y)

π r(x, y)2

[
− 1 + J0

(
2πL r(x, y)

)
+ πL r(x, y) J1

(
2πL r(x, y)

)]
(10)

where r(x, y) =

√
x2 + y2 , and φ(x, y) = tan−1(y/x).

In the case of a topological charge l = 4, the integration over θ
gives the following result:

F(x, y) =
e4iφ(x,y)

π r(x, y)2 ×

[
2 + 4 J0

(
2πLr(x, y)

)
+

(
π L r(x, y) −

6
π L r(x, y)

)
J1

(
2πLr(x, y)

)]
. (11)

And for a topological charge l = 6, this expression becomes:

F(x, y) =
e6iφ(x,y)

π r(x, y)2 ×

[
−3 +

(
9 −

60
π2 L2 r(x, y)2

)
J0

(
2πLr(x, y)

)
+

(
π L r(x, y)−

36
π L r(x, y)

+
60

π3 L3 r(x, y)3

)
J1

(
2πLr(x, y)

)]
. (12)

3. Numerically optimized apodizers
Using Eqs. (10) and (11) derived in the previous section, and
proceeding with the same discretization process as described
in Carlotti (2013), apodizers have been optimized for different
apertures. The mask is discretized over N points along each axis
of the pupil plane. We assume a unit aperture diameter, and the
distance between nearest neighbors is ∆x = ∆y = 1

N .

3.1. Set up of the optimization problem
The problem consists in maximizing the total transmission of the
mask

∑N
i=1

∑N
j=1 A(xi, y j)∆x∆y under the following constraints

set on the extremum values of the transmission of the apodizer,
and of the amplitude of the electric field P(x̃k, ỹl) in the Lyot
plane:

0 < A(xi, y j) < 1, with {xi, y j} ∈ ∆A

|P(x̃k, ỹl)|2 ≤ 10−c, with {x̃k, ỹl} ∈ ∆C, (13)

where ∆A is the region defined by the telescope’s aperture, ∆C is
the region defined by the Lyot stop, and c measures the attenua-
tion of the intensity in the reimaged pupil plane in a logarithmic
scale.

Since the vortex phase mask creates a complex amplitude in
the Lyot plane, using linear constraints would force valid phasers
in this plane to be located inside a square of size

√
2 × 10−c/2.

To explore all valid solutions, one must let the valid phasers live
inside a larger area: a circle of radius 10−c/2 (which circum-
scribes the previous square). This corresponds to the quadratic
constraint that appears in Eq. (13).

3.2. Results in the case of noncircular apertures
Before studying exhaustively the properties of apodized vortex
coronagraphs for various apertures, we first have to comment on
the importance of the choice of the Lyot stop, and how the vortex
phase mask constrains this choice. In particular, we want here to
consider the case of noncircular apertures.

Many major ground-based and space-based telescopes have
circular apertures (for instance the VLT’s UTs, or the Hubble
Space Telescope, among many others). The two Keck telescopes
are segmented, however, and the shape of their outer edge is not
circular (although their central obscuration is). The same can be
said of the Gran Telescopio Canarias (GTC), which has a very
similar pupil.

Other segmented telescopes are the future major gound-
based telescopes such as the European Extremely Large
Telescope (E-ELT), the Thirty-Meter Telescope (TMT), and a
potentially large segmented space telescope. We should also
mention the James Webb Space Telescope – whose primary mir-
ror is also segmented – but the design of its coronagraphic in-
struments has long been finalized, and no modification can be
expected.

The formalism that we have introduced allows us to design
apodizers for any type of aperture, and we have done so by con-
sidering the aperture of the Keck telescopes. Both primary mir-
rors are composed of 36 hexagonal segments of 1.8 m (corner
to corner). The size of this aperture is close to 10.9 m along
its longest diameter, and 9 m along its smallest diameter, and
it is commongrayly accepted that the aperture mean diameter
is 10 m.

We have found that in the best case apodizers only
have a 1–2% transmission if the Lyot stop transmissive area
encompasses the outermost segments (those that lie in the
9−11 m diameter ring).
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Example of an apodizer designed for the Keck aperture
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Comparison of the Keck pupil and the apodizer designed for it
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Fig. 2. Example of a design for the Keck telescope, a charge 4 vortex coronagraph, and a circular Lyot stop: a) apodizer transmission; b) intensity
in the Lyot plane (log scale); and c) comparison of the Keck aperture and the apodizer. In the last figure the apodizer is represented in white, while
the Keck aperture is represented in gray (wherever the apodizer transmission is zero).

On the contrary, if the Lyot stop does not encompasses these
outermost segments, i.e., if the Lyot stop outer edge is circu-
lar, then the transmission of the apodizers becomes significantly
higher.

This is not too surprising: in its original design, the vortex
coronagraph assumes a circular aperture noncircular artifacts,
such as the spiders or a noncircular outer edge, make it diffi-
cult to retrieve a high contrast. While an apodizer can be used
to help restoring a high contrast, it cannot entirely compensate
for the fact that the vortex phase mask works preferentially with
circular clear aperture.

As it is shown in Fig. 2, the transmission of an apodizer com-
puted for the Keck telescope and a circular Lyot stop is almost
zero everywhere outside the circle sets by the Lyot stop’s outer
edge. No constrains was explicitly set on the apodizer, and the
apodizer is only indirectly constrains by the Lyot stop properties.

With Keck, blocking light in the outermost segments means
a maximum throughput 20% smaller than the throughput associ-
ated with the entire pupil, and a mild resolution loss of about 8%
(assuming a 10 m diameter for the aperture).

The apertures of the E-ELT and the TMT are composed
of a much higher number of segments, however, and mak-
ing the outer edge circular for them does not come with the
same throughput or resolution limitation. Besides, in the case of
E-ELT, the secondary mirror will be circular. Its diameter will
be such that it will only capture the inner, largest circular area
possible, making the effective diameter of the telescope 37 m.

Since it appears necessary to restrict the Lyot stop’s outer
edge to a circle, and that it indirectly constrains the apodizer
transmission to be zero outside the same circle, we have chosen
to only consider circular apertures and circular Lyot stop in the
rest of this study.

3.3. Results in the case of circular apertures

Five linear obscuration ratios of 10, 15, 20, 25, and 30% have
been considered. The secondary support structure is orthogonal
and their thickness is either 0, 0.5, or 1%. The first case cor-
responds to a spider-free centrally obscured aperture, which is
useful to consider when comparing the properties of the nu-
merically optimized apodizers with those of the ring-apodizer
which too are designed for an aperture with a central obscura-
tion but no spiders. The 0.5 and 1% thicknesses have been cho-
sen to match the thickness of current telescopes’ spiders. For

instance the spiders of the Hale telescope at the Palomar obser-
vatory are 0.25% thick, and those of the 8 m unit telescopes at
the VLT are 0.5% thick.

Overall, the Lyot stops’ geometry and the apertures’ geom-
etry are similar. The diameter of the Lyot stops is 96% that of
the aperture diameter. This is meant to prevent the diffraction ef-
fects of the finite size of the vortex phase mask. For the same
reason, the secondary supports of the Lyot stops are twice as
large as those of the apertures. The main difference between the
Lyot stops and the apertures is the size of the central obscura-
tion of the Lyot stops, which is larger for the Lyot stops than for
the apertures, and is a key parameter that must be adjusted when
looking for an optimal apodizer.

The two axes of symmetry displayed by the apertures and the
Lyot stops are used to reduce the memory required during the op-
timizations. The transmission of the apodizers was optimized in
one quadrant of the pupil plane over N = 256 points (along each
axis). The amplitude was computed in one quadrant of the Lyot
plane over M = 64 points. As the vortex mask was assumed to
be 32λ/D in diameter, this number of points is enough to satisfy
the Nyquist-Shannon sampling theorem.

Note that for this number of points up to a third of the avail-
able memory was used. While further increasing it is possible, it
was enough to assess the interest of the method by computing a
large number of apodizers.

4. Performance

4.1. System throughput

As it was observed with the apodized 4QPM coronagraph and
with the ring-apodized VC, the throughput of the system de-
pends on the size of the central obscuration of the Lyot stop:
an optimal value exists for which the throughput is maximized.

4.1.1. Comparison with the ring apodizers

The ring-apodized vortex coronagraph proposed in Mawet et al.
(2013b) creates high-contrast in spite an aperture with a circular,
central obscuration. The ring apodizers are formed of 2 or more
rings with different transmissions. For instance, a charge 2 vortex
requires a first ring with a t = 1 transmission, surrounded by
a 0 < t < 1 second ring. In the case of a charge 4 vortex, a t = 1
first ring is surrounded by a t = 0 second ring, which itself is
encircled by a 0 < t < 1 third ring. The transmissions and radii
of the rings depend on the obscuration ratio of the aperture.
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Fig. 3. Comparison of the throughputs estimates of the ring apodized
VC (dotted lines) and the shaped pupil apodized VC (solid lines) for
topological charges 2 and 4. Different measures of the throughput are
illustrated. Pupil plane estimates are showed in red, while image plane
estimates are showed in blue. The dotted black line represents the
throughputs given in Mawet et al. (2013b).

Ring apodizers offer an elegant and relatively simple ap-
proach to a complicated problem, but they do not take the diffrac-
tion effects of the secondary supports into account. Moreover
both the central obscuration and the shape of the pupil are as-
sumed to be circular, which is not the case of all telescopes,
although we showed that numerically optimized apodizers de-
signed for noncircular apertures were forced to be quasi-circular
by the VC.

The numerically optimized apodizers and the ring apodizers
are designed to solve the same general problem, however, and it
is interesting to try and compare how similar or not they can be.

A first element of comparison comes from looking at the
optimal apodizers that have been computed for the spider-free
aperture. These apodizers look very much like the ring apodiz-
ers. The shaped pupils can also be divided into two or three ar-
eas, the only difference being that the transmission of the outer
annulus is binary with the shaped pupils, whereas it has a gray
transmission everywhere in the annulus of the ring-apodizers.

Figure 3 shows how the system’s throughput of the ring
apodizers change with the obscuration ratio of the aperture. The
corresponding quantities for the optimal apodizers computed for

the five 10–30% central obscuration spider-free apertures are
displayed for comparison.

Two types of throughput estimates are distinguished: pupil-
plane estimates and image-plane estimates. Pupil-plane esti-
mates are the ratio of the total planet intensity going through
the Lyot stop, and the total planet intensity going through the
plane located immediately before the apodizer. Image-plane es-
timates are the ratio of the total planet intensities measured in a
small circular area centered on the planet with and without the
apodized coronagraph. We chose this circular area to be 2λ/D in
radius.

For comparison, the throughputs given in Mawet et al.
(2013b) are computed in the pupil-plane, although this compu-
tation was not performed by propagating light in a simulated
system, but rather by relying on the analytic description of the
apodized coronagraph.

A first observation is that the throughputs given in Mawet
et al. (2013b) for charges l = 2 and l = 4 are almost identical
to the pupil-plane estimates we have computed by propagating a
planetary companion in a simulated coronagraph. The very small
differences that were observed are very likely due to the fact that
the size of the VC had to be finite, and was set to 256 λ/D.

In the rest of this comparison analysis, we refer to the system
throughput as the image-plane estimate of the throughput.

In the case of the charge l = 2 VC, the system throughput
associated with the numerically optimized apodizers is always
lower than what it is with the ring apodizers. The difference
gets smaller with the central obscuration, however. The system
throughput for the ring-apodizers is 72% for a 10% central ob-
scurations COA, and 30% for COA = 30%, and this decrease
is quite linear. As for the system throughput for the numerically
optimized apodizers, it is 62% for COA = 10%, and 27% for
COA = 30%. It is thus 10% smaller for the smallest obscuration,
and 3% smaller for the largest obscuration.

On the other hand, in the case of the charge l = 4 VC, the
system throughput associated with the numerically optimized
apodizers is smaller than that of the RAVC for very small ob-
scurations, but it is significantly larger for large central obscu-
rations. This difference goes from being −4% for COA = 10%,
to being 0 for COA = 13%, to being +10% for COA = 20%,
and +17% for COA = 30%. For COA = 10% it is 56%. It is 41%
for COA = 20%, and it is 30% for COA = 30%.

The fact that (a) the focal plane masks have a finite size
(32λ/D), and (b) the remaining on-axis energy inside the Lyot
stop is small but not zero may be the main reasons that explain
why the throughput of the apodized charge 4 VC is higher than
it could have been expected. This is outside the scope of this pa-
per, but we intend to address this point in future work. One of
the difficulty preventing us to present results on this topic in this
paper comes from the current impossibility to compute apodiz-
ers for larger OWA than 32λ/D, as it requires a RAM quantity
larger than what is available with the computers we have access
to at the moment.

We already mentioned that, when looking for the values of
COLS, we started with Lyot stops prescribed using the analytical
expression of the ring apodizers and found a local optimum in
that neighborhood. While not showed in Fig. 3, we have found
that the COLS values are very close to their counterpart for the
ring apodizers for l = 2, and close to but increasingly smaller for
l = 4.

This confirms that the formalism used to design ring apodiz-
ers can and should be used to infer a first estimate of the obscu-
ration ratio of the Lyot stop used in the numerical optimizations.
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Table 1. Charge 2 VC: main parameters for the combination of apodiz-
ers and Lyot stops that give the highest system throughputs for the five
aperture diameters COA and the three spider thicknesses tS.

COA tS COLS TA TLS TLP Tmax IWA Contrast

10 0 32 90 83 66 62 0.9 5 × 10−8

15 0 38 85 80 56 52 0.9 4 × 10−8

20 0 50 87 70 49 42 0.8 5 × 10−9

25 0 52 80 69 42 34 0.9 6 × 10−8

30 0 58 79 64 36 27 0.9 8 × 10−8

10 0.5 28 83 84 57 52 0.9 3 × 10−8

15 0.5 40 84 77 52 46 0.9 1 × 10−8

20 0.5 48 83 71 46 39 0.9 2 × 10−8

25 0.5 58 84 62 39 29 0.8 5 × 10−9

30 0.5 58 77 64 34 24 0.9 7 × 10−9

10 1 28 63 84 38 29 1.1 3 × 10−8

15 1 40 64 77 35 26 1.1 5 × 10−8

20 1 48 65 71 32 23 1.2 6 × 10−8

25 1 58 67 62 28 18 1.5 7 × 10−8

30 1 58 67 64 29 18 1.4 2 × 10−8

Notes. COLS refers to the central obscuration of the Lyot stop. These
three parameters are given in percent: of pupil diameter. The transmis-
sion of the apodizer and the Lyot stop are noted TA and TLS (in % of
incoming light). The maximum fraction of the incoming planet light
transmitted by the Lyot plane is noted TLP, and is given in % of incom-
ing light as well. The last three columns display the effective maximum
throughput Tmax (measured in the image plane), the IWA (in units of
λ/D), and the mean contrast at one IWA from the star.

4.1.2. Additional impact of the spider thickness

To find the optimal obscuration ratio, we have computed apodiz-
ers for several Lyot stops, starting with the obscuration ratio pre-
dicted by the closed form expressions derived in Mawet et al.
(2013b), and iterating until a maximum was reached.

Tables 1 and 2 list – for the topological charges l = 2 and
l = 4 – the parameters of the optimal Lyot stops and of the
apodizers that correspond to them, for the five apertures and the
three spider thicknesses that were considered. To reach the maxi-
mum throughput, larger central obscurations COA require larger
Lyot stop obscurations COLS, and this decreases both the trans-
mission of the apodizer TA and the maximum throughput of the
coronagraph Tmax.

The tables also display the transmission of the Lyot stop TLS.
It should be noted that the product of TA and TLS – which
could be seen as the expected throughput of the coronagraph –
is about 10% smaller than Tmax: some of the off-axis light gets
diffracted outside the Lyot stop, and is thus blocked by it.

Increasing COA from 10 to 30% decreases Tmax by about a
third for the charge 4 AVC, no matter the spider thickness. For
the charge 2 AVC, Tmax decreases by 50% for the spider-less
apertures, by 40% for tS = 0.5%, and by 23% for tS = 1%.

Given the same central obscuration, thicker spiders, how-
ever, greatly decrease the coronagraphic throughput. The im-
pact of the spider thickness tS on the throughput Tmax increases
with tS: while there is only a 5–8% decrease of the throughput
between coronagraphs designed for a spider-free aperture and
designs with 0.5% thick spiders, there is a 14–19% decrease
of the throughput between the latter and 1% thick spiders. The
smaller the central obscuration of the aperture, the larger the
decrease.

Figures 4 and 5 show a total of twelve apodizers optimized
for charge 2 and charge 4 VC, for apertures with 10 and 30%

Table 2. Charge 4 VC: main parameters for the combination of apodiz-
ers and Lyot stops that give the highest system through puts for the five
aperture diameters COA and the three spider thicknesses tS.

COA tS COLS TA TLS TLP Tmax IWA Contrast

10 0 38 88 79 61 56 1.8 2 × 10−10

15 0 44 85 74 54 48 2.3 2 × 10−10

20 0 50 83 70 48 41 2.6 3 × 10−10

25 0 50 76 72 43 35 2.8 3 × 10−10

30 0 56 75 67 40 30 3.2 6 × 10−10

10 0.5 36 84 81 56 50 1.8 2 × 10−9

15 0.5 42 81 77 49 42 2.3 6 × 10−10

20 0.5 50 79 71 43 35 2.5 5 × 10−9

25 0.5 50 73 72 39 31 2.8 4 × 10−9

30 0.5 56 71 67 35 25 3.2 7 × 10−9

10 1 32 63 85 37 28 2.2 2 × 10−8

15 1 42 64 78 34 25 2.3 2 × 10−8

20 1 50 63 72 29 21 2.5 1 × 10−8

25 1 50 57 73 25 18 2.9 2 × 10−8

30 1 56 55 68 22 14 3.2 3 × 10−8

Notes. See notes of Table 1.

central obscurations, and 0, 0.5 and 1% thick spiders. The
apodizers designed for the spider-free apertures display concen-
tric dark rings which thickness increases towards the center of
the apodizer. The rings appear to be apodizing the central obscu-
ration of the aperture.

For a charge 2 VC, one can noticed two different areas:

– a first annulus that surrounds the central obscuration of the
aperture, where the transmission is close to 1. The outer di-
ameter of this annulus is set by the Lyot stop for which the
mask is designed.

– a second annulus than encircles the first, where, for small
central obscurations, small blocking regions are located on
a 2D lattice with a 1/OWA periodicity (in units of pupil di-
ameter). Most of these regions are isolated, but some merge
into larger structures.

For a charge 4 VC, three areas are noticeable:

– a first annulus where the transmission is 1 almost every-
where.

– a dark ring that surrounds the first region, which diameter is
set by the Lyot stop for which the mask is designed.

– a second annulus than encircles the two other regions. Here
again, small blocking structures appear on the same 1/OWA
periodic 2D lattice.

The presence of spiders creates a more complicated pattern, as
the mask apodize both the central obscuration and the spiders. It
is interesting to compare the patterns displayed by the apodizers
designed for a charge 4 VC, and for apertures with 1% thick
spiders and 10 and 30% central obscurations: in the case of the
smaller obscuration, thick horizontal and vertical dark strips can
be seen next to the spiders, i.e., the apodizer appears to be mainly
apodizing the spiders. On the other hand, when looking at the
other apodizer, thick dark concentric rings can be seen, and the
apodizer appears to be mainly apodizing the central obscuration.

4.2. Inner working angle

The main advantage of phase mask coronagraphs is their very
small IWA. As noted in previous papers, using an apodizer
changes the usual off-axis transmission of the coronagraph.
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Optimal apodizer ; Central obscuration: 15% ; Spider thickness: 0.5%
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Optimal apodizer ; Central obscuration: 15% ; Spider thickness: 1%
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Optimal apodizer ; Central obscuration: 30% ; Spider thickness: 0%
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Optimal apodizer ; Central obscuration: 30% ; Spider thickness: 0.5%
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Optimal apodizer ; Central obscuration: 30% ; Spider thickness: 1%
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Fig. 4. Apodizers giving the highest system throughput for a charge 2 VC used with a 10% (top) and a 30% (bottom) central obscuration, and three
spider thicknesses: 0, 0.5, and 1% (from left to right).
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Optimal apodizer ; Central obscuration: 15% ; Spider thickness: 0.5%
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Optimal apodizer ; Central obscuration: 15% ; Spider thickness: 1%
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Optimal apodizer ; Central obscuration: 30% ; Spider thickness: 0%

Distance (in units of pupil diameter)

D
is

ta
n
c
e
 (

in
 u

n
it
s
 o

f 
p
u
p
il 

d
ia

m
e
te

r)

−0.5 0 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(d)

Optimal apodizer ; Central obscuration: 30% ; Spider thickness: 0.5%
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Optimal apodizer ; Central obscuration: 30% ; Spider thickness: 1%
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Fig. 5. Apodizers giving the highest system throughput for a charge 4 VC used with a 10% (top) and a 30% (bottom) central obscuration, and three
spider thicknesses: 0, 0.5, and 1% (from left to right).

A31, page 8 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201323258&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201323258&pdf_id=5


A. Carlotti et al.: Apodized phase mask coronagraphs. II. Solutions for the vortex coronagraph

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Angular distance (lambda/D)

R
e
la

ti
v
e
 t
h
ro

u
g
h
p
u
t 
(%

)

Off−axis transmission: Comparison ; Charge2

(a)

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Angular distance (lambda/D)

R
e
la

ti
v
e
 t
h
ro

u
g
h
p
u
t 
(%

)

Off−axis transmission: Comparison ; Charge4

(b)

Fig. 6. Comparison of the relative off-axis transmission of the VC (black
line) and an AVC (red line) designed for a COA = 20% obscured aper-
ture with tS = 0.5% spiders. The comparison is made for a) a charge
2 vortex and b) a charge 4 vortex. The transmissions are normalized
with respect to the coronagraph throughput Tmax.

The maximum throughput Tmax is reached for sources at
around 25–26 λ/D from the star, but Tmax/2 is reached at
much shorter distances (≈1–3λ/D depending on the topological
charge, the central obscuration, and the spider thickness of the
aperture). This half-throughput is usually used to define the IWA
of the coronagraph (as suggested in Guyon et al. 2006).

A first and important observation must be made: as illus-
trated in Fig. 6, and contrary to the off-axis transmission curve
of a VC, the transmission of an AVC is not monotonic. Because
of that, in some cases, using the IWA to fully describe the reso-
lution properties of the AVC may be difficult.

For angular distances θ between 0 and 1–1.2λ/D, the
transmission (normalized with respect to the maximum coro-
nagraphic throughput Tmax) follows a θl function, with l the
topological charge of the VC. This confirms that, like the VC,
the AVC is a second or fourth-order coronagraph.

In Fig. 6, the apodizer of the AVC is designed for a 20%
obscured aperture with 0.5% thick spiders. The transmission in-
crease rate slows down between 1 and 1.6λ/D for l = 2, and be-
tween 1.5 and 2.2λ/D for l = 4. This does not have much effect
on the IWA of the charge 2 AVC: it is almost identical to what
it is for the charge 2 VC (0.9λ/D). The same is not true for the
charge 4 AVC, however: while 40% of the maximum through-
put is reached for θ = 1.4λ/D, the IWA of this coronagraph is
about 2.5λ/D (while it is 1.75λ/D with a charge 4 VC).

Figure 7 shows how the off-axis transmission for the five dif-
ferent central obscurations and the three different spider thick-
nesses that were considered. Note that these numbers are also re-
ported in Tables 1 and 2. Again, the transmission slows down at
about 1–1.2λ/D, before increasing again at about 1.5–2λ/D. The
effect strengthens with the obscuration ratio and the topological
charge. For l = 2, the transmission slows down for COA = 10%,
and it stalls for COA = 30%. For l = 4, it stalls for COA = 10%,
and it decreases for COA = 30%.

For l = 2 the IWA of the AVC is close to that of the VC
for tS = 0% and 0.5%, where the half-transmission is reached
for θ = 0.9λ/D. The IWA only differs for tS = 1% for which it
increases with the obscuration, ranging between 1.1 and 1.5λ/D.
For l = 4 the IWA of the AVC is larger than what it is with the
VC. The half-transmission is reached for θ = 1.8–3.2λ/D for
tS = 0% and 0.5%, and for COA = 10–30%. For tS = 1%, it
ranges between 2.2 and 3.2λ/D.

Associated with the apodizer, the vector vortex masks atten-
uate the on-axis light of the star in a given region of the Lyot
plane. Figure 8 illustrates one of the 2D intensity distributions
that have been computed. In the dark zones that appears in the
Lyot plane, the intensity has been reduced to a few millionth of
what it would have been without the apodizer.

The PSF of the coronagraph is computed by taking the
Fourier transform of the product of the appropriate Lyot stop
and the electric field observed in the Lyot plane. Normalizing
this PSF is done by computing the propagation of an off-axis
source (located as close to the OWA as it is possible without
being attenuated). The intensity of the first PSF is divided by
the maximum intensity of the second one. An example of such
a PSF is showed in Fig. 9. One can see that a central structure
extends up to 12–15λ/D from the star, where the intensity is
lower than 3 × 10−9. Beyond this distance, the intensity stays
close to 3 × 10−10 (there is no point in looking further away
than 32λ/D since that distance is also the radius of the vortex
phase mask).

Tables 1 and 2 list the imaging properties of the 15 coron-
agraphs, and in particular the contrast measured at the IWA (it
is an average value computed in an annulus with a mean radius
that equals the IWA, and a width of 1λ/D). The contrast in the
image plane is only indirectly constrained: the real constraints is
set on the intensity of the electric field in the Lyot plane.

The contrast is not as low with the l = 2 AVC than it is with
the l = 4 AVC. For l = 2 it is between 5 × 10−9 and 8 × 10−8,
and neither the obscuration ratio nor the spiders thickness appear
to have a strong influence on the contrast (its mean value is 5 ×
10−8 for the spider-free apertures, 1.5 × 10−8 for the tS = 0.5%
apertures, and 5 × 10−8 for the tS = 0.5% apertures).

It can be noticed that the contrast increases with both COA
and tS. The contrast is close to 2–3 × 10−10 for the spider-free
apertures, except for COLS = 30% where it is 6×10−10. It be-
comes about 10 times higher for tS = 0.5%, with a maximum
of 7 × 10−9. Finally, for tS = 1%, the maximum contrast be-
comes 2–3 × 10−8.

The contrast increase is partially explained by the fact that in
the optimizations the intensity measured in the Lyot plane is not
normalized by the transmission of the apodizer TA. Nonetheless,
TA and Tmax) do not change enough from one aperture to the
other to explain the contrast increase, and the constraint set on
the intensity should be adjusted to improve the contrast.

4.3. Chromaticity

The most recent iterations of the vortex phase mask are partially
achromatic: 10−8−10−9 contrast have been measured in a 10%
band (Mawet et al. 2012). It is important to study the chromatic-
ity of the apodized coronagraph as well.

The apodizer is designed for a focal plane mask with a di-
ameter which is fixed when measured in units of λ/D. Hence,
the physical size of the mask should scale with the wavelength,
while in fact it stays the same. At shorter wavelengths, the mask
will appear to cover a larger area that expected, and the opposite
effect will occur at longer wavelengths.
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Fig. 7. Transmission (in %) of an off-axis source as a function of the distance to the star (in units of λ/D), for a) and d) apertures with no spiders;
b) and e) apertures with 0.5% thick spiders; and c) and f) apertures with 1% thick spiders. Figures a), b), and c) correspond to a charge 2 VC; and
figures d), e), and f) correspond to a charge 4 VC. In each case, the transmission is given for the five central obscurations: 10, 15, 20, 25, and 30%
(from top to bottom). The red dots indicate the IWA of each coronagraph.
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Fig. 8. Example of a 2D intensity distribution in the Lyot plane of the
apodized VC. The intensity is displayed on a log scale for an aperture
with a 15% central obscuration and 1% thick spiders.

As it can be seen in Fig. 10 a relatively bright ring surrounds
the PSF of the optimal apodizer. This is quite understandable
since the apodizer modifies the PSF to make it compatible with
the vortex phase mask, which has a finite radius that in this case
equals 32λ/D. Beyond that angular distance the amplitude of
the electric field has no reason to match the requirements of
the vortex phase mask. The impact on the performance of the
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Fig. 9. Coronagraphic PSF (azymutal average) for the apodized vortex
designed for a 15% centrally obscured aperture and 0.5% thick spiders.
The intensity is displayed on a log scale. Angular distances are given in
units of λ/D.

coronagraph is thus expected to be stronger at shorter than at
longer wavelengths.

It is also expected that chromatic effects may be weaker for
larger vortex phase masks, as the intensity of the ring that sur-
rounds the region for which the mask is designed will get weaker
too. The current limitation of the mask radius is only due to the
limited amount of RAM in the computer we used to perform
the optimization (64GB). Much larger amounts are available in
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Fig. 10. 2D a) and azymutal average b) of the PSF of the optimal
apodizer designed for a 10% central obscuration, 1% thick spiders, and
a charge 4 vortex. In the azymutal average, the red dot-dashed line de-
notes the highest spatial frequency captured by the mask at λ = 1.1λ0,
the blue dashed line does the same λ = 0.9λ0, and the dotted green line
does it at λ = λ0.

other machines, however, and larger masks could be computed.
One should keep in mind that smaller mask radii may be respon-
sible for higher coronagraphic throughputs, however.

Figure 11 shows how the contrast changes with the band-
width for an AVC designed for a COA = 15%, tS = 0.5%
aperture. The indicated contrast is the mean contrast inside an
annulus centered on the star, and with a 2.3λ/D inner radius,
and 26λ/D outer radius. At λ = λ0, the physical size of the mask
corresponds to the 32λ/D for which the mask is designed.

The contrast goes down with the bandwidth. A 10−7 contrast
is obtained with a 34% bandwidth, a 10−8 contrast with an 18%
bandwidth, and a 10−9 contrast with a 2% bandwidth.

While a 1.5 × 10−8 contrast in a 20% bandwidth might be
enough for a ground-based instrument, additional constraints
may have to be set on the Lyot plane intensity to increase the
bandwidth and work with lower contrast. The electric field can
be computed for two wavelengths instead of a single one, and
to do that two mask sizes must be considered in the optimiza-
tion problem. To make sure that high-contrast is obtained at
the two extremities of a 20% bandwidth, one could for instance
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Fig. 11. Mean contrast as a function of the bandwidth (in %) for a
charge 4 VC, and an aperture with 15% central obscuration and 0.5%
thick spiders. The contrast is measured between the IWA and the OWA
of the coronagraph, inside an annulus.

compute the electric field for 32 and 25.6λ/D focal plane masks.
Additional constraints may have to be set in-between these two
extremum values.

5. Manufacturing

The apodizers displayed in this paper are not absolutely binary,
but it has been shown in previous papers (Carlotti et al. 2011;
Carlotti 2013) that solutions to these optimization problems tend
to be binary, i.e, that the mask transmission can be rounded with-
out affecting the contrast as long as enough points, say 512 in
one quadrant of the pupil plane for a 10−9 contrast, are used to
discretize the apodizer.

A binary apodizer can be manufactured as a quasi-
achromatic component. The most common way to manufacture
these devices uses photolithography. Several microdots apodiz-
ers (Martinez et al. 2009; Sivaramakrishnan et al. 2010) have
been manufactured with this technique for the coronagraphs of
the gemini planet imager (GPI, Macintosh et al. 2007) project,
and the spectro-polarimetric high-contrast exoplanet research
(SPHERE, Beuzit et al. 2008) project.

Laboratory experiments conducted for the development of
the optics of the SPICA coronagraphic instrument (Enya et al.
2008) showed that transmissive binary apodizers could provide
a 8 × 10−8 contrast in the visible. The substrate that is used can
introduce chromatic wavefront errors, as well as internal reflec-
tions. The smallest features in the binary apodizers developed
for SPICA are similar in size to those of the apodizers presented
in this paper.

Several 2D shaped pupils have been manufactured in the last
few years. The size of their smallest feature is virtually identical
to that of the binary apodizers developed for SPICA. In particu-
lar two masks have been designed for the Subaru telescope, and
they are now part of the SCExAO instrument (see Martinache &
Guyon 2009; Carlotti et al. 2012). Both have been manufactured
using photolithography, with a resolution of about 10 µm (with
about 1800 points across the apodizer). The high reliability of
the etching process is illustrated in Fig. 12. The smallest features
are reproduced with fidelity, including 1-pixel large details.

Contrasts lower than 10−8 will require other types of binary
apodizers, however. They must either be substrateless (and thus
free-standing) or reflective.
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Fig. 12. Comparison of the theoretical and actual transmissions of a por-
tion of a 2D shaped pupil manufactured for the Subaru telescope. Left:
microscope photography of the mask. Right: corresponding desired pro-
file. Each pixel has a 10 µm size.

The possibility of using MEMS or MOEMS devices such as
micro-shutter arrays or micro-mirror arrays is particularly com-
pelling at it would allow a dynamic control of the pupil plane
amplitude, in addition to replacing several apodizers with a sin-
gle device. This is especially interesting when considering the
absence each night of several randomly selected mirrors in the
pupil of the E-ELT (and potentially the TMT and other future
telescopes with a large number of segments). Although it is
not clear whether this technology is currently mature enough to
be used for high-contrast imaging, such devices have been ex-
tensively tested for spectrophotometry instruments. Located in
an image plane they allow the dynamical selection of multiple
targets.

Deep reaction-ion etching – the same technique used to
manufacture JWST-NIRSpec’s micro-shutter arrays – can also
be used to manufacture transmissive, freestanding masks. The
ripple masks used in the high-contrast imaging laboratory at
Princeton University, and in the high-contrast imaging testbed
(HCIT) at the jet propulsion laboratory (JPL) were manufac-
tured using this technique (Belikov et al. 2007). In this case small
openings of a few tens of microns in size would be etched in a
silicon wafer, with an orthonormal grid overlaying the mask to
make it freestanding (and taken into account in the design pro-
cess). Such masks would be achromatic, and would not introduce
any wavefront aberration. Because of the nonzero width of the
overlaying grid, the transmission of the mask would be slightly
reduced, however.

Finally, reflective apodizers are currently in development at
JPL (Balasubramanian et al. 2013) in the context of the shaped
pupil coronagraph developed for WFIRST-AFTA. A black sili-
con coating is deposited on a flat, reflective substrate to mask the
nonreflective area of the apodizer.

6. Discussion and conclusion

This paper builds upon and devises new methods to solve the
limitations of two early papers:

– Mawet et al. (2013b) presented 1D ring apodizers analyt-
ically optimized to create high-contrast with a VC and a
1D circular, centrally obscured aperture, without spiders.

– Carlotti (2013) presented 2D apodizers numerically opti-
mized to create high-contrast with a 4QPM coronagraph and
a 2D centrally obscured, arbitrarily shaped aperture, with
spiders.

We have showed that apodizers can be numerically optimized
in 2D to help restoring the high-contrast imaging capabilities
of vortex coronagraphs when used with obscured apertures with
arbitrary shapes and spiders. While the ring-apodizers have gray
transmissions, these apodizers resemble the shaped pupils in that

they have binary transmissions, and that they can be manufac-
tured using the same processes.

Closed form expressions for even topological charges have
been derived and used to directly compute the electric field in
the Lyot plane as a function of the electric field in the first pupil
plane. These pupil-to-pupil transforms have the advantage of not
explicitly sampling the intermediate image plane and the vortex
phase mask located there. One of the constraints of using these
transforms is that the angular extent of the mask is limited. Given
the computer currently used, it is possible to numerically opti-
mize apodizers that are discretized over several hundred points
on each axis of the pupil plane.

Because it is 2D, our formalism can be applied to the case
of a segmented, noncircular aperture such as the pupil of one of
the Keck telescopes. In practice the apodizer transmission is al-
most zero everywhere outside the inscribed circle defined by this
noncircular aperture. Moreover, to maximize the transmission of
the apodizer, the Lyot stop for which the apodizer is optimized
must also be limited to that inscribed circle. This limitation most
probably comes from the properties of the vortex mask, which is
initially supposed to be used with a circular aperture. Apart from
the apertures of the Keck telescopes, the GTC, or the JWST,
only the apertures of the TMT and the E-ELT feature a noncir-
cular outer edge, but their large number of segments make them
almost circular, and this limitation does not affect them much.

Hence, we have considered circular obscured apertures with
spiders. Apodizers have been computed for five different central
obscuration ratios: 10, 15, 20, 25, and 30%. For each of these
obscurations, we have considered three different spider thick-
nesses (0, 0.5 and 1%). The spiders form an orthogonal pattern.
Apodizers have been optimized for charge l = 2 and charge
l = 4 vortex phase masks. We were able to compute apodiz-
ers for 64λ/D OWA masks, but we have chosen to set the OWA
to 32λ/D since the substantially shorter time taken by the op-
timizations, and the smaller required amount of RAM, make it
possible to solve several optimization problems at the same time,
and thus explore a large number of different cases. This was nec-
essary to exhaustively characterize the performance of the coro-
nagraph in terms of throughput, IWA, and contrast.

In the optimization problems that we solve, the constraints
are set on the intensity of the electric field computed using the
pupil-to-pupil transform. We have chosen to set the attenuation
of the on-axis light that goes through the Lyot stop to 106. In
practice this creates a 10−8−10−10 contrast in the image plane
depending on the transmission of the apodizer. The Lyot stops
for which the coronagraphs have been designed have also been
optimized, although their optimization has not been performed
together with the optimization of the apodizers. Like all the aper-
tures that we have considered, all Lyot stops are circular.

In the case of the spider-free apertures, the results of the
numerical optimizations are similar to the ring-apodizers com-
puted using the closed form expressions derived in Mawet et al.
(2013b). Both types of apodizers are characterized by multiple
rings with different mean transmissions. A similar aspect was
found in our masks: the radii of their rings are close, and so are
their transmissions.

For topological charges l = 2, the throughputs are slightly
smaller than those of the ring-apodized vortex coronagraphs.
Like the charge l = 2 vortex phase mask, the 4QPM is a θ2 coro-
nagraph, and it is interesting to make an indicative comparison
between the apodizer computed for the 4QPM in Carlotti (2013)
for the aperture of the VLT. The throughput of this optimal
apodized 4QPM is 65%, while the throughput of the optimal so-
lution for an AVC computed for the closest look alike aperture
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in the present paper (with a 15% central obscuration, and 0.5%
thick spiders) is 46%, which is substantially lower. This differ-
ence appears solely associated with the type of focal phase mask.

For topological charges of l = 4, the throughputs of the op-
timal solutions are close to or larger than those of the RAVC,
especially for large central obscurations. For instance, for a 20%
obscured aperture, the throughput of the numerically optimized
apodized l = 4 VC is 42%, while it is about 32% with the
RAVC. For a 30% obscuration, these throughput becomes 30%
and 13%, respectively. We explain this difference by (a) the fi-
nite OWA of our vortex masks; and (b) the nonzero on-axis in-
tensity that remains in the Lyot plane. The influence on the per-
formance of the coronagraph of these two degrees of freedom
has not been characterized yet, and doing so will be one of our
next objectives.

Unlike the 1D apodizers showed in Mawet et al. (2013b),
the 2D apodizers that we have presented take the aperture spi-
ders into account. We chose to consider two nonzero thick-
nesses: 0.5 and 1% of the diameter, the former being the thick-
ness of the secondary supports of the 8m unit telescopes at the
VLT. The throughput changes significantly with the spider thick-
ness. While the throughputs associated with the 0.5% thick spi-
der apertures are – for both topological charges – about 3–10%
and 5–6% smaller than those associated with spider-free aper-
tures, the throughputs associated with the 1% thick spider aper-
tures are 9–33% and 16–28% smaller, respectively.

In addition to the horizontal and vertical alignments that are
required by apodized coronagraphs, taking the spiders into ac-
count requires a clocking alignment as well. The spiders for
which the apodizer is designed can be oversized with respect
to the aperture spiders to accommodate clocking errors.

For small off-axis angles θ, the transmission of off-axis
sources follows a θl function, which confirms the fact that, like
the VC, the AVC is an l-th order coronograph. The off-axis trans-
mission of the AVC is not as monotonic as it is with the VC,
however. The rate at which the transmission increases slows
down, stalls or even decreases at around θ = 1 − 1.2λ/D, and
it only resumes its maximum value at around θ = 1.5 − 2λ/D.
The strength of this effect goes with the central obscuration.

For l = 2, this does not affect the IWA much: it remains close
to 0.9λ/D, except for the 1% thick spiders for which the IWA be-
comes 1.1–1.5λ/D. The same is not true for l = 4. In this case
the IWA of the AVC is larger than it is with the VC, and it is
mostly affected by the obscuration ratio. It is close to 1.75λ/D
for a 10% obscuration, and increases to 2.5λ/D for a 20% obscu-
ration, and to 3.2λ/D for a 30% obscuration. It should be noted,
however, that it is difficult to describe the resolution properties
of the coronagraph by solely referring to the usual definition of
the IWA, i.e., the distance at which 50% of the light of the off-
axis light is transmitted. In particular the angle associated with
a 40% transmission – about 1.4λ/D – is very similar to that of
the VC for obscuration values up to 20%.

The active compensation of aperture discontinuities (ACAD)
presented in Pueyo & Norman (2013) is a pupil mapping con-
cept that uses two DMs to reduce the effective thickness of the
spiders without loosing photons. ACAD could be used to imple-
ment the ring-apodizers presented in Mawet et al. (2013b). The
apodizers presented in this paper are a compelling counterpart to
ACAD, which could be affected by the malfunction of some of
the DM actuators. In this view, they offer a more conservative so-
lution at only a moderate cost in throughput. Because the spider

thickness has an important influence on the throughput, apodiz-
ers designed for the VC could also take advantage of ACAD.

Although shaped pupils are binary apodizers – which are in-
herently achromatic – these apodizers are designed for a fixed
mask radius measured in units of λ/D, and the fixed physical
radius of the mask causes the PSF at different wavelengths to
be attenuated in different ways. The chromatic effects may be
small enough in some cases. For instance a 1.5×10−8 maximum
contrast is obtained in a 20% bandwidth for an aperture with
a 15% central obscuration and 0.5% spiders (resembling that of
the VLT’s UT). To make sure that lower contrasts are obtained
in a large bandwidth, apodizers will have to be optimized for
multiple mask sizes.
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