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ABSTRACT
The physics of instabilities in the precursor of relativistic collisionless shocks is of great im-
portance in high-energy astrophysics, because these instabilities build up the shock, control the
particle acceleration process and generate the magnetic fields in which the accelerated particles
radiate. Two crucial parameters control the micro-physics of these shocks: the magnetization
of the ambient medium and the Lorentz factor of the shock front; as of today, much of this
parameter space remains to be explored. In the present paper, we report on a new instability
upstream of electron–positron relativistic shocks and we argue that this instability shapes the
micro-physics at moderate magnetization levels and/or large Lorentz factors. This instability
is seeded by the electric current carried by the accelerated particles in the shock precursor as
they gyrate around the background magnetic field. The compensation current induced in the
background plasma leads to an unstable configuration, with the appearance of charge neutral
filaments carrying a current of the same polarity, oriented along the perpendicular current.
This “current-driven filamentation” instability grows faster than any other instability studied
so far upstream of relativistic shocks, with a growth rate comparable to the plasma frequency.
Furthermore, the compensation of the current is associated with a slow-down of the ambient
plasma as it penetrates the shock precursor (as viewed in the shock rest frame). This slow-
down of the plasma implies that the “current- driven filamentation” instability can grow for
any value of the shock Lorentz factor, provided the magnetization σ � 10−2. We argue that this
instability explains the results of recent particle-in-cell simulations in the mildly magnetized
regime.

Key words: acceleration of particles – instabilities – plasmas – shock waves.

1 IN T RO D U C T I O N

The physics of particle acceleration at relativistic collisionless shock
waves plays a key role in the description of a number of powerful
astrophysical objects, e.g. blazars, pulsar wind nebulae, gamma-
ray bursts, etc. One of the lessons learned in the past decade in
this field of research is the importance of the non-linear relation-
ship that ties the acceleration process and the generation of micro-
turbulence in the shock vicinity. It was anticipated early on that the
self-generation of micro-turbulence on length scales much smaller
than the gyroradius of the accelerated particles is a necessary con-
dition for the proper development of the relativistic Fermi process
(Lemoine, Pelletier & Revenu 2006), in agreement with test particle
Monte Carlo simulations (Niemiec, Ostrowski & Pohl 2006). This

� E-mail: lemoine@iap.fr

small-scale nature of the turbulence comes with a number of im-
portant consequences, most notably the limited maximal energy of
particles accelerated at ultra-relativistic shock waves [see e.g. Kirk
& Reville 2010; Bykov et al. 2012; Plotnikov, Pelletier & Lemoine
2013).

The particle-in-cell (PIC) numerical simulations of Spitkovsky
(2008a,b) have confirmed the validity of these arguments and of-
fered a more exhaustive picture of the acceleration process in the
ultra-relativistic unmagnetized limit. These simulations have shown
that the accelerated (supra-thermal) particle population excites
filamentation instabilities upstream of unmagnetized shock waves
(meaning, shock waves propagating in an unmagnetized medium;
see also Nishikawa et al. 2009); these instabilities build up a mag-
netic barrier on plasma scales c/ωp and at the same time serve as
scattering centres for the acceleration process. As the magnetic field
energy density grows to an equipartition fraction εB ∼ 10−1 (εB de-
notes the fraction of incoming kinetic energy flux in the shock front
rest frame stored in magnetic energy), incoming particles can be
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isotropized on a coherence length scale of the order of ∼10c/ωp,
thereby initiating the shock transition. The gyroradius of accelerated
particles remains larger than this length scale and the Fermi acceler-
ation process develops as anticipated. These simulations have been
confirmed, and followed by further PIC simulations with different
conditions, in particular regarding the degree of magnetization of the
upstream (background) plasma, the obliquity of the magnetic field
and the nature (pairs versus electron–proton) of the incoming flow
(e.g. Keshet et al. 2009; Martins et al. 2009; Sironi & Spitkovsky
2009, 2011; Haugbølle 2011; Sironi, Spitkovsky & Arons 2013).

The physics of the electromagnetic instabilities that lead to the
formation of a ultra-relativistic collisionless shock and to the self-
sustainance of the shock have naturally received a lot of attention:
see e.g. Hoshino & Arons (1991), Hoshino et al. (1992) and Gallant
et al. (1992) for magnetized shock waves; for weakly magne-
tized shock waves, see e.g. Medvedev & Loeb (1999), Wiersma &
Achterberg (2004), Lyubarsky & Eichler (2006), Milosavljević
& Nakar (2006), Achterberg & Wiersma (2007), Achterberg,
Wiersma & Norman (2007), Pelletier, Lemoine & Marcowith
(2009), Lemoine & Pelletier (2010, 2011), Bret, Gremillet &
Bénisti (2010), Rabinak, Katz & Waxman (2011) and Shaisultanov,
Lyubarsky & Eichler (2012). To summarize in a few lines the cur-
rent understanding, the Weibel/filamentation instability appears to
play a leading role in the generation of the small-scale magnetic
field in the weakly magnetized shock limit, although electrostatic
oblique modes and Buneman modes retain their importance in pre-
heating the electrons away from the shock front (see the discussion
in Lemoine & Pelletier 2011). At strongly magnetized shock waves,
the synchrotron maser instability is recognized as the leading agent
of dissipation (see e.g. Hoshino & Arons 1991; Hoshino et al. 1992;
Gallant et al. 1992).

However, at intermediate magnetizations and/or very large
Lorentz factors, the physics remains poorly known. Indeed, the fila-
mentation instability and other two stream modes cannot be excited
in these regions of parameter space, because the time-scale on which
the incoming particles cross the precursor becomes shorter than the
time-scale on which such instabilities can be excited (Lemoine &
Pelletier 2010, 2011). Therefore, how the shock is structured in such
conditions remains an open question.

Following up on Lemoine et al. (2014), we report here on a new
current-driven instability which is likely to emerge as the dominant
instability in this range of magnetization and at very large Lorentz
factors. The electric current is carried by the suprathermal parti-
cles (or shock reflected particles) and results from their gyration in
the background magnetic field: assuming that the magnetic field is
oriented along the z axis, while the incoming plasma flows along
−x in the shock rest frame, the current is generated along − y,
since the Lorentz force deflects positive and negative suprathermal
particles in opposite directions. As the ambient plasma penetrates
the precursor, it develops a compensating current along + y. This
configuration is found to be unstable, because a current fluctuation
can couple to a density fluctuation and excite a combination of ex-
traordinary modes and compressive modes of the ambient plasma.
This will be made explicit further on.

As viewed from the rest frame of the ambient plasma, this perpen-
dicular electric current is extraordinarily large. If one writes ξ cr the
fraction of incoming kinetic energy flux carried by the suprathermal
particles – see equation (1) – with ξ cr ∼ 0.1 indicated by PIC simu-
lations, γ sh � 1 the Lorentz factor of the shock wave in the ambient
plasma frame and nu the proper density of the ambient plasma,
the induced current reads jy,cr ∼ γshξcrnuec. For γ shξ cr � 1,
as expected in ultra-relativistic shocks, this current cannot be

compensated by the ambient plasma at rest. As we will demon-
strate, the latter is actually accelerated to relativistic velocities rel-
atively to its initial rest frame and it is squashed to an apparent
density ∼γ shξ crnu in the frame in which there is no bulk motion
along x (denoted as R in the following); then, particle motion at
relativistic velocities along y leads to current compensation.

In this work, we focus on an electron–positron shock; in electron–
ion shocks, a similar current develops but excites other modes, in
particular Whistler waves. This case will be discussed in a forth-
coming paper. In Section 2, we discuss the physics of the insta-
bility at the linear level, using a relativistic two-fluid model for
the incoming background plasma exposed to a rigid external cur-
rent set by the suprathermal particles. In Section 3, we discuss
the relevance of this instability in relativistic collisionless shocks
and compare it to results of recent PIC simulations. We discuss the
structure of the precursor in Appendix A and provide conclusions in
Section 4.

2 C U R R E N T- D R I V E N FI L A M E N TAT I O N
INSTABILITY

We describe the shock precursor as follows, in the shock front frame.
The incoming plasma flows with four-velocity ux < 0, carrying mag-
netic field B = Bz z and convective electric field E = γshβshBu y,
with βsh < 0 the velocity of the incoming background plasma in the
shock rest frame in units of c, i.e. γsh ≡ (1 − β2

sh)−1/2. In principle,
Bz depends on x, while Bu corresponds to the upstream magnetic
field measured in the upstream rest frame well beyond the precursor.
The precursor also contains a population of relativistic suprather-
mal particles, which rotate around B and thereby induce a current
along y, j cr ∼ −γshξcrnuec y. The quantity ξ cr characterizes the
fraction of the incoming particle energy carried by the suprathermal
particles:

ξcr ≡ ecr

γ 2
shnumc2

, (1)

with ecr = ncrγ shmc2 in the shock frame, assuming that the supra-
thermal particles carry a density ncr and typical Lorentz factor γ sh;
from equation (1), one derives ncr = γ shξ crnu, whence the expression
for the current density j cr.

The spatial profile of this current and the overall structure of the
precursor are described in detail in Appendix A; Fig. 1 offers a
sketch of the precursor. The typical size of the precursor is c/ωc,
with ωc = eBu/(mc) the upstream cyclotron frequency; this size
also corresponds to the typical gyration radius rL of the suprather-
mal particles in the shock front rest frame, whose typical Lorentz
factor ∼γ sh.

As the incoming particles cross the precursor, they are deflected
along y in order to compensate the cosmic ray perpendicular current.
Positrons drift towards + y while electrons drift towards − y. The
absolute value of the four-velocity y-component for both fluids is
equal, |uy| ∼ γ shξ cr (in units of c), hence |uy| � 1 is expected for
relativistic shocks, possibly |uy| � 1.

The deflection of the incoming flow along y implies a substantial
deceleration of the flow along x, which has drastic consequences
regarding the development of the instability. The profile of the
velocity of the flow is discussed in detail in Appendix A, but one
can apprehend this slow-down as follows: the total Lorentz factor
of the flow remains large, in particular the total three-velocity |β| ∼
1, up to corrections of order γ −2

sh ; however, a transverse velocity
develops with magnitude |βy| � ξ cr; the combination of these two
facts implies that βx deviates from unity by quantities of order γ −2

sh
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Current filamentation in relativistic shocks 1367

Figure 1. Sketch of the precursor of a relativistic magnetized pair shock,
as viewed in the shock front rest frame. The reflected/shock-accelerated
suprathermal particles (in red and blue) gyrate in the background magnetic
field and accelerate parallel to the convective electric field, thereby generat-
ing a net perpendicular current jy,cr. The incoming plasma must compensate
this current as it penetrates the precursor.

or ξ 2
cr, whichever is larger. In other words, assuming that γ shξ cr � 1,

as expected in ultra-relativistic shocks, leads to |βx| � 1 − ξ 2
cr/2.

If γ shξ cr � 1, βx remains unchanged compared to the asymptotic
value outside the precursor.

This is a quite remarkable feature: the compensation of the current
slows down the incoming plasma down to the (longitudinal) velocity
βx; thus, the R frame which corresponds to the instantaneous rest
frame of the plasma, in which there is no bulk motion along x, moves
with velocity βR|sh = βx relative to the shock front rest frame. At
large values of the current, γ shξ cr � 1, the relative Lorentz factor
between the R frame and the shock front rest frame becomes of
the order of 1/ξ cr, independent of the far upstream Lorentz factor.
In this sense, the shock precursor plays the role of a buffer, with
important consequences for the physics of the shock, discussed in
Section 3.

The Lorentz factor that corresponds to the relative velocity be-
tween this new rest frame R and the far upstream rest frame is
easily calculated and well approximated by:

γR|u � max (1, γshξcr/2) . (2)

In the following, we analyse the evolution of the instability in
the linear regime by adopting a relativistic two-fluid description of
the incoming plasma, where two-fluid refers to the electron and
positron components of the background plasma. This means, in
particular, that we neglect the response of the cosmic rays and we
treat as external the current that these suprathermal particles carry.
The latter assumption is discussed in Section 3. In this section, we
assume that current compensation is achieved to high accuracy in
the shock precursor, as motivated by our discussion in Section A1
(see also the discussion in section 5.3.1 of Lemoine & Pelletier
2011). This two-fluid description allows us to probe the physics of
the instability up to the inertial scale of the incoming plasma, where
the growth rate is found to peak.

We write and solve the system in the instantaneous rest frame R
of the plasma, in which there is no bulk motion along x. In such a
rest frame, the instability is expected to be absolute (versus convec-
tive), provided the growth rate exceeds the inverse crossing time of

the precursor. In the R frame, ux|R = 0 (henceforth, all quantities
concern the incoming plasma), but the (unperturbed) background
electric and magnetic fields read

Bz|R = γR|uBu, Ey|R = −γR|uβR|uBu . (3)

2.1 Linear analysis

For simplicity, we assume the plasma and the velocity profile to
be uniform throughout the precursor. It is possible to incorporate
the terms associated with the variation of the profile by writing the
system first in the shock front frame, then boosting it to the in-
stantaneous rest frame of the incoming plasma. The new terms that
appear contain spatial derivatives (along x) of the various unper-
turbed quantities. The typical magnitude of these inhomogeneous
terms relative to the other terms is of order ωc/ω in Fourier vari-
ables; therefore, the above assumption will be justified provided
|kx| � ωc/c. As we show in the following, the growth rate peaks at
values close to ωp on short wavelengths, i.e. k � ωp/c; this therefore
justifies the above approximation of a uniform precursor.

Our linear analysis is based on a relativistic two-fluid model of the
background plasma subject to the external current imposed by the
gyrating supra-thermal particles. We thus perturb all variables of the
incoming flow and the electromagnetic structure. The unperturbed
equations are:

∂μ

(
n±u

μ
±
) = 0

∂μT
μν
± = ±en±u

μ
± Fν

μ . (4)

The indices ± refer to the positron/electron species of the back-
ground plasma, uμ

± to the four-velocity and T
μν
± to the corresponding

energy-momentum tensors. The perturbed system then reads:

u
μ
±∂μ

(
δn±
n

)
+ ∂μδu

μ
± = 0

u
μ
±∂μδuν

± + β2
s ∂ν

(
δn±
n

)
= ± e

m
δuσ

±Fν
σ ± e

m
uσ

±δF ν
σ , (5)

together with the Maxwell equations. We have implicitly assumed a
cold background plasma limit, although we incorporate temperature
effects through the sound velocity βs.

We recombine the two fluid variables δn± and δu
μ
± into:1

δn ≡ δn+ + δn−
2

, δρ ≡ δn+ − δn−
2

(6)

δuμ ≡ δu
μ
+ + δu

μ
−

2
, �uμ ≡ δu

μ
+ − δu

μ
−

2
. (7)

Of course, to zeroth order, n− = n+ ≡ n, u0
− = u0

+ ≡ u0,
u+,y = −u−,y ≡ uy. Furthermore, (uμ

± + δu
μ
±)(u±μ + δu±μ) = −1

implies

δu0 = βyu
0�uy , �u0 = βyu

0δuy , (8)

with βy ≡ uy/u0. In the R frame, in which we are working here,
u0 = (1 + u2

y)1/2; therefore uy ∼ γ shξ cr � 1 at large shock Lorentz
factors implies |βy| ∼ 1. In the limit γ shξ cr � 1 (but ξ cr � 1), the
parameters γR|u/u0 � 1/2 and βR|u � 1.

The perturbed current δjμ = δj
μ
+ + δj

μ
− reads

1 We use a metric with signature ( −, +, +, +).
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Figure 2. Growth rate �ω/ωp versus kxc/ωp for ky = kz = 0. In solid lines,
σ = 10−4, βs = 0 and from top to bottom, βy = 0.99 (red, corresponding
to uy = γ shξ cr � 7.0), βy = 0.1 (blue, corresponding to γ shξ cr = 0.1), and
βy = 0.03 (orange, γ shξ cr = 0.03). In dashed lines, same as above for
σ = 10−2 (the growth is strongly suppressed for βy = 0.03 in this case).

δj 0 = 2nec
(
�u0 + u0δρ/n

)
, (9)

δjx = 2nec �ux, (10)

δjy = 2nec
(
�uy + βyu

0δn/n
)
, (11)

δjz = 2nec �uz . (12)

We define the plasma frequency following: ω2
p = ω2

p+ + ω2
p− =

8πne2/me, and the magnetization parameter:

σ = B2
u

8πnmec2
= ω2

c

ω2
p

. (13)

The full dispersion relation is calculated from the linear system
discussed in Appendix B, by going through Fourier variables, then
taking the determinant of the matrix using the Mathematica package.
This dispersion relation is too lengthy to be reported here.

However, it can be given in the following form in the 1D approx-
imation ky = kz = 0, cold plasma limit βs = 0:

ω5 + iβR|uβyκωcω
4

−
[
k2

xc
2 + κ2ω2

c + (
1 − β2

y

)
ω2

p

]
ω3 − iβR|uβyκk2

xc
2ωcω

2

+
(
κ2k2

xc
2ω2

c − β2
y k

2
xc

2ω2
p − iκβ3

y kxcωcω
2
p

)
ω

− iβR|uβ3
y κk2

xc
2ωcω

2
p = 0.

We recall here the definition κ ≡ γR|u/u0 (see Appendix B). The
growth rate is represented as a function of kx for various values of
the parameters βy and σ in Fig. 2. The global trend that emerges is
a maximal growth rate

�ω ∼ βyωp

(
kxc ∼ ωp, βy � √

σ, βy � βs

)
. (14)

The growth rate collapses as soon as one of the conditions indicated
in the brackets is no longer satisfied. The last condition βy �βs is
typical of current-driven instabilities: as the temperature rises and
the thermal velocity exceeds the drift velocity, the instability disap-
pears. However, we do not expect this situation in ultra-relativistic

Figure 3. Contour plot of log10(�ω/ωp) assuming ky = 0, for γ shuy = 7
(i.e. βy = 0.99), σ = 10−3, βs = 0.

pair shocks with γ shξ cr � 1, since βy ∼ 1 in that limit, while the
heating of the incoming flow inside the precursor remains limited
to sub-relativistic velocities [see e.g. Lemoine & Pelletier (2011)
for a discussion and Spitkovsky (2008a) for PIC simulations].

In the 2D ky = 0, cold plasma (βs = 0), and small current limit
(ξ crγ sh � 1, in which case βR|u ∼ 0 and u0 ∼ 1), the dispersion
relation also reduces to the compact form:

ω6 − ω4
(
ω2

p + ω2
c + k2

xc
2 + k2

z c
2 − β2

yω
2
p

)

+ ω2
[(

k2
x + k2

z

)
c2ω2

c − β2
y

(
k2

x + k2
z

)
c2ω2

p − iβ3
y kxcω

2
pωc

]
+ β2

y k
2
z c

2ω2
cω

2
p = 0 . (15)

In this limit, the instability can be shown to result from a coupling
between the high-frequency branch of the extraordinary mode with
the acoustic mode, as discussed in the following Section 2.2.

We now present numerical solutions of this dispersion relation in
the various 2D planes: (kx, kz) in Fig. 3 assuming ky = 0; (kx, ky) in
Fig. 4 assuming kz = 0; and (ky, kz) in Fig. 5 assuming kx = 0.

The global trend that emerges from these numerical simulations
is, here as well, a maximum growth rate of order βyωp at wavenum-
bers ∼ωp, provided the thermal dispersion velocity βs remains much
smaller than the drift velocity βy.

2.2 Interpretation and analytical approximations

The above instability can be best understood in the limit ky = 0,
in the non-relativistic regime βy � 1, which formally corresponds
to γ shξ cr � 1. In this limit, one can neglect the acceleration of the
plasma relative to the far upstream, βR|u ∼ 0, so that the convective
electric field can be neglected; furthermore, κ = γR|u/u0 ∼ 1. Al-
though relativistic shock waves should rather lead to γ shξ cr � 1, we
find little difference in the growth rate between the above approxi-
mation and the numerical calculation, suggesting that it remains a
good approximation.
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Figure 4. Same as Fig. 3, in the plane (kx, ky), for kz = 0.

Figure 5. Same as Fig. 3, in the plane (ky, kz), for kx = 0. The growth rate
vanishes at large values of ky.

In this βy � 1 regime, the instability involves only velocity fluc-
tuations δux, δuz, a density fluctuation δn, and electromagnetic per-
turbations δBx, δBz and δEy. One then finds that a combination of
the acoustic mode along Bz and the high-frequency superluminal
branch of the extraordinary mode is destabilized by the drift motion
that results from the compensation of the current jy.

To see this, we use the perturbed y-component of the electromag-
netic vector potential δAy and the displacement ξ of the plasma.
Maxwell equations then imply

c2∇ · ∇ δAy − ∂2
t δAy + 4πcδjy = 0, (16)

with δjy = δj (r)
y + δj (c)

y , with the following notations:

δj (r)
y ≡ 2e c n �uy (17)

and

δj (c)
y ≡ 2e c βy δn . (18)

Note the difference between �uy and δuy, defined in equation (7).
Note also that u0 ∼ 1 because we work here in the rest frame of the
ambient plasma under the approximation γ shξ cr � 1.

The response current δj (r)
y evolves according to the dynamical

equation:

∂t δj
(r)
y = ω2

p

4π

(
δEy − δuxBu

)
. (19)

The perturbed bulk velocity can be written: δu = ∂tξ , and δEy =
−∂t δAy/c. Thus we obtain the simple relation

δj (r)
y = − ω2

p

4πc

(
δAy + Buξx

)
. (20)

The dynamics of the centre of mass is governed by a MHD-type
equation (with ρ = 2 n m):

ρ∂tδu + ρc2
s ∇

δn

n
= 1

c
j × δB + 1

c
δj (r) × Bu , (21)

with of course, j ≡ 2necuy y. Note that δj(c) does not contribute
to the Lorentz force because the term in δn cancels out with the
equilibrium condition. Note also that δBx = −∂zδAy and δBz =
∂xδAy . In particular the x-component reads:

ρ∂2
t ξx + ρc2

s ∂x

δn

n
= 1

c
jyδBz + 1

c
δj (r)

y Bu , (22)

which can be rewritten as (introducing δÃy ≡ δAy/Bu):

∂2
t ξx + c2

s ∂x

δn

n
= ωcβyc∂xδÃy − ω2

c

(
δÃy + ξx

)
. (23)

One can use also the z-component; however it turns out that the
equation for sound evolution is more convenient; we obtain it by
taking the divergence of the dynamical equation:

(
∂2

t − c2
s �

) δn

n
= ω2

c∂x

(
δÃy + ξx

) − ωcβyc�δÃy . (24)

Therefore we have obtained three dynamical equations of second
order in time derivative that couple δAy, δn and ξ x. Equation (16)
for δAy can be rewritten as

c2�δÃy − ∂2
t δÃy − ω2

pδÃy − ω2
pξx + ω2

p

ωc
βy

δn

n
= 0 . (25)

This system leads to the following dispersion relation:[
PX(ω2) − β2

yω
2
pk

2c2
]
ω2 + β2

yω
2
pω

2
ck

2
z c

2

− k2c2
s

[
PX(ω2) + k2

x

k2
ω2

c

(
ω2 − k2c2

)] = 0 (26)

with

PX(ω2) ≡ ω4 −
(
ω2

p + ω2
c + k2c2

)
ω2 + ω2

ck
2c2 , (27)

and k2 = k2
x + k2

z ; PX(ω2) = 0 gives the dispersion relation of the
extraordinary mode in the cold plasma limit.

This dispersion relation matches well equation (15) up to rela-
tivistic corrections in βy. Let us discuss equation (26) in several
limits of interest.
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1370 M. Lemoine et al.

2.2.1 Cold and weakly magnetized: β2
s � σ � 1

Let us analyse the instability in the cold plasma limit, and at small
values of σ , however not necessarily smaller than β2

y when this
parameter is small. The dispersion relation reduces to:

PX(ω2) − ω2
pk

2β2
y c

2 = 0 . (28)

This leads to a negative root in ω2:

ω2
− = − (

β2
y − σ

)
ω2

p F (k2δ2) , (29)

with δ ≡ c/ωp, and

F (k2δ2) = 2k2δ2

1 + k2δ2 + [
(1 + k2δ2)2 + 4

(
β2

y − σ
)
k2δ2

]1/2 . (30)

In the latter expression, the contribution of σ must be kept when it
is no longer negligible compared to β2

y . For k2δ2 � 1, F(k2δ2) �
k2δ2 and

ω2
− � −ω2

p

(
β2

y − σ
)
k2δ2 . (31)

For k2δ2 � 1, F(k2δ2) � 1 and

ω2
− � −ω2

p

(
β2

y − σ
)

; (32)

which gives the maximum growth rate. Clearly the instability oc-
curs at low magnetization, precisely when σ < β2

y , in very good
agreement with the analysis of the previous section.

2.2.2 Long wavelength modes, k2δ2 � 1 and finite σ

In this limit k2δ2 � 1, we find

ω2
− � −βyω

2
p

√
σ

1 + σ
kzδ , (33)

i.e. a growth rate for small σ

�ω � √
ωckzβyc , (34)

which extends previous results obtained in Pelletier et al. (2009)
and in Casse, Marcowith & Keppens (2013) in the MHD regime
for similar configurations (see also Riquelme & Spitkovsky 2010
and Nekrasov 2013 for similar configurations in the non-relativistic
limit). It thus indicates that this instability has a kinetic origin and
that the MHD solution describes its long wavelength behaviour.

2.2.3 Warm plasma with σ � β2
s

From the general dispersion relation we find:

ω2
− = −ω2

p

[
β2

y − β2
s (1 + k2δ2)

]
Fs(k

2δ2, βs) , (35)

where

Fs(k
2δ2, βs) = 2k2δ2

{
1+ (

1+β2
s

)
k2δ2 +

[[
1 + (

1 + β2
s

)
k2δ2

]2

+ 4
(
β2

y − β2
s (1 + k2δ2)k2δ2

)]1/2
}−1

, (36)

which can be well approximated by

Fs(k
2δ2) � k2δ2

1 + k2δ2
. (37)

The main conclusion is that temperature effects quench the insta-
bility when βs � βy, as reported in the previous section.

2.3 Description and evolution

The instability presents the character of a common current instabil-
ity that is triggered when the drift velocity is larger than the sound
velocity and also the character of a Weibel type electromagnetic
instability when the threshold is strongly overstepped. The growth
rate can reach values as large as ωp and makes the instability faster
than all instabilities previously studied, including the filamentation
instability triggered by the reflected particles (�ω � √

ξcrωp), the
oblique two-stream instability (�ω � ξ 1/3

cr ωp), etc.
We find that this instability is quenched at high temperatures,

when βy � βs ∼
√

kT /mc2. However, in the precursor of rela-
tivistic shocks, one expects βy ∼ 1 and for pair shocks, the preheat-
ing inside the precursor remains moderate. Therefore, such temper-
ature effects are not expected to contribute strongly.

In the 2D setting ky = 0, this instability leads to filamentation of
the plasma in a way similar to the standard Weibel-filamentation in-
stability, with some noticeable differences. In particular, the current
perturbation is here produced by a global charge neutral density
variation, δj (c)

y = βyδnec, not by a charge perturbation as in the
Weibel/filamentation instability. This density variation is itself pro-
duced by the compression effect associated with the Lorentz force,
derived from the drift βy. In contrast, the perturbed current in the
Weibel/filamentation instability δj(w) = βwδρ ec, with βw the drift
velocity of two e− counterstreaming beams (assuming that charge
neutralization is ensured, e.g. by ions) and δρ e the charge per-
turbation (as before). The Lorentz force then couples this charge
perturbation to the electromagnetic potential through

∂2
t δρ = −βw

ω2
p

4πec
�δAy . (38)

In this counterstreaming (symmetric) situation, the Weibel instabil-
ity gives rise to small-scale magnetic perturbations with a growth
rate similar to that of the current-driven filamentation instability.
The difference pointed above, namely charge perturbation versus
density perturbation, brings in a major difference between these
two instabilities, which is related to the polarity of the current fila-
ments. While in the Weibel instability, the counterstreaming beams
contain particles of similar charge, which thus deviate in a per-
turbed magnetic field in different directions to form filaments of
opposite current, in the current-driven filamentation instability, the
beams contain particles of opposite charge, which thus deviate in
the same direction and create filaments with a current oriented in the
same direction, i.e. so as to compensate the current of the suprather-
mal particles. This picture is sketched in Fig. 6. Current-driven
filamentation is thus subject to coalescence and reconnection. The
non-linear evolution of this instability will be addressed in a forth-
coming study (Plotnikov et al., in preparation).

3 D I SCUSSI ON

In our treatment of the instability, we have neglected the response
of the plasma of suprathermal particles. This choice is dictated by
simplicity, as including the response involves doubling the number
of fluid variables, which renders the problem intractable. However,
one should expect this approximation to be valid at maximal growth
rate, since �ω then becomes larger than the plasma frequency of the
suprathermal particles, ωpb = ξ 1/2

cr ωp, with ωp the plasma frequency
of the ambient (upstream) plasma. As the instability develops and
turbulence grows, one should of course expect the orbits of these
suprathermal particles to deviate from their zeroth order form given
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Current filamentation in relativistic shocks 1371

Figure 6. Sketch of the development of the current-driven filamentation
instability in 1D, with a perturbation along x. The current carried by the
suprathermal particles, oriented along −y, is not indicated here. Electrons
and positrons of the ambient plasma flow in opposite directions to compen-
sate this current; if present, a magnetic fluctuation along z leads to density
enhancements along filaments, thereby creating a current perturbation which
feeds back positively on the magnetic fluctuation.

in Appendix A; this influence will be made more precise in the
following (Section 3.2).

3.1 Relevance to relativistic shocks

Let us now discuss why the current-driven filamentation instability
is likely to play a central role in shaping the precursor, the shock
and the acceleration process in the relativistic mildly magnetized
regime.

Advection through the shock front provides a crucial limitation
for the growth of instabilities upstream of a relativistic shock front.
In the upstream plasma rest frame, this can be understood as fol-
lows: the precursor extends at most to a distance c/(γ shωc) (e.g.
Milosavljević & Nakar 2006; Pelletier et al. 2009), because the
suprathermal particles only rotate by an amount 1/γ sh before being
caught back by the shock front; this takes a time tu ∼ γshω

−1
c , but

the distance between the shock front and the tip of this precursor
does not exceed tu(1 − β2

sh) ∼ tu/(2γ 2
sh). Therefore, as measured in

the upstream plasma rest frame (indicated by |u), any instability
whose growth rate �ω|u � γ shωc cannot grow on the crossing time
of the precursor. For the filamentation instability, �ω|u ∼ ξ 1/2

cr ωp,
therefore the instability can grow only if γ 2

shσξ−1
cr � 1 (Lemoine &

Pelletier 2010, 2011). This indicates that mildly magnetized and/or
large Lorentz factor shock waves cannot be mediated by the Weibel-
filamentation instability, as mentioned in the Introduction.

The present current-driven filamentation instability modifies this
picture, because it grows faster than any of the other instabilities
discussed in the context of relativistic shocks, and mostly because
of the impact of the current on the incoming plasma in the shock
front frame: as discussed in Appendix A and Section 2, if γ shξ cr � 1,
the upstream cannot compensate the current at rest; it is therefore
accelerated along x to a Lorentz factor γR|u ∼ γshξcr/2 in the up-
stream rest frame, and its apparent density increases by a similar
amount. In the shock front frame, the incoming plasma is slowed
down to velocities βx,in ∼ −(1 − ξ 2

cr/2), which means that the rest
frame of the plasma effectively moves with a Lorentz factor (along
−x): γR|sh ∼ 1/ξcr. This change of rest frame, relative to far infin-
ity, strongly modifies the criterion under which the instability has
or does not have time to grow. In the R frame, which defines the
rest frame of the background plasma after its acceleration phase,
the shock front moves with a Lorentz factor γR|sh, therefore the

precursor size extends to c/(γR|shωc) and the time-scale for a plasma
mode to cross this precursor now reads

tx|R � 1

γR|sh|βR|sh|ωc
, (39)

so that the instability can grow whenever �ω tx|R � 1, or

σ � ξ 2
cr. (40)

For typical values ξ cr ∼ 0.1, this implies that growth is possible up
to magnetization levels σ ∼ 10−2, irrespective of the Lorentz factor
of the shock. The latter point is of importance, because it guarantees
the growth of instabilities at large γ sh, for which the precursor
becomes very short in the upstream rest frame. This result appears
compatible with recent PIC simulations, as we argue in Section 3.3.

Once micro-turbulence grows upstream of a relativistic colli-
sionless shock, one may expect the Fermi process to develop (e.g.
Lemoine et al. 2006; Niemiec et al. 2006) although how well it de-
velops depends on the relative efficiency of scattering in the micro-
turbulence relatively to advection in the large-scale field (Pelletier
et al. 2009; Lemoine & Pelletier 2010). To discuss this on quantita-
tive grounds, we write the scattering frequency in the downstream
rest frame

νs ∼ cλδB/r2
g ∼ εB,d

(
λδBωp/c

)
ωp , (41)

εB,d denoting an average value of the equipartition fraction of the
magnetic field downstream of the shock, λδB representing the co-
herence length of the field; the above equation holds for typical
supra-thermal particles of Lorentz factor γ sh in the downstream
frame. As discussed in Lemoine & Pelletier (2010), scattering beats
advection, hence the Fermi process develops, when

νs � ωc ⇔ σ � ε2
B,d

(
λδBωp/c

)2
. (42)

PIC simulations suggest εB,d ∼ 0.01 and λδB ∼ 1 − 10c/ωp with
some degree of uncertainty. Nevertheless, the above result indicates
that the current-driven instability that we are discussing here must
also play a key role in the switch-on of the Fermi process, by
building up the micro-turbulence for any value of the shock Lorentz
factor, up to magnetization levels as high as σ � 10−2.

3.2 Current-driven instability versus Weibel/filamentation

At very low magnetization levels, one must expect this current-
driven filamentation to gradually disappear, once the other more
standard (Weibel-filamentation, two stream, etc.) instabilities
can grow. To see this, consider the extreme σ → 0 limit: the
Weibel/filamentation instability then grows, excites turbulence
which scatters the suprathermal particles; since this turbulence has
no preferred direction in the transverse plane ( y, z), no net perpen-
dicular current arises and current-driven filamentation does not take
place.

At finite magnetization, the average current does not vanish, but
it may be randomized by the micro-turbulence. This effect has not
been taken into in the present calculations, which work at linear
order and which neglect the response of the cosmic rays. In order
to quantify the magnitude of the back-reaction of the turbulence on
the particle trajectories, one must compare the upstream residence
time derived under the assumption that microturbulence controls the
scattering process with that derived assuming a coherent gyration in
the background field. Furthermore, this comparison must be made
upstream, in the proper frame of the micro-turbulence. In what fol-
lows, we assume that this frame corresponds to R. In this R frame,
the turbulent magnetic field strength δBR � δB/γR|sh relatively
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1372 M. Lemoine et al.

to that measured in the shock front; similarly, the typical Lorentz
factor of a supra-thermal particle can be written γR � γR|shγsh;
the background field has a strength Bz|R � γR|uBu (see equation
2). In this R frame, return to the shock takes place once the particle
has been scattered by an angle δθR ∼ 1/γR|sh (see the discussion
in Milosavljević & Nakar 2006; Plotnikov et al. 2013). If the supra-
thermal particles gyrate coherently in the background electromag-
netic field, return occurs on a time-scale trω|R ∼ δθR/ωR, with
ωR � (γR|u/γR)ωc. If micro-turbulence controls the scattering
with scattering frequency νs|R ∼ cλδB|R/r2

g|R, return takes place
on a time-scale trν|R ∼ δθ2

R/νs|R. Comparing the two time-scales
leads to a critical magnetization level:

σc ∼ ξ 2
cr ε

2
B,u

(
λδB|Rωp/c

)2
. (43)

The quantity εB,u denotes the typical level of micro-turbulence, up-
stream of the shock, as measured in the shock front frame. The
factor ξ cr appears in this formula because the comparison has been
made in the R frame. If the upstream magnetization σ � σ c, then
micro-turbulent scattering efficiently randomizes the trajectories in
the shock front plane, hence the perpendicular current as well. Con-
versely, if σ � σ c, the return trajectories maintain their coherence,
hence the current-driven instability develops efficiently.

An interesting question is what happens at large Lorentz factors
and low magnetization levels σ � σ c, where feedback from the tur-
bulence should not be neglected, but where the Weibel-filamentation
instability does not have time to grow (in the absence of slow-down
of the plasma; see below). This area of parameter space corresponds
to σγ 2

shξ
−1
cr � 1 and σ � σ c. Our analysis suggests that the current-

driven instability must develop at the tip of the precursor, where
the turbulence is sufficiently weak that its back-reaction can be ne-
glected. Furthermore, the deceleration of the plasma, which results
from current compensation, now allows the Weibel/filamentation
instability to grow: equation (39) indicates that growth becomes
possible in the R frame whenever σ � ξ 3

cr. This instability may
then step over closer to the shock front, where the back-reaction
of the turbulence strongly randomizes the return trajectories of the
supra-thermal particles.

Nevertheless, one expect the precursor to be shaped by the size
c/ωc if the current-driven instability shapes the precursor, or even
the tip of the precursor: beyond that length scale, the turbulence must
die away quickly, because the plasma has not yet slowed down and
instabilities cannot grow there; inside the precursor, one may expect
some form of equilibrium to be reached between the level of the
turbulence, the slow-down of the plasma and the growth rate of the
instabilities. Its detailed study lies beyond the present work.

This description contrasts with what one expects in the region
of parameter space in which the Weibel-filamentation instabil-
ity can grow without the slow-down imposed by the current, i.e.
σγ 2

shξ
−1
cr � 1 and σ � 10−5. There, as discussed above, the current

is mostly randomized by the near isotropicity of the trajectories
of suprathermal particles in the shock front plane. In this limit,
the precursor extends to a scale ε−1

B (λδBωp/c)−1 c/ωp, smaller than
c/ωc, since the return of suprathermal particles is controlled by
the scattering in the small-scale turbulence (Milosavljević & Nakar
2006; Pelletier et al. 2009). This situation actually matches the un-
magnetized shock limit; hence, one may expect to find a universal
precursor profile, independent of the magnetization parameter. The
detailed discussion of the profile in this regime is also left open for
further study.

3.3 Comparison to PIC simulations

PIC simulations offer valuable tools to probe the physics of relativis-
tic collisionless shock waves. So far, most studies have discussed the
unmagnetized or strongly magnetized limit and few have addressed
the mild magnetization regime, of interest here. We thus confront
our findings to the recent simulations of Sironi et al. (2013), which
have explored the regime of moderate magnetizations σ = 10−4 →
10−2 at various shock Lorentz factors γ sh = 5 → 200. Such simu-
lations are performed in the downstream plasma rest frame, which
does not differ much from the shock rest frame. In this rest frame,
the slow-down of the plasma along x is difficult to measure, be-
cause the relative modification of ux,in is only of an order of ξ cr (see
Appendix A).

However, their fig. 7 is particularly interesting, because it re-
veals a precursor whose profile does not depend on σ , provided one
rescales the distances by σ 1/2 = ωc/ωp, i.e. provided the distances
are expressed in units of c/ωc. It is actually possible to infer directly
from their figure the typical scale height of the precursor, ∼2c/ωc,
with a rough exponential dependence. For the parameters probed in
this figure, γ sh = 21 (= √

2γ0 with their γ 0 = 15) and σ = 10−4 →
10−3, the Weibel-filamentation instability cannot grow without the
slow-down of the plasma imparted by the current-driven filamen-
tation. Therefore, these simulations directly probe the region of
parameter space discussed above, in which the current-driven fil-
amentation instability plays the central role. The structure of the
precursor conforms well to the expectations, with a size ∼c/ωc.

In their fig. 5, these authors show the magnetic structure of the
precursor in 3D simulations for similar parameters; the magnetic
field appears to be structured in sheets parallel to the x − y plane
rather than filaments oriented along x, which would be expected
for a standard Weibel/filamentation instability. Finally, they report
no dependence on the shock Lorentz factor, whereas a rather strong
dependence is expected if the Weibel-filamentation instability alone
shapes the precursor: as the line σγ 2

shξ
−1
cr = 1 is crossed, one expects

to transit in a region in which the Weibel-filamentation instability
can no longer grow. This independence relative to the Lorentz factor
directly results from the slow-down imposed by the current com-
pensation in the γ shξ cr � 1 limit: inside the precursor, everything
happens as if the shock were moving relative to upstream with the
Lorentz factor γR|sh ∼ 1/ξcr, so that all memory of the initial γ sh

is lost.
These trends strongly suggest that the present current-driven fila-

mentation instability shapes the precursor and the shock of weakly
magnetized (σ � 1) relativistic shock waves.

Finally, the picture that we have elaborated in Section 3.1 also al-
lows us to understand, at least qualitatively, the results of Sironi et al.
(2013) concerning the development of Fermi acceleration. Their
simulations indicate that Fermi acceleration develops for any value
of the shock Lorentz factor, for magnetization levels σ � 10−5. This
conforms well with equation (42) and the discussion in Lemoine
& Pelletier (2010). There, current-driven filamentation can grow,
irrespectively of the shock Lorentz factor; it builds up turbulence
and, because σ � 10−5, scattering in the micro-turbulence down-
stream of the shock front beats advection, hence the Fermi process
develops. At larger values of σ , the same simulations indicate that
Fermi acceleration develops in a restricted dynamic range, with a
maximum energy scaling as σ−1/4. Equation (42), taken at face
value, would indicate that Fermi acceleration should not develop in
this limit. However, this argument assumes a homogeneous micro-
turbulence downstream of the shock, of strength εB,d, whereas the
micro-turbulence seen in PIC simulations actually decreases away
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Current filamentation in relativistic shocks 1373

from the shock front. If the law of evolution of εB were known,
one could improve on equation (42) by comparing the scattering
time in this evolving micro-turbulence and the gyration time in the
background field. In the absence of such a well-defined law, one
can nevertheless understand on a qualitative level the scaling of the
maximal energy: as the magnetization increases beyond 10−5, the
condition σ � ε2

B,d remains true only in a finite layer close to the
shock front; since the scattering length-scale evolves as the square
of the particle energy, the restricted size of this layer leads to the
existence of a maximal energy. Let us note that if this layer were
of infinite extent, there would nevertheless be a maximal energy,
scaling as σ−1/2, as discussed in Pelletier et al. (2009).

3.4 Consequences

The above discussion directly impacts our understanding of shock
structuration and of particle acceleration. For instance, Sironi et al.
(2013) argue that in front of the shock, there exists a layer of
size ∼c/ωc filled with Weibel turbulence at a level εB ∼ 10−2; this
observation is based on the simulations reported above, in the range
σ = 10−4 → 10−2. According to the above discussion, this layer
actually reflects the constrained growth of current-driven filamenta-
tion and Weibel-filamentation instabilities in the precursor, whose
size is set by the current profile, which extends on c/ωc, and the
turbulence is not of Weibel origin.

These authors then extrapolate their results to the regime of low
magnetization σ � 10−5 to discuss the maximal energy of particles
accelerated at relativistic shocks. The above arguments indicate
that such an extrapolation is not justified, because the physics of
the precursor are likely to change as one transits from the region
controlled by the current-driven filamentation instability to that
controlled solely by the Weibel-filamentation mode. In particular, as
σ → 0, the diverging scale c/ωc must decouple and one expects the
precursor profile to be entirely controlled by the micro-turbulence,
as in the unmagnetized limit. The above discussion indicates that this
transition takes place close to the line σγ 2

shξ
−1
cr ∼ 1 and σ ∼ 10−5 to

10−4; for γ sh = 21 as used in these simulations, both limits reduce
to the latter σ ∼ 10−5 to 10−4.

4 C O N C L U S I O N S

This work reports on a new current-driven filamentation instability
upstream of a magnetized relativistic collisionless shock front. As
viewed in the shock front frame, the suprathermal particles, which
are reflected on the shock front, or accelerated at the shock, gy-
rate around the perpendicular magnetic field in the shock precursor,
thereby depositing a strong current jcr ∼ ξ crγ sh nu e c, which is per-
pendicular to both the magnetic field and the shock normal. As the
incoming plasma enters the precursor, it seeks to compensate this
current within a few skin depth scales. If ξ crγ sh � 1, which is a
likely situation for highly relativistic shocks, the incoming plasma
cannot compensate this current in the upstream rest frame; it is
thus accelerated to a large Lorentz factor ∼ξ crγ sh/2 (relative to far
upstream), which increases the apparent density of the plasma by
a similar factor; particles then drift at relativistic velocities in the
perpendicular direction to achieve current compensation, electrons
and positrons drifting in opposite directions. In the shock front rest
frame, the incoming plasma is decelerated along the shock normal
at the same time as it is accelerated in this perpendicular direction.

As we have argued, this current destabilizes a combination of
the high-frequency branch of the extraordinary mode and of the
acoustic mode along the magnetic field. In a 2D configuration, in

which one neglects perturbations along the direction of the current,
this instability bears some resemblance to the Weibel-filamentation
instability. However, in the present case, the electromagnetic pertur-
bation couples to a density fluctuation, not to a charge fluctuation,
because the counterstreaming electrons and positrons carry opposite
charges. This leads to the formation of current filaments of a same
polarity, all currents being oriented so as to compensate the cosmic
ray current induced in the precursor. We find that this instability has
a very fast growth rate, of order �ω ∼ βy ωp on skin depth scales,
with βy ∼ 1 the drift velocity. This instability is likely to play a key
role in shaping the precursor of weakly magnetized relativistic col-
lisionless shocks, in which the growth of other instabilities is very
often impeded by the fast transit across the precursor.

In particular, we have shown that this instability can grow at any
value of the Lorentz factor, provided the magnetization parameter
σ � ξ 2

cr ∼ 10−2. The relative independence to the Lorentz factor
of the shock, which controls the size of the precursor c/(γ shωc)
(upstream rest frame), stems from the deceleration that the incom-
ing plasma suffers inside the precursor: the relative Lorentz factor
between the shock front frame and the rest frame of the plasma now
falls to γR|sh ∼ 1/ξcr, independent of γ sh. In this picture, the shock
foot plays the role of a buffer that transforms the interaction with
the fast incoming flow into a more moderate regime, depending
on the parameter ξ cr, over a well-defined distance ξ crc/ωc (in the
instantaneous rest frame of the incoming plasma).

In previous studies, we have argued that the filamentation, oblique
two-stream modes etc., can grow only at small values of σ and
moderate values of γ sh, e.g. such that σγ 2

shξ
−1
cr � 1 for the Weibel-

filamentation mode (Lemoine & Pelletier 2010, 2011). Otherwise,
the incoming plasma transits faster across the precursor than a
growth time of the instability. Therefore, the current-driven fila-
mentation instability emerges as the leading instability outside this
region of parameter space. At very low magnetizations, σ � 10−5,
and in the region where the standard filamentation mode can grow,
the current-driven filamentation instability should gradually disap-
pear, as the turbulent small-scale electromagnetic fields randomize
the return trajectories of the suprathermal particles in the shock
front plane. In this limit, one transits to the unmagnetized limit, in
which the precursor size is no longer controlled by the background
magnetic field, but by the profile of the micro-turbulence.

Outside this region, up to σ ∼ 10−2, the current-driven filamen-
tation instability is likely to play a dominant role. The interesting
physics of the shock at low magnetizations and at Lorentz factor
so large that the standard Weibel-filamentation mode cannot grow
deserves close scrutiny. In this region, the current filamentation
instability can grow in the absence of strong microturbulence; how-
ever the very growth of this instability and of the filamentation
mode, thanks to the deceleration of the plasma, builds up the small-
scale turbulence, which then back reacts on the current profile. The
profile of the precursor in this regime is left open for further study.

Our analysis at linear level indicates that the growth rate of
the current-driven filamentation instability is maximal on plasma
skin depth scales. This does not affect previous results concerning
the maximal energy of accelerated particles, which assume micro-
turbulence set on skin depth scales (see e.g. Kirk & Reville 2010;
Bykov et al. 2012; Plotnikov et al. 2013).
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A P P E N D I X A : PRO F I L E O F T H E PR E C U R S O R

We construct here the profile of the precursor in the cold plasma
limit, in the shock rest frame. We seek here a 1D zeroth-order
stationary solution of the shock precursor, with ∂t = ∂y = ∂z = 0,
as dictated by the geometry of the problem. The perturbation of
this solution leads to the linear system discussed in Section 2.1 and
Appendix B. As discussed in Section 2, the zeroth order solution
is characterized by the profile of the magnetic field B = Bz z, the
convective electric field E = Ey y, and the fluid four-velocities of
the various species.

Note that the x-component of the current density vanishes for both
incoming particles and suprathermal particles, as a consequence of
the stationary state: current conservation ∂μjμ

α = 0 for any species
α implies the conservation law ∂xj

x
α = 0; since the x-component

of the current density of incoming particles, summed over elec-
trons and positrons, vanishes as x → +∞, it also vanishes in the
precursor, and similarly for the suprathermal particles. As parti-
cles gyrate in the (x, y) plane, we set uz

α = 0, hence jz,α = 0 for all
species.

Furthermore, we do not expect any non-zero Ex component to
emerge inside the precursor because of the charge symmetry of the

pair plasma. One can check that the above solution is self-consistent.
In particular, the magnetic field does not possess other components,
as a result of ∇ · B = 0 , ∂y = ∂z = 0 and jz = 0.

A1 Simplified MHD model

In Section 2, we provide a relativistic two-fluid description of the
instability, the term two-fluid referring to the electrons and positrons
of the incoming background plasma. This description thus extends
beyond any MHD picture of the instability, up to the inertial scale
of the pair plasma. Nevertheless, it is instructive to describe briefly
the structure of the precursor in an ideal MHD picture, in which
one assumes that the magnetic field remains frozen in the plasma
all throughout the precursor.

Treating the suprathermal particle component as a tenuous fluid
carrying a current density j cr = jy,cr y, with jy,cr = −γshξcrnuec,
the electric field is fixed through the frozen-in condition:

Ey = βx,inBz , (A1)

with βx,in denoting the centre-of-mass three–velocity x-component
of the incoming plasma. Then ∇ × E = 0 imposes ∂x(βx,inBz) = 0,
or

βx,inBz = βshB∞ , (A2)

with B∞ = γ shBu. To keep the analysis brief, here, we assume
γ shξ cr � 1, meaning that the velocity of the electrons/positrons of
the background plasma along the y direction is much smaller than
c. This allows us to set βx,in � ux,in/(1 + u2

x,in)1/2 in the above
equations, with ux,in the x-component of the centre-of-mass four–
velocity.

The current density flowing in the incoming background plasma
is itself fixed through

jy,in = −jy,cr − c

4π
∂xBz . (A3)

Particle number conservation ∂x(nuux) = 0 and energy-
momentum conservation in the cold plasma limit then lead to the
equation:

numec
2ux,in∂xux,in = 1

c
jy,inBz . (A4)

This equation of motion becomes an equation for ux,in, once equa-
tions (A2) and (A3) have been taken into account. This equation
can be rewritten in the following compact form:[

1 − β2
shγ

2
shβ

2
x,in

u4
x,in

σ

]
βx,inux,in∂xux,in = βshγshξcr

ωc

c
. (A5)

In this equation, we have used the definition of the magnetiza-
tion parameter, equation (13) and ωc = eBu/(mec) = eB∞/(γ shmec).
Equation (A5) is particularly useful, because it allows us to obtain
a quick estimate of the slow-down of the plasma due to the Lorentz
force: one first notes that the second term in the brackets, which
originates from the uncompensated part of the current in the precur-
sor, is much smaller than unity, and can be safely neglected; then,
one finds that between entry into the precursor and shock crossing,
the variation of ux,in reads

�ux,in � −u∞ξcr , (A6)

with u∞ = γ shβsh; note that the scale of variation is set by the pre-
cursor size c/ωc. Assuming now that the transverse three–velocity
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Current filamentation in relativistic shocks 1375

of electrons and positrons, along y, is of order ±γ shξ cr, one can
check that the three-velocity βx,in,0 close to the shock front is of the
order of

βx,in,0 � βsh

(
1 − ξ 2

cr

2

)
. (A7)

These results will remain true in the following multi-fluid descrip-
tion, even at large values of the quantity γ shξ cr. In the above MHD
model, ∂xBz/Bz = −∂xβx,in/βx,in, therefore the above scalings al-
low us to derive an estimate of (c/4π )∂xBz, which characterizes
the departure from current compensation in the precursor:∣∣∣∣4πjy,cr

c ∂xBz

∣∣∣∣ ≈ 1

ξcrσ
� 1 , (A8)

indicating that the current is indeed compensated to very high ac-
curacy in the precursor.

A2 Multi-fluid model

We now turn to a more exhaustive multi-fluid model of the pre-
cursor, which is necessary to construct the steady state on which
the linear analysis of Section 2 relies. In particular, we relax
the frozen-in condition of the magnetic field inside the precur-
sor and we follow the kinematics of the various particle popula-
tions along the y direction. Of course, well outside the precursor,
one still assumes Ey = βshBz, corresponding to the assumption of
zero electric field in the rest frame of the background plasma as
x → +∞.

We consider the following populations of particles: the incoming
particles, denoted by the subscript in, and the suprathermal parti-
cle population, which we divide into two sub-populations, those
moving towards +x from the shock front up to the tip of the pre-
cursor (subscript r+) and those moving towards −x from the tip
of the precursor towards the shock front (subscript r−). We set
the shock front at x = 0 and the tip of the precursor at x1. All
throughout this section, we denote by uμ

α the four-velocity of the
positron component of species α, with α ∈ (in, r +, r−). As dis-
cussed in Section 2, the x-components of the four-velocities of the
electrons match those of the positrons, while the y-components are
opposite.

Alsop & Arons (1988) have described the structure of the pre-
cursor of a strongly magnetized relativistic shock; they do so by
solving the fluid and Maxwell equations with one population of
incoming particles, which gyrate in the compressed magnetic field.
The present description is slightly different: we set a boundary at
x = 0, corresponding to the shock transition, into which the incom-
ing population flows and out of which the suprathermal particle
population emerges, with no specific relation between these two
populations.

In the cold plasma limit, the coherent rotation of the suprather-
mal particles at the tip of the precursor implies βx,r±(x1) = 0, there-
fore nr±(x1) → + ∞, and consequently |jy(x1)| → ∞. This singular
behaviour disappears of course when warm plasma effects are in-
troduced. Indeed, the suprathermal particle population should be
described in the present shock rest frame as a relativistically hot
plasma with mean Lorentz factor ∼γ sh and roughly isotropic distri-
bution function. Such effects are discussed in the next Appendix A3.
The cold plasma approximation, which we use here, has the advan-
tage of providing quantitative estimates for the various quantities
used in the manuscript.

The electromagnetic profile is thus determined by Bz ≡ γ shBu(1 +
b), by the current jy and the four-velocities of the respective fluids.

This profile of the precursor can be solved as a shooting problem,
with three parameters to be determined by the boundary conditions:
b1, γ r1, corresponding respectively to the deviation from γ shBu, the
Lorentz factor of suprathermal particles at the tip of the precursor,
and x1. The boundary conditions are:

ux,r+,0 = ush , uy,r+,0 = 0 ,

nr−,0uy,r−,0 = −nin,0uy,in,0 . (A9)

The first two conditions specify the initial data for the suprathermal
particle population: we have chosen here a normal incidence to
the shock front and a Lorentz factor γ sh, as expected at relativistic
shocks. The third condition imposes a vanishing net flux of particles
along the shock front in the y direction.

In the cold plasma limit, and under the stationary state approx-
imation ∂t = 0, the fluid equations ∂μ(nαu

μ
α ) = 0 and ∂μT μν

α =
+e nαu

μ
αF ν

μ (for the positron components) read:

∂x

(
nαu

x
α

) = 0 ,

βx,α ∂xu
x
α = e

me

βα,yBz ,

βx,α ∂xu
y
α = e

me

(
Ey − βα,xBz

)
,

βx,α ∂xγα = e

me

βy,αEy . (A10)

Here, γα ≡ u0
α . For the various species, the continuity equations

imply that at each point: ninux = n∞u∞ with u∞ = γ shβsh < 0,
nr+ux,r+ = ξcrn∞ux,r+,0, nr−ux,r− = −ξcrn∞ux,r+,0. The quantity
n∞ represents the proper particle density as x → +∞, while ux, r ±, 0

represents the x-component of the four-velocity of species r ± at
the shock front.

Complemented with Ampère’s law ∂xBz = −4πjy/c, the system
equation (A10) may then be rewritten:

βx,α∂xβx,α = ωL,α

c

[
(1 + b) − βx,αβsh

]
βy,α ,

βx,α∂xβy,α = ωL,α

c

[
βsh

(
1 − β2

y,α

) − βx,α(1 + b)
]

,

βx,α∂xγ = ωL,α

c
γβy,αβsh ,

∂xb = − ωc

σγshn∞c

(
ninuy,in + nr+uy,r+ + nr−uy,r−

)
,

(A11)

with ωL,α ≡ eγ shBu/(γ αmc) = ωcγ sh/γ α , in terms of ωc ≡
eBu/(mc) the upstream cyclotron frequency, which sets the spatial
scale c/ωc of the precursor. As discussed above, uy,in, uy,r+ and uy,r−
represent the y-components of the four-velocities of the incoming,
suprathermal r + and r− positron components, respectively. The
last equation for b implicitly uses the fact that the y-velocities of
electrons are opposite to those of the positrons, for both incoming
and suprathermal particles, hence their y-current densities add up;
the magnetization σ is defined in equation (13). This last equation
holds in the shock precursor where the various populations mix.

Given the above three parameters b1, γ r1 and x1, these fluid
equations must then be matched to the boundary conditions; this
determines the profile of the precursor.

MNRAS 440, 1365–1378 (2014)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/440/2/1365/1020962 by guest on 24 M
arch 2022



1376 M. Lemoine et al.

Figure A1. Structure of the precursor for σ = 0.01, ξ cr = 0.1 and
γ sh = 1000 (rL ≡ c/ωc). Top panel: spatial profiles of the y-current car-
ried by the suprathermal particle population in units of enuc (in blue), and of
the compensating current carried by the inflowing ambient plasma (in red);
in green, the spatial profile of the perturbed magnetic field b = Bz/Bz,0 − 1.
Bottom panel: spatial profiles of the x-velocities of the suprathermal particle
population (in blue), of the inflowing background plasma (in red), and of
the y-velocity of the background plasma positrons (in green).

Numerical examples of the profile are represented in Fig. A1. We
have set σ = 0.01, ξ cr = 0.1 and γ sh = 103, but the profile does not
depend on γ sh in the ultra-relativistic limit; it is entirely controlled
by σ and ξ cr.

One can obtain an approximation to the above profile as fol-
lows. In the vicinity of x1,nr±(x) � nin(x), therefore the incoming
particle contribution to Ampère’s law can be neglected. Further-
more, one can approximate the motion of r+ particles close to
x1 as uniform deceleration, implying βx � [2|β̇x(x1)|(x − x1)]1/2,
with |β̇x(x1)| = ωL1(1 + b1)βy,r+(x1) given that βx(x1) = 0, and
ωL1 ≡ ωL,r+(x1). This allows us to determine the singular profile of
the density close to x1, using the continuity equation. Plugging this
result and the similar estimate for r− particles into Ampère’s law,
one derives

b � b1

[
1 + ξcr

σ

|βx,r+(0)|√βy,r+(x1)√
2(1 + b1)1/2b1

ω
1/2
L1 (x − x1)1/2

]
. (A12)

The term in the brackets determines the scale over which b varies
close to x1, �x ∼ σ 2ξ−2

cr b3
1c/(

√
2ωL1). Using Ampère’s law with

∂xb ∼ b1/�x, ωL1 ∼ ωc and assuming b � 1 leads to

b1 ∼
(

ξcr

σ

)1/2

. (A13)

The above turns out to provide the correct scaling seen in the nu-
merical calculations. In turn, this leads to �x ∼ σ 1/2ξ−1/2

cr c/ωc ∼
ξ−1/2

cr c/ωp: current compensation takes place on skin depth scales,
as anticipated in Lemoine & Pelletier (2011).

Outside the precursor, the field goes down to its asymptotic far
upstream value on skin depth scales as well. Equations (A11) can
be used in this region, with nr± → 0 in Ampère’s law. As discussed
in Alsop & Arons (1988), the system then admits the two integrals
of motion

γin = γsh (1 − σb) ,

ux,in = u∞

[
1 − σ

2β2
sh

b (b + 2)

]
. (A14)

These two integrals, combined with equations (A11), allow us to
derive the following equation for the profile of b:

∂xb = − ωc√
σc

[
b2 − σb2/

(
γ 2

shβ
2
sh

) − σb3/β2
sh − σb4/

(
4β2

sh

)]1/2

1 − σb(b + 2)/
(
2β2

sh

) .

(A15)

This equation reveals the length scale of the profile: c/ωp, and
allows us to solve for b, by integrating from b1 up to +∞, then for
uin.

Using the integrals of motion, one computes the typical change
in Lorentz factor at the entrance into the precursor,

γ (x1) = γsh

(
1 −

√
σξcr

)
,

ux,in(x1) � u∞ (1 − ξcr/2) , (A16)

|uy,in(x1)| � −u∞
√

ξcr . (A17)

The variation in Lorentz factor is small compared to that of ux and
uy, but the slow-down along x is substantial: at x1, the particles
move at velocity βx,in(x1) � 1 − ξcr/2 in the shock front frame.
This slow-down is obvious in Fig. A1.

Well inside the precursor, current compensation implies

|uy,in| � ξcrγsh . (A18)

In order to derive the slow-down imparted to incoming particles, one
first notes that b � 1 outside the peak at the tip of the precursor, as
indicated by equations (A12) and (A13). The dynamics of incoming
particles is then given by equation (A11) with b � 1, which implies
that the flow is slowed by an amount

�ux,in � γshξcr , (A19)

between the far upstream value and the value of ux,in well inside the
precursor. This value matches that at entry into the precursor, equa-
tion (A16), and it also matches the value obtained in the simplified
MHD model, equation (A6). This slow-down appears as a direct
consequence of current compensation, which imposes a Lorentz
force directed in the +x direction. In a similar way, one derives
�γ in ∼ − γ shξ cr. Thus the Lorentz factor of both flows remains
large after its modification by the Lorentz force. In terms of three-
velocity, this implies that β2 remains close to unity, up to 1/(2γ 2

sh).
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Current filamentation in relativistic shocks 1377

Using equations (A18) and (A19), one derives the three-velocities
well inside the precursor:

|βy | � ξcr , (A20)

and, at large values of γ sh,

βx,in � βsh

(
1 − ξ 2

cr/2
)

. (A21)

Therefore, if γ shξ cr � 1, then βx,in � −(1 − ξ 2
cr/2), while βx,in �

βsh in the opposite limit, which corresponds to negligible, sub-
relativistic deceleration.

Assuming that γ shξ cr � 1, the relative Lorentz factor between the
shock front frame and the frame R in which the incoming is at rest
along x, i.e. ux,in|R ≡ 0, has fallen from γ sh outside the precursor
down to

γR|sh � 1

ξcr
. (A22)

As viewed in the upstream rest frame, the ambient plasma has been
picked up by the current layer and accelerated towards +x to a
Lorentz factor

γR|u � γsh
ξcr

2
(γshξcr � 1) . (A23)

Finally, in the R frame in which the ambient plasma is at rest,
the particles move with velocity |βy,in|R| ∼ 1 with bulk Lorentz
factor ∼γ shξ cr/2, provided of course that γ shξ cr � 1. In the oppo-
site (weak current) limit, γ shξ cr � 1, one finds |βy,in|R| ∼ γshξcr,
βR|u ∼ 0 and γR|u ∼ 1; similarly, γR|sh ∼ γsh.

A3 Warm plasma limit

The above discussion assumed a cold plasma of returning particles,
with initial momentum (on the shock surface) directed along the
shock normal. Here, we introduce the effects of angular dispersion
of the beam of returning particles. For simplicity, we neglect the
dispersion in Lorentz factor of the returning particles; this dispersion
can be taken into account but it should not modify strongly the
overall shape of the current profile.

The number density of returning particles at the shock front (con-
sidering e+/e− species altogether), with momentum oriented within
a solid angle element d�i, is written as dnr+,i(�i). The magnitude
of the current deposited by those particles in the precursor can be
written as:

djy,r+(x) = ∣∣βy(x)
∣∣ dnr+(x, �i)ec . (A24)

Assuming that the particle population r− deposits the same amount
of current as r +, and using the equation of conservation for the
number density of r + particles, the total current element deposited
by supra-thermal particles emitted in the �i direction reads:

djy(x) � 2

∣∣βy,r+(x)
∣∣

βx,r+(x)
βx,r+,idnr+,i(�i)ec , (A25)

βx,r+,i denoting the initial x-component of the three-velocity of r+
particles. This equation can be simplified using the result of the
previous section, which indicate that βx,r+(x) � |2β̇x,r+(x1) (x −
x1)|1/2 in the vicinity of the turning point x1, so that most of the
current djy(x) is deposited at x1. Note that x1 depends on the initial
direction �i. We then approximate the spatial profile of the current
element equation (A25) with a delta function in x:

djy(x) � A δ (x − x1) dFr+,i(�i) e (A26)

Figure A2. Upper panel: profile of jy (in units of γ shξ crn∞ec) carried by
returning particles as a function of x/rL (rL = c/ωc) in the limit γ sh � 1, in-
cluding the effects of angular dispersion at the shock. Lower panel: modulus
of the four-velocity components |ux,in| (solid red), |uy,in| (dashed blue) and
γR|sh (dotted orange); the lower panel assumes γ sh = 100 and ξ cr = 0.1.

with dFr+,i(�i) = βx,r+,ic dnr+,i(�i) the initial flux element. The
prefactor is calculated by normalizing the integrated current element
along x in equation (A26) to that obtained in equation (A25).

In order to express A as a function of the initial velocities βx,r+,i

and βy,r+,i, one needs to express the quantity |βy,r+(x)/βx,r+(x)| in
the vicinity of x1 using the equations of motion. These equations
of motion must be written in the upstream rest frame then Lorentz
transformed to the shock frame. We compute the trajectories of the
returning particles in the background electromagnetic field, neglect-
ing in particular the perturbed component of the magnetic field; this
should remain a good approximation, given that the overall effect
of the angular dispersion of the beam is to spread out over the pre-
cursor length scale the current profile. One then obtains first the
turning point:

x1(�i) = c

ωc,0
γ 3

sh

(
1 − βshβx,r+,i

)
× [

βx,i|u sin �1 + βy,i|u (1 − cos �1) + βsh�1

]
,

(A27)

as a function of the upstream-frame initial velocities

βx,i|u = βx,r+,i − βsh

1 − βx,r+,iβsh
, βy,i|u = βy,r+,i

γsh(1 − βx,r+,iβsh)
, (A28)

and the quantity � 1, which is defined implicitly by:

βx,i|u cos �1 + βy,i|u sin �1 = −βsh . (A29)

Recall that βsh < 0 in our present notations. The initial cyclotron
frequency of the returning particles reads ωc,0 = eγshBu/(γ0,r+mc),
with γ0,r+ � γsh their initial Lorentz factor. One derives eventually:

A = 2
√

2
(
x1c/ωc,0

)1/2 [
γsh(1 − βshβx,r+,i)

]1/2

× ∣∣(βx,r+,i sin �1 − βy,r+,i cos �1)
∣∣1/2

. (A30)

MNRAS 440, 1365–1378 (2014)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/440/2/1365/1020962 by guest on 24 M
arch 2022



1378 M. Lemoine et al.

Finally, the flux is normalized through
∫

dFr+,i(a�i) = γshξcrn∞c.
In the limit γ sh → + ∞, all above quantities reach finite asymp-

totes, as it should; we use these asymptotic values in the numerical
calculation of the integral over the angular variables. One finally
obtains the current profile depicted in Fig. A2.

This profile allows us to estimate the velocity profile of the in-
coming plasma inside the foot. As in the cold plasma limit, current
compensation imposes the following scalings inside the precursor

|uy,in| ∼ ξcrγsh , ux,in ∼ − (1 − ξcr) γsh , (A31)

so that the relative Lorentz factor between the shock front frame
and the frame R in which the incoming is at rest along +x is, as
before, γR|sh � 1/ξcr if γ shξ cr � 1. Fig. A2 shows a numerical
calculation of the evolution of ux,in, |uy,in| and γR|sh inside the
precursor (assuming |b| � 1) for γ sh = 100 and ξ cr = 0.1, which
confirms the above scalings.

APP ENDIX B: LINEAR SYSTEM

We explicit here the linear system used to compute the dispersion
relation, for reference. We rescale the time and space derivatives by
ωc (cyclotron frequency in the upstream rest frame): ∂t̃ ≡ ω−1

c ∂t ,
∂x̃ ≡ cω−1

c ∂x etc. We rescale all electromagnetic fields by the
background value BzR (e.g. δB̃x ≡, δBx/BzR) and we introduce
the notations: κ ≡ γR|sh/u

0, β̃2
s ≡ β2

s /u0 2, δn ≡ δn/n, δρ ≡ δρ/n,
and we rescale δuμ and �uμ by u0, e.g. δũμ ≡ δuμ/u0. This leads

to the following adimensioned system

∂t̃ δn + βy∂ỹ δρ + βy∂t̃�ũy + ∂x̃ δũx + ∂ỹ δũy + ∂z̃δũz = 0

∂t̃ δρ + βy∂ỹ δn + βy∂t̃ δũy + ∂x̃�ũx + ∂ỹ�ũy + ∂z̃�ũz = 0

∂t̃ δũx + βy∂ỹ�ũx + β̃2
s ∂x̃ δn − κ�ũy − βyκδB̃z = 0

∂t̃�ũx + βy∂ỹ δũx + β̃2
s ∂x̃ δρ − κδũy − κδẼx = 0

∂t̃ δũy + βy∂ỹ�ũy + β̃2
s ∂ỹ δn + βR|uκβyδũy + κ�ũx = 0

∂t̃�ũy + βy∂ỹ δũy + β̃2
s ∂ỹ δρ + βR|uκβy�ũy

−κδẼy + κδũx = 0

∂t̃ δũz + βy∂ỹ�ũz + β̃2
s ∂z̃δn + βyκδB̃x = 0

∂t̃�ũz + βy∂ỹ δũz + β̃2
s ∂z̃δρ − κδẼz = 0

∂t̃ δB̃x + ∂ỹ δẼx − ∂z̃δẼy = 0

∂t̃ δB̃y + ∂z̃δẼx − ∂x̃ δẼz = 0

∂t̃ δB̃z + ∂x̃ δẼy − ∂ỹ δẼx = 0

∂t̃ δẼx − ∂ỹ δB̃z + ∂z̃δB̃y + 1

κσ
�ũx = 0

∂t̃ δẼy − ∂z̃δB̃x + ∂x̃ δB̃z + 1

σ
�ũy + 1

κσ
βyδn = 0

∂t̃ δẼz − ∂x̃ δB̃y + ∂ỹ δB̃x + 1

κσ
�ũz = 0.

(B1)
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