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1.  Introduction
Following the passage of seismic waves, a wide range of transient effects have been observed near the Earth's 
surface, including increased landslide rates (Marc et al., 2015), enhanced permeability (Manga et al., 2012; Xue 
et al., 2013), and perturbations of frictional properties in fault zones (Pei et al., 2019). These observations suggest 
that earthquakes induce a lingering effect in the properties of near-surface rocks that may be linked to non-linear 
mesoscopic elasticity (NLME, e.g., Gassenmeier et al., 2016; Marc et al., 2021). This phenomenon is generally 
expressed by a drop in elastic moduli after a dynamic or static strain perturbation that is followed by a non-in-
stantaneous recovery of these moduli. This recovery phase, also called relaxation or slow dynamics, is linear on 
a logarithmic time scale (Snieder et al., 2017) and can last anywhere from a few seconds (Shokouhi et al., 2017) 
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to several years (Brenguier et al., 2008; Gassenmeier et al., 2016). Because most subsurface materials display this 
behavior (Gliozzi et al., 2018; Shokouhi et al., 2017), understanding the amplitudes and timescales of the damage 
and recovery process of NLME is important for post-earthquake hazard mitigation.

In the field, the study of slow dynamics has been particularly advanced by the development of seismic interferom-
etry techniques that monitor relative seismic velocity changes δv = dv/v in the subsurface over time. Observations 
of co-seismic velocity drop and subsequent recovery in epicentral areas now abound and have been obtained 
from seismic ambient noise correlations (Brenguier et al., 2008; Gassenmeier et al., 2016; Hobiger et al., 2014; 
Wegler & Sens-Schönfelder, 2007) or waveform deconvolution in boreholes (Nakata & Snieder, 2011; Sawazaki 
et al., 2009; Wu et al., 2010). However, constraints on the physical mechanisms responsible for NLME in the field 
and the prediction of its amplitudes, timescales, and associated effects have remained scare for several reasons. 
First, the spatially averaged nature of the observation techniques does not allow for the precise identification of 
the responsible relaxation process among the many post-seismic processes acting at all depths and scales within 
a perturbed substrate. This complexity has prompted seismologists to use exponential functions characterized 
by variable timescales to fit velocity recoveries caused by individual events (Gassenmeier et al., 2016; Hobiger 
et al., 2014; Qin et al., 2020) rather than using particular physical relaxation models constrained from laboratory 
experiments (Bittner & Popovics, 2021; Lieou et al., 2017; Ostrovsky et al., 2019). Although this empirical ap-
proach can facilitate comparison between events, the understanding and prediction of the wide range of different 
recovery timescales (from minutes to years) between studies and sometimes within the same epicentral area 
(Viens et al., 2018) are limited. Moreover, aftershocks may induce superposed damage and healing processes, 
which may affect the observed recovery time of the main shock (Sawazaki et al., 2018).

The effects of slow dynamics may be obscured by hydrological fluctuations (Illien et  al.,  2021; Kim & Le-
kic, 2019; Sens-Schönfelder & Wegler, 2006), which can influence the seismic velocity. Monitoring of hydrolog-
ically induced velocity variations (δvH) is often done under the assumption that hydrological changes and NLME 
are independent processes that can be superimposed such that the observed δv signal is simply the sum of hydro-
logical and NLME effects (δv = δvNLME + δvH). However, there is evidence that both effects are not independent. 
It has been shown that the hydrological conditions of hillslopes can alter the NLME-response to dynamic strain 
(Bontemps et al., 2020). Moreover, as mentioned above, transient hydrological behavior following co-seismic 
ground shaking has been widely reported in borehole measurements (Elkhoury et al., 2006; Shi et al., 2015; Xue 
et al., 2013) and streamflow (Wang et al., 2004), suggesting that the hydrological system is also impacted by 
the transient variation of material properties. For example, the opening of cracks, which is often used to explain 
coseismic velocity decreases, can also introduce a change in substrate permeability (Elkhoury et al., 2006; Xue 
et al., 2013). Lastly, the similarity between the seismic velocity recovery timescale (∼50 days, Taira et al., 2015) 
and the duration of the stream discharge increase (Wang & Manga, 2015) observed after the 2014 South Napa 
earthquake suggests a strong link between relaxation-induced velocity changes and transient hydrological prop-
erties. Because of the complexity of both processes and their coupling, it has not yet been possible to document 
the shaking induced perturbation of the hydrological system by means of seismic interferometry.

To investigate the shaking induced variations of a hydrological system with seismic interferometry, we use a seis-
mo-hydrological dataset from the Nepal Himalayas that (a) features strong hydrological forcing, (b) includes the 
recovery phase of a large crustal earthquake, and (c) is described by a calibrated hydrological model that connects 
precipitation input to seismic velocity variations (Illien et al., 2021). Our approach involves accurate observations 
of seismic velocity changes, correcting the velocity changes for NLME effects due to the seismic activity and 
finally investigating the ability of the hydrological model to describe the residual velocity changes during differ-
ent phases of the main shock recovery. Our field site is located in the epicentral area of the 2015 Mw 7.8 Gorkha 
Earthquake (Figure 1a), in the Bhote Koshi catchment in Nepal about 60 km north east of Kathmandu in the 
steep ridge and valley topography of the lesser Himalayas. The region experienced strong ground shaking (Wei 
et al., 2018), widespread landsliding (Roback et al., 2018), and numerous aftershocks (Adhikari et al., 2015). Due 
to a distinct wet and dry season in which ∼80% of the annual precipitation occurs during the Indian Summer 
Monsoon between ∼May and ∼October (Bookhagen & Burbank, 2010; Brunello et al., 2020), the hydrological 
conditions at this site are highly variable. This combination of pronounced and well-constrained hydrological and 
seismic forcing makes our field site a suitable location to study the interplay of seismic damage and hydrology.

The paper is organized as follows: we present the data and the seismic interferometry technique used to estimate 
velocity changes in Section 2. Section 3 shows the corresponding raw velocity changes observed after the Gorkha 
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earthquake and its aftershocks. In Section 4, we present and discuss our models used to compute synthetic δv 
values based on models for damage and hydrology. Section 4.1 is devoted to the damage-induced variations δvN-

LME in which we introduce a new approach to describe the effects of the Gorkha mainshock and its aftershocks in 
a consistent model whereas Section 4.2 explores the residuals of the damage-corrected δv time series using the 
hydrological model of Illien et al. (2021). This allows us to assess transient variations of the hydrological system 
in the Bhote Koshi catchment following the Gorkha event.

2.  Data and Methods for Estimating Seismic Velocity Changes
Three broadband seismic stations (three-components Trillium compact 120 s) were installed on the 6 June 2015, 
42 days after the Gorkha main shock near Chaku village (Figure 1b) and recorded until the 23 October 2018. The 
seismic stations were installed on a bedrock terrace at a distance of ∼100 m from each other to achieve highly 
resolved temporal averaging at the same location. The metasedimentary rocks of the terrace are covered by a 
layer of regolith and colluvium. Because our stations were deployed after the Gorkha main shock, we also used 
data from the Gumba station (Figure 1b) of the Nepalese Seismological Center to confirm that our field site ex-
perienced a co-seismic velocity drop nearby and is in a recovery phase. This station has a single component and 
is located at 4.3 km from our field site and 1,700 m higher the Chaku terrace. For Gumba station, we evaluated 
data from 1 January 2014 to 9 December 2015. Daily precipitation were also measured from a network of precip-
itation gauges set up in the Bhote Koshi observatory (see the Data Availability Statement Section). We note that 
no major landslides occurred in the vicinity of our seismic stations (Marc et al., 2019) which imply that observed 
velocity changes are unlikely to be caused by redistributions of surface materials.

2.1.  Estimation of Daily Relative Seismic Velocity Changes

We use seismic ambient noise to monitor variations of seismic velocity in the subsurface (Sens-Schönfelder & 
Brenguier, 2019). To reduce the impact of high amplitude signals in the noise correlation process, we use the 
following pre-processing scheme: the seismic traces are trimmed to 1 hr segments, downsampled to 50 Hz (only 
for Chaku stations), and detrended. We filter Chaku stations in the 4–8 Hz frequency range and data from Gumba 
station in the 2–4 Hz range due to limited seismic energy at higher frequencies. We normalize Chaku amplitudes 
to 1 in the Fourier spectrum (spectral whitening) and perform single station cross correlation (SC method, Ho-
biger et al., 2014), using

Figure 1.  Map of the study area. (a) Black solid lines show the isolines for the Gorkha co-seismic slip (in cm) from the inverted solution of Elliott et al. (2016) 
using INSAR data. Yellow dots account for aftershocks of magnitude >4 (Adhikari et al., 2015). Red stars show the epicenter of the Gorkha earthquake and its main 
aftershock (12 May 2015). Green square is the Bhote Koshi observatory and blue star is the water gauge for measuring stage height of the Bhote Koshi river. (b) Close-
up on the Bhote Koshi observatory. Red triangles show the site where seismic stations are deployed. BK stands for Bhote Koshi river.
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𝐶𝐶𝑘𝑘1 ,𝑘𝑘2
(𝑡𝑡𝑖𝑖, 𝜏𝜏) =

𝑡𝑡𝑖𝑖+𝑇𝑇 ∕2

∫
𝑡𝑡𝑖𝑖−𝑇𝑇 ∕2

sgn[𝑋𝑋𝑘𝑘1
(𝑡𝑡′)] ⋅ sgn[𝑋𝑋𝑘𝑘2

(𝑡𝑡′ + 𝜏𝜏)]𝑑𝑑𝑑𝑑′,� (1)

where ti is the time of the trace and τ is the lapse time of the correlation. T is the length of the correlated noise 
segments determines the temporal resolution of the δv time series. The sgn function represents the 1-bit normal-
ization of the signal in which we set positive amplitudes to 1 and negative amplitudes to −1. km stands for the 
different components m = Z, N, E with k1 ≠ k2 for SC. Because Gumba has one component only, we compute 
the autocorrelation of the vertical component CZZ(ti, τ). Correlation functions are calculated with a time step of 
1 hr before averaging them every 24 hr to obtain daily correlation functions (DCFs). We store all the DCFs in a 
correlation matrix, as shown in Figure S1.

We use the stretching technique (Sens-Schönfelder & Wegler,  2006) to estimate relative velocity variations. 
After a spatially homogeneous relative velocity change δv = dv/v in the medium, the time delay δτ = dt/τ can be 
observed in the DCFs coda with δv = −δτ where τ is the correlation lapse time and dt is the absolute time shift of 
a coherent phase with travel time τ. Depending on the daily velocity changes, the DCFs (C(ti, τ)) are stretched or 
compressed when compared to a long term average reference ξ(τ). To avoid the effects of a possible degradation 
of a unique reference when averaged over the whole time period (Sens-Schönfelder et al., 2014), we use multiple 
references ξr(τ) at the Chaku site by computing monthly references ξr(τ) with an overlap of 15 days (we illustrate 
the use of different references in Figure S2). For each of these references, we calculate the correlation coefficients 
Rr(ti, ɛj) between stretched versions of the reference and the DCF such that

𝑅𝑅𝑟𝑟(𝑡𝑡𝑖𝑖, 𝜀𝜀𝑗𝑗) = ∫
𝜏𝜏2

𝜏𝜏1

𝐶𝐶(𝑡𝑡𝑖𝑖, 𝜏𝜏)𝜉𝜉𝑟𝑟(𝜏𝜏 ∗ (1 + 𝜀𝜀𝑗𝑗))d𝜏𝜏� (2)

where τ is the traveltime of waves in the DCF and ɛj indicates a set of stretch-values that are tested in the time win-
dow set by [τ1, τ2]. We define the length of the time window as follows: we skip four signal periods T, where one 
period corresponds to the lowest frequency of the bandpass filter we previously applied (here T = 0.25 s), before 
computing the stretching on a duration of 12 periods (corresponding window indicated on Figure S1). Introducing 
τ1 is necessary to avoid the use of early arrivals that are prone to changes in noise sources characteristics. All Rr(ti, 
ɛj) values are stored in a similarity matrix.

For each reference, a first daily velocity measurement δvr(ti) can be done by reading the amount of stretching ɛj 
that yields the daily maximum Rr(ti, ɛj) value. Combining the measurements done with the N various references, 
we stack all similarity matrices Rr(ti, ɛj) after correcting for any average shifting 𝐴𝐴 (𝛿𝛿𝛿𝛿𝑟𝑟) due to the velocity dif-
ferences between the references (full method described in Sens-Schönfelder et al., 2014) following the relation

𝑅𝑅(𝑡𝑡𝑖𝑖, 𝜀𝜀𝑗𝑗) =

𝑁𝑁
∑

𝑟𝑟=1

𝑅𝑅𝑟𝑟(𝑡𝑡𝑖𝑖, 𝜀𝜀𝑗𝑗) − shif t(𝛿𝛿𝛿𝛿𝑟𝑟).� (3)

R(ti, ɛj) describes the daily velocity variations obtained from one combination of sensor components k1, k2. We 
applied this method to the three possible combinations (ZN, ZE, EN) for each of the Chaku stations. We finally 
stack the resulting nine R(ti, ɛj) matrices (three stations with three combinations) and pick the ɛj(t) with the max-
imum R(ti, ɛj) again. The final daily δv(ti) at the Chaku site is equal to this specific ɛj(t). For Gumba station, we 
use only one reference as the use of multiple references does not improve the retrieved δv values.

2.2.  Local Aftershocks Catalog and Estimation of Associated Velocity Changes δvA

Aftershocks recorded after the Gorkha earthquake may bias the recovery timescale estimated after the main shock 
by inducing further velocity drops and recoveries. However, due to potentially large hydrological fluctuations at 
the daily timescale of the interferometric processing, it may be challenging to dissociate the effect of cumulative 
aftershocks from hydrologically induced velocity variations. To address this issue, dedicated velocity change 
measurements following local aftershocks were conducted at a finer temporal resolution. Despite aftershock 
catalogs being available for the Gorkha earthquake (Adhikari et al., 2015; Baillard et al., 2017), their relevance 
for our field site remains limited as they lack information about the local shaking at the Chaku site. Therefore, to 
estimate the cumulative effects of shaking due to the aftershocks on the velocities, we build a catalog based on the 
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daily peak ground velocity (PGV) recorded at Chaku. We first retain days with PGV greater than 1e−4 m s−1. In 
the field, this value is approximately an order of magnitude lower than the minimum excitation required to induce 
a detectable change in rock properties as reported in the literature (Elkhoury et al., 2006; Wu et al., 2010). To 
exclude potential spurious peaks due to local artifacts, we check if the corresponding signals were also recorded 
at another temporary station (Hindi station on Figure 1b) located at ∼3 km from our site. Using this procedure, 
we pick 82 potential aftershocks.

To test whether these events triggered NLME, we perform single station cross correlations of the ambient noise 
centered around the 82 events using the same method described in Section 2.1, but with a 10-min interval for the 
estimation of δv. We find that 18 events triggered a seismic velocity drop that was observable at this resolution. 
We quantify the co-seismic velocity drops by taking the difference between the median δv value of the 12 hr 
preceding the aftershocks (no detectable velocity drops occurred during this time span) and the median value of 
the first hour succeeding the events.

3.  Seismic Velocity Changes
3.1.  Evidence for Non-Linear Recovery After Gorkha Earthquake

In Figure 2a, we report the daily relative seismic velocity changes estimated at the Chaku site and the daily pre-
cipitation totals recorded at nearby precipitation gauges in Figure 2b. The Chaku δv time series exhibits a clear 
annual cyclicity exerted by the climatic forcing with a consistent drop of up to 8% in measured δv values during 

Figure 2.  Evidences for NLME at Chaku. Black dashed lines in plots (a), (b), and (d) indicate the date of the Gorkha earthquake. (a) Black dots show the raw daily 
δv measured at Chaku. Colored solid lines display results using the hydrological model of Illien et al. (2021) with different initial conditions. (b) Blue lines show local 
daily precipitation. Black stars stand for the PGV of aftershocks that caused a seismic velocity drop at the Chaku site. (c) Shows the same data as (a), but with the δv of 
each year plotted on top of each other. The 2015 velocity is in red. (d) δv variations estimated from Gumba station.

G

G

G

a.

b.

c. d.
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the monsoon season. Because of these significant hydrology-induced velocity changes and our dataset starting at 
42 days after the Gorkha main shock (dashed lines in Figure 2), the recognition of any non-hydrological compo-
nent in the δv time series is strongly overprinted. Nevertheless, several arguments pinpoint the presence of NLME 
recovery in our time series.

First, we report the velocity changes observed at the Gumba seismic station (Figure 2d) as general evidence for 
NLME in the study area. A clear velocity drop of ∼5% is observed at the date of the Gorkha earthquake. We 
attribute the noisy nature of the measurements to the lack of averaging in the velocity retrieval at this station for 
which only a single component is available. For this reason and because of the limited data coverage after the 
main shock, we do not attempt to characterize the recovery phase following the main shock at this station. None-
theless, the clear co-seismic drop shows that ground shaking during the Gorkha event has caused damage in the 
Bhote Koshi catchment that is likely followed by a phase of recovery of subsurface material properties.

A second observation pointing to NLME behavior comes from a comparison of the annual cycles in δv as shown 
in Figure 2c. In 2016–2018, the mean annual δv cycle peaked to approximately +4% at the end of the pre-mon-
soon season in May. At the same time of the year in 2015, a clear offset from this value was observed with δv as 
low as approximately −1%. Despite our precipitation dataset starting the 6 June 2015, it is unlikely that this offset 
is caused by climatic conditions. Indeed, with the 2015 monsoon being rather weak compared to precipitation 
totals of other monsoons seasons (Figure S3), a dryer season would cause the 2015 δv data to be relatively higher 
than in the other years. This was not observed.

Finally, the last argument indicating NLME processes comes from hydrological modeling. We previously showed 
that the seismic velocity at Chaku reflects the groundwater content of the substrate in the vicinity of seismic 
instruments (Illien et al., 2021). This can be shown using the precipitation data recorded at our field site (Fig-
ure 2b). For comparison, we report this model in Figure 2a. We consider two different initial conditions for δv 
in our model: one using the initial observed δv (green line in Figure 2a) and another using the expected δv value 
based on observations from years 2016 to 2018 at this time of the year (red line in Figure 2a). Both synthetics 
show good agreement with the velocities from April 2016 to the end of the time series—the period in which the 
model was calibrated, assuming that the NLME effect should be negligible in comparison to the hydrological 
influence on δv. However, velocities in 2015 are largely overestimated by the hydrological model with an offset 
of ∼4% at the start of the time series. We note that this mismatch is progressively reduced at later times and con-
verge toward the hydrological calibration. This supports a significant second control on δv during the observation 
period, in addition to the pervasive hydrological influence. Considering this list of arguments, we conclude that 
a recovery behavior due to NLME likely occurred at Chaku.

3.2.  Seismic Velocity Drop and Recovery Induced by Single Aftershocks

We observe small velocity drops that are particularly visible during the first dry season of the Chaku dataset 
(starting ∼November 2015 in Figure 2a). We attribute these drops to further dynamic strain perturbations induced 
by aftershocks. Figure 2b shows the PGV measurements corresponding to the aftershock catalog we described in 
Section 2.2. The occurrence of the velocity drops in the daily δv time series agrees with the timing of the reported 
ground shaking.

Observed velocity drops range from 0.25% to 1.5% and appear to have a linear relationship with PGV values 
(0.25–1.3 cm s−1; Figure S4) although with a moderate scatter (R2 = 0.62). For events occurring during dry peri-
ods, a clear slow dynamics behavior is observed with a distinct nonlinear recovery in the following hours after the 
initial drop (Figures 3a–3d). We highlight the characteristic log-linear behavior by averaging the data at a 30-min 
resolution and showing the first 100 hr in δv after the velocity drops in a log-linear plot (Figures 3e–3h. The fit of 
a log-linear function of the form δv = s log(t) + C, typical of the NLME functional form (TenCate et al., 2000), 
gives a satisfactory representation of the velocities. To avoid the possible larger hydrological modulation of δv at 
late recovery times, we will model aftershock effects considering only an early time span.
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4.  Modeling δv: Derivation and Implications
In this section, we develop and use models to fit the seismic velocity changes presented in Section 3 and discuss 
their implications. The classic approach to decompose seismic velocity changes δv is a linear superposition of 
forcing that can be written as

𝛿𝛿𝛿𝛿 = 𝛿𝛿𝛿𝛿NLME + 𝛿𝛿𝛿𝛿H� (4)

where δvNLME are the velocity changes due to NLME and δvH are the hydrologically induced velocity changes. 
δvNLME can be further decomposed into two components representing the relaxations due to Gorkha (δvG), and 
its aftershocks (δvA). To go beyond the linear description of expression 3, which does not account for transient 
post-seismic hydrological behavior, we propose a modeling approach based on two iterations: we first model the 
effect of NLME using conventional exponential functions. This approach is compared to the use of universal 
relaxation functions R(t) which are calibrated for the first time on field data and are characterized by constant 
relaxation timescales, independent from ground shaking amplitude. To avoid a contamination by strong hydro-
logical variations in the fitting, we calibrate the functions R(t) using the initial 24 hr δv dynamics following 
aftershocks events.

In a second step, we remove the inferred δvNLME component from the δv time series to obtain residuals that repre-
sent the hydrological induced variations δvH (Section 4.2). We test whether δvH is not only influenced by precip-
itation but also by seismic damage. Because the meteorological effect on δvH is well constrained by the model of 
Illien et al. (2021), we introduce a transient drainage parameter in this model to estimate 𝐴𝐴 𝐴𝐴𝐴𝐴∗

H
 , which represents 

the seismically forced part of the hydrological component.

4.1.  Post-Seismic Relaxations

We first apply the classic approach to model the recovery as an exponential recovery of the moduli and show 
that despite having numerous parameters for each event, the model performance is insufficient. Therefore, we 
propose a new strategy that uses a universal relaxation function and allows the description of all aftershocks and 
the mainshock with one consistent model, facilitating a correction of the time series for NLME effects.

4.1.1.  Modeling δvNLME With Exponential Functions

In seismic interferometry studies (Gassenmeier et al., 2016; Hobiger et al., 2014; Qiu et al., 2020), the nonlinear 
recovery in seismic wave velocity δv is often fitted with the following function:

𝛿𝛿𝛿𝛿(𝑡𝑡) = 𝛿𝛿𝛿𝛿0 exp

[

−(𝑡𝑡 − 𝑡𝑡0)

𝜏𝜏

]

+ 𝐶𝐶� (5)

Figure 3.  Velocity recoveries following aftershocks. (a–d) Shows the velocity obtained at a 10-min resolution with the red dots indicating the first 100 hr after the 
events. (e–h) Shows the close-up of the results in the first 100 hr after the events in a log-linear plot. Results are averaged at a 30-min resolution. The red lines depict the 
fit of a log-linear slope on the first 24 hr of relaxation.

a. c. d.b.

e. f. g. h.
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where t0 is the time of the earthquake occurrence, δv0 is the initial co-seismic velocity drop at the temporal obser-
vation scale, τ is a characteristic time scale of recovery, and C is a permanent drop.

To estimate the three empirical parameters of the exponential model, we use the velocity changes computed 
during the first 24 hr following the four aftershocks presented in Section 3.2 (Figure 3). In this time-span, a clear 
drop-recovery signal with no apparent hydrological-induced variations is observed (Figure 3). Assuming that 
C = 0 for the small excitations caused by the aftershocks, we fit expression 5 to the four δv time series to obtain 
the characteristic timescales for the aftershocks τA. The recovery time constants range from τA = 1.18  to 3.03 days 
(Figure 4). To demonstrate the performance of this model, we build two synthetic time-series for the velocity 
variations induced by all aftershocks δvA using these two end-member values (Figure 5a, full method in Text S1 
in Supporting Information S1).

After removing the synthetic δvA from the full δv Chaku time-series, we fit the residuals with Equation 5 to obtain 
the recovery time constant τG for the Gorkha earthquake. We find a best fitting model with τG = 198 days and a 
confidence interval of 80 days < τG < 1,208 days that includes all model solutions with a variance ratio above 95% 
(Figure S5 in Supporting Information S1). The value used for the aftershocks correction (τA of 1.18 or 3.03 days) 
does not influence the inferred τG. Synthetic time-series corresponding to the joint effect from the mainshock and 
the aftershocks are in Figures 6a and 6b together with the data residuals after correction for δvNLME. The strongest 
differences are observed in the early part of the recovery depending on the characteristic timescale τG chosen for 
the main shock. Despite using the longest time scale for aftershock recovery of τA = 3.03 days, the recoveries 

Figure 4.  Fitting of the aftershocks recoveries. On each plot (a-d), green lines show the best fit of the exponential function for each observed recoveries (black lines). 
Red lines show the best fitting model using the relaxation function with a constant maximum relaxation timescale (τmax = 155 days).

a. d.b. c.

Figure 5.  Synthetic seismic velocities induced by aftershocks δvA. (a) Models built with the two end-member values τA 
measured with the exponential functions. (b) Models built using superposition of the relaxation functions of models R155, 
R846, and R250.

a.

b.
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seem to not be fully corrected between ∼November 2015 and ∼June 2016 (Figure 6c). This suggests that longer 
timescales of relaxation after aftershocks should be introduced to fully correct for δvA.

4.1.2.  Modeling δvNLME With a Universal Relaxation Function

A characteristic of NLME is that the functional form of the recovery process is linear on a logarithmic time scale 
(Figure 3). A very convenient way to model this behavior is provided by the universal relaxation function used 
by Snieder et al. (2017). In this framework, the relative seismic velocity changes are described by a relaxation 
function R(t):

𝛿𝛿𝛿𝛿(𝑡𝑡) = 𝛿𝛿𝛿𝛿𝑠𝑠𝑠𝑠 + 𝑠𝑠𝑠𝑠(𝑡𝑡 − 𝑡𝑡0)� (6)

where δvss is the steady state value of δv(t) and s is a scaling factor. R(t) is the relaxation function that represents 
a multitude of processes with characteristic timescales. These timescales are distributed between a lower bound 
τmin and a maximum relaxation time τmax. This theory leads to a superposition of these exponential processes that 
is given by

𝑅𝑅(𝑡𝑡) = ∫
𝜏𝜏max

𝜏𝜏min

1

𝜏𝜏
𝑒𝑒
−(𝑡𝑡−𝑡𝑡0)∕𝜏𝜏 d𝜏𝜏𝜏� (7)

A justification of Equation 6 based on the Arrhenius law is given by Snieder et al. (2017) but we recall a few 
important properties of the relaxation function: R(t) exhibits a logarithmic behavior between the bounds τmin and 
τmax and its value at t = 0 is finite and determined by R(0) = ln(τmax/τmin). The prefactor 1/τ increases the contribu-
tion of the processes with the shortest relaxation times, which leads to a uniform distribution of barrier energies 
according to Arrhenius law. Figure 7 illustrates the influence of the parameters τmin and τmax.

Because of the multi-scale character of the universal relaxation function, we can describe the effects of the weak 
aftershock perturbations and the strong perturbation induced by the main shock with the same relaxation times 
τ in Equation 7. As we observe logarithmic recovery from the earliest measurement in Figure 3, we fix the pa-
rameter τmin to 1 hr corresponding to the observation timescale. In the lab, minimum relaxation times down to 
10−2 s have been reported (Shokouhi et al., 2017; but these smaller timescales τmin would not affect the model fit).

We construct three models for the NLME with the relaxation function (5). First, the recovery phases of the four 
aftershocks with the clear recoveries shown in Figure 3 are fitted by adjusting a single τmax to minimize the cumu-
lative squared residuals. This consists in (a) numerically integrating Equation 7 and (b) fitting Equation 6 to δva 
by adjusting the scaling s for each aftershock. The red lines in Figure 4 show the obtained data fit. The best fit is 

Figure 6.  NLME models built with exponential recovery functions. (a) Each curve indicates synthetic recoveries characterized by different τG within the 95% 
confidence interval of the best fitting model (τG = 198 days). We superposed on this curve the recoveries associated with the synthetic δvA time series (τA = 3.03 days). 
(b) Corresponding residuals from the models shown in (a). Light gray line show the raw data. Dashed line indicates the zoomed window for the plot shown in (c).

Zoom

Zoom

a.

b.
c.
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found with τmax = 155 days (misfit curve in Figure S6a in Supporting Information S1). We will refer to this model 
as R155 where the superscript stands for the fitted maximum relaxation timescale τmax.

The second value for τmax is inferred by fitting the complete long term δv data for the recovery of the main shock 
(Figure 8). τmax = 846 days is the best estimate in this case (misfit curve, Figure S6b in Supporting Informa-
tion S1). Finally, we estimate a third timescale τmax, combining the two previous measurements by stacking the 
misfit curves (Figure S6c in Supporting Information S1) corresponding to the fit of the four aftershocks (R155) 
and the misfit curve from the fit of the entire time series (R846). This combined estimate yields τmax = 250 days as 
the value minimizing the combined misfit.

We compute three different NLME models (R155, R846, and R250) characterized by the different τmax values (Fig-
ure 8). For the 18 aftershocks, we use the measured velocity drop values (Figure S4 in Supporting Informa-
tion S1) to compute the value s in Equation 5 that scales the relaxation function R(t) and stack the resulting 
functions (Figure 5b). After removing the aftershock perturbations δvA from the Chaku δv time series, we use 
Equation 5 again to adjust the scaling of R(t) for the main shock recovery δvG. The total NLME-induced δvNLME 
from this procedure with its obtained residuals are shown in Figure 8. We note that in comparison with the ex-
ponential approach, the aftershocks induce a larger and long-lasting perturbation of δv (Figure 5) which better 

Figure 7.  Sensitivity of the relaxation function R(t). (a) The different colors account for the different τmax indicated in 
the figure. τmin is fixed to 1 hr. (b) The different colors account for the different τmin indicated in the figure. τmax is fixed to 
400 days.

1 
d

ay

42
 d

ay
s

a. b.

Figure 8.  NLME models built with relaxation functions. (a) Each curve indicates synthetic recoveries characterized by different maximum relaxation timescale τmax. 
(b) Corresponding residuals from the models shown in (a). Light gray line show the raw data. Dashed line indicates the zoomed window for the plot shown in (c).

Zoom

Zoom

c.

a.

b.
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describes the observed effects of aftershocks between ∼November 2015 and ∼June 2016 when compared to the 
time series with the exponential models (Figure 6c vs. Figure 8c).

4.1.3.  Implications of the Universal Relaxation Function and the Modeling Approaches

We used two methods to model the effect of NLME on the estimated δv. The first approach, using simple expo-
nential functions, yielded a poor correction of the aftershocks-induced velocity changes (Figure 6c), despite using 
a dedicated relaxation timescale for aftershocks (τaft ∼ 1.18–3.03 days). In the second approach, we calibrated 
the universal relaxation function R(t) (Snieder et al., 2017) with the same maximum relaxation time τmax for all 
aftershocks events and the main shock of the Gorkha earthquake (Figure 8). The fit using R(t) better captures the 
effect induced by aftershocks in the first part of the year 2016 (Figure 8). This agreement can be explained by 
the sensitivity of the R(t) function to long relaxation times (Figure 7a), even when fitted on the early part of the 
relaxation curve following the aftershocks. Because of the apparent superiority of the R models in this manuscript 
and considering the lower degrees of freedom to characterize the relaxation timescales τ, we favor this approach.

We note that both our modeling approaches rely on the assumption of a linear summation of each induced pertur-
bation. If the summation is realistic, it means that the ability to predict NLME requires the knowledge of strain 
history and not only the current state of the system. At our field site, this is important because our dataset starts 
25 days after the Mw 7.3 main aftershock of the 12 May 2015 (Figure 1). We did not correct for this event or any 
aftershocks occurring between the 25 April 2015 and the 6 June 2015. Nevertheless, we predict that most of the 
NLME effects are contained within the first approximate year (R155 and R250, Figure 8), a value consistent with the 
inferred recovery of landslide rates in the Bhote Koshi (∼1 yr; Marc et al., 2021). If we assume that our inferred 
δv estimated at rather high frequency (4–8 Hz) is a good proxy for shallow subsurface damage, this comparison 
with landsliding shows that our model is realistic and does not support a longer effect for NLME, such as inferred 
on model R846 (Figure 8).

Another advantage in using R(t) rather than the purely empirical approach is that the relaxation function may be 
more informative on the physical mechanisms responsible for NLME. The theory leading to the function R(t) is 
based on an Arrhenius-like law (Snieder et al., 2017), in which the maximum relaxation timescale is given by

𝜏𝜏max = 𝐴𝐴 exp

(

𝐸𝐸max

a

𝑘𝑘B𝑇𝑇

)

� (8)

in which A is a prefactor, 𝐴𝐴 𝐴𝐴max

a  is an activation energy, kB is the Boltzmann constant, and T is the temperature. 𝐴𝐴 𝐴𝐴max

a  
can be interpreted as the barrier energy that needs to be overcome to reach a lower energy state from a metastable 
state. This barrier may correspond to characteristic contacts that undergo a particular thermally activated process 
in the slow dynamics phase, for example, dislocation creep or rearrangement transitions in granular composites. 
We obtained a good correction of the δv data by using the same τmax for events with variable initial perturbations, 
from PGV of 10−3–10−2 m s−1 for aftershocks, and in the range of ∼5 × 10−1 m s−1 for the Gorkha earthquake 
(Wei et al., 2018). Following Equation 7, this means that the nature of the physical mechanisms corresponding 
to 𝐴𝐴 𝐴𝐴max

a  and responsible for the longest relaxation timescale is independent from the intensity of ground shaking. 
Therefore, the relaxation timescales τ controlling slow dynamics in the probed medium would rather be a function 
of the ambient conditions such as temperature (Bekele et al., 2017), fluid content (Bittner & Popovics, 2021), 
or pre-existing damage (Astorga et al., 2018; Lyakhovsky et al., 1997, 2009) while the size of the initial excita-
tion would control the number of characteristic broken contacts (Ostrovsky et al., 2019). This interpretation has 
important implications for the prediction of NLME and suggests that by studying the response induced by small 
events, one may predict the damage timescales induced by large dynamic strains. The investigation of a constant 
maximum relaxation timescale τmax after dynamic strain perturbations of variable sizes could open a new perspec-
tive on NLME-induced changes: a complex physical phenomenon but with a potential deterministic behavior. 
This potential independence of τ from the ground shaking amplitude could explain the scattered relation between 
these variables when tested in field data (Viens et al., 2018). Considering the complexity of the relaxation pro-
cesses in the Earth surface, the simple picture of a constant τmax need to be tested in future works.

Velocity changes estimated at Chaku with lower frequency bands (1–2 and 2–4 Hz) exhibit smaller variations 
when plotted against the changes we report in this study at 4–8 Hz (Figure S7 in Supporting Information S1). 
This comparison indicates that the dominating NLME mechanisms are likely to be concentrated in near surface 
materials where smaller perturbations can induce strong changes at shallow depths (Qin et al., 2020) due to lower 



Journal of Geophysical Research: Solid Earth

ILLIEN ET AL.

10.1029/2021JB023402

12 of 18

confining pressure and more compliant materials. A relevant process is the re-arrangement of grains in soft spots 
of the near surface materials (Lieou et al., 2017). The higher susceptibility to dynamic strain of superficial loosely 
packed layers (Sawazaki et al., 2018) across a range of ground shaking intensities could explain the good fit of 
the R(t) function of δv after variable excitations using a constant τmax. At depths, the long term relaxation may 
happen in larger geological structures such as the fracture network, which is likely to expand through a large span 
of crustal depths in the tectonic regime of the Himalayas (Molnar et al., 2007). The simple picture of constant τmax 
may be altered in these deeper layers where a variety of mechanisms can be activated, such as micro-crack closure 
(Brantut, 2015; Meyer et al., 2021), creeping of asperities (Aharonov & Scholz, 2018), or pressure-dissolution 
(Yasuhara & Elsworth, 2008). These mechanisms are generally activated above a certain dynamic strain thresh-
old, required to break contacts under larger confining pressure. This can be justified by Amonton's law in which 
macroscopic friction is load dependent but also by recent observations that at the nanoscale, chemical bonds 
responsible for frictional force increase with normal load (Tian et al., 2020). Therefore, a constant universal τmax 
might not hold if one compares different frequency bands that probe larger depths: The observation of diverse 
relaxations in the entire crust (Wang et al., 2019), the influence of confining pressure on velocity recovery (Meyer 
et al., 2021), and the example of larger NLME-induced changes at depths in fault zone (Qiu et al., 2020) support 
this direction. A spectrum of relaxation timescales responsible for slow dynamics (Shokouhi et al., 2017) may be 
needed to characterize different depths at any field site.

4.2.  Hydrological Perturbation  After the Gorkha Earthquake

4.2.1.  Static and Transient Model for Hydrological Changes

In the previous section, we modeled the δvNLME component by building three different relaxation models (R155, 
R846, and R250) characterized by different maximum relaxation timescales τmax. In this section, we study the re-
siduals obtained from these models (green lines, Figures 8a–8c) and compare them to the hydrological model of 
Illien et al. (2021); Figures 9a–9c.

We observe that the initial seismic velocity in June 2015 for the time-series corrected by models R155 and R250 are 
now comparable to the δv level estimated in the following years at the same period (between +2.5% and +3% in 
the month of June), a feature that was not observed in the raw data (Section 3.1; Figures 2a–2c). This observation 
suggests that the residuals mainly describe the hydrological component δvH, at least after a correction for NLME 
by models R155 and R250. To test this hypothesis, we use the initial seismic velocity of the residuals to calibrate 
the initial groundwater level condition used in the hydrological model of Illien et al. (2021) and plot the corre-
sponding modeled velocities (red lines; Figures 9a–9c) without changing the original hydrological parameters 
inferred from the previous study. For the three NLME models, the agreement between the velocity residuals δv 
and the hydrological model is greatly improved in comparison with the raw velocity data shown in Figure 2a. 
Nevertheless, the hydrological model predicts lower velocities than the observed residuals at the start of the 2015 
monsoon, still causing a visible offset in the early part of the time series (Figures 9a–9c). In the model, lower 
velocities correspond to higher groundwater levels in the subsurface. This indicates that our hydrological predic-
tion that was based on the velocities of the following years (2016–2018) overestimates the groundwater storage 
in the 2015 monsoon.

In the model of Illien et al. (2021), the groundwater drainage efficiency is proportional to the height of the hy-
draulic head h(t) through a simple scaling:

𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
(𝑡𝑡) = −𝑎𝑎𝑠𝑠𝑠𝑠ℎ(𝑡𝑡) + 𝑓𝑓 (𝑃𝑃 (𝑡𝑡), vadose(𝑡𝑡))� (9)

where ass is the constrained steady state decay parameter that represents the average hydrological properties in 
the aquifer. f is a function of the precipitation input P(t) and the saturation condition in the vadose zone. A full 
derivation of the model is available in Illien et al. (2021). We test whether changing the parameter a in a transient 
fashion following the Gorkha earthquake leads to better prediction of the velocity in 2015. We assume that the 
parameter a is time-dependent and obeys the following evolution

𝑎𝑎(𝑡𝑡) = 𝑎𝑎𝑠𝑠𝑠𝑠

(

1 +𝐷𝐷 exp

[

−(𝑡𝑡 − 𝑡𝑡Gorkha)

𝜏𝜏hydro

])

.� (10)
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We introduce a transient perturbation of the groundwater drainage with Dass being the initial perturbation of the 
decay parameter at the date of Gorkha (tGorkha) and τhydro being the characteristic timescale for the recovery toward 
ass. The chosen form for a(t) can be interpreted as a more efficient drainage of the groundwater table at early times 
after the earthquake, that progressively recovers toward a constant hydrological behavior. This is motivated by the 
observation that ground shaking can temporally increase stream discharge (Manga et al., 2003) and permeability 
measured in wells (Lai et al., 2014; Xue et al., 2013).

We minimize a least-square criterion to find the best fit between the velocities modeled with our time-dependent 
hydrological model and the δv residuals obtained after removing the δvNLME synthetics. We explore a range of 
parameters for scaling D and τhydro from Equation 9. For each NLME correction (R155, R846, and R250), we report 
the best fitting transient decay parameter a(t) in Figures 9d–9f and the associated modeled velocity changes in 
Figures 9g–9i. For all cases, introducing a transient increase of the groundwater drainage improves the fitting of 
δv in the monsoon of 2015 (Figures 9j–9l). We find that best fitting values for the timescale τhydro range from 20 
to 76 days and are therefore consistently one order of magnitude shorter than the maximum relaxation timescale 
τmax applied in the NLME models. To compare the six inferred δvH models (Figures 9a–9c and 9g–9i), we com-
pute their variances (Figure 10a). When no transient drainage parameter a(t) is introduced, the model corrected 
with R846 has the highest measured variance (σ2 = 4.3 × 10−5) in comparison with R155 and R250 (both models 
around σ2 = 2.9 × 10−5). With the transient parameter a(t), R250 is clearly the best fitting model (σ2 = 2.3 × 10−5) 
while R846 and R155 both reproduce less than 90% of the R250 variance based on their variance ratio (Figure 10b). 
Moreover, introducing the transient decay parameter a(t) considerably improved the variance of model R250 by a 
margin of ∼20%. To test the significance of the fit, we perform a F-test (Text S2 in Supporting Information S1) 
between the model R250 with no transient hydrological parameter (Figure 9c) and the model R250 with the addition 
of the two parameters D and τhydro (Figure 9i). We find that the introduction of a(t) is statistically significant at 
95% of confidence interval. Finally, we also explore a range of models with τhydro ranging from 101 to 103 days and 
a dedicated relaxation time for the Gorkha earthquake 𝐴𝐴 𝐴𝐴𝐺𝐺max ranging from 2 × 101 to 5 × 103 days while retaining 

Figure 9.  Hydrological models vs. residuals from the NLME relaxation models. (a–c) Residuals from the models R155, R846, and R250 are plotted in black. Red lines 
indicate the model from Illien et al. (2021) with an initial condition based on the residuals. (d–f) The green lines show the best fitting transient decay parameter a(t). 
(g)–(i) The green lines indicates the modified hydrological models with the transient decay parameter a(t) shown in plots (d–f). Close-ups on the data and the inferred 
models in 2015 in (j–l).

R 
a. b. c.

d. e. f.

g. h. i.

j. k. l.

R R 
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𝐴𝐴 𝐴𝐴𝐴𝐴max = 155 days for the aftershocks and optimizing all the other parameters. Fitting all models characterized by 
the recovery timescales in this parameter space and minimizing a least-square criterion, we found that the best 
model is found for τhydro = 41 days and τmax = 450 days (misfit space in Figure S8 in Supporting Information S1). 
These values are similar to our inferred model R250 with τhydro = 35 days.

The velocities in the 2015 monsoon are therefore better described with a transient drainage parameter, suggesting 
that the relaxation processes following the Gorkha earthquake affected hydrological properties. The duration of 
this perturbation for the best fitting model R250 is ∼6 months (Figure 9f). We address the validity of this claim 
and its implications in section 4.2.2.

4.2.2.  Monitoring of Transient Hydrological Properties With Seismic Interferometry

A number of methods has been used to study how dynamic strain influences hydrological properties such as 
amplitudes and phase analysis in wells levels (Elkhoury et al., 2006; Xue et al., 2013), measurement of stream dis-
charge (Manga et al., 2003), or monitoring with stable isotopes (Hosono et al., 2020). In parallel, a growing com-
munity of seismologists now use seismic interferometry to constrain groundwater storage (Kim & Lekic, 2019; 
Lecocq et al., 2017) but no attempt has been made to address earthquake hydrology topics with such methods. As 
mentioned before, this is partially due to the challenging decomposition of the several processes that influence 
seismic velocity. Our seismic interferometry analysis opens a window for monitoring transient hydrological be-
haviors on an intermediate spatial scale between point-based well measurements and catchment averaged isotopic 
and discharge analyses. We showed in Figure 9 that a transient increase in the drainage efficiency of the ground-
water table improves our description of the seismic velocity changes in the 2015 monsoon in the aftermath of the 
Gorkha earthquake. This progress in the δv fitting was tested for its significance, given the two parameters (D 
and τhydro) we added to the original model of Illien et al. (2021; F-test in Text S2 in Supporting Information S1). 
However, the confidence interval of this test need to be taken carefully as our non-linear hydrological model may 
not produce normally distributed residuals, which are essential for parametric statistic tests (Gao, 2007). More 
interferometric datasets that are influenced by hydrological and seismic events should be tested in the future for 
cross-validation of our parametrization of transient properties a(t). Nevertheless, additional tests with a linear 
recovery for parameter a(t) (Figure S9 in Supporting Information S1) do not improve the variance observed with 
our exponential parametrization of (Equation 9; Figure S10 in Supporting Information S1).

Given the absence of additional constraint on τhydro in our study, the physical assumptions in our model are still 
supported by existing observations, such as a long lasting increase of permeability observed in other mountain-
ous areas (Hosono et al., 2020), or the permeability healing phenomena observed for ∼1 yr after the Wenchuan 
earthquake (Xue et al., 2013) and other South Californian earthquakes (Elkhoury et al., 2006). To further support 
our finding, we plot in Figure 11 the best fitting transient decay parameter (a(t) from model R250) and an inde-
pendent river stage height dataset from Bahrabise gauge station, located ∼13 km downstream from our field site 
(blue star in Figure 1a). We compute the precipitation derived from the Global Precipitation Measurement data, 
IMERGHH 6B (Huffman et al., 2019) in a square of 100 m2 upstream of the gauge (footprint in Figure S11 in 

Figure 10.  Variance of the hydrological models. (a) Absolute variance of the models, subscript h indicate models with the 
introduction of the transient parameter a(t). (b) Same plot as (a) but normalized with the best misfit value of the model R250.
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Supporting Information S1) as it offers a suitable averaged measure to compare with the river height. The stage 
height measurement displays a co-seismic increase in discharge, supporting a release of mountain groundwater 
due to ground shaking (Wang et al., 2004). Additionally, the stage height has a clear co-evolution with monsoon 
precipitation with steep increase of the stage height that is concomitant with the onset of strong precipitation. 
However, the river gauge sensitivity to precipitation in 2015 seems relatively buffered, especially at the start of 
the 2015 monsoon when the onset of intense precipitation does not cause significant increase in stage height. 
This behavior looks to fade away rather quickly within the 2015 monsoon where the second pulse of precipitation 
induces a clear response in the stage height. A more permeable landscape with groundwater fluxes traveling more 
efficiently downstream or toward deeper layers at early times after the Gorkha earthquake is a plausible interpre-
tation. Remarkably, the best fitting transient decay parameter a(t) (τhydro = 35 days) recovers simultaneously to 
this observation, therefore showing a good agreement with this scenario (green line, Figure 11).

There is a limited number of experimental studies that links NLME and the evolution of hydrological properties. 
In limestones subjected to inelastic axial strain, it has been shown that after deformation, the seismic velocity 
was recovering for a few days but the permeability remained constant after a permanent increase due to damage 
(Brantut, 2015). The study mainly interprets the healing of velocities as the closure of micro-cracks porosity 
while the tortuosity of the pores network, which is the main control on permeability at the microscale (Kachanov 
& Sevostianov, 2005), remained unchanged. In this case, there is no co-evolution of hydrological properties with 
the slow dynamics phase. However, fluid flow in the field is thought to be largely controlled by the macroporosity 
(Baechle et al., 2004) and discrete fractures (Talwani et al., 2007). Notably, measurements of seismic velocity and 
permeability along a laboratory rock fracture both exhibit a phase of recovery after dynamic stressing (Shokouhi 
et al., 2020). At our field site, the estimated healing in hydrological properties from our model hints that the δvH 
variations could be contained in the fracture network. Possible mechanisms for permeability recovery includes 
fracture aperture modulation by destruction/creation of contact interfaces (Shokouhi et  al.,  2020) or colloids 
re-clogging (Mays & Hunt, 2007). In our relaxation models, τhydro is constantly shorter than the maximum recov-
ery timescale τmax used to correct NLME (Figure 9). This discrepancy between τmax and τhydro may be explained 
by the non-linear relation between fracture aspect ratio and permeability (Ebigbo et al., 2016) due to percolation 
threshold. Another hypothesis would be that the changes responsible for these timescales are contained in dif-
ferent porosity units (e.g., micropores, macropores, fractures, etc.). New approach for characterizing NLME in 
the field are needed to disentangle these scenarios. At greater crustal depths, changes in hydrological properties 
may influence fluid migrations and low-frequency events, as observed several months after the 2011 Tohoku-Oki 
earthquake (Wang et al., 2021).

Future work may address the opposite role of water on relaxation processes. Pore water is generally considered 
to reduce frictional properties of interfaces, therefore, raising the susceptibility to ground shaking (Brenguier 

Figure 11.  Data from the Bahrabise gauge. The black solid line represents the stage height of the Bahrabise river (location of the gauge in Figure 1a). The height is 
corrected for an offset caused by the July 2016 glacial outburst flood (Cook et al., 2018). Precipitation estimated in the area are in blue and are obtained from the Global 
Precipitation Measurement data, IMERGHH 6B (Huffman et al., 2019). The green line shows the transient decay parameter a(t) of the best fitting relaxation model R250 
(τhydro = 35 days). The background red color illustrates the period with enhanced permeability after Gorkha. G indicates the date of the Gorkha earthquake.
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et al., 2014). However, water also controls the rate of recovery through chemical reactions and changes in acti-
vation energies (Brantut, 2015; Liu & Szlufarska, 2010). The actual impact of such processes on ground velocity 
retrieved by seismic interferometry remains to be assessed.

5.  Conclusions
In this study, we estimated relative seismic velocity changes δv from single station cross-correlations in the af-
termath of the 2015 Mw 7.8 Gorkha earthquake for a duration of ∼3 yr. Using the same characteristic relaxation 
timescales after the main shock and all the aftershocks (best fitting model for τmax = 250 days), we corrected for 
the NLME effect. We found that the velocity changes evolve toward background values until the 2016 monsoon 
which suggests that most of the subsurface damage is recovered during the first year after the main shock. With 
the hydro-seismological model of Illien et al. (2021), we fitted the residual δv corrected for NLME and inferred 
a shorter relaxation timescale τhydro that we attributed to an enhanced permeability of the subsurface that recovers 
gradually for ∼6 months during the 2015 monsoon.

Special attention should be given when subtracting earthquake-induced velocity changes to constrain background 
hydrology as a transient behavior may be hidden in the data. Therefore, seismic interferometry studies may need 
to go beyond the assumed superposition of contributions δv = δvNLME + δvH as the relaxation processes may affect 
the hydrological properties of the subsurface. In our study, we calibrated the nonlinear recovery with the relaxa-
tions triggered by the aftershocks, hence without biasing hydrological-induced velocity variations that can possi-
bly be affected by ground shaking. Because of the importance of hydrological properties for freshwater resources, 
initiation of hillslope hazards (Iverson, 2000), and the frictional properties of fault zones (Talwani et al., 2007), 
we encourage the use of seismic techniques to estimate the hydrological response to large earthquakes using 
dense seismic arrays and multiple frequency bands.

Data Availability Statement
The precipitation time-series for the Bhote Koshi observatory can be found at the following doi:10.5880/
gfz.4.6.2021.002. Seismic data are available at the doi:10.14470/ka7560056170.
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