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ABSTRACT
We analyse a hydrodynamical simulation of star formation. Sink particles in the simulations
which represent stars show episodic growth, which is presumably accretion from a core that can
be regularly replenished in response to the fluctuating conditions in the local environment. The
accretion rates follow ṁ ∝ m2/3, as expected from accretion in a gas-dominated potential, but
with substantial variations overlaid on this. The growth times follow an exponential distribution
which is tapered at long times due to the finite length of the simulation. The initial collapse
masses have an approximately lognormal distribution with already an onset of a power law at
large masses. The sink particle mass function can be reproduced with a non-linear stochastic
process, with fluctuating accretion rates ∝m2/3, a distribution of seed masses and a distribution
of growth times. All three factors contribute equally to the form of the final sink mass function.
We find that the upper power-law tail of the initial mass function is unrelated to Bondi–Hoyle
accretion.

Key words: accretion, accretion discs – stars: formation – stars: luminosity function, mass
function – open clusters and associations: general.

1 IN T RO D U C T I O N

The origin of the stellar initial mass function (IMF) is a key question
for a theory of star formation. Several ideas have been proposed to
explain the stellar IMF, for example fragmentation, competitive ac-
cretion, a distribution of growth times, or, more statistically, space
filling and gravoturbulent fragmentation. They succeed in explain-
ing one or more properties of the IMF, such as its lognormal-like
shape in the low-mass regime, the power-law behaviour at high
masses (in particular the Salpeter exponent), its peak and its width.
It is the purpose of this paper to investigate which of the ideas men-
tioned above contribute to the development of the sink particle mass
function in a hydrodynamical simulation of star formation (‘sink
particles’ are henceforth termed ‘sinks’ throughout the paper). We
aim in the process to shed some light on the origin of the observed
IMF.

Fragmentation is one of the first processes proposed for star
formation, going back to Hoyle (1953) and extended by a ran-
dom component by Marcus (1968), Larson (1973), Elmegreen &
Mathieu (1983) and Zinnecker (1984). This random fragmenta-
tion, repeatedly splitting a fragment, is essentially a linear stochas-
tic process, first described by Kolmogorov (1941), that leads to a
lognormal distribution. The model of Marcus (1968)) predicts also
the total number of fragments in addition to their mass distribution.

� E-mail: thomas.maschberger@obs.ujf-grenoble.fr

Another principal concept of star formation is stellar accre-
tion, either ṁ ∝ m2 (Bondi–Hoyle) in stellar-dominated potentials
(Zinnecker 1982; Bonnell et al. 2001a,b) or ṁ ∝ m2/3 in gas-
dominated potentials (Bonnell et al. 2001a,b). This leads to a power-
law behaviour of the mass function by spreading the initial seed
distribution. In this model, the power-law exponent of the accretion
rate–sink mass dependence is critical in determining the slope of
the upper power law of the IMF and Zinnecker (1982) used this
to relate the observed Salpeter exponent to Bondi–Hoyle accretion.
In such models, the seed distribution is the random element, both
the accretion rates and growth times are not assumed to have a
distribution.

A third principal concept of star formation is the distribution of
growth times. Accretion has to stop at some point, which is likely
to be a random variable. Typically, an exponential distribution of
growth times is assumed (e.g. Myers 2000, 2009; Reipurth & Clarke
2001; Basu & Jones 2004; Bate & Bonnell 2005), which implies
that the probability for ‘killing’ growth is constant in time for each
star. The distribution of growth times leads to a distribution in mass
and affects the high-mass end of the mass function.

Gravoturbulent fragmentation, with its main theories of Padoan,
Nordlund & Jones (1997), Padoan & Nordlund (2002) and
Hennebelle & Chabrier (2008, 2009, 2013) is based on counting
Jeans-unstable regions in a gas distribution that has lognormal den-
sity fluctuations superimposed by turbulence. This is not so much
related to the random splitting flavour of fragmentation mentioned
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above, but more related to the process of random or subdivision of
a volume (Auluck & Kothari 1954), which has also served in sev-
eral variations as explanation for the IMF (e.g. Auluck & Kothari
1965; Kiang 1966; Richtler 1994). The theories of gravoturbulent
fragmentation produce a mass function with a lognormal body and
a power-law tail.

Several authors have attempted to combine one or more aspects,
for example: Basu & Jones (2004) combine a lognormal distribution
of seed masses with (deterministic) growth ṁ ∝ m or ṁ ∝ m2/3 and
an exponential distribution of growth times. Bate & Bonnell (2005)
combine constant growth (ṁ = const.) with a lognormal distribu-
tion of accretion rates and an exponential distribution of growth
times. [This is mathematically similar to random fragmentation
models (apart from a change of sign of the quantity added); in the
fragmentation models discussed above a uniform or Gaussian in-
stead of a lognormal distribution is typically used]. Myers (2011,
2012) investigates growth following ṁ = const. + m1.2 with an ex-
ponential time distribution but without a distribution of seed masses.
Dib et al. (2010) consider deterministic growth (ṁ ∝ m0.65) from a
seed mass distribution given by gravoturbulent fragmentation with
an exponential distribution of growth times. Maschberger (2013b)
discusses non-linear stochastic processes (a combination of random
fragmentation and accretion) with growth ṁ ∝ mα having a lognor-
mal distribution of accretion rates (due to the lognormal distribution
of turbulent density), with a distribution of seed masses and a dis-
tribution of growth times. This is effectively a combination of all
the processes discussed above, and we will use this prescription to
model the sink mass function.

Numerical studies of star formation have been performed
on core scales (typically ≈1 M�, 10 sinks; e.g. Goodwin,
Whitworth & Ward-Thompson 2004a,b; Vorobyov & Basu 2006,
2009; Krumholz, Klein & McKee 2007) on small cloud scales
(≈100 M�, 100 sinks; e.g. Klessen 2001; Bate, Bonnell & Bromm
2003; Schmeja & Klessen 2004; Bate & Bonnell 2005; Bate 2009c,
2009b; Offner et al. 2009a, 2010; Commerçon, Hennebelle &
Henning 2011; Girichidis et al. 2011, 2012a,b; Hennebelle
et al. 2011; Seifried et al. 2011, 2012; Hansen et al. 2012;
Myers et al. 2013) and on star cluster scales (≈1000 M�,
1000 sinks; e.g. Bonnell, Bate & Vine 2003; Bonnell, Clark &
Bate 2008; Offner, Klein & McKee 2008; Bate 2009a, 2012;
Offner, Hansen & Krumholz 2009b; Peters et al. 2010a;
Bonnell et al. 2011; Krumholz, Klein & McKee 2011, 2012). Al-
though the simulations employ different physical processes (isother-
mal versus barotropic versus radiative transfer; wind feedback; mag-
netic fields; etc.) they usually lead to a sink mass function fairly
similar to the IMF, if enough sinks are formed.

There have been some comparisons of theoretical models with
simulations. For example, Schmidt et al. (2010) compare the core
distributions of their simulations with the models of Padoan &
Nordlund (2002) and Hennebelle & Chabrier (2008), while Bate
(2009a, 2012) compares the sink mass function with the model of
Bate & Bonnell (2005). In this work, we set out to investigate the
simulation by Bonnell et al. (2008, 2011) for the distribution and
mass dependence of the accretion rates, the distribution of growth
times and the distribution of seed masses in order to find out what
the parameters are and where, if there is any, the main random
component of star formation originates.

This paper is structured as follows. In Section 2, we describe the
calculation. An analysis of episodic growth and the classification
of sink histories follow in Sections 3 and 4. The distribution and
mass dependence of the accretion rates is analysed in Section 5. In
Section 6, we discuss the location of each sink class in the mass

function and the distribution of initial collapse masses. Section 7
contains the analysis of the distribution of growth times. In Section
8, we investigate which one of the random elements, seed masses,
accretion rates and growth times, is likely the main contributor to
the shape of the IMF. A summary in Section 9 concludes the paper.

2 C A L C U L AT I O N

We analyse the calculation performed by Bonnell et al. (2008, 2011),
to which we refer for further details. The initial cloud mass is
104 M�, distributed over a cylinder 10 pc long and 3 pc in diameter.
There is a linear density gradient along the main axis, so at one
end the cylinder is 33 per cent more dense than average and at
the other end 33 per cent less dense. Turbulence is modelled by
an initial divergence-free Gaussian random velocity field with a
power spectrum P(k) ∝ k4. Turbulence is not driven during the
calculation. At the start of the calculation the cloud is globally
marginally unbound, but due to the density gradient bound in the
upper half and unbound in the lower half.

Particle splitting (Kitsionas & Whitworth 2002, 2007) was used
to resolve fragmentation down to masses of 0.0167 M� (equivalent
to 4.5 × 107 smoothed particle hydrodynamics particles), suffi-
cient to resolve the formation of brown dwarfs. A lower resolution
simulation was run initially to identify these regions in the initial
conditions and the full simulation was then rerun, including the
regions of higher resolution, in order to resolve the formation of all
stars and brown dwarfs. The gas follows a barotropic equation of
state,

P = kργ , (1)

where

γ = 0.75; ρ ≤ ρ1

γ = 1.0; ρ1 ≤ ρ ≤ ρ2

γ = 1.4; ρ2 ≤ ρ ≤ ρ3

γ = 1.0; ρ3 ≤ ρ

(2)

and ρ1 = 5.5 × 10−19 g cm−3, ρ2 = 5.5 × 10−15 g cm−3 and
ρ3 = 2 × 10−13 g cm−3. Star formation is modelled with sink par-
ticles (Bate, Bonnell & Price 1995), which are created at a critical
density of 6.8 × 10−14g cm−3. The sink radius is 200 au and the ac-
cretion radius is 40 au, gravitational interactions are also smoothed
at 40 au.

The simulation runs for about one free-fall time or 6.6 × 105 yr
and sinks start forming after ≈1/2tff . In total 2542 sinks are formed
with masses ranging from 0.017 to 30 M�. The vast majority of
the sink particles forms in the bound half of the cylinder and is
concentrated in only a few rich subclusters.

This calculation has been first published by Bonnell et al. (2008)
who analysed it with respect to brown dwarf formation. The evolu-
tion of subclusters, mass segregation on a subcluster scale and the
upper end of the sink mass function (time variation of the exponent
and truncation) has been investigated by Maschberger et al. (2010).
Bonnell et al. (2011) discussed the star formation efficiency in clus-
tered and distributed regions. The properties of cores that form in
the simulation were analysed by Smith, Clark & Bonnell (2009a),
Smith, Longmore & Bonnell (2009b) and Smith et al. (2011), 2012,
2013). Global mass segregation was covered in Maschberger &
Clarke (2011). Kruijssen et al. (2012) studied the dynamical struc-
ture of the subclusters, finding that they are close to virial equi-
librium. The spatial and kinematic distribution of the sinks at the
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Figure 1. Examples of growth histories for each of the classes (C 1 = collapse in 1 episode, C 2 =collapse in 2 episodes, W A = weak accretion, A = accretion,
S A = strong accretion). The left-hand plot shows the most massive sink in each class and the right-hand plot the first formed sink of each class. The left-hand
panels show mass as a function of time, which is normalized in the middle panels (for comparison with Fig. 5). The right-hand panels show the accretion rate
as a function of time.

end of the calculation was dynamically evolved by Moeckel et al.
(2012), assuming instantaneous gas dispersal.

3 EP ISODIC G ROWTH

Fig. 1 shows examples for the growth histories of some sinks (sam-
pling interval 1000 yr). The left-hand panels give mass as a function
of time, which is also shown in the middle panels, but normalized
to growth time and final mass (discussed in the next section). The
right-hand panels show the accretion rate as a function of time.
The alternating colour coding corresponds to the different episodes,
whose identification is discussed in the next section. Typically m(t)
in the top rows has a concave shape which becomes gradually more
convex to the bottom row. Such a behaviour of m(t) is also seen in
other simulations of star formation employing other codes and other
physical processes (see e.g. fig. 2 of Peters et al. 2010b; fig. 12 of
Krumholz et al. 2011; figs 14 and 15 of Girichidis et al. 2012b; and
fig. 2 of Bonnell, Clarke & Bate 2006).

The growth histories of the two top rows [i.e. m(t) and ṁ(t)] can
be understood as the collapse of an unstable core (cf. e.g. Foster &
Chevalier 1993; Whitworth & Ward-Thompson 2001), which leads
to a sharp rise of ṁ(t) followed by an exponential-like decay. Sink
particles are created during this collapse, instantaneously collecting
all gas particles fulfilling the sink creation criteria, so that only
part of the collapse is traced by the sink particle mass growth.
Particularly, if the increase of ṁ(t) is very fast the conditions for
sink formation are only satisfied when ṁ(t) is already decreasing
(top row of Fig. 1). This behaviour of ṁ(t) is in agreement with the
properties of the bound cores (Smith et al. 2011). ṁ(t) of these lower
mass sinks is comparable to Schmeja & Klessen (2004), Goodwin
et al. (2004a) or Girichidis et al. (2012b), which are starting with a
smaller gas mass.

In the lower panels, the sinks undergo several of these accre-
tion/collapse episodes, which leads to sometimes severe variations

in ṁ, but lesser changes in the shape of m(t). This is similar to the
fragmentation-induced starvation scenario of Peters et al. (2010a,b).
During each episode the accretion rate can be modelled by an ex-
ponential increase or decrease as a function of time,

ṁ(t) = Aebt . (3)

A and b are different for each episode. This episodic growth is
reflected in the plot of the accretion rates as a function of mass.
Fig. 2 (top panel) shows ṁ(m) for the most massive sink of the
simulation (also shown in the bottom row of the left-hand plot in
Fig. 1). Due to the episodic growth ṁ does not depend smoothly on
m, but shows ‘icicles’, where ṁ drastically decreases and m is not
changing much. The simulations of Krumholz et al. (2012, fig. 13)
show a similar behaviour of ṁ(m).
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Figure 2. Top panel: accretion rate as a function of mass for the most
massive sink particle. Episodes have been colour coded alternatingly. Bottom
panel: absolute value of the fitted exponent α of the accretion rate ṁ ∝ mα

for each episode. The arrows show the sign of α, downwards for negative α

and upwards for positive α. Note the logarithmic axis for the exponent.
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The lower panel of Fig. 2 shows the absolute values for exponent
of a fit ṁ ∝ mα in each episode on a logarithmic scale. Upwards
arrows indicate a positive exponent (increasing ṁ) and downwards
arrows a negative exponent (decreasing ṁ). There are large varia-
tions in α. Although there are some episodes with α ≈ 2, generally
we obtain much larger values during an episode. It is thus hard to
explain the form of the sink mass function in terms of the Bondi–
Hoyle accretion model proposed by Zinnecker (1982).

The episodic accretion that is described here is due to the re-
peated creation and depletion of a gas core around a sink particle
while the star gains most of its mass. This is different from the
episodic accretion described in Stamatellos, Whitworth & Hubber
(2011, 2012) which operates in discs smaller than the sink radius of
our calculation located in cores that are not replenished. Also, the
episodic accretion here has to be distinguished from bursty accre-
tion during a T Tauri or FU Orionis phase occurring only after most
of a star’s mass has been assembled (cf. Vorobyov & Basu 2006,
2009).

4 C L A S S I F I C AT I O N O F T H E SI N K S

4.1 Identification of the episodes

We determine the episodes from behaviour of the rolling mean
accretion rate as a function of time,

ṁ(ti+5) = 1

11

i+11∑
k=i

ṁ(tk). (4)

The time window used is 11 000 yr, or 11 data points, which we
found to be a reasonable compromise between the smoothness of
the mean accretion rate and the resolution of the episodes. The
beginning and end of an episode is characterized by a sign change
in the numerical derivative of ṁ(ti). We calculate the sign at time ti

from five data points with

sign(ti) = ṁ(ti−2) − ṁ(ti+2). (5)

If the sign changes from ti to ti + 1 then a new episode starts at ti + 1.
This procedure leads to some very short episodes, which typically
last only a few thousand years. These are only spurious detections.
Therefore, we remove them (pruning) by attaching any episode that
is shorter than 5000 yr (less than five data points) to the previous
episode. The colour coding in Figs 1 and 2 shows the episodes
identified in this way. Our episode determination finds the main
features in the growth history roughly agreeing with what would be
found by human eye.

Fig. 3 shows the effects of parameter variations in the episode
determination algorithm using the first formed strongly accreting
sink as an example. For clarity, only a part of the growth history
is shown (complete in the bottom-right panels of Fig. 1). The ver-
tical lines show the boundaries of the episodes for the parameter
choice of the respective panel. There are three parameters in the
episode detection algorithm, the number of data points over which
the rolling mean runs (nroll), the number of data points over which
the sign change is determined (nsign) and the maximum length of
episodes which are pruned (nprune). In each column of Fig. 3 one
of the parameters is varied (the used value is given in the panel),
whereas for the other parameters our standard choice is used (given
on top of the panel). The panels in the middle row are identical,
corresponding to our adopted choice of parameters, and are shown
for easier comparison. For this particular sink, the algorithm should
find the first three episodes which are a decreasing ṁ from initial
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Figure 3. Effects of the parameter choice on the episode detection. The
middle row shows the same plot three times for easier comparison.

collapse (2.9–3 × 105 yr) and then rise (3–3.1 × 105 yr) and again
decrease (3.1–3.5 × 105 yr) of ṁ of the first accretion event. Up
to approximately 3.7 × 105 yr the accretion rate is rather smooth
during the episodes, but afterwards there is a larger amount of fluc-
tuation, which makes episode detection more difficult.

Averaging over a shorter period produces more episodes (top-left
panel), whereas a longer averaging period produces less episodes
(bottom-left panel). Changing nsign has the same effect. Without
pruning many very short episodes are produced (after 4 × 105 yr,
top-right panel), but if the pruning length is very long then real
episodes are lost (bottom-right panel). Generally, larger values of
the parameters give longer episodes but miss some short ones, while
smaller parameter values lead to shorter episodes but more spurious
detections. Our choice of parameters is a compromise between the
number and length of episodes.

4.2 Classification of the growth histories

The growth history of a sink consists of a collapse phase often
followed by an accretion phase, consisting of one or many episodes.
The collapse phase falls normally into a single episode, but can
sometimes extend over two episodes, About half of the sinks show
significant growth by accretion after the initial collapse phase. Most
sinks show a quiescent phase of very minor mass gain that occurs in
the later stages of their evolution, after the initial collapse and any
subsequent accretion phases. Mass growth has effectively stopped
when they set in. Therefore, we define the growth time of a sink
(t95 per cent) as the time during which 95 per cent of the final mass is
assembled. The parts of the growth histories that fall after t95 per cent

are shown in black in Fig. 1. Typically, the time between t95 per cent

and the end of the simulation covers the final quiescent phase,
except for massive sinks, where some accretion is needed for the last
5 per cent of mass gain. Quiescent phases can also occur between
two accretion events before t95 per cent.

This leads us to the following classification scheme for the growth
histories of the sinks.

(0) Unresolved collapse. Sinks that less than double their initial
mass during the simulation.

(ia) Collapse in 1 episode. Sinks that have 75 per cent of their
mass gain (mend − mstart) in the first episode and are not class (0).
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(ib) Collapse in 2 episodes. Sinks that have 75 per cent of their
mass gain within the first two episodes and are not class (0) or (ia).

(ii) Weak accretion. Sinks that achieve at least 50 per cent of
their final mass in less than the first 33 per cent of their growth time
(t95 per cent) and are not class (0), (ia) or (ib).

(iii) Accretion. Sinks that achieve at least 50 per cent of their final
mass in the time between 33 and 50 per cent of their growth time
and are not class (0), (ia) or (ib).

(iv) Strong accretion. Sinks that achieve more than 50 per cent of
their final mass in the second half of their growth time and are not
class (0), (ia) or (ib).

For the classification, we first establish whether a sink falls into
class (0) or not. If the sink more than doubles the mass, it con-
tains enough data points to proceed with the analysis and clas-
sification. The next step is to establish whether a sink that dou-
bles in mass is collapsing [class (ia) or (ib)] or not. If the mass
gain of a sink is not dominated by the initial collapse then signif-
icant amounts of accretion are present and it can be classified as
weakly/intermediate/strongly accreting (classes (ii), (iii) or (iv)).
The condition for being in class (ii), (iii) or (iv) is mutually exclu-
sive. Thus, the classification of a sink is unique, it is assigned only
one class. Note that the classification scheme is independent of the
final sink mass and only based on the morphology of the growth
history.

Sinks in class (0) have more than half of their final mass already at
the moment when the sink is formed during the first collapse phase.
Therefore, they are collapse dominated, but their growth history is
not resolved by the sink particle, only by the gas particles. Usually
they have very small masses.

The typical behaviour of each class is schematically represented
in Fig. 4, which has the same layout as Fig. 1. The left-hand panels

Figure 4. Schema of episodic growth for each class. The left-hand panels
show m(t), which has been normalized in the middle panels. The right-hand
panels show ṁ(t). For class (ia) in the top panel the dotted red curve shows
the initial episode, which is not resolved in the simulation. The black bar in
panels (ii), (iii) and (iv) runs from 1

3 t95 per cent to 1
2 t95 per cent at half the final

sink mass.

Figure 5. Characteristic growth histories of the sinks for each class, which
change with increasing amount of accretion from a concave shape to a
convex shape. Time is normalized as t/t95 per cent and mass is normalized to
the final mass of the sink.

show m(t), the middle panels the normalized m(t) and the right-hand
panels ṁ(t). Fig. 5 shows the characteristic growth histories for all
sinks in each of the classes (normalized mass versus normalized
time, corresponding to the middle panels of Figs 1 and 4). This
allows us to show all sinks despite their differing masses and growth
times in order to see the variations of the growth histories in each
class. The dots are the growth histories of each sink, colour coded
to the point density at their location.

Sinks of class (ia) and (ib) are collapsing cores that do not undergo
any significant further accretion. The signature of a collapse in the
ṁ−t plot is a very sharp rise of ṁ followed by a more gentle decline.
As the increase of ṁ can be very fast it is not always completely
traced by a sink particle, sometimes the sink is formed only when ṁ

is already declining. Then most of the mass is gained in the single
episode of declining ṁ. This is the case for sinks of class (ia), shown
in the top panels of Figs 1, 4 and 5. In Fig. 5, the bulk of the sinks
behaves as in the schema, but at small values of the normalized time
another branch appears in the upper part. The top branch is due to
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Table 1. Properties of each category. Bars denote average values which are quoted with the standard deviation. Tildes denote the median with the errors
corresponding to the quantiles at ±1σ (83 and 17 per cent). The rows are: n number of sinks in this class; ‘per cent all’ is the percentage with respect to all
sinks; per cent is with respect only to the mass gaining sinks; m is final mass; min m is the minimum mass of a class, which is affected by outliers. Therefore,
we give also the 2 per cent quantile (m2 per cent); max m is the maximum mass of a class; m1/m0 is mass gain (ratio final/initial mass); t95 per cent is growth time;
nep is number of episodes; and tep is duration of episodes.

(0) Unresolved collapse (ia) Collapse (1 episode) (ib) Collapse (2 episodes) (ii) Weak accretion (iii) Accretion (iv) Strong accretion

n 540 441 296 499 338 208
per cent all 23 19 13 21 15 9
per cent – 25 17 28 19 12
m M� 0.07 ± 0.04 0.23 ± 0.16 0.33 ± 0.25 0.52 ± 0.60 1.25 ± 1.18 3.01 ± 3.63
m̃ M� 0.06 −0.02

+0.04 0.19 −0.10
+0.17 0.26 −0.15

+0.28 0.34 −0.23
+0.50 0.92 −0.48

+0.98 1.81 −1.25
+3.55

min m M� 0.01 0.04 0.04 0.03 0.06 0.05
m2 per cent M� 0.02 0.05 0.06 0.05 0.09 0.13
max m M� 0.36 0.93 1.58 4.70 7.86 30.29
m1/m0 1.49 ± 0.02 3.90 ± 0.05 5.53 ± 0.06 8.51 ± 0.05 18.69 ± 0.09 52.45 ± 0.13
˜m1/m0 1.48 −0.30

+0.31 3.38 −1.10
+1.83 4.89 −2.07

+2.89 5.94 −3.12
+6.59 13.10 −5.71

+13.69 28.78 −18.07
+49.57

t95 per cent 103 yr 26 ± 34 34 ± 31 50 ± 30 115 ± 59 121 ± 65 160 ± 75
˜t95 per cent 103 yr 12 −9

+36 24 −13
+29 43 −19

+29 101 −42
+73 109 −52

+80 152 −73
+88

nep – 2.00 ± 1.70 3.16 ± 1.55 7.72 ± 3.71 7.92 ± 4.17 10.60 ± 5.24
ñep – 1 −0

+2 3 −1
+1 7 −3

+4 7 −3
+5 10 −6

+6
tep 103 yr – 23.36 ± 13.85 19.19 ± 10.23 16.30 ± 8.75 16.66 ± 8.80 16.21 ± 8.77
t̃ep 103 yr – 20.11 −9.05

+16.09 16.58 −5.53
+11.56 14.07 −5.02

+9.06 14.08 −5.03
+10.04 14.07 −5.02

+9.06
tepnep 103 yr – 47 61 126 132 172
t̃epñep 103 yr – 20 50 98 99 141

(very low mass) sinks that gain a very large fraction of their mass in
the collapse, but do not quite reach 95 per cent of their final mass.
A small accretion event is needed to reach the final mass, which
can occur a rather long time after the collapse. An example for this
is the first sink formed of class (ia), shown in the top-right part of
Fig. 1.

Sinks in class (ib) are formed very early on during the initial
collapse and the quickly rising ṁ is resolved, so that two episodes
are found. Their behaviour is shown in the second panels from top
in Figs 1, 4 and 5. Compared to class (ia) the scatter has increased
in Fig. 5 and the top branch is not present any more. Class (ia) can
by construction only contain collapsing sinks, whereas class (ib)
can contain sinks that had an accretion episode after collapse, if the
initial rise of ṁ is unresolved. We did not find a robust and objective
way to distinguish between 2-episode collapse and 1-episode plus
an accretion episode in class (ib). Therefore, we introduced the split
of collapsing sinks into classes (ia) and (ib).

Classes (ii), (iii) and (iv) contain sinks that underwent increasing
magnitudes of accretion and have more episodes than the sinks in
classes (ia) and (ib). Accretion does not proceed in a smooth way,
perhaps with some scatter in the accretion rates, but as a sequence of
accretion events after the initial collapse. This is particularly visible
in the bottom panels for ṁ(t) of Fig. 1 which has a zigzag shape
from the sharp rise and decline of ṁ during the secondary ‘accretion
collapses’. However, our classification scheme is for those sinks not
based on the ṁ(t), but on the time when the majority of mass is
acquired. The lower three panels of Fig. 4 for accreting sinks show
a black bar which runs from 1

3 t95 per cent to 1
2 t95 per cent at half of the

final mass. m(t) for the weakly accreting sinks [class (ii)] runs to the
left of the bar, for accreting sinks [class (iii)] it goes through the bar,
and strongly accreting sinks [class (iv)] have m(t) that goes below
the bar. The change of m(t) from convex [class (ii)] via linear [class
(iii)] to concave [class (iv)] is easier to identify than the change in
behaviour of ṁ(t) (see Fig. 1). In the lower three panels of Fig. 5
this change of morphology is well visible.

4.3 Properties of the sink classes

Table 1 gives some characteristic quantities for each sink class where
bars denote the mean and tildes the median. As the distributions of
these quantities are very skewed the standard deviation can be larger
than the average. Therefore, we also give with the median mass
the quantiles corresponding to ±1σ (83 and 17 per cent). About
23 per cent of all sinks do not double their mass during their stay
in the simulation. Of those that significantly gain mass 40 per cent
only collapse (classes ia and ib), ≈30 per cent show weak accretion
(ii), ≈ 20 per cent are accretion dominated (iii) and ≈10 per cent
have strong accretion (iv). There is a steady increase in the mean
and median mass of each class (but note that mass is not a criterion
for classification). The minimum mass in each class is probably
affected by some outliers due to misclassification, hence we also
provide the 2 per cent quantile. Collapsing sinks have on average
a mass of ≈0.3 M�, but strongly accreting sinks are a factor of
10 more massive. Similarly, the average mass gain (ratio of final
and initial mass, m1/m0) ranges from a factor of ≈4 up to a factor
of ≈50. With increasing amount of accretion also the growth time
increases, as well as the number of episodes (nep). The duration of
the episodes (tep), however, is fairly constant for each class and not
much affected by the presence and amount of accretion.

5 AC C R E T I O N R AT E S

5.1 Mass dependence of the accretion rates

Fig. 6 shows the accretion rate as a function of mass for all sinks in
the simulation at all sampling times. The dots are colour coded to
the point density at their location. Accretion events can be discrete
because of the discrete modelling of the gas density so that there
appear stripes of points at the bottom of the plot. This corresponds
to the accretion of a one single, two, etc. gas particles to the sink
during the sampling time interval. Sampling intervals without any
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Table 2. Results from the mass function fits. α, β and μ are the parameters of the L3 IMF. α is the high-mass exponent
and γ the low-mass exponent. mγ and mα are the masses below or above which the L3 IMF follows power laws. The mode
refers to the maximum of L3 in linear units (as Fig. 10), whereas mPeak refers to the maximum in logarithmic units.

Class α β μ γ mγ mα Mode mPeak Average mass

All sinks, collapse mass 3.36 1.67 0.18 −0.58 0.078 0.42 0.09 0.15 0.19
Collapsing sinks, collapse mass 2.80 2.91 0.07 −2.44 0.021 0.20 0.06 0.09 0.15
Accreting sinks, collapse mass 4.19 1.48 0.28 −0.52 0.150 0.53 0.15 0.22 0.23
All sinks, final mass 1.93 10.57 0.01 −7.90 0.002 0.11 0.06 0.15 0.67
Collapsing sinks, final mass 2.53 3.53 0.05 −2.88 0.015 0.20 0.06 0.10 0.19
Accreting sinks, final mass 2.47 1.93 0.67 −0.37 0.173 2.60 0.18 0.64 1.25

Figure 6. Plot of the accretion rates versus m for all sinks at all times of the
simulation, colour coded to the point density. Lines are for ṁ ∝ m2 (dashed)
and ṁ ∝ m2/3 (solid). Time intervals with no accretion have been assigned
a fiducial accretion rate of 10−7 M� yr−1.

accretion of a gas particle, which are not uncommon, are shown as
the stripe at 10−7 M� yr−1.

Below ≈0.5 M� the accretion rates appear to be independent of
the sink mass, although there is a slight trend of a decrease of ṁ

with m. Above ≈0.5 M� the accretion rates increase with mass,
following approximately ṁ ∝ m2/3. This is predicted for accretion
in gas-dominated potentials (Bonnell et al. 2001a,b). Certainly the
sinks do not follow classical Bondi–Hoyle accretion ∝m2, which
corresponds to the dashed line. Besides the mass scaling there is
a considerable scatter in the accretion rates, spanning more than
an order of magnitude. Furthermore, there are the ‘icicles’ in the
ṁ–m plot, strands of decreasing accretion rates at the same mass,
which belong to the same sink. These are particularly visible at
large masses.

The mass dependence of the accretion rates has been studied by
several authors. For small masses (m < 0.5 M�) Bate & Bonnell
(2005), Bate (2009a,c, 2012) find no mass dependence of the time-
averaged ṁ, which is consistent with Fig. 6. Offner et al. (2009a)
fit also the time-averaged accretion rates and find ṁ ∝ m0.64 with-
out radiative transfer and ṁ ∝ m0.92 including radiative transfer in
the calculation. Dib et al. (2010) report that in the simulations of
Schmeja & Klessen (2004) the final masses scale with the peak
accretion rate as ṁpeak ∝ m0.65

final. However, as very likely in these
simulations sink growth is episodic as in ours, the time-averaged or
peak accretion rate may not necessarily give the appropriate mass
scaling.

5.2 Accretion rates of the individual classes

With the grouping of the sinks in various growth classes we are
able to disentangle Fig. 6. This is done in Fig. 7, which shows ṁ

versus m for each class individually. The left-hand column gives

ṁ–m sampled at 1000 yr intervals where the ‘icicles’ of expo-
nentially decaying accretion rates are well visible. Again we add
10−7 M� yr−1 to the accretion rate in order to be able to show
episodes of extremely low or no accretion in the logarithmic plot.
As the episodic accretion produces a large spread in ṁ we show
in the middle column of Fig. 7 the average accretion rates dur-
ing each episode. This is given by the fraction of mass accreted
during an episode, �m, divided by the duration of the episode,
�t. The mass coordinate is the mass at the beginning of the
episode. Here many of the ‘icicles’ have vanished and the scatter is
reduced. The average accretion rates �m/�t during an episode de-
pend on the length of the episode. In order to assess the length
dependence we show in the right-hand panel of Fig. 7 the scaling
constant A of a fit ṁ = Aebt as a function of m at the beginning of
an episode. A shows the same behaviour as ṁ−m or �m/�t−m,
in particular the same m2/3 scaling. Compared to �m/�t−m there
is more scatter in the distribution of A.

In the middle and left-hand column of Fig. 7, it is very evident
that there are three types of episodes: initial collapse, accretion
and quiescent. The initial collapse is located at ≈0.08 M� and
10−5 M� yr−1, marked by an ellipse. This phase is well separated
from the two others. For the strongly collapsing sinks in one phase
the initial collapse is followed mainly by quiescent phases, although
some subsequent accretion occurs on a small level. The quiescent
phases are located below 10−6 M� yr−1 at the bottom of the panels.
Accretion is at a higher ṁ, steadily increasing from panel to panel
downwards. Finally, for the accreting or strongly accreting sinks
(class iii/iv) a very clear mass dependence of the accretion rates
becomes evident, scaling ∝m2/3 (dashed line). This scaling is ex-
pected from accretion in a gas-dominated potential (Bonnell et al.
2001a,b). As accretion increases quiescent phases become more and
more rare.

The instantaneous accretion rates in the left-hand column of Fig. 7
show similar trends as the in middle and right-hand column. How-
ever, due to the exponential time dependence of the accretion rates
the features are smeared out, particularly the collapse phase. Also,
this leads to a very strong population of very small accretion rates.

5.3 Fluctuations in the accretion rates

The time-averaged accretion rates show besides their mass depen-
dence a large scatter, which can be written as

�m

�t
= m2/3W, (6)

where W is a fluctuating quantity generating the scatter in the ac-
cretion rates. In order to estimate the amount of scatter, we need to
determine the distribution of W with its parameters. The strongly
accreting sinks have the widest mass range over which they fol-
low ṁ ∝ m2/3. Therefore, we analyse the distribution of W for the
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Figure 7. Left-hand panel: accretion rates as a function of sink mass for each class. Middle panel: episodic accretion rate, defined as mass gain during an
episode, �m, per duration of episode, �t, as function of the sink mass at the beginning of the episode. Right-hand panel: scaling constant A of a fit ṁ = Aebt

for each episode versus the sink mass at the beginning of the episode. Three groups of episodes become visible, a collapse type (red ellipse), an accreting type
where ṁ ∝ m2/3 (dashed line) and quiescent episodes below ≈10−6 M�yr.

strongly accreting sinks, shown in Fig. 8. The top panel shows W as
a function of the sink mass. Like in Fig. 7 the three types of episodes
are visible, collapsing, quiescent and accreting. As the mass depen-
dence for W is removed, the distribution of W is constant in mass.
It appears that during accreting episodes (marked in red) W follows
a lognormal distribution,

p(W ) = 1

W

1√
2πσW

e
− 1

2
(log W−μW )2

σ2
W . (7)

Accreting episodes are selected by requiring that W >

10−6 M1/3
� yr−1 and m > 0.5 M� (shown as red dots). A maxi-

mum likelihood fit of the parameters of a lognormal distribution
gives μW = −11.44 and σ W = 0.74.

In order to test the goodness of a lognormal fit we show in the
bottom panel of Fig. 8 a histogram of W, selecting all those with
m > 0.5 M� (including quiescent episodes). The red shaded his-
togram shows a lognormal distribution with the estimated parame-
ters. Above 10−6 M1/3

� yr−1 the distribution of W agrees reasonably

with the lognormal fit, but below 10−6 M1/3
� yr−1 there is an excess

of small W. The low-W part of the distribution contains mainly
quiescent episodes, and is thus not representative for the distribu-
tion of W during accreting episodes. Therefore, the assumption of a

lognormal distribution of W during accreting episodes is justified
by the data.

6 L O C AT I O N O F T H E C L A S S E S IN T H E S I N K
M A S S F U N C T I O N A N D D I S T R I BU T I O N O F
I NI TI AL C OLLAPSE MASSES

Our classification of the growth histories is independent of the final
mass and the growth time of each sink. It merely depends on the
behaviour and shape of the growth history. Within the framework
of gas-dominated competitive accretion (Bonnell et al. 2001a,b). it
is expected that massive stars gain most of their mass via accre-
tion of initially unbound gas after the collapse of the initial core.
As our classification groups the sinks according to the amount of
post-collapse accretion that they undergo, we would expect that
the strongly collapsing sinks without much accretion populate the
low-mass range, whereas the strongly accreting sinks have large
masses. This is exactly what we find. Fig. 9 shows in the top panel
a histogram of the final sink masses divided into the classes. The
amount of accretion in a sink’s growth history increases with in-
creasing final sink mass. The overall shape of the final sink mass
function has three main components, a lognormal-like low-mass
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Figure 8. Fluctuations W in the accretion rates. Scatter plot as a function
of mass in the upper panel. The lower panel shows a histogram of W for
m > 0.5 M� with a lognormal fit for W (shaded histogram) during accreting

episodes (W > 10−6 M1/3
� yr−1, i.e. the red dots in the upper panel). Below

≈10−6 M1/3
� yr−1 the distribution of W is dominated by quiescent episodes.

Figure 9. Top panel: sink mass function at the end of the calculation where
the contribution of each category is shown. Bottom panel: ratio to which
each class contributes at a given mass range.

part which passes at ≈0.1 M� into a power law ∝m≈−1 followed
by another power law ∝m≈−2.5 above ≈1 M�.

The lower panel of Fig. 9 shows the contribution of each class
in each mass bin. Below ≈0.1 M� sinks do not significantly grow
after their formation. Between ≈0.1 and ≈0.5 M� the mass gain is

dominated by collapse. Above ≈0.5 M� most sinks have undergone
a considerable amount of accretion.

Fig. 10 shows the effects of initial collapse and accretion on the
mass function. The top panels of Fig. 10 show the mass functions
after the initial collapse (i.e. after the first episode), whereas the
bottom panels show the mass functions at the end of the simulation.
As we are interested in the origin of the high-mass power-law part
of the IMF we use the L3 IMF from Maschberger (2013a)) as fit
function for comparison with the histogram,

pL3(m) ∝
(

m

μ

)−α
(

1 +
(

m

μ

)1−α
)−β

. (8)

The functional form has a lognormal-like main body with power-
law tails both at the low-mass and the high-mass end. Table 2 gives
the results of the L3 fits with the estimated parameters α, β and μ.
The low-mass power law (∝ m−γ ) sets in at mγ and the high-mass
power law (∝ m−α) at mα (shown as dotted vertical lines in Fig. 10).
Furthermore, Table 2 also gives the values for the mode (maximum
in linear space), the peak (maximum in the logarithmic description)
and the average mass.

The first column comprises all classes of sinks, including class
(0) having no significant mass gain. Their mass after initial collapse
is their final mass, which we use in the lower panel. After the
initial collapse the mass function is roughly lognormal (dashed
line), perhaps following a steep power law at the high-mass end.
The final mass function in the lower-left panel shows a distinct
power law at the high-mass end.

The group of the collapse-dominated sinks [i.e. classes (0),
(ia) and (ib)], shown in the second column, does not show a large
variation between the initial collapse and the final mass function.
There appears to be a high-mass power-law tail, presumably trun-
cated around a few M�. In contrast, the group of accreting sinks
[classes (ii), (iii) and (iv)] in the third column shows a strong dif-
ference between initial collapse and final mass function. The final
mass function is shifted to higher masses, widened, and shows a
power-law tail at high masses.

The last column of Fig. 10 shows the L3 fit for the groups, dotted
for all sinks, dashed for the collapse group and solid for the accretion
group. For the collapse and the accretion group, the mass functions
have been scaled by the relative number in the group. The initial
collapse mass functions are also very similar, although the accreting
group seems to be at slightly higher masses with a steeper power
law. An interesting effect appears in the final mass function of
all sinks. This mass function has two power-law regimes above the
lognormal part. The power law ∝m≈−1 in the mass range 0.1–1 M�
originates from the superposition of the ‘massive’ collapsing sinks
and the ‘low-mass’ accreting sinks. Above ≈1 M� the accreting
sinks dominate and provide the power law ∝m≈−2.35. In the L3 fit
the whole mass range from 0.1 to 30 M� is fitted by a single power
law, which leads to the smaller high-mass exponent α = 1.93 and
the extreme values for β and μ.

The collapse mass should correspond to the mass that a core
had before collapsing to a sink. Thus, we can compare the collapse
masses to theoretical predictions for core masses. The theories of
Padoan et al. (1997), Padoan & Nordlund (2002) and Hennebelle &
Chabrier (2008, 2009, 2013) predict all mass functions following
a lognormal distribution at small masses and a power law at large
masses. For each of the theories the power-law exponent is different,
and, as the distributions of mcoll do not extend very far in this regime
we do not attempt a comparison with any of the theories. However,
in the lognormal part the theories are in agreement, all predicting

MNRAS 439, 234–246 (2014)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/439/1/234/970637 by guest on 24 M
arch 2022



Accretion and the IMF 243

Figure 10. Distribution of the sink masses after initial collapse (upper row) and at the end of the simulation (lower row). The curves are L3 fits to the data,
where the dotted lines indicate the start of the power-law tail. In the leftmost upper panel, the red dashed line gives a lognormal fit. In the right-hand column the
dashed curve for the collapse-dominated sinks and the solid curve for the accretion-dominated sinks have been scaled by the relative number of these classes
for comparison with the mass functions of all sinks (dotted curve).

that the mass function should have logarithmic width σ m = σρ/2,
half the width of the gas density distribution. This is a simple
consequence of the (inverse) square root dependence of Jeans mass
on density, so that a lognormal density field maps on to a lognormal
mass function with half the width.

We find that the distribution of mcoll of all sinks is reasonably fitted
by a lognormal distribution (dashed line in Fig. 10, middle panel
first column) with σ m = 0.82. If we assume that ṁ ∝ ρ, then we
might expect that the distribution of accretion traces the distribution
of density and hence, as a first guess that σρ = σ W. Proceeding under
this assumption, we have σ W = 0.74 and might therefore expect that
σ m is half that value. Its measured value (0.82) is thus far too large
to be consistent with this chain of assumptions. This discrepancy
might imply that the core masses cannot be deduced from the form
of the density field; on the other hand, it may simply imply that σ W

is not after all a good measure of �W (and indeed it is to be expected
that the distribution of densities probed by accreting sinks is likely
to be narrower than the entire range of densities in the simulation).
We do not investigate this issue further here.

7 D ISTR IBU TION O F G ROWTH TIMES

Fig. 11 shows the distribution of growth times (the time from sink
formation until 95 per cent of mass is reached), divided into cate-
gories. Including all sinks, the growth time follows an exponential
distribution,

p(t) ∝ e− t
θ , (9)

(dashed line), over a wide mass range but very large times are
underpopulated as the calculation covers only a finite duration. The
decay can be modelled with a ‘tapered’ exponential distribution,

p(t) ∝ e− t
θ −( t

τ )α

, (10)

where θ = 1.2 × 105 yr, τ = 3 × 105 yr and α = 7.1. This is shown
as solid curve. The fact that the large-t part of the exponential
distribution is missing may have an effect on theories that build
on stars growing for a long time to populate the high-mass tail of
the mass function (e.g. Basu & Jones 2004; Bate & Bonnell 2005;
Myers 2009). It could either steepen the mass function or lead to a
truncation at the massive end (which, interestingly, is observed in
this simulation; see Maschberger et al. 2010).

Figure 11. Histogram of the distribution of the growth times colour coded
according to growth category. The curve is an exponential distribution,
p ∝ exp ( − t/θ ) without (dashed) and with a tapering at large times. Note
that the strongly accreting sinks have an effectively constant distribution of
growth times.

Not all sink categories follow the same distribution of growth
times. Collapsing sinks have growth times shorter than accreting
sinks. The strongly accreting sinks have growth times which are
only very weakly exponentially distributed, following more of a
constant distribution.

The amount of accretion correlates with the final mass of the
sink, so that there is also a correlation between the growth time and
the final masses of a sink. This is visible in the top panel of Fig. 12,
which shows contours for the different growth classes. Strongly
collapsing sinks reach 95 per cent of their final mass within a few
104 yr, (weakly) accreting sinks within around 105 yr and strongly
accreting sinks in 1–3 × 105 yr.

Bate & Bonnell (2005) and Bate (2009a, 2012) find a linear
relation between the growth time and the final mass of the sink
(dashed line in the top panel of Fig. 12). This is a consequence of
ṁ = const., supporting the model by Bate & Bonnell (2005). For
ṁ ∝ m2/3 we expect that t ∝ m1/3, which is shown as solid line in
the top panel of Fig. 12. This relation seems to follow more closely
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Figure 12. Contour plot of the growth times (t95 per cent) versus final mass of
the sinks, split by growth category in the upper panel and in the lower panel
of the total times the sinks spent in the simulation. The solid line shows
t ∝ m1/3 and the dashed line a linear relation between the growth time and
the final mass.

the contours of the accreting sinks than a linear relation between m
and t.

The relation between the amount of accretion and the growth time
of the sink is not only due to the fact that the low-mass sinks are
formed last in the simulation and simply do not have enough time
to accrete. The lower panel of Fig. 12 shows contours for the total
lifetime of the sinks, from formation until the end of the simulation.
Although some of the strongly collapsing sinks have a total lifetime
less than 105 yr, there is a large fraction of them which spend enough
time in the simulation to have undergone at least some accretion.

8 W H AT D E T E R M I N E S TH E S H A P E O F TH E
IMF?

There are three factors that influence the mass function of the ac-
creting sinks: (1) the fluctuations of the accretion rates, (2) the
distribution of initial collapse masses and (3) the distribution of the
growth times. But is there one of the factors that is primarily re-
sponsible for the shape? In the simulation all factors occur together,
none can be singled out. Therefore, we resort to semi-analytically
modelling the growth process in the simulation. In this way, each
of the factors can be controlled independently and switched off or
on to see which effect it has.

Accretion ∝m2/3 with fluctuations in the accretion rates can be
described by a stochastic differential equation, which has to account
for the lognormal distribution of the accretion rates. Such stochas-
tic differential equations have been investigated in Maschberger
(2013b). In our case the stochastic differential equation is

dm = m2/3diGa,b, (11)

where diGa,b is a random variate from the inverse Gaussian distri-
bution with mean a and standard deviation b, describing the fluc-

tuations. As a lognormally distributed fluctuation term does not
allow for an analytical solution, we approximate the lognormal
distribution by an inverse Gaussian distribution,

pinvGauss(x; ν, λ) =
(

λ

2πx3

)1/2

e− λ(x−ν)2

2ν2x , (12)

which has expectation value E(x) = ν and variance Var(x) = ν3/λ.
The infinitesimal fluctuations are then

diGa,b distributed as pinvGauss

(
ν = adt, λ = a3

b2
(dt)2

)
. (13)

After growing for a time t, starting with a seed mass m0, a sink
particle has the mass

m(t) =
(

(1 − α)

(
m1−α

0

1 − α
+ iGa,b,t

)) 1
1−α

, (14)

where

iGa,b,t is distributed as pinvGauss

(
ν = at, λ = a3

b2
t2

)
. (15)

In order to sample the distribution of m(t), which corresponds to
the final sink particle masses, we only need a sample of inverse
Gaussian variates iGa,b,t .

Fig. 13 shows the distribution functions obtained from the semi-
analytic modelling (red), comparing to the final mass distribution of
the collapsing, accreting and strongly accreting sinks (black). The
left-hand column of plots corresponds to stochastic growth where
the fluctuations in the accretion rates are of the same magnitude as in
the simulation, which is reduced by a factor of 10 in the right-hand
column. We obtain a and b from the lognormal fit of the fluctuations

Figure 13. Mass distribution functions obtained by semi-analytical mod-
elling (red histograms) in comparison to the distribution of the final sink
masses of the strongly accreting sinks (black histograms). The blue his-
togram shows the distribution of collapse masses. On the left-hand side the
amount of fluctuations is of the same magnitude as in the numerical calcu-
lation, on the right-hand side reduced by a factor of 10. The top panels have
no distribution of the initial masses and growth times, the middle panels
only a distribution of initial masses and the bottom panels a distribution of
initial masses and growth times.
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in the accretion rates performed in Section 5.3, which gave estimates
of the parameters μW = −11.44 and σW = 0.74. This corresponds
to an average a = 1.41 and standard deviation b = 1.19 in units
where mass is in M� and time in 105 yr.

The top panels assume only fluctuations in the accretion rates, no
distribution of seed masses or growth times. As seed mass we chose
the average initial collapse mass mcoll = 0.23 M� (blue line) and
as growth time the average growth time t = 1.07 × 105 yr. Due to
the strictly positive distribution of the accretion rates the modelled
stochastic accretion does not allow for masses to be lower than the
initial mass. Thus, fluctuations in the accretion rates alone are not
sufficient to explain the mass function. However, with the observed
level of fluctuations a power-law tail appears at high masses, similar
to the numerical simulation. With a smaller level of fluctuations, as
in the top-right panel, this is not the case.

Fluctuations in the accretion rates and a distribution of seed
masses is considered in the middle panels of Fig. 13. We chose
as seed masses the initial collapse masses from the numerical sim-
ulation, their distribution is shown as the blue histogram. Growth
time is again constant = t for the modelled sample. For the observed
level of fluctuations, the agreement with the numerical simulation
is better than without a distribution of seed masses, except at low
masses, where the model underpredicts. Again, lower levels of fluc-
tuations in the accretion rates are not reproducing the numerical
simulation.

All three factors, fluctuations in the accretion rates, a distribu-
tion of seed masses and a distribution of growth times, are con-
sidered in the bottom panels of Fig. 13. Both the distribution of
seed masses and the distribution of growth times are taken from
the numerical simulation. With all three factors as in the simulation
the model and numerical distributions agree very well. Only at very
high masses the numerical simulation seems to have somewhat less
sinks compared to the model. With a lower level of fluctuations the
model distribution covers a narrower mass range compared to the
simulation.

Thus, we conclude that for the accreting sinks the shape of the
final mass function is not dominated by one factor, but requires
all three, fluctuations in the accretion rates, a distribution of seed
masses and a distribution of growth times. The final mass function of
all sinks, which contains both only collapsing and accreting sinks, is
also shaped by all three factors. However, as there are about as many
collapse only as accreting sinks, the distribution of collapse masses
will be more important in the lower mass range. This is perhaps
somewhat perceptible in Fig. 9, where final sink mass function in
the mass range 0.1–1 M� appears somewhat flatter than in the
mass range 1–30 M�. The range 0.1–1 M� is the overlap region
between collapse only and accreting sinks. In the high-mass tail the
distribution of accretion rates and growth times is more important.

9 SU M M A RY

We have analysed a hydrodynamical sink particle simulation with
a barotropic equation of state for the distribution and mass depen-
dence of the accretion rates, the distribution of growth times and the
distribution of initial collapse masses. We find that all these aspects
are shaping the sink particle mass function. In detail we find.

(i) After an initial collapse phase sinks grow in episodes of ac-
cretion and can have long quiescent phases. During an episode
the accretion rate shows a sharp rise followed by an exponential
decay.

(ii) In about 50 per cent of sinks their mass is mainly set by an
initial collapse phase while in 50 per cent of sinks acquire most of
their mass through an extended accretion phase.

(iii) The accretion rates follow ṁ ∝ m2/3 as expected from com-
petitive accretion in a gas-dominated potential as predicted by
Bonnell et al. (2001a,b).

(iv) The fluctuations in the accretion rates follow a lognormal
distribution, which is likely a consequence of the lognormality of a
turbulent gas density.

(v) The masses after the initial collapse follow roughly a lognor-
mal distribution, with some evidence of power-law tails.

(vi) The growth times follow an exponential distribution but ta-
pered at very long times.

(vii) The fluctuations in the accretion rates, the distribution of
initial collapse masses and the distribution of growth times all shape
the final sink mass function. The sink growth can be modelled as a
non-linear stochastic process (cf. Maschberger 2013b).

We have thus shown that in the simulations the resulting sink mass
function is not simply related to the accretion rate–mass relation,
as proposed by Zinnecker (1982) and Bonnell et al. (2001a,b). In
particular a Salpeter-like upper IMF does not imply Bondi–Hoyle
accretion.

Finally, we stress that of course there are many physical ef-
fects that are omitted or poorly modelled in the simulations and
we might expect that protostellar feedback, magnetic fields or res-
olution effects could in principle affect the way that these three
effects combine to form a resulting mass function. Although we can
confidently assert that all three effects are important in the simula-
tions we cannot necessarily claim that the observed IMF (which is
broadly similar to the sink mass function) must also result from the
same combination of these factors. Indeed, the sink mass function
produced in the simulation can also be generated by a variety of
other parameter choices (which are inconsistent with the simulation
parameters). Thus, although we have presented a comprehensive
analysis of the production of the mass function in the simulations, it
remains the case that the observed IMF cannot on its own uniquely
constrain the physics of star formation.
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