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S U M M A R Y
The process of 3-D modelling forces the operator to consider data collection and processing
error, while simultaneously making assumptions about geology during interpretation, to arrive
at the most likely or logical geological scenario. These kinds of ambiguities lead to situations
where multiple model realizations can be produced from a single input data set. Decisions are
typically made during the modelling process with the aim of reducing the number of possible
models, preferably to produce a single geological realization. These types of decisions involve
how input data are processed and what data are included, and are always made without
complete knowledge of the system under study. This regularly, if not always, results in natural
geometries being misrepresented by the model, which can be attributed to uncertainty inherent
in the modelling process. Uncertainty is unavoidable in geological modelling as complete
knowledge of the natural system is impossible, though we use many techniques to reduce
the amount introduced during the modelling process. A common technique used to reduce
uncertainty is geophysical forward modelling, and the misfit between the calculated and
observed response provides a means to gauge whether changes in model architecture improve
or degrade the quality of the model. Unfortunately, geophysical data are ambiguous and provide
a non-unique solution, with different model geometries able to produce the same geophysical
response.

We propose a process whereby multiple models, collectively known as the ‘model suite’,
are produced from a single data set that allows an exploration of geological model space. Var-
ious ‘geodiversity’ metrics have been developed to characterize geometrical and geophysical
aspects of each model. Geodiversity measurements are combined into multivariate analysis to
reveal relationships between metrics and define the boundaries of the geological possibility. A
previous study using geodiversity metrics on the Gippsland Basin is extended here by includ-
ing geophysical metrics. We use the Ashanti Greenstone Belt, southwestern Ghana in West
Africa, as a case study to assess the usefulness of the technique. A critical assessment of the
3-D model is performed and aspects of the model space are identified that could be of interest
to gold explorers.

Key words: Image processing; Spatial analysis; Gravity anomalies and Earth structure;
Africa.

1 I N T RO D U C T I O N

Two-dimensional (2-D) and three-dimensional (3-D) geophysical
forward modelling is a useful tool commonly used in geoscien-
tific studies to validate or falsify geological models against the
observed geophysical data. Both variations compare an ‘observed’
geophysical response against a ‘calculated’ response. The calcu-
lated response signal is measured from a representation of geology
contained within a 2-D or 3-D model. The shape, depth and size
of a stratigraphic unit in combination with the contrast of assigned

petrophysical properties produces a signal. Other elements in the
model, such as faults or dykes, are also taken into consideration.
The combination of signals from modelled geological units and
structures are calculated and convolved to produce the calculated
field (e.g. Betts et al. 2003; Joly et al. 2008; Williams et al. 2009;
Perrouty et al. 2012).

Together with petrophysical information, the geometry of the
geological model plays a key role in the process of geophysical
modelling. The aim of this study is to discover whether relation-
ships exist between particular geometrical parameters exhibited in a

C© The Authors 2013. Published by Oxford University Press on behalf of The Royal Astronomical Society. 903

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/195/2/903/652863 by guest on 26 M

arch 2022
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3-D model and the geophysical response. For example, the geophys-
ical response may be heavily influenced by the volume or geological
complexity of a particular geological formation within a model. Dis-
covering a relationship of this nature will enable model refinements
to be guided towards finding a model that honours both geological
and geophysical data. However, determining a relationship is dif-
ficult as the interaction between model geometries, petrophysical
properties and geophysical response is complicated. A model space
exploration is a useful means by which to achieve this goal.

We produce a number of 3-D geological models based on the
same input data set to produce a model suite: a collection of mod-
els that exhibit similar, but not identical, model architecture. Each
one of these models is considered geologically feasible and may,
a priori, provide the best realization of the natural world possible,
given the input data. The model suite can be analysed in its en-
tirety to determine uncertainty, the range of geometrical possibility
and geophysical misfit. We perform an exploration of geological
and geophysical model space using the Ashanti Greenstone Belt,
southwestern Ghana as a case study. A set of ‘geodiversity metrics’,
quantifying both geometrical and geophysical aspects of the 3-D
model (Jessell et al. 2010; Lindsay et al. 2013), are used to de-
termine geological end-members existing within the model space.
A geodiveristy metric is a measure that characterizes an aspect of
a model, such as volume, surface area or geophysical misfit, and
allows comparison against other models within the model suite.
A multivariate statistical technique is employed to simultaneously
compare all metrics and determine their effect on the model suite.
Analysis of results is performed using principal component anal-
ysis (PCA) which allows: (1) determination of the model space
boundaries, a theoretical limit to geological possibility defined by
models exhibiting the most unusual architecture; (2) identification
of uncommon and common models in terms of both geometry and
geophysics and (3) an understanding of which metrics can contribute
most to uncertainty in modelling.

1.1 Geodiversity principles and the link to model
uncertainty

Uncertainty is inherent in any modelling process and is particu-
larly evident in 3-D geological modelling (Gershon 1998; Thore

et al. 2002; Chugunov et al. 2008; Cherpeau et al. 2010; Jes-
sell et al. 2010; Wellmann et al. 2010). 3-D modelling suffers
from a lack of geological information as there is never complete
coverage of data that describes the entire system. Outcrop is usu-
ally limited, restricting field observations and can be undersam-
pled when available. Geophysical data may not supply complete
coverage nor be available at the required resolution for detailed
interpretation. Uncertainty caused by data sparseness is well doc-
umented (e.g. Rankey & Mitchell 2003; Bond et al. 2007; Suzuki
et al. 2008; Polson & Curtis 2010) and is exacerbated by input
data errors generated during collection, processing or preparation
for input to the geological model (Yeten et al. 2004; Bond et al.
2011). Issues such as upscaling data (where clustered data points
are subsampled to a representative point prior to input) are well
known but typically tolerated. The effects of upscaling, sampling
and data error and resulting uncertainty have been examined by
Putz et al. (2006). They found that their model remained reasonably
robust until 50 per cent of input data had been subsampled prior to
model generation. After the 50 per cent threshold, the model pro-
gressively degrades with increasing degrees of downsampling until
observed geology is barely recognizable. 50 per cent is not a thresh-
old that applies to all models. The level at which models degrade
beyond being recognizable depends on the redundancy between
data and the interpolation algorithm, which also relates to model
complexity.

Recent studies have shown how uncertainty can be located, quan-
tified and possibly reduced using different methods (Thomson et al.
2005; Jessell et al. 2010; Viard et al. 2010; Lindsay et al. 2012; Well-
mann & Regenauer-Lieb 2012). Geodiversity metrics were devel-
oped as a means of measuring uncertainty, as the presence of uncer-
tainty implies that model geometry must be variable (Fig. 1). Varied
geometry then suggests that the various elements of each model, be
the volume of a granitoid or surface area of a contact, will vary as
well. Geodiversity metrics are a method to analyse geometrical vari-
ations of model elements and determine the upper and lower bounds
for each metric to establish model suite end-members. The volume
of a modelled granitoid can serves as an example. The model with
the smallest granitoid volume can be identified, and so can the model
with the largest granitoid volume. The model that contains the gran-
itoid with the smallest volume becomes the minimum end-member

Figure 1. Visualization of uncertainty in the Ashanti Greenstone Belt model. (a) Geological 3-D surface model displaying contacts (colours correspond to
the stratigraphic column in Fig. 2) and fault surfaces (thick black borders) from the initial model. (b) Uncertainty within the model displaying stratigraphic
possibility colour coded according to uncertainty (blue is lowest uncertainty, red is highest). The stratigraphic possibility (L) is the number of possible
stratigraphic units that can be found at a given point for all the models in the model suite (Lindsay et al. 2012). The grid lines are located at the surface and
spaced at 10 km.
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Linking uncertainty to geodiversity 905

representative for the volume of the granitoid, and the model
exhibiting the largest volume becomes the corresponding maximum
end-member representative.

Geometrical aspects of a 3-D model are not the only metrics
of interest to geoscientists. Geophysics is an integral component
of many modern geological studies and is used heavily in the
3-D modelling process. Geophysical metrics can be included in
the suite of geodiversity metrics to quantify the capacity of the
model suite to match the observed geophysical field. End-members
for different geophysical metrics can be identified just like their
geometrical counterparts and used to aid further modelling efforts.
Finding whether any geometrical metrics can be linked with geo-

physical metrics is of particular interest, providing a guide to which
geometrical aspect of the model should be examined to most effi-
ciently decrease geophysical misfit and lead to a model honouring
both geophysical and geological data.

2 G E O L O G I C A L R E V I E W— A S H A N T I
G R E E N S T O N E B E LT, S O U T H W E S T E R N
G H A NA

The Leo-Man Craton forms the southern Archaean/
Palaeoproterozoic section of the West African Craton (Fig. 2).
Four Palaeoproterozoic greenstone-granitoid belts can be found

Figure 2. Geological map of Ashanti Greenstone Belt, southwestern Ghana. Note the location of the modelled region over the Ashanti Greenstone Belt and
the Tarkwaian Basin. The units codes correspond to the stratigraphic column used in modelling (Fig. 3a).
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in the south of the craton (from east to west); the Kibi–Winneba,
the Ashanti, the Sefwi and the Bui. Each belt is separated by
a sedimentary basin (also from east to west); the Akyem (or
Cape Coast Basin), Kumasi and Sunyani basins. The Ashanti
Greenstone Belt has economic significance as it hosts a number
of large and world-class gold deposits, including Obuasi, Tarkwa,
Bogoso/Prestia and Damang (Allibone et al. 2002; Pigios et al.
2003; Tunks et al. 2004; Feybesse et al. 2006).

2.1 Mineralization and gold prospectivity

Gold mineralization has been identified either being spatially asso-
ciated with the Ashanti Fault and other major shear zones or along
the contact between the Tarkwaian and Birimian units. Tarkwaian-
hosted deposits display two styles of mineralization (Perrouty et al.
2012). The first is observed only in quartz lithic conglomerates
within the Banket Formation (e.g. Tarkwa Mine). Economically
viable deposits are constrained to a few horizons locally named
‘Banket Reefs’ (Blenkinsop et al. 1994) and is thought to be of
palaeoplacer origin (Sestini 1973; Hirdes & Nunoo 1994). A sec-
ond mineralization style, observed within Tarkwaian units, are the
hydrothermal deposits that occur along the Birimian/Tarkwaian con-
tact (e.g. Damang Mine). A contrasting mesothermal mineralization
style is associated with the Birimian Supergroup and is associated
within quartz ± carbonate veins within graphitic-mylonitic shear
zones. World-class gold mines such as the Ashanti deposit are hosted
within the Obuasi/Main Reef fissure (Allibone et al. 2002; Tunks
et al. 2004).

3 M E T H O D

3.1 Modelling the Ashanti Greenstone Belt

The purpose of building the Ashanti Greenstone Belt model was
to determine the geometry of the Tarkwaian Basin. The depth and
morphology of the basin base is of particular economic interest as
it plays host to existing and potential placer gold deposits. Existing
understanding of Tarkwaian Basin depth is controversial. Hastings
(1982) and Barritt & Kuma (1998) predict the basin is between
1500 and 2500 m thick, but these estimates assume an older ver-
sion of stratigraphy that has low-density Birimian metasediments
underlying the higher density Birmian metavolcanics. Depth esti-
mates based on gravity inversion and interpretation may therefore
underestimate basin depth and granitoid geometry (Perrouty 2012).
Current stratigraphic relationships developed through updated in-
formation (Adadey et al. 2009) has encouraged construction of this
model. The new map proposed by Perrouty et al. (2012), structural
measurements, stratigraphy (Fig. 3a) and geophysical interpretation
have been input to create the 3-D model of the Ashanti Greenstone
Belt, southwestern Ghana.

3.2 Data sets obtained from fieldwork

Pre-existing field observations and outcrop maps from Loh et al.
(1999), BHP Billiton and Golden Star are used in combination with
data collected by Perrouty et al. (2012). This field data include
structural observations and petrophysical measurements calculated
from rock samples (Metelka et al. 2011; Perrouty et al. 2012). Geo-
physical interpretation was constrained using petrophysical data,
and field observations aided geophysical interpretation. A thick la-
teritic and/or saprolitic layer covers most accessible areas within

Figure 3. Input parameters used in construction and geophysical modelling
of the Ashanti Greenstone Belt model. (a) Stratigraphic column based on
recently revised tectonic evolution (Perrouty et al. 2012). (b) Petrophysical
properties and distribution statistics assigned to each formation (Metelka
et al. 2011; Perrouty et al. 2012).

the region that restricts the occurrence of Proterozoic outcrop. Geo-
physical interpretation was therefore necessary to gain geological
understanding between outcrop areas, resulting in much of the re-
gion requiring interpretation.

Gravity data have been used to provide a potential field data set
to cross-validate magnetic interpretation and better image deeper
structures in the region. A number of data sets has been compiled to
create the gravity data used in the validation of this model. A pre-
processed Free Air anomaly grid data set was obtained through the
International Gravimetric Bureau (BGI, http://bgi.omp.obs-mip.fr/)
and contains a combination of BGI on- and offshore data, satellite
data and Getech ground data (African Gravity Project 1986–1988,
http://www.getech.com/history.htm). Spatial resolution is 2.5 arc
min, or close to 4.6 km pixel–1. Fig. 4 shows a steep gravity gradient
to the west of the Tarkwaian Basin that marks the location of the
Ashanti Fault. Other less dramatic anomalies represent Eburnean
granites and Eoburnean granitoids.

3.3 3-D modelling and model suite creation

3-D Geomodeller (http://www.geomodeller.com/geo/index.php)
was used to integrate field, geophysical and satellite data into a
coherent and geologically feasible model. 3-D Geomodeller uses an
implicit method to integrate all input data to create scalar potential
field of conformable lithological formations (Lajaunie et al. 1997).
Note that the ‘scalar potential field’ is different to the geophysical
potential field used to generate some of the input for the model.
Geological interfaces are interpolated via cokriging of values of
the scalar field (located at interfaces) and its partial derivatives
dv/dx, dv/dy, dv/dz (located at orientation data). Three types of in-
put data are required for the 3-D Geomodeller implicit method to
function: (1) geological contact locations; (2) geological orientation
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Linking uncertainty to geodiversity 907

Figure 4. Gravity response of the Ashtanti Greenstone Belt with an overlay showing the location of modelled faults.

measurements and (3) a stratigraphic column with defined geologi-
cal relationships. The contact locations define where interfaces exist
within the model, the orientation measurements give interfaces their
geometry and the stratigraphic column defines adjacent geologi-
cal relationships. Fault relationships can also be defined, allowing
complex fault networks and timing relationships between fault and
geological units. A complete description of the 3-D Geomodeller
method and associated techniques is described by Calcagno et al.
(2008).

The first model created is considered to be the ‘initial model’, a
model typically created in a normal 3-D geological modelling work-
flow. It represents the best efforts of the geoscientist to produce a
consistent model that attempts to honour all input data. Lindsay
et al. (2012) describes how the initial model is subjected to uncer-
tainty simulation to create the model suite and is then included in
the model suite as a member no more or less likely to exist in nature
than the other perturbed models. Uncertainty simulation consists
of taking the orientation measurements (including those assigned

to faults) from the input data set and reassigning their values to
within ±5◦ (both strike and dip) of the original measurement. The
reassignment is performed as a pseudo-random Monte Carlo simu-
lation to avoid bias. For example, a measurement of 325/40E could
be perturbed so that measurement within model ‘1’ of the model
suite would be reassigned 323/35E, model ‘2’ reassigned 320/42E
and so on. Each model is then recalculated using the new mea-
surements to create the model suite: a set of geometrically similar,
but diverse examples of geological possibility. Voxets used in the
following geodiversity analysis were generated by sampling each
member of the model suite every 500 m on the x- and y-axes (nor-
things and eastings, respectively) and 200 m on the z-axis (depth).
100 models were produced through uncertainty simulation to gen-
erate a model suite totalling 101 members, including the initial
model. 101 models are considered to comprise a reasonable sam-
ple of model space from which to test the geodiversity techniques.
Each member of the model suite was included in end-member and
PCA.
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Table 1. Summary of geodiversity metrics and their function. Detailed descriptions of the geometrical metrics and their function can be found in Lindsay et al.
(2013).

Name Subject Measurement Output

Geometrical geodiversity metrics

Volume Voxet Metres3 Volume for each formation
Depth Voxet Metres Shallowest and deepest occurrence of each

formation
Curvature Surface km: Mean curvature Average km and kg values for each formation

kg: Gaussian curvature
Contact relationships Surface Area (metres2) Contact surface area and contact

relationships
Geological complexity Voxet Number of different lithologies around

point-of-interest
Scalar value representing geological
complexity

Geophysical geodiversity metrics

Root mean square (rms) Residual grid Global measure of geophysical misfit Scalar value
Standard deviation Calculated grid Global measure of geophysical variability Scalar value
Entropy Residual grid Global measure of geophysical variability Scalar value
2-D correlation coefficient Comparison between

observed and calculated grids
Global measure of geophysical
covariance—recognizes similar patterns

Scalar value

Hausdorff distance Distance between observed
and calculated grids

Global measure of geophysical
misfit—accounts for pattern translation,
rotation and dilation

Scalar value

3.4 Geometrical geodiversity metrics

A collection of geodiversity metrics have been employed to catego-
rize the Ashanti Greenstone Belt model (Table 1). A short review of
the geometrical metric method (volume, depth, surface area, curva-
ture and complexity) is provided in this section, though additional
details can be found in Lindsay et al. (2013). Being able to quan-
tify a particular aspect of a model allows comparison with other
models in the model suite. Comparison then allows identification
of end-member representatives for each metric. Quantification also
allows each metric to be compared against one another to deter-
mine whether there are metrics that can best explain uncertainty
contained within the model suite. All the geophysical metrics are
used to provide a global measure of the calculated geophysical re-
sponse or misfit with an objective representation of nature in the
observed response. The geophysical metrics have been included in
the geodiversity collection to discover if the geophysical response
can be associated with any of the geometric geodiversity metrics
according to the stated hypothesis.

The following geometrical geodiversity metrics were developed
to analyse the geometry of 3-D geological model elements. Note
this list of metrics is not exhaustive. Many other metrics may exist
that are also effective at measuring the effects of uncertainty on
model geometry.

3.4.1 Formation depth and volume

The deepest and shallowest extents of each stratigraphic unit are de-
termined using this metric. Each model in the suite can be analysed
to find if any model shows that a stratigraphic unit is significantly
deeper or shallower than it is in others. Information like this can be
useful to assist in identifying under what conditions a stratigraphic
unit may be shallower. Most units in a model that displays either
flat-lying geology, low uncertainty or both will share the same deep-
est and shallowest extents with other models within the model suite
which makes identification of end-members difficult. Therefore, the
unit that has the most volume at the depth extent under study is con-
sidered the end-member. For example, the deepest extent of ‘Unit A’
is found to be 8500 m and was found in models 3, 6 and 70. In Model

3, Unit A has 3000 m3 at 8500 m depth, Model 6 has 4000 m3 and
Model 70 has 3500 m3 at 8500 m depth. Model 6 is determined to
be the end-member for the deepest extent of Unit A, as it has the
most volume at 8500 m depth. Volume of each unit is calculated
by counting the voxels assigned to that unit and multiplying by the
voxel volume.

3.4.2 Average mean curvature

Most surfaces within a 3-D geological model are curved as they
attempt to represent the natural world. Defining the curvature of a
surface can be useful, especially if curvature is conducive to pro-
ducing an economically viable target. Antiformal traps are highly
sought after in oil, gas and minerals exploration and determining
where they exist can aid exploration activities. Curvature may also
influence the geophysical response of a model. Potential links be-
tween a particular style or degree of curvature and high or low
geophysical misfit can aid model refinement and improve the mod-
elling workflows.

We use a technique described by Lisle & Robinson (1995) and
Lisle & Toimil (2007) that rotates a surface around its normal
until the maximum curvature (‘k1’) is found. The surface that is
perpendicular to k1, ‘k2’ is also recorded. k1 and k2 are known
as the principal curvatures. The sign of principal curvatures indi-
cates their polarity, negative indicates concave-upwards, positive
indicates convex-upwards. Mean curvature (M) is calculated from
the arithmetic mean of k1 and k2:

M = k1 + k2

2
. (1)

M < 0 represents a concave (synformal) surface, M > 0 represents a
convex (antiformal) surface and M = 0 either represents a flat plane
or a ‘perfect saddle’ (Lisle & Toimil 2007). The product of k1 and
k2 is the Gaussian curvature:

G = k1 · k2, (2)

which can be used to identify specific folding interference patterns.
Positive G values show that both principal curvatures k1 and k2 have
the same sign, and represent a dome or basin. Negative G values
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Linking uncertainty to geodiversity 909

Table 2. Voxel count and contact relationships between stratigraphic units gener-
ated in the initial model of the Ashanti model suite. Stratigraphic units are labelled
in the column and row headings. A voxel count of ‘0’ indicates these units are not
in contact within this model volume.

Bs bs8 tkc tks tbc t t p t s1b ts1 g f

Bs 0
bs8 23 885 0
tkc 1708 5910 0
tks 123 2127 2418 0
tbc 11 880 2220 2083 0
t t p 1 99 2194 1249 1667 0
t s1b 1 59 870 1289 1922 1095 0
t s1 0 12 27 19 32 32 668 0
g f 1025 134 0 0 0 0 0 0 0

indicate that principal curvatures have different signs, and represent
antiformal or synformal saddles (Mallet 2002; Gray et al. 2006;
Mynatt et al. 2007). Use of curvature calculations as a geodiversity
metric allows comparison of specific geological interfaces with a
model and model suite using quantitative methods.

3.4.3 Contact relationships

A contact relationship metric has been developed to quantify the
surface area of modelled stratigraphic units, and to identify which
units are in contact with other units within the model. Contact
relationships are recorded by determining which stratigraphic units
are adjacent to each other and surface area is calculated from a
voxel count of the regions where that adjacency exists. Table 2
shows an example of the relationships between stratigraphic units
found in the initial model of the Ashanti model suite. This matrix
provides a useful guide to geological relationships that exist in the
model that may not be immediately evident without thorough visual
investigation. Information of this kind can provide a useful means
to cross-validate the resulting model with the contact relationships
that are described by the input geological data.

3.5 Geophysical forward modelling

The geophysical forward modelling method used in this contribu-
tion discretizes the 3-D geological model into a 3-D grid, or ‘voxet’.
Each cell, or ‘voxel’, is assigned a stratigraphic unit identifier based
on the geological model. Next, each voxel is assigned a petrophys-
ical value representative of the assigned stratigraphic identifier and
appropriate to the geophysical response required. In this paper, the
gravitational response is being modelled, so density is the assigned
petrophysical property. The sum of the contribution of each voxel to
the field is calculated using an analytical expression (Plouff 1976;
Okabe 1979; Holstein et al. 1999; Holstein 2003). The heterogeneity
of petrophysical properties predicted to occur within a stratigraphic
unit can be simulated by the definition of probability distribution
functions (Fig. 3b). A 3-D model of the southern Ashanti Green-
stone Belt and corresponding calculated gravitational response is
shown in Fig. 5.

3.6 Comparison of geophysical images

The following techniques have been included in this study to obtain
a scalar value for each calculated geophysical response. Some of

these values are obtained by calculating the residual between the
observed and calculated response and include the 2-D correlation
coefficient, root-mean-squared (rms) and the Hausdorff distance. A
residual grid is created by subtracting the calculated response grid
from the observed response grid. The measure of geophysical misfit
is often expressed as a root-mean-squared value, or ‘rms’,

xrms =
√

1

n

(
x2

1 + x2
2 + · · · + x2

n

)
, (3)

where x1, x2 . . . xn equals the difference between the observed and
computed signals at a particular location. Fig. 6 shows the observed,
calculated and residual grids for the initial model, that is, the model
that was calculated using an unperturbed data set. The standard
deviation and entropy techniques are other typical image analysis
techniques. The standard deviation technique was performed on
the calculated grids, the entropy technique was performed on the
residual grids. The scalar value obtained through these techniques
is global, in other words, a value that represents the entire grid, not
local regions within the grid. The global approach was implemented
to adhere to the requirements of PCA. A requirement for perform-
ing PCA is that a single value represents each geodiversity metric
(geometrical and geophysical) for each model in the model suite.
While useful, non-global or local image analysis of each of the geo-
physical grids would produce multiple values for each metric. All
values obtained for one model would need to be reduced to single
value for use in PCA, making a local analysis averaged.

3.6.1 Standard deviation

The standard deviation of an image is taken as measure of grid value
spread

s =
(

1

n − 1

n∑
i=1

(xi − x̄)2

) 1
2

. (4)

The standard deviation of an image is a common technique in
image analysis as it represents the underlying intensity probability
distribution, and it can be used to measure the degree to which po-
tential field grid values vary across the entire image. Using standard
deviation of the calculated response as a geodiversity metric allows
the variability of each grid to be compared. We can ask ourselves
why would one model have a higher standard deviation than an-
other? Can this be resolved due to a particular geometrical feature
of the model? For example, a granitoid with a high petrophysical
contrast to the country rock that is larger in a model than others,
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910 M.D. Lindsay et al.

Figure 5. Calculating the geophysical response from a 3-D model. (a) Map view of the Ashanti Greenstone Belt 3-D model. Faults have been shown with
blue borders and stratigraphy is shown with opaque surfaces. (b) The calculated geophysical gravity response of (a). Note the ‘white spaces’ in (b) indicating
there is no interpolated gravity response. The non-interpolated regions are the result of undersampled surveying, which can be due to a multitude of reasons
including lack of land access (geographic and political), funding shortfalls or poor survey design.

Figure 6. Example of 3-D geophysical forward modelling from the initial Ashanti Greenstone Belt model. (a) The observed gravity grid, which is based on
survey data, (b) is the calculated response of the initial model and (c) is the residual, calculated from the difference between (a) and (b) with an rms = 8.4043.
20 km grid line spacing for (a) and (b).
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Linking uncertainty to geodiversity 911

Figure 7. A set of four images showing how information entropy (E) can identify information content in an image. (a) Shows E = 0, meaning that entire image
contains the same value and all pixels in the images can be predicted to 100 per cent accuracy based on the value of one pixel. (b) An image with two integer
possibilities (0 or 1), alternating bands across the image will result in the highest amount of E for a binary system. While instinctively one would assume that
the regular bands are easy to predict, in fact as there are equal proportions of 0s and 1s throughout the image, the possibility of picking a 0 or 1 at any given
point is equally likely (50 per cent for each value). There is no single value that is more likely to be found, so E = 1, the highest value for a binary image. (c)
A binary image with a 66 per cent chance to find ‘1’ and 33 per cent chance for ‘0’, E is slightly lower, reflecting less randomness in the image. (d) Shows an
image generated using a random function of integers 1–5. E is relatively high as the number of possibilities has increased, and the relative proportions of each
integer are similar.

may result in a relatively high standard deviation for the calculated
response and assist examination of input petrophysical constraints.

3.6.2 Entropy

Entropy (E) is used to measure the average bits per pixel over an en-
tire image, representing its global information content (O’Gorman
et al. 2008). The type of entropy used here is ‘Information Entropy’
which is derived from the Shannon Entropy model (Shannon 1948):

E = −
N∑
i

pi log pi , (5)

where E is the sum of all products of p (probability) of each possible
outcome (i) out of N total possible outcomes. E = 0 indicates that
the image is dominated by large regions of the same value (Fig. 7a).
In a system of two integer values, 0 and 1 (1-bit system) the Emax = 1

(Fig. 7b). The image is made of equal proportions of possible values
in this case, therefore E = 1 reflects that at any point it is equally
likely to find a ‘0’ or a ‘1’. Fig. 7(c) is still a 1-bit system (values 0
or 1), but two of three lines along the y-axis are ‘1’. The proportions
are no longer equal as it is 66.66 per cent likely to find ‘1’ and
33.33 per cent likely to detect ‘0’ at any given point and E = 0.9135.
Emax will increase with the range of values within the data set under
study. This is shown in Fig. 7(d) where a range of five integers (one
to five) are found in the randomly generated image.

Information entropy is a useful tool in exploring model space un-
certainties. Wellmann & Regenauer-Lieb (2012) used Information
Entropy as a visualization technique to communicate where uncer-
tainties within 3-D models exist. We use the concept to analyse the
residual grids produced by the automatic forward modelling tech-
nique to find grids that are smoother and contain less variability in
values (Gonzalez et al. 2003).
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912 M.D. Lindsay et al.

3.6.3 2-D correlation coefficient

2-D correlation coefficients are typically calculated in geophysi-
cal and engineering applications to track changes in 2-D and 3-D
objects. The subject of 2-D correlations are often images as the
algorithm is able to measure how closely an image of an object
subjected to deformation resembles the original state over a time
period. The correlation is ‘2-D’ as it is performed between matrices,
rather than between two vectors (Fig. 8). The 2-D correlation r is
calculated using

r =
∑

m

∑
n

(
Amn − Ā

) (
Bmn − B̄

)
√(∑

m

∑
n

(
Amn − Ā

)2
) (∑

m

∑
n

(
Bmn − B̄

)2
) , (6)

where Ā is the global mean of image one (observed geophysical
response) and B̄ is the global mean of image two (the calculated
geophysical response). The correlation between the images is not a
subtractive comparison, such as performed in the rms method, rather
it measures whether patterns in the image resemble each other. The
purpose of using this technique to compare observed and calculated

Figure 8. Features of 1-D and 2-D correlation functions. (a) Correlation
between two sets of vector data showing little to no linear dependence. (b)
2-D correlation between two matrices showing little linear dependence. (c)
The correlation function recognizes that the second matrix has been created
simply by multiplying the first matrix by two, returning a score indicating
complete linear dependence.

responses is that if the correlation coefficient is high, the spatial
variation of values in both the calculated and observed responses is
similar.

3.6.4 Hausdorff distance

The Hausdorff distance measures how far points in two different
subsets are from each other. The distance can then be used to un-
derstand the level of resemblance two superimposed objects have
to each other. The Hausdorff distance has been typically used in
machine vision (Rucklidge 1997; Wang & Suter 2007) and pattern
recognition applications (Olson & Huttenlocher 1997; Sim et al.
1999; Gao & Leung 2002) to compare and find patterns in one
image that may be present in another (Huttenlocher et al. 1993).
Geophysical grids can be compared using the Hausdorff distance.
If we assume that the geophysical forward response of a given 3-D
model is a subset of the model space, then the observed response
of the potential field is also a subset of the same model space, but
represents an as yet undiscovered 3-D model (Foudil-Bey 2012).

The Hausdorff distance (dH) can account for dilation and limited
degrees of rotation and translation of one image with respect to
the other (Fig. 9). Geometrical differences between model suite
members will be reflected in their respective calculated geophysical
responses. The recognition of similar patterns is not performed
via standard geophysical misfit algorithms, so it is interesting to
determine whether using the Hausdorff distance as a metric for
model comparison can be more effective.

The Hausdorff distance is calculated using the following equa-
tion. X and Y are two non-empty subsets of a metric space (M, d).
The Hausdorff distance between these two sets dH (X,Y) is

dH(X, Y ) = max

{
sup inf
x∈X y∈Y

d(x, y),
sup inf
y∈Y x∈X

d(x, y)

}
, (7)

where ‘sup’ is the supremum, ‘inf’ is the infimum and x and y are
points within sets X and Y, respectively. In the application of the
Hausdorff distance used here, X is a grid of the observed response,
Y is a calculated forward response grid of some model and x and y
are values of a given cell within the grid. The supremum is defined
as the least element of subset Y of set X that is greater than or equal
to all elements of Y. The infimum is defined as the greatest element
of subset Y of set X that is less than or equal to all elements of
Y (Fig. 10). In other words, the infimum defines the lower bounds
of subset Y within set X, whereas the supremum defines the upper
bounds of subset Y within set X. Therefore, the Hausdorff distance
finds point x from set X that is farthest from any point in Y and
measures the distance from x to the nearest neighbour in Y.

3.7 Using 3-D geophysical forward modelling
in combination with geodiversity

The geophysical response of a model will always rely on the
3-D geological architecture it represents. Integration of geophys-
ical misfit and geodiversity metrics allows data exploration to iden-
tify which, if any, geodiversity metrics may influence geophysical
misfit. Finding a single metric, or combination of metrics, that in-
fluence geophysical misfit can help modellers refine their models to
reduce geophysical misfit between the observed response and the
calculated response.

Caution must be taken with this research direction. It is not in-
tended that any relationship discovered between a geodiversity met-
ric and geophysical response be exploited to manipulate the misfit
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Figure 9. Hausdorff distances (dH) calculated between an original image (top-left panel) and images subjected to different morphological operations. Note
that the stretch example produces zero Hausdorff distance.

Figure 10. A number line shows a set of numbers (white and black balls)
and a subset (white balls). The infimum and supremum of the subset are
indicated.

into a more ‘agreeable’ result. We emphasize the importance of
geological feasibility with respect to the geophysical misfit. For
example, if a covariant relationship between the volume of a partic-
ular unit and geophysical misfit is found, the volume should not be
adjusted in isolation simply to decrease the misfit. Changes to the
volume of that unit should be considered with respect to geology, so
that unrealistic realizations of the geology are avoided. The intent is
to guide the modeller towards finding alternative data sources that
better resolve the geometry of the geological formation through ad-
ditional data (Lindsay et al. 2012). Adding data is not necessarily
going to improve the geophysical misfit, especially if the data are
inappropriate to improve the realization of the anomalous modelled
geology. For example, if volume was found to be linked to geophys-
ical misfit of the model suite, adding 3-D seismic interpretation to

the input data set may improve the misfit of the model suite and
provide a more accurate and reasonable geological realization.

3.8 Data analysis using PCA

Each model can be analysed and then ranked using geodiversity
metric results. The models exhibiting the greatest and smallest (i.e.
the end-member representatives) volume of a particular geologi-
cal unit are easily identified, as are the volume ranks of all other
models. This information can be very useful, especially for further
processing and modeling, such as geophysical inversion. However,
potentially more interesting is discovering where a particular model
sits in an overall ranking scheme that incorporates all geodiversity
metrics. This type of analysis defines where a model resides in
relation to other models within model space. For example, finding
whether the initial model (the model calculated from non-perturbed
data) exhibits typical characteristics is important. The initial model
is normally the only model considered in current modelling work-
flows. If this model does not exhibit typical characteristics, the
practice of producing one single model should be seriously ques-
tioned.

Simultaneous analysis of results from techniques that measure
both geometrical and geophysical phenomena require a specialized
set of tools. Typical methods measuring correlation, such as Spear-
man’s Rank or Pearson’s r, operate pairwise and only two variables
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914 M.D. Lindsay et al.

are measured simultaneously. To adequately understand the relation-
ship between different geodiversity metrics, we require a method
that can compare different observations, sometimes with different
scales of measurement. Furthermore, we want to be able to reduce
the number of geodiversity metrics to a select few that best rep-
resent the degree of variability observed through the model suite.
PCA falls within the ‘feature transformation’ group of methods
that fit these requirements, while also providing visualization tech-
niques that assist in understanding the interaction between variables
and model space definition. Formally, PCA is an exploratory data
technique that analyses the interaction between geodiversity met-
rics through orthogonal data transformation, where data are then
reorganized in terms of relevance to model suite variability (Jolliffe
2002). PCA identifies which geodiversity metric contributes the
most towards model suite variability and defines the model space.
‘Outlier’ models form the boundary of model space and exhibit
geometrical and geophysical characteristics that show the biggest
combined difference when compared to other models. ‘Barycen-
tre’ models form the centre of model space and display character-
istics that are similar when considered in combination. Defining
the model space is an important exercise as it characterizes what
is possible geologically given the modelling method, geodiversity
metrics and input data set. Knowledge of the model space param-
eters assists definition of geological possibility, given the input
data set, method of model calculation and geodiversity metrics em-
ployed. We performed the PCA in Matlab with the ‘princomp’ func-
tion (http://www.mathworks.com.au/help/toolbox/stats/princomp.
html). The multivariate distance of the model from the centre of the
data set (i.e. the model’s rank within model space) is determined
using Hotelling’s T2 statistic, also obtained from the ‘princomp’
function (Hotelling 1931; Krzanowski 1995).

The PCA is carried out in two stages. The first stage involves
analysing the contact relationship, volume, depth and complexity
metrics individually. Each metric measures the corresponding ob-
servations for each stratigraphic unit within the model suite. PCA is
performed on the stratigraphic units to find which units contribute
the most to model variability for that metric. For example, if the
volume of hypothetical units XYX and ABA were found to con-
tribute the most to model suite variability, XYX and ABA are then
representatives of the volume metric. They would then be used with
other representative units in the second stage ‘combined’ PCA. A
detailed account of the PCA procedure is described in Lindsay et al.
(2013).

The remaining metrics, including all the geophysical varieties, do
not require filtering in a first-stage PCA procedure as a single value
representing the entire model (e.g. the rms or Hausdorff distance)
is produced. The curvature metric was not subjected to PCA as cur-
vature was not calculated for every stratigraphic unit through the
model suite. The computation time required for the curvature pro-
cedure is high, so target geological contacts were chosen manually.
The decision for which contact should be analysed for curvature was
based on which exhibited the highest surface area, and therefore was
most likely to vary and have a resulting effect on model geometry.
This decision was made possible due to information provided by
the contact relationship metric (e.g. Table 2).

4 R E S U LT S A N D D I S C U S S I O N

Results are presented in two parts: (1) as a pure end-member analy-
sis, where end-members for each representative metric (determined
in the first-stage PCA where necessary) are presented with the cor-

responding measurement and (2) the results of the combined PCA,
where the combined analysis of geodiversity metrics is presented
with a depiction of model space.

4.1 End-member analysis

Results from geodiversity analysis are shown in Table 3. It becomes
evident that knowledge of these end-members and their correspond-
ing measurement reveals several interesting aspects of the model
suite. First, the geometrical metrics display considerable variation
in the range between end-member values. The range of possible
volumes for the Late Birimian formation (‘Bs8’) is 1553.1 km3,
whereas the depth metrics only show a range of 200 m between
end-member representatives. Considering that the smallest interval
between the measured depth of a given formation is 200 m (voxel
size is 200 m on the Z-axis), the results are essentially binary in that
the stratigraphic unit is either one of two depths (1400 or 1200 m for
Bs8 and 400 or 200 m for the base of the Tarkwaian Series ‘tks’).
The depth for the shallowest extent for Bs8 does allow for three pos-
sibilities (1000, 1200 and 1400 m), but none of these results allow
for much fidelity in terms of detecting different depths. In contrast,
the volume is calculated by counting the voxels within a formation,
and the range between the smallest and largest volume allows a far
greater spectrum of results (between 321 915 to 352 977 voxels, a
range of 31 062 voxels) than the depth metric. Much smaller vari-
ation in geometry can be detected in the volume of a formation
throughout the model suite, suggesting that the volume metric will
be more useful as a variable in PCA. Decreasing the voxel Z-axis
interval may improve the effectiveness of the depth metric, but the
impact on computing requirements (both storage and computation)
would need to be considered.

The complexity metric shows that the tkc stratigraphic unit has
an average of between 3.1141 and 3.3186 different lithologies at
any given point. This result is high in comparison to the 1.3825 to
1.9825 calculated for the Early Birimian (‘Bs’). A relatively high
degree of complexity that also describes model suite geometrical
variability (determined during first stage of PCA) suggests that tkc
is an important unit within the model suite. The location of tkc in the
stratigraphy makes the complexity result even more interesting as
tkc forms the base to the Tarkwaian Basin and is gold prospective.
Intuitively, the average of over three different units at any given point
seems high and indicates that this unit may define the geometry of
units overlying it.

The relatively large range of values seen within the contact rela-
tionship metrics Bs and Bs8 (5116 voxels) and between Bs and tkc
(1869 voxels) reveal how geometrically variable the model suite is.
The large range indicates that the surface area between these con-
tacts can be easily related to model uncertainty. The Bs/Bs8 contact
variability shows that the contact between the Early and Late Bir-
imian units is inadequately constrained. This is confirmed as only a
single orientation point defines the orientation of this contact. The
Bs8/tkc contact is gold prospective, so a large range of values may
suggest that this model suite may not offer enough certainty for use
with further prospectivity modelling. These results do not necessar-
ily mean that the model suite cannot be used, but that the variability
of this geometrical aspect of the model suite should be kept in mind
in future applications.

The curvature results reveal some aspects of the Bs/Bs8 and
Bs8/tkc contacts that are difficult (if not impossible) to determine
from visual analysis of the surfaces. The average mean curvature
(km) of the gold prospective Bs8/tks contact shows that all the
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Linking uncertainty to geodiversity 915

Table 3. End-member representatives for each geodiversity metric and the corresponding observation. Note how each end-member is represented by a single
scalar value. This is a requirement for input into PCA, but also allows commonality constraint values to be determined.

Metric Measures Minimum end-member Maximum end-member

Geometric geodiversity end-members

Volume Volume of Bs8 Model 37: 16 095.75 km3 Model 21: 17 648.85 km3

Volume Volume of tks Model 78: 197.95 km3 Model 21: 229.7 km3

Complexity Complexity of tkc Model 70: 3.1141 Model 26: 3.3186
Complexity Complexity of Bs Model 61: 1.3825 Model 1: 1.9825
Depth—deepest Deepest occurrence of Bs8 Model 11: 1400 m Model 100: 1200 m
Depth—deepest Deepest occurrence of tks Model 31: 400 m Model 12: 200 m
Depth—shallowest Shallowest occurrence of Bs Model 101: 1400 m Model 32: 1200 m
Depth—shallowest Shallowest occurrence of Bs8 Model 92: 1400 m Model 61: 1000 m
Contact relationship Contact between Bs and Bs8 Model 32: 21 348 voxels Model 72: 26 464 voxels
Contact relationship Contact between Bs and tkc Model 90: 1106 voxels Model 32: 2975 voxels
Curvature km of contact between Bs8 and tks Model 57: 2.9995e−05 Model 28: 1.8792e−05
Curvature km of contact between Bs and Bs8 Model 54: −4.6455e−05 Model 84: 7.4882e−04
Curvature kg of contact between Bs and Bs8 Model 89: −1.0559e+21 Model 31: −1.4424e−08
Curvature kg of contact between Bs8 and tks Model 8: −4.1816e+14 Model 12: −6.5508e−08

Geophysical geodiversity end-members

rms rms misfit between observed and
calculated response

Model 37: 8.2963 Model 26: 8.4930

Standard deviation Global measure of geophysical
variability within the calculated response
grid

Model 70: 17.4038 Model 39: 17.5306

Entropy Global measure of geophysical
randomness within the residual grid

Model 70: 4.9151 Model 39: 4.9509

2-D correlation coef. Comparison between observed and
calculated grids—accounts for similar
patterns

Model 32: 0.9465 Model 37: 0.9503

Hausdorff distance Global measure of geophysical
misfit—accounts for pattern translation,
rotation and dilation

Model 26: 482.8557 Model 76: 487.8138

surfaces throughout the model suite display an overall antiformal
curvature. This result seems to be counter-intuitive to geological
reason. The Bs8/tkc contact forms the basement to the Tarkwaian
Basin which one would expect to be synformal, even with the four
deformation events that have shaped it to the present-day geometry.
Visual inspection also suggests the same conclusion (Fig. 11). The
reason for this seemingly anomalous result is the fact the curvature
is calculated between adjacent voxels. Overall curvature appears to
be synformal, influenced heavily by curvature at the edges of the
basin. However, throughout the centre of the basin the curvature
exhibits more antiformal geometry, more than the synformal, re-
sulting in the average mean curvature detected by the geodiversity
metrics.

An interesting result from the Gaussian curvature (kg) metric is
that all the results return a negative number. This results from both
principal curvatures (k1 and k2) having opposite signs, meaning that
the surfaces all exhibit a saddle or inverted saddle geometry (Lisle
& Toimil 2007). The magnitude of kg values range from close to
zero (model 31, Bs/Bs8–model 12, Bs8/tks) to extreme (model 89,
Bs/Bs8 and model 8, Bs8/tks), meaning that models 31 and 12
exhibit almost cylindrical fold geometry, whereas models 89 and 8
would exhibit distinctive saddle geometries. The saddle geometries
are intuitively expected given the polyphase deformation history
of the Tarkwaian and differing axes of shortening (Perrouty et al.
2012). The cylindrical fold geometries are not expected for the
same reasons. Therefore, any use of models 31 and 12 (or others
showing near-cylindricity) in further analysis should be performed
with caution.

4.2 Gravity misfit comparison

Sensitivity analysis of all the gravity geodiversity metrics was per-
formed to confirm that each metric has a similar variation to range
ratio and that no correction was required to normalize any extremely
high or low measurements. This was initially difficult to determine
as each geophysical geodiversity measure has different units of
measurement. Table 4 shows the comparison of metrics. The value
to note is the range–standard deviation ratio, which is similar for
all metrics (highlighted in grey within Table 4). This means that
the degree of variability within each measure is proportional to its
range and that comparison can be made between these metrics as
end-members and no data levelling is required for PCA.

Geophysical response modelling is by no means the only method
by which a model can be verified. For example, drill logs and/or
field mapping can be integrated with geophysical observations to
provide a less ambiguous solution. In practice though, geophysical
data are often the only data set that has full coverage over the study
area and subsequently suffices for first-pass model validation.

4.2.1 rms misfit

Overall, the rms misfit values are reasonably high for this kind
of study. Obviously, one would hope for slightly lower values, but
the magnitude is also not high enough to reject the geology model
outright. Fig. 12 shows the difference between the end-member
residual grids is not immediately obvious, though regions through
the centre and the edges of the Tarkwaian Basin appear to show
the greatest variation. The highest magnitude anomalies appear to
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916 M.D. Lindsay et al.

Figure 11. View of the tkc surface from the Ashanti Greenstone Belt model (from the south), showing an overall synformal curvature (vertical exaggeration
x4).

Table 4. Statistical analysis of geophysical geodiversity metrics. A ratio of range to standard deviation has been calculated
to evaluate whether the proportion of variation to range in the results across the model suite were consistent, which appears
to be the case with all metrics giving similar ratio values. This confirms that there is no metric that determines outliers
(extremely high or low values) the presence of which may distort further analysis in PCA.

Hausdorff distance rms 2-D correlation coefficient Entropy Standard deviation

Range 4.9580 0.1967 0.0039 0.0358 0.1268
Standard deviation 1.1325 0.0424 0.00085 0.0081 0.0283
Range/standard deviation 4.3779 4.6392 4.5240 4.4164 4.4814
Mean 485.4841 8.4034 0.9482 1.8077 17.4716
Max 482.8557 8.4930 0.9503 1.8729 17.5306
Min 487.8138 8.2963 0.9465 1.7290 17.4038

be concentrated in the northwest and southeast. The reason for
this is that measured gravity in these areas is responding to deeper
Birimian-age structures (Perrouty et al. 2012) that were not included
in the model, and this is subsequently reflected in the relatively
high misfit values. The residual observed over the Tarkwaian is not
as severe as in the northwestern and southeastern regions of the
map, and the modelled geology appears to match the gravity data
relatively well.

Low entropy (‘E’) reflects less randomness in the residual image.
If the entire image has predictably (i.e. less random) high misfit
values, then the misfit is predictably high. Therefore, low E values
need to be considered in combination with the mean misfit value
for the residual. A low rms value reported with a high-entropy
value will represent an image with an overall low misfit but riddled
with high-magnitude anomalies. Choosing a model for further pro-
cessing simply because it has a low rms, without considering the
corresponding entropy may prove problematic if high-magnitude
anomalies are present.

The remaining geophysical metrics produce a single scalar value
that describes the phenomenon measured by each particular tech-
nique. The degree to which scores vary from the mean for each
metric is relatively similar. Therefore, we can expect that both tech-
niques may be measuring relatively similar degrees of misfit for each
calculated model response against the observed response. However,
identical results have not been produced for a given model, meaning
that each technique may be measuring different phenomena, as was
hoped. The PCA should reveal what phenomena each geophysical
metric is measuring, with the proviso that a companion geodiversity
metric exists that also quantifies the same phenomena.

4.3 Combined PCA and geodiversity metric relationships

PCA results are best analysed using a biplot diagram shown in
Fig. 13(a). A short explanation is required to explain how to read
a PCA biplot. The first two principal components are plotted along

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/195/2/903/652863 by guest on 26 M

arch 2022



Linking uncertainty to geodiversity 917

Figure 12. Residual grids from rms misfit end-member models 37 (rms: 8.2963) and 26 (rms: 8.4930).

the X- and Y-axes, respectively. The first two principal components
together explain just under 50 per cent of model suite variability
(Fig. 13b). The PCA plot shows each metrics contribution to model
suite variability and how each model is represented in terms of
model suite variability. The points represent models within the
model suite and the distance of the point from the 0,0 intersec-
tion represents the distance of the model from the ‘barycentre’
of the model suite. The barycentre is a region containing models
that share common characteristics, therefore the further away from
the barycentre, the more diverse the models become. The models
that plot around the edges of the diagram, the ‘outliers’, define the
boundaries of model space. These outlier points represent the mod-
els that are dissimilar in terms of the geodiversity metrics that we
have used to define the models within model space. The length and
direction of the vectors extending from the 0,0 intersection repre-
sent how much they contribute to the principal components in the
plot. Vector direction represents association with the component
(or axis) the vector plots closest to. A long vector that plots close
to the x-axis would shows a close association to the first principal
component, representing a variable that contains a high proportion
of model suite variability.

4.4 Ashanti Greenstone Belt PCA

The most distinctive feature of this PCA diagram is the clustering
of the rms, standard deviation, entropy and complexity (tkc) vectors
around the positive x-axis. The clustering shows that this group of
metrics more effectively measure intrinsic model suite variability
than the others in the diagram. Perhaps more interesting is that the
rms of the gravity residual of the model suite is linked with the
complexity of tkc (Fig. 14), and is a surprising result. Given that Bs

and Bs8 make up a high proportion of the model volume, it would
be reasonable to expect that these units would have correspondingly
high influence over the overall geophysical response, but is not the
case in this example. The volume of Bs8 is still influential in terms
of model suite variability, plotting close to the y-axis (along with
the complexity of the Bs/Bs8 contact), but is not associated with the
geophysical metrics. The positive correlation between the complex-
ity of the tkc contact and gravity residual rms can be attributed to
the sampling. The sampling parameters for the complexity metric
are of a higher resolution than that of gravity survey (500 m cell
size complexity versus 4.6 km for the gravity survey). The gravity
signal is unable to adequately resolve the geological complexity of
the Bs8/tkc contact at this lower resolution, suggesting that higher
resolution gravity sampling needs to be performed if gravity is to
be used effectively in resolving the architecture of the contact be-
tween the Late Birimian and the Tarkwaian Group. The remaining
2-D correlation and Hausdorff distance geophysical metrics show
no close association with other geometrical metrics, though they are
almost covariant. The association the two metrics have with each
other is due to their ability to recognize patterns within the data.

The opposing direction of the vectors for 2-D correlation and
the Hausdorff distance to the other geophysical metrics is due
the inverse relationship between these measures. For example, the
Spearman’s Rank between the rms and Hausdorff distance is −0.81,
showing a medium-to-high correlation (Fig. 15). Table 3 shows that
the rms end-member representing the highest geophysical misfit
is model 26, whereas the Hausdorff distance end-member repre-
senting the least distance from the observed grid is model 26. We
suspect that this reversal of end-members is due to the Hausdorff
distance metric recognizing a pattern in the model 26 calculated
grid that has a close resemblance to the pattern in the observed grid.
This pattern may have been dilated or translated, as the rms misfit is
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Figure 13. PCA for the Ashanti Greenstone Belt model suite and geodiversity metrics. (a) Biplot diagram of the combined PCA showing that rms, standard
deviation, entropy geophysical metrics all measure similar variations between models as does the complexity metric of tkc. Note the location of the initial
model. (b) Pareto diagram of principal components and the variance explained. Almost half the variance observed by the geodiversity metrics within the model
suite is explained by the first two components, negating the need to examine components three onwards.

low, but may exhibit the same geometrical features. Identification of
the exact transformation the Hausdorff distance has identified was
not performed within this study, but would obviously be a useful
outcome for future work.

Most of the metrics employed in the Ashanti Belt geodiversity
analysis have proven useful in describing model suite variability.
Some metrics, such as depth and volume tend to be more effec-
tive when applied to certain stratigraphic units. For example, the
shallowness of Bs8 appears to explain a considerable proportion
of the variability in the second principal component, whereas the
shallowness of tks appears ineffective in this respect (Fig. 13a). The
shallowness of tks was found to be influential on the variability of
the model suite when compared to other units, but when compared
with other metrics, such as the geophysical, complexity or contact
surface area, appear less so. The mean and Gaussian curvature met-

rics seem less useful than the other metrics in identifying variability
in the Ashanti Greenstone Belt model suite. Two implications of
this result are possible: (1) the curvature metrics may be more ef-
fective in models displaying different, more curvaceous surfaces, or
(2) need to be revised to more effectively represent differences in
curvature between models. The inability of the curvature metrics to
determine variability in the model suite is consistent with the results
from the Lindsay et al. (2013) study suggesting that the curvature
metrics need to be revised.

The reason to construct this model was to better understand
the geometrical nature of the Tarkwaian Basin, therefore little
attention was paid to the underlying Birimian structures to ac-
commodate petrophysical property heterogeneities in the Birimian
basement. The complication is that if this model was subjected
to geophysical inversion, Tarkwaian geometries may be adjusted
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Figure 14. Complexity maps of tkc formation from models 70 (a) and 26 (b). Modelled fault surfaces (grey with blue borders) are shown.

beyond the boundaries of geological feasibility. As the Birimian
geophysical response has not been adequately represented geo-
metrically, the inversion process would likely adjust Tarkwaian
structures or petrophysical properties. Tarkwaian structures are the
only features that will likely produce an improvement in misfit
when adjusted in the model, and these changes may produce ge-
ologically unreasonable results. The obvious course of action is
to better represent Birimian age structures in future model ver-
sions to avoid unnecessary adjustment of model attributes during
inversion.

Hotelling’s T2 scores have been calculated to rank each model
according to distance from the barycentre (Table 5). All outlier
models (8, 84, 32, 61 and 37) feature in the end-member analy-
sis (Table 3), though determining their influence on overall model
suite variability is difficult to determine by simple ranking proce-
dure. Model rank needs to be weighted according to the influence of
the metric to overall model suite variability. A combined approach
is needed to completely acknowledge all geodiversity within the
model suite. Similar to results obtained in Lindsay et al. (2013),

the initial model does not feature in the bottom five ranked mod-
els. The initial model is reasonably close to the barycentre, being
ranked in 88th position, but there are 13 other models that are con-
sidered more similar according to the geodiversity metrics used
in this study. The Hotelling’s T2 ranking results have implications
on typical modelling procedures that produce a single realization
of the input data, realizations which potentially misrepresent input
data. Uncertainty inherent in 3-D geological models necessitates
employing modelling techniques that produce multiple geological
realizations to aid understanding of the full range and variation
of possibilities. Modelling procedures may therefore benefit from
probabilistic models, rather than models that have been produced
from processes that optimize data.

The method presented here focuses on precisional uncertainties
associated with input orientation measurements. Conceptual un-
certainty associated with model topology (i.e. stratigraphy, fault–
fault and fault–stratigraphy relationships; Cherpeau et al. 2010;
Lindsay et al. 2012) can also be assessed with the geodiversity
method, however metrics would need to be developed that recognize
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Figure 15. Comparison of rms misfit scores and Hausdorff distances (y-axis) between calculated and observed geophysical grids for each model (x-axis). A
reasonably strong negative correlation between both data sets (r = −0.81).

Table 5. Hotelling’s T2 score rankings for the
model suite. The top five models are those that
exhibit the greatest distance from the model
space barycentre. The bottom five models rep-
resent are closest to the barycentre. The rank-
ing of the initial model is also shown.

Model Model

1 8
2 84
3 32
4 61
5 37

T
op

5

88 Initial model

97 50

B
ot

to
m

5 98 9
99 67
100 34
101 11

changes in model topology. Fault intersection and fault complexity
maps or stratigraphic orientation vectors can be added to the stable
of geodiversity metrics to quantify conceptual uncertainty.

5 C O N C LU S I O N

Adding geophysical geodiversity metrics adds further information
to model space exploration. The process of comparing different
geophysical techniques has revealed that some are associated with
the geological complexity of a gold prospective layer, tkc, which
forms the base of the Tarkwaian Basin. Complexity maps of the
two end-member models (Fig. 14) could provide useful input into
prospectivity modelling, but also guide further modifications and
changes to the initial model in combination with uncertainty anal-
ysis by identifying regions requiring specific focus.

The geophysical metrics included in this study have provided
additional methods to calculate the misfit between calculated and

observed grids. The pattern recognition feature of the Hausdorff
distance provides a useful companion technique to typical rms mis-
fit calculations. The Hausdorff distance could be an inclusion for
further studies due to its ability to detect patterns in the observed re-
sponse that may exist, translated, rotated or dilated, in the calculated
response.

PCA has also revealed that the geophysical response is associ-
ated with a geometrical phenomenon. Further investigation of the
model space through geophysical inversion can be streamlined by
identifying models and elements that should be analysed. Based on
the results obtained in the PCA, we suggest that geophysical inver-
sion on tks/tkc or the Bs8/tkc contact may aid in producing a model
honouring both geological and geophysical data. We can be more
confident with the final result if models exhibiting both common
(barycentre) and unusual (outlier) geometries are included in anal-
ysis. The inversion process can also be guided to focus on elements
that have been determined to be important to reconcile when trying
to obtain a model honouring both geological and geophysical data.
This will be achieved by (1) eliminating model realizations that
do not represent either the barycentre or outlier regions of model
space and (2) identifying geometrical elements, while potentially
important in other non-geophysical contexts, that do not contribute
significantly to model suite variability. The production of models
that best represent all input data and geological possibility will be
aided by following the procedure outlined here.

Geodiversity PCA has implications for the future of 3-D geo-
logical modelling. The initial model was found not to be the most
representative model in the model suite. This finding exposes flaws
in workflows that consider a single model to adequately represent
geological possibility. We propose two processes that address these
flaws: (1) multiple models, identified through PCA and geodiver-
sity analysis, to be produced as the product of simulation workflows
and (2) combining all models in the model suite to produce a prob-
abilistic model, where surfaces and structures are represented by
probability measures, rather than as discrete surfaces. The result
from both proposals is that uncertainty inherent in geological stud-
ies is acknowledged and is communicated effectively.
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Putz, M., Stüwe, K., Jessell, M. & Calcagno, P., 2006. Three-dimensional
model and late stage warping of the Plattengneis Shear Zone in the Eastern
Alps, Tectonophysics, 412(1–2), 87–103.

Rankey, E.C. & Mitchell, J.C., 2003. That’s why it’s called interpretation:
impact of horizon uncertainty of seismic attribute analysis, Leading Edge,
22(9), 820–824, 826, 828.

Rucklidge, W.J., 1997. Efficiently locating objects using the Hausdorff dis-
tance, Int. J. Comput. Vis., 24(3), 251–270.

Sestini, G., 1973. Sedimentology of a Paleoplacer: The Gold-Bearing Tark-
waian of Ghana, in Ores in Sediments, pp. 275–305, Springer.

Shannon, C.E., 1948. A mathematical theory of communication, Bell Syst.
Tech. J., 27, 379–423.

Sim, D.-G., Kwon, O.-K. & Park, R.-H., 1999. Object matching algorithms
using robust Hausdorff distance measures, IEEE Trans. Image Process.,
8(3), 425–429.

Suzuki, S., Caumon, G. & Caers, J., 2008. Dynamic data integration for

structural modeling: model screening approach using a distance-based
model parameterization, Comput. Geosci., 12(1), 105–119.

Thomson, J., Hetzler, E., MacEachren, A., Gahegan, M. & Pavel, M., 2005.
A typology for visualizing uncertainty, in Proceedings of SPIE, The
International Society for Optical Engineering, Vol. 5669, pp. 146–157.

Thore, P., Shtuka, A., Lecour, M., Ait-Ettajer, T. & Cognot, R., 2002. Struc-
tural uncertainties: determination, management, and applications, Geo-
physics, 67(3), 840–852.

Tunks, A.J., Selley, D., Rogers, J.R. & Brabham, G., 2004. Vein mineral-
ization at the Damang Gold Mine, Ghana: controls on mineralization, J.
Struct. Geol., 26, 1257–1273.
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