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A B S T R A C T 

The detection of an exoplanet orbiting another star with the radial velocity (RV) method allows to determine only a minimum 

mass of the planet, m sin i , m being the true mass and i the angle of inclination of the planet orbital polar axis with the line of 
sight. Giv en an observ ed discretized distribution of m sin i apparent masses f 0 ( m sin i ), we have designed a simple algorithm to 

find a unique true mass distribution f ( m ) that would reproduce exactly the observed distribution f 0 ( m sin i ). The method is based 

on a particular geometrical representation of exoplanets. It calls for the use of spheres and cylinders, and is somewhat similar 
(though different) to the Abel inversion, widely used in atmospheric physics. We have applied this algorithm to the latest sample 
of RV disco v ered planets containing 909 planets. We confirm the existence of a sub-Saturn desert (at least for periods < 100 d), 
most depleted in the mass Srange in the range 0.1–0.2 M jup ( ∼32–64 M ⊕), detected in the raw m sin i distribution, and amplified 

in the inverted f ( m ) true mass distribution by a factor ∼1.7. We argue that this result is robust, and would remain even if other 
biases of the RV surv e ys would be included. Differences with a recent model of population synthesis are discussed. Focusing on 

lighter planets, we found a likely statistically significant gap of planets in the observed m sin i distribution in the narrow range 
of 13.7–15.2 M ⊕ containing Uranus. 

Key words: methods: data analysis – methods: numerical – techniques: radial velocities – planets and satellites: formation –
planetary systems. 
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 I N T RO D U C T I O N  

he use of radial velocity (RV) of stars has pro v en v ery successful
t the indirect detection of planets orbiting other stars, as fostered
y Connes ( 1985 ) with his proposal to use a high resolution, cross-
ispersing spectrometer design, CCD 2D detectors, and high stability.
ayor & Queloz ( 1995 ) disco v ered the first exoplanet around a solar

ype star with this method. Then the HARPS spectrometer was built
ith the spectrometer under vacuum and accurate thermal control, as

ecommended by Connes, yielding an accuracy better than 1 m s −1 .
he Kepler’s third law may be used to compute the radius of the
rbit from the observed orbital period, knowing the mass of the star.
nfortunately the mass m of the exoplanet cannot be retrieved: only

he product m sin i is derived from the amplitude of the RV wobble,
here i is the inclination of the polar axis of the orbit on the line
f sight (LOS) from the observer to the star (e.g. Lovis & Fischer
010 ). 
Ho we ver, when a reasonable number of exoplanets are detected,

iving an observed distribution of m sin i it is possible to retrieve
he distribution function of planetary masses f ( m ) that will give the
bserved distribution f 0 ( m sin i ). One has to make the assumption
hat the orientations of orbital polar axis are isotropically distributed
n space, and independent of the distribution f ( m ). 
 E-mail: jean-loup.bertaux@latmos.ipsl.fr 
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Such an e x ercise was done for instance in Jorissen, Mayor &
dry ( 2001 ) and Lopez & Jenkins ( 2012 ). There is also the work
f Chandrasekhar & M ̈unch ( 1950 ), which addressed a different
roblem: the inversion of the distribution of V rot sin i , where V rot is
he rotational velocity of the star at equator, and i is the inclination
f the star rotation axis on the LOS to the star. The V rot sin i may
e determined from the wavelength width of one particular stellar
pectral line, because of the variable Doppler shift o v er the disc of
he star. Formally, the two problems are identical. Chandrasekhar
 M ̈unch ( 1950 ) showed that with some change of variables, the

nversion of a V sin i distribution can be transformed into the inversion
f an Abel’s integral, for which an analytical formulation is known.
o we ver, as noted in their paper, ‘while equation ( 14 ) represents the

ormal solution of the problem, it is not of much practical use, since
t requires differentiation and it is known that the differentiation of an
bserv ed frequenc y function can lead to results which are misleading
nless the observations are of high precision’. 
The authors then prefer to determine only some moments of the

istribution, testing for analytical forms of the V distribution. 
More recently, the numerical inversion of Abel’s integral has
ade substantial progresses in the field of atmospheric physics,

eading to the famous ‘onion peeling’ vertical inversion method (See
ppendix B2 ). Assuming a spherical distribution of the density of
 given atmospheric constituent (e.g. Bertaux et al. 2010 , ozone
easured in the star occultation geometry), and a series of column

ensities recorded at various altitudes, it is possible to retrieve the
© 2022 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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Figure 1. Geometry of observation for one single exoplanet (red point). The 
star is at the centre O, the LOS being the OX axis. The exoplanet is represented 
by a point (red), extremity of a vector of length equal to the mass m of the 
exoplanet, with an inclination angle i to the observer. The apparent mass p = 

m sin i is the length of the projection of the exoplanet point on the plane YZ. 
The XZ plane contains the exoplanet by convention. 
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ertical distribution of the density of ozone = f ( z). See for instance
u ́emerais et al. ( 2006 ), and variants with Tikhonov regularization. 
Stimulated by this analogy between exoplanets and atmospheric 

hysics, we hav e dev eloped a geometrical representation of e xoplan-
ts which may be treated in a fashion similar (but not identical) to
he atmospheric v ertical inv ersion, to get the actual distribution of
lanetary masses m . 
The methods developed by Jorissen et al. ( 2001 ) and Lopez &

enkins ( 2012 ) are rather mathematically sophisticated. The new 

ethod that we present here should not give much different results;
o we ver, being based on a simple geometrical representation, it is
ikely simpler to understand, and easier to implement since it is
iscretized. It is based on the solution of a triangular linear system of
quations, which may be resolved step by step (equation by equation) 
r with the inversion of a triangular matrix. 
In Section 2 we describe the principles of our inversion algorithm, 

hile the exact formulation with spheres and cylinders is described 
n Appendix A . In Section 3 we apply our algorithm to an ensemble
f 909 RV planets with three different mass grids, focusing on 
arious parts of the mass histogram. We discuss in Section 4 some
aps identified in the radius/mass observed distribution, in relation 
o the composition of the solid core, and the existence (or not)
f an extended atmosphere. The inverted RV mass distribution is 
ompared in Section 5 with a recent model of population synthesis.
ome conclusions are sketched in Section 6 , while Appendix B
escribes the classical onion-peeling algorithm used in atmospheric 
cience, allowing to appreciate the similarities and differences with 
ur algorithm implying spheres and cylinders. In Appendix C we 
escribe several simulations with a forward and inverse calculation, 
n single peak, double peak, and power -law distrib utions of true
ass, with random assignment of a sin i value. 

 G E O M E T R I C A L  REPRESENTATION  O F  

XOPLANETS  POPULATION  A N D  

SSOCIATED  F O RWA R D  F O R M U L AT I O N S  

.1 Geometrical r epr esentation of exoplanets population 

n Fig. 1 is shown the geometry of observation of one exoplanet,
here the angle i is the inclination of the polar axis of the orbit on

he LOS from the observer to the star, axis X. The angle i is 0 ≤
 ≤ 180 ◦, if we select the direction of axis which gives a positive
otation about the axis. We represent the exoplanet as the extremity 
f a vector representing the polar axis of the orbit coming out from
he centre of the star, with a vector length equal to the true mass
f the planet. The exoplanet (red dot) is therefore located along the
ngular momentum direction of the orbit at a length ‘m’. This red dot
oint is projected parallel to observer X -axis on axis Z, at the length
 = m sin i (grey dot). 
Now we re-assemble all detected exoplanets in a common three- 

xis reference system by translating all stars at a common origin S t ,
ith a rotation aligning all LOS along the X-axis (Fig. 2 ). All XZ
lanes of Fig. 1 containing one exoplanet will come to various angles
(unknown) with the common axis S t Z on Fig. 2 . The orientation

bout the X-axis of each exoplanet is not known, but we may assume
hat their orbital axis are isotropically distributed. All exoplanets 
hich have the same value of m will lie on a sphere of radius m . All
 xoplanets which hav e the same value of m sin i will lie on a cylinder
ith axis X and radius p = m sin i . Therefore, since the exoplanets

red points) are distributed isotropically, at a distance m from the 
rigin centre S t the projected distribution in the plane YZ will have
 symmetry of revolution (it will not depend on angle φ). 
.2 The case when all planets have the same mass 

rom now on we use the word planet for short of exoplanets. We
onsider first the case where all planets (in number N) have exactly
he same mass m . In our geometric representation, they all lie on
he sphere of radius m . We assume that their orbital axis is oriented
andomly therefore isotropically. We wish to compute what will be 
he observed distribution n ( p ) of apparent masses p = m sin i . 

We may state that p ≤ m ; m cos i di = dp and the number of
lanets observed between p and p + dp is defined by n ( p ) dp . The
otal number of observed planets must be equal to N, ∫ m 

0 
n ( p ) d p = N . (1) 

In our geometrical representation described abo v e, the surface 
ensity S d of planets on the sphere of radius m is uniform and equal
o 

 d = 

N 

4 π m 

2 
. (2) 

The area S di of the fraction of sphere which is contained between
ngles i and i + di (a spherical corona), and projects between p and p
 dp on the plane YZ (perpendicular to the observer, passing through

he centre of the sphere of radius m ), is (Fig. 3 ) 

 di = 4 πp m d i. (3) 

Here we have 2 x 2 π = 4 π to take into account the two spherical
oronas of both hemisphere, one in front of the observer, the other
n the other side, projecting on the same plane YZ, as the circular
orona contained between p and p + dp . The number of planets
 ( p ) dp projecting on this circular corona ( p , p + dp ) is the product
f the area S di and the surface density of planets 

 ( p ) d p = S d i S d = 

p m d i 

m 

2 
N = N 

p 

m 

√ 

m 

2 − p 

2 
d p (4) 

 ( p ) = N 

p 

m 

√ 

m 

2 − p 

2 
. (5) 
MNRAS 512, 5552–5571 (2022) 
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M

Figure 2. All observed exoplanets and their system of observation are 
translated and rotated on a common reference system, with all stars being 
at the centre S t , the LOS being the OX axis. Their plane XZ of Fig. 1 is now at 
an angle φ (unknown) to axis Z. The exoplanet is represented by a point (red), 
extremity of a vector of length equal to the mass m of the exoplanet with an 
inclination angle i to the observer. The apparent mass p = m sin i is the length 
of the projection of the exoplanet point on the plane YZ perpendicular to the 
LOS. 

Figure 3. Geometry for the case of iso-mass planets. They lie on a sphere 
of radius m . Here only one hemisphere is represented. Note the change of 
orientation for the LOS w.r.t. Figs 1 and 2 . All planets with angle inclination 
between i and i + di are viewed projected in a corona between p and p + dp , 
as shown in the lower part of the figure representing the plane perpendicular 
to the LOS. 
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NRAS 512, 5552–5571 (2022) 
It can be verified that the integral of n ( p ) from 0 to m is indeed N.
his expression becomes infinite when p is approaching m , but the

ntegral is finite. It may be computed that the average value of p =
 sin i for this population n ( p ) is m π /4. 
Let us now consider a population of planets having all the same
ass m = 1 (the unit is not important here). In our geometrical

epresentation of exoplanets (Fig. 3 ), they are all located on the
pper hemisphere, 1 with a constant surface density. 
Let us define the cumulative probability function P cum 

( x ) that the
alue of the variable sin i be < x, 

 rob ( sin i < x) = P cum 

( x) . (6) 

he probability density function P ( x 
′ 
) that the variable x 

′ = sin i be
etween x and x + dx is therefore such that 

 ( x ′ ) d x = P cum 

( x + d x ) − P cum 

( x ) . (7) 

Therefore, the probability density function P ( x 
′ 
) is just the deri v a-

ive of the cumulative probability function (from now on, we use
he classical term, the cumulative distribution function, CDF). In
eneral, P cum 

( − ∞ ) = 0, P cum 

( + ∞ ) = 1. In the present case, the
ngle i is 0 ≤ i ≤ 90 ◦, sin i is defined between 0 and 1, P cum 

(0) = 0
nd P cum 

(1) = 1. 
Considering Fig. 3 , and a sphere of radius 1 (instead of m), an

sotropic distribution of polar axis inclination with angle i (from
 to 90 ◦) with the looking direction X means an equal probability
 v er the whole hemisphere of radius 1. All directions with an angle
maller than a given value i are contained in the cone of axis X and
emi-angle i . The probability that the angle of inclination be < i is
herefore the ratio of the solid angle � sub-tended by the cone to the
emisphere which subtends 2 π steradian. We know that � = 2 π (1

cos i ) sr , and the probability that the angle of inclination be < i is
hen 

 ( angle < i) = 1 − cos i. (8) 

It is also the probability that sin i < x , for a given value of x.
herefore we get the expression of the cumulative probability of sin
 under the form: 

 cum 

( sin i < x) = 1 − cos i = 1 −
√ 

1 − sin 2 i = 1 −
√ 

1 − x 2 

. (9) 

Calling y = P cum 

( sin i < x) = 1 − √ 

1 − x 2 , the cumulative
robability function of sin i is represented on Fig. 4 (axes x and
 are different from X and Y of Fig. 3 ). Actually, it is a quarter of a
ircle of equation ( y − 1) 2 + x 2 = 1, which centre is at point x = 0,
 = 1. 
Drawing one single value of sin i at random (given the probability

ensity function P (sin i )) is done simply by drawing a random number
etween 0 and 1 (say 0.14 on Fig. 4 ), and finding the value of x =
in i for which P cum 

(sin i ) = 0.14. Indeed, we see on Fig. 4 that the
robability of a value of sin i between x and x + � x is � P cum 

, linked
o � x by 

�P cum 

�x 
= 

d P cum 

d x 
= P ( x) . (10) 

Fig. 4 shows that, considering a population of planets of the same
ass m, half of them (upper part of graph) will have an inclination i

arger than 60 ◦ and will produce in RV observations a signal (semi-
mplitude in m s −1 ) corresponding to p = m sin i between 

√ 

3 ∼ 0 . 86

art/stac777_f2.eps
art/stac777_f3.eps


Numerical inversion of m sin i exoplanet distribution 5555 

Figure 4. The cumulative probability y = P cum 

(sin i ) is represented as a 
function of x = sin i (black, left scale). It is a quarter of a circle, centred on x 
= 0, y = 1. The deri v ati ve of this function is the probability function P (sin i ) 
is the solid red curve (right scale), which goes to ∞ for sin i = 1. See text 
for explanation of � x and � P cum 

. The angle of inclination i is represented 
by a line from the centre of the circle. Drawing a line with i = 60 ◦ intersects 
the circle at P cum 

= 0.5, showing that half of the planets have a p = m sin i 

between 
√ 

3 
2 ∼ 0 . 86 m and the true mass m. 
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nd 1 m (therefore, not too far from the true mass m ), and the other
alf a signal corresponding to p smaller than 0.86 m (from 0 to 0.86
 ). 

.3 The general case of a distribution of planets 

et us assume that there is a distribution of planets N ( m ) dm , where
 ( m ) is the number of planets with true masses between m and m +
m . According to equation ( 5 ) abo v e, the observ ed distribution f 0 ( p )
ill be the sum of contributions to p o v er all masses m , from the
inimum value p up to a maximum mass max . 

 0 ( p ) = 

∫ max 

p 

n ( p ) d m = 

∫ max 

p 

N ( m ) d m 

p 

m 

√ 

m 

2 − p 

2 
(11) 

 0 ( p ) = p 

∫ max 

p 

N ( m ) 
d m 

m 

√ 

m 

2 − p 

2 
. (12) 

his is exactly the same equation as equation (9) in Chandrasekhar &
 ̈unch ( 1950 ) arrived at to describe the problem of the distribution

f V rot sin i , in which V rot is the rotation velocity of the star and angle
 is again the inclination angle to the observer. 

Ho we ver, the mathematical demonstration of Chandrasekhar & 

 ̈unch ( 1950 ) applied to the problem of V rot sin i is not so simple
o follow, while our demonstration is based on simple geometrical 
onsiderations and we think that it is easier to follow. 

As said in Section 1 , Chandrasekhar & M ̈unch ( 1950 ) showed that
ith some change of variables, equation ( 7 ) may be transformed

nto the inversion of an Abel’s integral, for which an analytical 
ormulation is known. Because of the sensitivity to the deri v ati ve, the
nalytical solution is unstable, as said in the Introduction. Instead, in 
odern atmospheric physics, the famous ‘onion-peeling’ numerical 
ethod is preferred, most of time with some regularization scheme 

e.g. Qu ́emerais et al. 2006 , Tikhonov regularization). 
Therefore, we are presenting a numerical scheme to resolve the 

nversion of m sin i distribution, which is inspired by (but not identical
o) the atmospheric onion-peeling method. It is based on our new
eometrical 3D representation of the population of planets as a 
gas’, in which there is a spherical symmetry of the distribution
f planets (isotropic distribution of orbital polar axis). It calls for
he computation of volumes which are the intersections of spherical 
hells and cylindrical shells in the 3D space of exoplanet masses.
nstead of considering a continuous distribution of true masses m ,
he problem is discretized by assuming that the ‘number density’ of
lanets ρ( m n ) is constant between two consecutive spherical shells
f radius m and m + � m (but the mass may vary within the limits of
he mass bin). 

Let us assume that we have a distribution N ( m ), N ( m ) being the
umber of planets in a mass-bin � m . In our geometric representation,
he density ρ( m n ) of planets at distance m n from the centre is linked
o the number N ( m n ) by 

( m n ) = 

N ( m n ) 

4 πm 

2 
n �m 

(13) 

nd its integral (fully accurate) form 

( m n ) = 

N ( m n ) 
4 π
3 

(
m 

3 
n − m 

3 
n + 1 

) . (13bis) 

In the classical onion-peeling method applied to planetary atmo- 
pheres, a LOS crosses a number of spherical shells within which
he density is assumed to be constant (Appendix B ).The path-length
f the LOS through each spherical shell is computed by geometry
nd multiplied by the local density to get the integrated line (or
olumn) density, which is the observed quantity in the onion-peeling 
tmospheric scheme. In our problem, it is a whole cylinder of radius
 which may be considered as a ‘cylinder of sight’, the equi v alent
f a LOS is the onion-peeling scheme. Ho we ver, since we have
iscretized the problem with constant density of planets between 
wo spheres of radius m n and m n + 1 , the equi v alent of a LOS for our
roblem is the volume between two cylinders of radius p = m n and
 

′ = m n + 1 , which contains all observed planets with m sin i between
 n and m n + 1 . Their total is constituted from the contributions of the
arious spherical shells with a radius > m n , which are the product
f the volumes common to the cylinder and the various spheres,
y the density ρ( m n ) in each spherical shell of constant density.
heir formulation is established in Appendix A . Below, we give first
 simple example of the inversion scheme with three spheres and
ylinders, and show the more general formulation. 

.4 The scheme of inversion with spheres and cylinders 

.4.1 A simple example 

et p = m sin i , the ‘projected’ mass (or apparent mass) of a planet
ith true mass m , and determined by the RV method to have an

pparent mass p . We illustrate our method of inversion (or retrie v al)
ith a simple case in which we consider only three values of masses

rom 3 to 1 (in arbitrary units), with densities ρ0 (between R 0 and R 1 ),
1 (between R 1 and R 2 ), ρ2 (between R 2 and 0) in our geometrical

epresentation. The radius of spheres are R 0 = 3, R 1 = 2, R 2 =
, R 3 = 0 (Fig. 5 ). The largest radius is the first (as is usual in
nion-peeling method where computation starts from outside and 
rogresses inwards), decreasing down to zero for the last value R 3 

 0. There is one more value of the radius than the number of mass
ins. The series of cylinder radii are taken as identical to sphere radii:
 j = R j . 
Fig. 5 is a cross-section of the volumes delimited by cylinders and

pheres, obtained by revolution about axis X of Figs 1 and 5 . The
MNRAS 512, 5552–5571 (2022) 
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Figure 5. Cross-section of spheres with radii R 0 = 3, R 1 = 2, R 2 = 1, R 3 = 

0, and cylinders of sight of equal radii C 0 = R 0 , C 1 = R 1 , C 2 = R 2 , C 3 = 

0. The various volumes contained in both a cylindrical shell and a spherical 
shell (indicated by V ik ) are obtained by a revolution about X-axis. 
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olumes V ik are identified on Fig. 5 by the first index i , designating
he cylindrical shell between C i and C i + 1 , and by the second index
 , designating the spherical shell contained between R k and R k + 1 . 

We assume that there is no planet of mass larger than the largest
ass, R 0 . Considering the largest mass bin from R 1 < R 0 to R 0 , the

umber of observed planets is by definition N ( p 0 = m 0 sin i ), and
hese planets belong both to the spherical shell ( R 0 ; R 1 ), and to the
ylindrical shell ( C 0 ; C 1 ). Let V 00 be the volume common to both
hells (spherical and cylindrical), we may write 

( p 0 ) = ρ0 V 00 (14) 

nd similarly, with the definition of the various volumes V ik indicated
n Fig. 5 

( p 0 ) = ρ0 V 00 

( p 1 ) = ρ0 V 10 + ρ1 V 11 

( p 2 ) = ρ0 V 20 + ρ1 V 21 + ρ2 V 22 . (15) 

Therefore, we have a linear system of three equations with three
nknowns, ρ0 , ρ1 , ρ2 , the number densities of planets of masses 2 <
 0 ≤ 3, 1 < m 1 ≤ 2, 0 < m 2 ≤ 1. The true number N true of planets

n each mass interval interval is the product of the number densities
i of planets per unit volume (in the planets space) by the volume
f the spherical shells containing all planets with a true mass in this
nterval (equation 13 bis) 

 true ( m 0 = 3) = 

4 π

3 

(
R 

3 
0 − R 

3 
1 

)
ρ0 

 true ( m 1 = 2) = 

4 π

3 

(
R 

3 
1 − R 

3 
2 

)
ρ1 

 true ( m 2 = 1) = 

4 π

3 

(
R 

3 
2 − R 

3 
3 

)
ρ2 . (16) 

It should be noted, as indicated on Fig. 5 , that a volume V ik is in
act composed of two identical sub volumes, one being before the
lane of projection (passing through the centre of all spheres), the
ther being after the plane of projection. Also, note that all planets
ithin a bin mass need not strictly to be of the same mass. They just
eed to be with a mass between the defined mass bin limits, and be
ith their polar axis isotropically distributed, whatever is their mass.

.4.2 Generalization with the volume matrix 

he linear system of equations ( 15 ) may be solved by extracting ρ0 

rom the first equation of the system and reporting into the second
quation, and so on and so forth, in a ‘onion-peeling’ scheme. It may
NRAS 512, 5552–5571 (2022) 
lso be put under a matrix form, and solved by the inversion of the
riangular matrix M V : 

 N ] = M V [ ρ] (17) 

 ρ] = M 

−1 
V [ N ] , (18) 

here [N] and [ ρ] are column vectors containing respectively the
umber of observed m sin i masses in each ‘cylindrical shell of sight’
nd the ‘densities’ of planets in corresponding true mass bins. 

We may call matrix M V the volume matrix. The computation of the
lements of the matrix, which are the volumes, common to spherical
nd cylindrical shells is detailed in Appendix A . 

Once the vector of densities [ ρ] is found by the resolution of the
inear system 15 , the true number of planets contained in a particular

ass bin is retrieved by a formula of the type 13bis, more accurate
han the differential form 13 : 

 true ( m k ) = 

4 π

3 

(
R 

3 
k − R 

3 
k+ 1 

)
ρk . (19) 

.4.3 The computation of the errors (or uncertainties) 

he uncertainties on the resulting retrieved histogram of true masses
re basically produced by statistical uncertainties on the number
 j of planets in each bin j of the initial p = m sin i histogram,
hich is simply (Poisson law) 

√ 

N j . Below we describe how these
nitial uncertainties in the observations may be propagated to the
nal number of planets in a true mass bin. 
Once the limits of mass bins have been selected, the volume matrix
 V can be computed without any error. Each element of the matrix is

he volume of a ring as defined abo v e. Therefore, the inv erse matrix
 

−1 
V may be also computed, with no error. 
Equation ( 18 ) relates the number density ρ i to the observed number

f planets in each bin of cylinders (apparent masses) N j . 
Calling a ij an element of matrix M 

−1 
V , we have the relation 

i = 

∑ 

j 

a ij N j . (20) 

The number of planets N j are integer numbers, and should follow
 statistic Poisson law, in which the variance of N j is N j , and the
rror on N j is 

√ 

N j . To propagate these errors into the errors on ρ i ,
e apply the formulation of the variance of a linear combination of

andom variables X and Y, 

 a r( a X + bY ) = a 2 V ar( X) + b 2 V ar( Y ) (21) 

 ar( ρi ) = 

∑ 

j 

a 2 ij V ar( N j ) = 

∑ 

j 

a 2 ij N j . (22) 

he number of planets with true mass N true ( m i ) within the spherical
hell between R i and R i + 1 is related to the density ρ i by equation ( 19 ).
herefore, the variance of N true ( m i ) is 

 ar ( N true ( m i ) ) = 

(
4 

3 
π
(
R 

3 
i − R 

3 
i+ 1 

))2 

V ar ( ρi ) (23) 

 a r ( N true ( m i ) ) = 

(
4 

3 
π
(
R 

3 
i − R 

3 
i+ 1 

))2 ∑ 

j 

a 2 ij N j (24) 

nd the errors on N true ( m i ) are simply the square roots of the variances.

.5 The case of a power law mass distribution 

everal authors (e.g. Ananye v a et al. 2020 ) have compared observed
 sin i distributions to true mass distributions coming from planets
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Figure 6. Histogram of observed apparent masses m sin i (black dashed line) 
and retrieved true masses (red solid line and red filled circles with error bars). 
The bin mass size is 3 M jup . The log scale is chosen to emphasize the small 
numbers of large planets. The irregularities in the bins 15–18 and 21–24 
M jup (with small numbers of planets) of the apparent mass distribution are 
amplified by the inversion process. For masses below ≤12 M jup , the values of 
original and inverted mass distributions are similar. 
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ormation models. They usually examine the apparent mass distribu- 
ions in terms of d N /d m , (here, m is the apparent mass) and are using
ower-law fits of the form d N /d m ∝ m 

−k . And they generally take
or granted, without demonstration, that the true mass distribution 
f the observed planets is having the same power-la w inde x −k .
his question has not been addressed, neither by Chandrasekhar & 

 ̈unch ( 1950 ) nor by Jorissen et al. ( 2001 ) or any other authors to
he best of our knowledge. With our geometrical representation of 
xoplanets, it can be demonstrated (see below) that it is indeed the
ase: both apparent masses and true masses have the same power law
ndex. 

First, we demonstrate (at end of Appendix B ) that the Abel
ransform F ( y ) (equation B1 ) of a power-law function f ( r ) = r −k 

s also a power law with a higher exponent, F ( y ) = Constant ×
 

−k + 1 . 
Then we examine equation ( 12 ) when we put a true mass

istribution of the form d N /d m = N ( m ) = m 

−j . It comes 

 0 ( p) = p 

∫ max 

p 

m 

−j−2 m √ 

m 

2 − p 

2 
d m. (25) 

e recognize the integral as the Abel transform of the power law
 

−j − 2 . Therefore, it will yields a power law p −j − 1 . And since it
s multiplied by p in equation ( 25 ) to yield the resulting apparent

ass distribution f 0 ( p ) will be ∝ p −j . The conservation of the power-
a w inde x is also true when a distribution d N /d( logm ) is considered,
ecause d N /d( logm ) = m 

−j + 1 when d N /d m = m 

−j . 
In Appendix C , we describe simulations (forward modeling and 

ur inversion scheme), with a single-peak mass distribution, a double 
eak distribution, and a simulation attached to a modification of the 
bservations presented in Fig. 6 (0–30 M jup ) by the addition of one
xtra-bin with high masses. 

All in all, these simulations, together with the estimate of the error
ars, are cross-validating our inversion scheme, and we proceed with 
onfidence to three examples of histograms, differing by the limits of
he mass bins, but otherwise using our general sample of 909 planets
isco v ered by the RV technique and screened as explained below. 
 APPLI CATI ONS  O F  T H E  I NVERSI ON  

E T H O D  TO  2 0 2 1  DI STRI BU TI ON  O F  m SIN  i 

n this section we apply our inversion method to the catalogue of
bserv ed e xoplanets with the radial velocity method (RV planets),
or which m sin i was determined. The data were extracted in 2021
ugust from the Encyclopedia of exoplanets, and contained 960 

xoplanets at that time. Ho we ver, we had to exclude from this
nsemble some exoplanets for which the m sin i was determined
y the RV method, but which had been disco v ered first by the transit
ethod, and later on followed in RV in order to determine the mass

even if the planet of a multiplanet system was disco v ered by RV
ethod). Indeed, in such a case we know that the inclination i is near

0 ◦, and keeping them would distort the distribution of inclination
ngles that our method assumes to be random. This is the case
f all Kepler planets, as well as other surv e ys like WASP, KELT,
orot, HAT, and TOI (Tess Objects of Interest). On the contrary,

ome transiting exoplanets were kept, because their existence was 
rst determined from a RV surv e y and later on it was found that

hey were transiting. Rejecting them would also distort unduly the 
tatistics. After such a filtering the resulting sample contained a total
f 909 exoplanets orbiting around 651 stars. 
One caveat is in order here. In addition to the m sin i effect,

here are several factors that can bias an observed apparent mass
istribution from the really true mass distribution: small masses are 
elow the detection threshold, long period planets missed by the 
imited time span of a surv e y, different stellar spectral types may
ave different planet mass distribution etc. In the present paper, we
ddress a method, with some applications to the whole sample of
vailable RV disco v eries, and ignoring all possible other biases. It is
lear that the method could be applied to samples of various stellar
pectral types, or could be used in conjunction with some methods
hat were designed to estimate other biases. This is well beyond the
cope of this paper. 

In our method, the bins of masses may be selected ad libitum . The
atrix of volumes will be different for each version of the bin grid,

nd we will sho w se v eral e xamples with different bin grids, focusing
n various aspects of the mass distribution. 

.1 Linear histogram up to 30 M jup 

e first built a histogram of 10 mass bins, with a size bin of three
upiter masses ( M jup ) up to an upper boundary of m sin i = 30 M jup 

hich defines our outer boundary for ‘radii of spheres’. There are
91 planets with m sin i , up to 30 M jup . On Fig. 6 is represented the
istogram of apparent masses m sin i , (black dashed line) as well as
he inverted distribution of ‘true’ masses m (red solid line and red
ircles with their error bars) which is giving the observed distribution
f m sin i when randomly observ ed o v er inclination angles. It is
een that the number of planets observed in the m sin i bins 15–
8 and 21–24 M jup show a slight deficit w.r.t. their neighbouring
ins, irregularities likely due to statistical fluctuations of low integer 
umbers ( ∼6–10). These slight deficits are largely amplified after 
nversion into the ‘true’ mass distribution, but not to the point to get
e gativ e in this case (there is no mathematical constraint on the sign
f the result of the inversion). This is a well-known effect of the
nversion of Abel’s integral. The sum of the number of planets in the
rue mass distribution (which are all floating point, decimal numbers) 
s also 891: no loss of planets in the inversion process. The shape
f the distributions, both the m sin i , and the true mass distribution,
re quite similar on this coarse histogram. The error bars are also
MNRAS 512, 5552–5571 (2022) 
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Figure 7. Dashed black line: Distribution of m sin i of 885 planets detected 
by the radial velocity method, from 1 M ⊕ = 0.00314 M jup up to 25.7 M jup . 
Solid red line and red filled circles: distribution of true masses obtained by 
inversion with our new method with error bars Letters E, U, N, S, J are 
representing the masses of Earth, Uranus (14.54 M ⊕), Neptune (17.2 M ⊕), 
Saturn (95 M ⊕), and Jupiter (317.8 M ⊕), respectively. The lowest bin in the 
central valley has limits 0.1–0.2 M jup ( ∼32–64 M ⊕). This sub-Saturn desert 
is even more depleted after inversion of the m sin i distribution. The black 
lozenges are the result of a simulation in which a random value of sin i was 
assigned to an ensemble of 885 planets distributed in mass according to our 
retrieved histogram of true masses. Then their histogram is plotted as black 
lozenges: the y hav e indeed similar values as the original observed values of 
apparent masses. 
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isplayed and reflect the errors (statistical fluctuations) on the input
istogram of apparent masses. 

.1.1 Conservation of planets in the inversion process 

n the frame of our inversion scheme, we assume that there are
o planet with a true mass beyond a certain upper limit, which
s common to both true masses and observed apparent masses.
herefore, with this limiting assumption, the planets within the
ylinder of maximum radius p max are assumed to have also a true
ass ≤p max . This is why the number of planets is conserved in our

nversion process. It is true that a planet having a real mass m > p max 

out the sphere of maximum radius) but an apparent mass p < p max 

ies within the observed cylinder of radius. The inversion algorithm
ill put it in a true mass bin smaller than p max therefore at a ‘true’
ass smaller than the real mass, most likely in the bins of largest
asses. The planet is not lost, but put at the upper end of the mass

nterval (actually the first bin). 
We have studied (as described in Appendix C1 ) the effect of

dding an extra bin of large masses to the exponential histogram
f Section 3.2 . The effect is insignificant on the number of planets
 12.89 M jup , which remain the same, with or without the extra bin.
ee Appendix C1 and Table C1 . 
Classically, the mass limit between exoplanets and Brown Dwarfs

BD) is set at 13 M jup , abo v e which internal conditions allow
or Deuterium fusion, while the upper limit of BD is ∼80 M jup .
herefore, eliminating RV disco v ered objects (BD) with m sin i >
0 M jup , or keeping them, which do not affect the retrieved true mass
p to 12.89 M jup as shown abo v e, has no influence on the realm of
xoplanets ( m < 13 M jup ). Ho we ver, this exercise sho ws also that it
s important to keep the RV disco v ered objects up to ∼30 M jup , well
ithin the regime of BD, in order to keep unaffected the regime of

xoplanets. 

.2 Exponential histogram from 1 M ⊕ to 26 M jup . 

ith the choice of the linear 10 mass bins of 0–30 M jup (Fig. 6 ), we
ee that the number of planets is strongly decreasing with their mass
observed or inverted), but we do not learn anything on the details of
he mass distribution of planets below ∼3 M jup . To learn more about
he details of this mass regime, a choice of a log scale for the mass
ins is preferable, as described below. 
Here we are starting from the same set of 909 exoplanets as in

ection 3.1 , but the bin limits on m sin i (and m ) are different. The
in containing the smallest planet is between 1 and 2 Earth Mass =
 M ⊕ = 0.00314 M jup . The next bin is from 2–4 M ⊕, and the limits
re doubled for each successive bin up to the largest mass at 25.76
 jup . In total, 885 planets are contained in all the 13 bins so defined.
his distribution of apparent masses ( m sin i ) is plotted on Fig. 7 as
 black dashed line. We have inverted this m sin i distribution with
ur method, and the resulting true mass distribution is represented
y the red line on Fig. 7 , with associated error bars. It is a unique
true’ mass distribution of exoplanet that would result in the observed
istribution of m sin i , for a random sample of inclination angles. 
Let us first forget the black lozenges and compare the histogram of

he observed m sin i (black dashed line on Fig. 7 ) with the histogram
f the retrieved true masses (red histogram and red circles with
rror bars). Both histograms show two distinct peaks. Though the
wo peaks are at the same position, the retrieved histogram of true

asses is systematically shifted to higher masses w.r.t the observed
 sin i histogram, for all the four slopes of the histograms. The shift
NRAS 512, 5552–5571 (2022) 
s about the same in this log plot of the mass. This reflects the fact
hat adding sin i to the true mass decreases the apparent mass w.r.t.
he true mass, and we see the average effect on the histograms (factor
/4). 
Both histogram distributions (apparent and true masses) are

imilar, showing two conspicuous peaks separated by a deep valley,
he so-called ‘sub-Saturn desert’ (Arriagada et al. 2013 ). The low

ass peak (left) in the bin 0.025–0.05 M jup is certainly an artefact
ue to depletion of lightest planets, below the accuracy threshold (in
 s −1 ) of the RV detection method. The high mass peak (bin 1.66–

.22 M jup ) is genuine, and the valley is deepest in the bin 0.1 to 0.2
 jup ( ∼32–64 M ⊕). 
The black lozenges are the result of a simulation, performed

ollowing a suggestion of the referee. From the retrieved true mass
istogram, we have built a mass distribution of 885 planets with a
inear variation of the mass inside the bin between the limits of the
in. Then, we have multiplied each mass by a random series of sin i ,
nd built the histogram of this new, simulated, m sin i distribution
black lozenges). When compared to the observed histogram of
riginal observations, we see that the lozenges are not far from
he original observed m sin i histogram (black dashed line). Small
ifferences may be assigned to the random values of sin i . 
In addition, simulations were made on a distribution with two

arrow mass peaks, though separated by a mere factor 1.36 (Ap-
endix C ). The inversion algorithm is quite efficient to retrieve
istinctly the two peaks. 
Another similar e x ercise was performed, with results displayed

n Fig. 8 . An artificial distribution was built from the retrieved
istogram, with the values within the five bins between the two
eaks being replaced with a linear variation between the peaks, in
rder to fill the gap between the two peaks. As abo v e, we hav e built a
istribution of 1264 planets with linear variation of the mass within
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Figure 8. The two histograms are the same as on Fig. 7 . The red circles 
represent a dummy true mass distribution, modified from the retrieved 
histogram by filling the bins in the valley (linear variation assumed between 
the two peaks), containing 1264 planets. Then a random value of sin i was 
assigned to all planets, The black + is the histogram of of the new m sin i . It 
shows no valley. 
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Figure 9. Each black point represents one of the 909 exoplanets that were 
e xamined e xtracted form archiv es, with period and m sin i as coordinates. 
The rectangular red dashed line is a contour of a region particularly void of 
planets, w .r.t. the vicinity . It corresponds to the sub-Saturn desert and seems to 
affect mostly planets with periods < 100 d. The two solid lines correspond to 
the desert limits of Mazeh, Holczer & Faigler ( 2016 ) (see text in Section 4.1 ). 
A hot Jupiters cluster and a Giants cluster are delimited with a red dashed 
oval. Three dashed lines at 1,10, 100 m s −1 indicate what is the reflex motion 
of a star of 1 solar mass, as a function of the period for a circular orbit. This 
gives an idea of what could be potential biases of RV surveys. 
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he limits of each bin and multiplied by a random distribution of sin i ,
ultiplied by a random series of sin i , and built the histogram of this

ew, simulated, m sin i distribution (black + of Fig. 8 ). 
When compared to the observed histogram of original observa- 

ions, we see the following features: 

(i) the whole new histogram ( + ) is globally displaced to the left
multiplication by sin i (average value = π /4)]. 

(ii) between the two peaks, the gap is filled. 
(iii) at the peaks and outside the peaks, the ( + ) are not far from

he original values of the observed histogram. 

This e x ercise demonstrates that if the true mass distribution had
o valley between the two peaks, the corresponding m sin i would
ot show either a valley. 
Coming back to Fig. 7 , we see that the o v erall shape of the retrieved

istogram is more peaked than the original histogram: the sub-Saturn 
esert is more pronounced. 
These three features (two peaks and one valley in between) are 

herefore conserved in the inversion process, and are even enhanced 
hrough inversion. This is somewhat expected, since for a given bin 
f observed m sin i , there are contributions of several populations of
 , from all m > m sin i . This has the effect of smoothing the original

rue mass m distribution, and the inverse of smoothing is expected to
nhance the differential features. 

The contrast between the trough (‘desert’) and the two peaks has 
ndeed increased in the inversion process. The ratio of number of
lanets in the high mass peak bin (1.66–3.22 M jup ) to the bin trough
0.1–0.2 M jup ) increases from 6.21 in the observed m sin i distribution
o 10.7 in the true mass distribution, a factor 1.72 of increase.
imilarly, the ratio of number of planets in the low mass peak
in (0.025 to 0.05 M jup ) to the bin trough (0.1–0.2 M jup ) increases
rom 3.6 in the observed m sin i distribution to 6.4 in the true mass
istribution, a factor 1.78 of increase. For planets discovered by the 
V method, the ‘sub-Saturn desert’ is more depleted in the true mass
istribution than in the m sin i measured distribution. 
The void of planets is roughly between the masses of Neptune and

aturn. There is no planet either in our Solar system in this interval
f masses. On Fig. 9 is represented in a m sin i /period diagram the
opulation of 909 exoplanets that we have selected, being discovered 
y observations with the R V method. W e have delimited a rectangular 
ontour (dashed red line) whose inside is conspicuously depleted in 
lanets. For periods larger than 100 d, the depletion is less visible, or
bsent. We are also delimiting by dashed ovals two regions of locally
igher concentration of planets, a hot Jupiters cluster and a Giants
luster. We discuss further the mass distribution in Section 4.1 . 

.3 Composite histogram from 1 to 230 M ⊕

uite recently (in the last 4 yr) there has been an interesting
evelopment in the statistics of the radius of transiting planets, with
he disco v ery of a valle y between super Earths and Neptune type
lanets, e.g. van Eylen et al. ( 2018 ), and Fulton & Petigura ( 2018 ). 
In particular, Petigura ( 2020 ) was able to update the radii of

ransiting planets in the Kepler surv e ys, with three impro v ements:
he use of the Gaia results which allows a better estimate of the
cculted star radius, eliminating inaccurate determinations when the 
ransit is on the edge of the star (impact parameter must be < 0.8 R s ),
nd performing simulations of the photometric noise, keeping the 
osterior median. Fig. S1 (Supplementary material) is the net result 
f Petigura ( 2020 ) investigation on planet radii distribution, showing
 deep valley (or gap) between two peaks at ∼1.4 and ∼2.5 R ⊕,
ssigned respectively to Earths or super-earths (probably without an 
xtended thick atmosphere), and to Neptune size planets with a solid
ore and a thick atmosphere. 

Stimulated by this important new finding, we wished to investigate 
f there were in the mass distribution of planets, a counterpart of this
alley (gap) identified in the radius distribution. The fact that RV
lanets yield the m sin i apparent mass is detrimental to this kind of
nvestigation, because features in the true mass distribution might be 
moothed out by the distribution of the inclination angle i . 

Nevertheless, we attempted to look carefully to the m sin i
istribution. On Fig. 10 is represented the m sin i of our sample
MNRAS 512, 5552–5571 (2022) 
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M

Figure 10. The set of 909 RV planets are sorted by increasing apparent mass 
( m sin i ), and the mass is plotted as a function of the serial number of the 
planet after sorting. This is a detail of the sorted diagram, suggesting a lack 
of observed planets in a particular range of masses which contains Uranus. 
Horizontal dashed lines are the limits of some bins used in the inversion of 
the m sin i distribution. 
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Figure 11. Top panel: observed distribution of apparent masses ( m sin i ) of 
909 planets disco v ered with RV methods, with bins of equal width = 1.5 M ⊕
up to mass 21.5 M ⊕, followed by 10 M ⊕ bin sizes up to 211.5 M ⊕, with 
a total of 378 planets. The bin marked U (for Uranus) contains only three 
planets, between two adjacent bins containing 22 and 13 planets. The middle 
panel contains the result of the inversion yielding the true mass distribution 
with 1 σ error bars, showing several negative numbers. The bottom panel 
is obtained by a sliding two bin average of the middle panel numbers and 
corresponding error bars. The lowest number (below 30 M ⊕) contains −0.87 
planets, confirming the low number of planets in this true mass bin. 
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f 909 planets, sorted by increasing m sin i . The slope of the curve is
( m sin i )/d N , ( N number of planets) therefore a low slope indicates
 large number density of planets per mass sin i bin, d N /d( m sin i ),
nd a large slope indicates on the contrary a low number density of
lanets. We were struck by the conspicuous behaviour of the mass
orted curve around planets number 190–200: there are only three
lanets between planet n ◦ 191 with mass (sin i ) 13.64 M ⊕ and planet
 

◦ 195 with mass (sin i ) 15.197. We have therefore constructed a
istogram of m sin i with adjusted positions of bin limits. We started
he histogram at 0.15 M ⊕, with a bin size of 1.5 M ⊕, up to mass 21.5
 ⊕. Then we used 10 M ⊕ bin sizes up to 211.5 M ⊕, with a total of

78 planets up to this limit. The limits of some of the 1.5 M ⊕ bins are
ndicated by horizontal dashed lines on Fig. 10 . The bin which has
nly three planets contains Uranus at 14.54 M ⊕. The histogram of
 sin i planets is represented on Fig. 10 (top panel), showing indeed

he Uranus bin with only three planets, while the bin before contains
2 planets and the bin after contains 13 planets. On the figure, the
umber of planets for the larger bins have been multiplied by 1.5/10,
n order to homogenize the values of d N /d( m sin i ) across the various
ins therefore yielding a ‘number density’ of planets per 1.5 M ⊕
nterval. Of course, the original numbers in all bins were conserved
o perform the inversion. The same homogenization was done for the
ther distributions shown on Fig. 11 . 
The raw result of the inversion is somewhat noisy with some non-

h ysical neg ative numbers (middle panel of Fig. 11 with 1 σ error
ars), and we performed a simple smoothing, by averaging together
wo successive bins. The abscissae had to be adjusted accordingly
y a shift of 0.5 bin size. We also homogenized the distribution by
caling down the content of larger bins, in order to get, whatever is
he size of the bin, a number of planets per 1.5 M ⊕ bin. The resulting
true mass’ histogram is represented on Fig. 11 , bottom, with 1 σ
rror bars. Two successive 10 M ⊕ bins covering the range 32–52 M ⊕
av e a v ery low number density of planets, respectively 0.15 and 0.18
lanets per 1.5 M ⊕ interval (only the beginning of the bin is seen
n this panel). They correspond to the sub-Saturn desert, confirming
ur analysis of Section 3.2 , with even a lower number density d N /d m
NRAS 512, 5552–5571 (2022) 
f planets of ∼0.1 planet per 1 M ⊕ interval, instead of ∼0.5 planet
er 1 M ⊕ interval as indicated in Fig. 7 

The number of planets in the bin corresponding to the mass of
ranus has decreased from 3 in the raw data histogram of m sin i ,

o a slightly ne gativ e value of −0.87 planets. The truth is certainly
ositive, but it indicates indeed a very low number density d N /d m
n this narrow mass range. Could the low number of three planets
n the Uranus bin of the m sin i histogram just due to random
oise among low integer numbers? This bin is between two bins
ontaining, respectively, 13 and 22 planets: if we interpolate the
eighbour trends to the bin with 3, we might expect, instead of 3,
7.5 (interpolating between 13 and 22). Alternately, we could also
n addition consider the bin before containing 19 planets, yielding
n estimate for the Uranus bin 15.4 planets. Then we compute
he probability to get an integer number less than 4 (0,1,2, or 3),
ith a Poisson law with parameter λ of 15.4, or 17.5. We use the
DF and find a probability of 1.5 10 −4 for a Poisson parameter
= 15.4, and 2.7 10 −5 for λ = 17.5. Therefore we conclude

hat this low number of three planets detected in the Uranus mass
in is likely not due to random fluctuations. To the best of our
nowledge, this is the first time that a deficit of planets is identified
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n this narrow mass window, containing Uranus, as a puzzling 
uestion. 
This gap is in fact quite narrow, � m / m = 0.1; much narrower

han the valley, or gap, in the radii distribution as found by Petigura
 2020 ; Fig. S4, Supporting material) from ∼1.7 to 2.2 R ⊕ or � R / R
 0.4. With a constant density of planets, we would expect on the

ontrary m ∝ R 

3 and � m / m = 3 � R / R . But the density of planets is
ar from being constant, because the core may be formed of ice,
ocks, or iron, and the atmosphere may extend way off, increasing 
he opaque radius accordingly. In the next section we discuss further
he questions of sub-Saturn desert, radius valley, and Uranus gap in 
he context of a diagram radius versus mass of observed exoplanets. 

 DISCUSSION  A B O U T  T H E  RADIUS/MASS  

ISTRIBU TION  O F  OBSERV ED  PLANETS  

.1 The mass distributions and the sub-Saturn desert 

hen examining a population of exoplanet (either observed or mod- 
led) in a two-parameters representation (mass/period, or mass/semi- 
xis), a region fully empty of planets may be qualified as a ‘desert’,
specially if it is surrounded by populated regions. We may extend 
omewhat this definition to include a region significantly less 
opulated than the vicinity, without requiring it to be a region totally
oid of planets. We may also define a ‘cluster’ of planets, as a
egion substantially more populated than the surroundings. Actually, 
etween two distinct clusters, there will be a desert. If a cut through
 two-parameters distribution is made by fixing one parameter, the 
esulting 1D curve will show a dip at the place where the cut goes
hrough a desert, which can also take the form of a gap between two
eaks. 
The first mention of a ‘planetary desert’ in the extra-solar planets 

istribution can be found in the paper of Ida & Lin ( 2004 ) who mod-
led the planet formation process with a core-accretion paradigm. 
he y e xamined giant planets growth and found that since planets
asses grow rapidly from 10 to 100 M ⊕, the gas giant planets

arely form with asymptotic masses in this intermediate range. Some 
ersions of their model predict a paucity of extra-solar planets with 
ass in the range 10–100 M ⊕ and semimajor axis less than 3 AU.
oth the mass lower and upper boundaries of the desert depends on

he semi-axis a. Actually, they argue that the location of these two
oundaries are dictated by the conditions of formation and evolution, 
i.e. the core mass that can initiate the onset of rapid gas accretion,
he truncation mechanism of gas accretion, the region where type II

igration can be halted, etc). The location of the boundaries of the
esert changes with model parameters (Ida & Lin 2004 ), but their
ower boundary is al w ays around 4–8 M ⊕, for periods ≤50 d. This
rediction was contradicted by Howard et al. ( 2010 ), reporting on
he RV surv e y of 235 nearby stars. The y found nine planets plus four
andidates and an estimated 15 missed planets (with a de-biasing 
 x ercise) in the range 3–30 M ⊕ and periods ≤50 d. So, Howard et al.
 2010 ) concluded that ‘the models need substantial revision’. We are
omparing on Fig. S1 (Supplementary Material) the histogram of our 
ample of 216 planets with periods < 50 d to Howard et al. ( 2010 )
istogram: they are consistent within error bars up to ∼100 M ⊕. 
To the best of our knowledge, the first paper mentioning a gap

n the observed m sin i distribution is Mayor et al. ( 2011 ), based on
he 155 planets found at that time (in 102 planetary systems), from
hich more than 2/3 were disco v ered from HARPS and CORALIE

urv e ys. In the Section 1 they say: ‘A bi-modal mass distribution is
bserved for low mass planets and giants’. In the caption of their
ig. 10 representing the m sin i histogram of these 155 planets, it is
aid: ‘We also remark a gap in the histogram between planets with
asses abo v e and below ∼30 M ⊕’. The authors noticed that there

s a sharp decrease of the distribution between a few Earth masses
nd ∼40 M ⊕, followed by an increase. The minimum in-between
s claimed by the authors to correspond to the minimum predicted
y the planet population synthesis modeling produced by Mordasini 
t al. ( 2009 ). Therefore, this minimum is at much larger masses than
he ‘desert’ predicted by Ida & Lin ( 2004 ). In fact, the position of
his minimum coincides with the position of the minimum of the
bserved sub-Saturn desert shown on Fig. 8 . We note that this Mayor
t al. ( 2011 ) was never published, is only available on arXiv, but was
ited 609 times (2021 August). 

Howard ( 2013 ) wrote an o v erview paper on exoplanets, adding
ew detections of planets with the transit method. He discussed again
he mass distribution predicted by models: ‘. . . these models produce
deserts’ of reduced planet occurrence precisely where Doppler and 
ransit surv e ys detect a great abundance of planets’. Looking at his
g. 2, it is clear that, when he is talking of ‘desert’, Howard ( 2013 ) is
eferring to the mass range below 30 M ⊕, like in his previous 2010
aper (‘from 5–30 Earth masses’), and not abo v e 30 M ⊕. Therefore,
his ‘populated desert’ has nothing to do with our sub-Saturn desert,

ost conspicuous in the range ∼32–64 M ⊕. With our new analysis of
V surv e ys, we see also plenty of planets below 30 M ⊕, and therefore

here is no contradiction here between Howard et al. ( 2010 ) and our
ork: we find no desert below 30 M ⊕, the m sin i distribution is

ncreasing with lower masses, until a peak is reached (due to RV
ensiti vity limits). Ho ward ( 2013 ) claimed nothing about a desert,
resent or absent, in the range of masses 30–1000 M ⊕, having only
ix RV planets (period < 50 d) spread o v er three mass bins, with two
lanets per bin. 
Who used first the denomination sub-Saturn desert? Arriagada 

t al. ( 2013 ) published the disco v ery of two planets around a K7
tar, one of which with a minimum mass ( m sin i ) of 53 M ⊕ in the
ub-Saturn desert mass range. It seems that this paper contains the
rst denomination of the sub-Saturn desert, both in the title, and in

he abstract, but nowhere else in the body of the paper. 
In retrospect, there are some papers showing scatter plots of 

xoplanets where a close examination, and integration ‘by eye’ 
ass/period, suggests strongly the existence of this sub-Saturn 

esert. For instance, Ben ́ıtez-Llambay, Masset & Beaug ́e ( 2011 )
roduced a period/ mass scatter plot (their fig. 1) where the gap
s obvious by eye but did not pointed out the gap. Howard ( 2013 )
howed a mass/radius scatter plot of transiting planets (his fig. 3).
nte grating by e ye o v er the radius, a deficit of planets in the range
0–60 M ⊕ is observed. We have produced a new histogram with all
oints of his fig. 3 where the deficit is obvious in the sub-Saturn
esert (see fig. S2, Supporting material, on line). 
Mazeh et al. ( 2016 ) hav e e xamined the mass/period distribution

f exoplanets an ensemble of RV and transit discovered planets); 
ocusing their attention on short-period Neptunian exo-planets. 
hey tried to find mathematical relationships describing the lower 
oundary and the upper boundary, in the spirit of Ida and Lin ( 2004 ):
The derived shape of the desert, which might extend up to periods
f 5–10 d, could shed some light on the formation and evolution
f close-in planets’. They found that the desert boundaries have 
he shape of two straight lines (represented as red solid lines on
ig. 9 forming a triangle (in a logM–logPeriod plot) converging at
 period of 10 d. This is somewhat in contrast with our RV sample
isplayed on Fig. 9 , where a rectangular zone (in red) materialize the
pper and lower boundaries of the sub-Saturn desert up to periods of
00 d. Is this difference linked to the fact that our sample contains
nly RV planets? This cannot be excluded. We note, ho we ver, that
MNRAS 512, 5552–5571 (2022) 
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Figure 12. The planets displayed on Fig. 9 have been integrated over various 
slices of orbital periods to yield the corresponding m sin i distributions: period 
≤7 d (black squares), 7 ≤ period ≤ 14 d (red filled circles), period < 100 d 
(blue triangles), and period ≥100 d (green open circles). The position of hot 
Jupiters and sub-Saturn desert are indicated. The desert is most conspicuous 
on period < 100 d blue curve. Other curves obtained for 100 ≤ period 
≤ 1000 and period ≥1000 d (not shown here for clarity) may be seen in 
Supplementary material (on line). See text for comments. 
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Figure 13. Mass and radius of known 570 exoplanets, distributed along 
a band through the diagram. The radius was determined form transit 
observation, and the mass from the RV method. Solid lines are the relations 
between mass and radius, according to models of F ortne y et al. ( 2007a , b ), for 
pure ice, rock, and iron. Three domains are delimited by vertical or horizontal 
lines: the sub-Saturn desert, the radius gap as defined by Petigura ( 2020 ), and 
the putative Uranus gap. See text for further discussion. 
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akovlev et al. ( 2022 ) have shown that, if transiting planets whose
ass has been determined, not by the RV method, but more indirectly

and with less accuracy) by the Transit Time Variation method, are
xcluded from the sample of transit planets, then most of transit
lanets disappear from the rectangular sub-Saturn area, at least up
o ∼50 d. It is interesting, in this conte xt, to e xamine the mass
istribution of our RV sample, when restricted to various ranges of
eriods, as displayed on Fig. 12 (1–7 d, 7–14 d, 14–100 d, > 100 d).
The mass distribution (actually, m sin i ) for the short periods 1–7

 (black squares) displays two peaks separated by the sub-Saturn
esert (0 planet in 32–64 M ⊕ bin): the first peak of light planets
n the left, and a second peak of heavy planets on the right which
orresponds to the cluster of hot Jupiters, which is conspicuous on
ig. 9 . The 7–14 d distribution (red circles) has a similar light planets
eak, but the hot Jupiters are absent. The 14–100 d distribution has
 strong light planet peak (certainly biased for very light planets),
ith again some heavier planets, and a gap at the sub-Saturn desert.
he distribution of planets with periods ≥100 d has a strong peak

n the mass range 512–1024 M ⊕ (1.6–3.2 M jup ), with much smaller
umbers of planets below ∼100 M ⊕. In particular, the two bins 16–
2 M ⊕ and 32–64 M ⊕ both contain 18 planets. It is likely that these
umbers are biased by the sensitivity of the RV surv e y. But it is
lear that the bias factor is larger for the 16–32 M ⊕ bin than for the
2–64 M ⊕ bin (mass effect on RV surv e ys). After de-biasing, the
6–32 M ⊕ bin will contain more planets than for the 32–64 M ⊕ bin.
ctually, the same argument holds also for all the other curves, and

herefore holds for the sum of all distributions. This sum is the black
ashed line of Fig. 7 , well showing the sub-Saturn desert in the bin
2–64 M ⊕. We note that our de-biasing technique is based on the
ultiplication of the vector N representing the m sin i distribution

y a matrix M 

−1 
V , which operates as a linear operator. Therefore,

he inversion of a sum of distributions is equal to the sum of the
nversions of all distributions. 
NRAS 512, 5552–5571 (2022) 
We note that, in a recent re-analysis of the Mayor et al. ( 2011 )
ample of 155 RV planets, Bennett, Ranc & Fernandes ( 2021 )
laimed the absence of a sub-Saturn desert in this historical sample,
hen splitting the planet mass distributions in several bins of periods.
o we ver, in their second bin of periods 30 < period < 240 d, they mix

ogether 30–100 and 100–240 d, which will blur the sub-Saturn gap,
ecause the sub-Saturn desert is seen mainly up to 100 d (Fig. 12 ). In
ddition, in the m sin i histogram of fig. 10 of Mayor et al. ( 2011 ), the
in 30–48 M ⊕ contains 0 planet, while bracketing bins contain five
nd four planets. The Poisson probability to get 0 planet if the true
verage were 4.5 is 1.1 per cent therefore a very low probability of
ccurrence, pointing to a likely true value significantly smaller in this
in than in the bracketing bins: a gap. At any rate, our sample of 885
lanets is now certainly more statistically significant, and supersedes
he earlier 155 planets sample. 

In conclusion of this sub-section, it can be claimed that the sub-
aturn desert is real. It is pretty obvious and indisputable, on the m
in i distribution of 885 observed RV exoplanets plotted in Fig. 7 ,
nd more visible with the planets with periods shorter than ∼100 d
Fig. 12 ). We have verified that this ‘desert’ is certainly not an artefact
ue to the uncertainty on the true mass m (only m sin i is measured).
n the contrary, we could show that this desert is even amplified in the

rue mass distribution, obtained with inversion with our numerical
rocedure, by a significant factor ∼1.7. Actually, comparisons of
bservations to synthetic models should preferably be done with the
rue mass distribution, after the proposed inversion, rather than with
he raw m sin i distribution. The general question of de-biasing the
bservations from some other observational biases is not addressed
ere. What might be argued is that the inversion should be performed
fter other de-biasing processes, which should take into account the
hange of sensitivity of the RV surv e ys around the threshold (in
 s −1 ) and period (connected to the time extent of the RV survey). 

.2 The radius /mass distribution 

n Fig. 13 is represented a scatter plot of planets as a function
f their mass and their radius. We keep only the transiting planets
hich transit allows to determine the radius, and which true mass
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Figure 14. Comparison of the RV star/planet sample (red, left scale) with 
the synthesis population model of Mordasini ( 2018 ; black, left scale). The 
two scales have been adjusted to be at the same level in the mass bin 16–32 
M ⊕. The model curve is the fraction of stars which have at least one planet in 
the mass bin. The red data curve is obtained by our m sin i inversion scheme 
applied to the histogram of the number of stars from the original RV sample 
which have at least one planet in the mass bin. Differences are discussed in 
the text. The sub-Saturn desert is in the mass bin 32–64 M ⊕. 
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as determined by RV measurements (sin i ∼ 1). We used in this
ase the NASA archive of discovered transiting planets with RV 

ass determination. We discarded the planets where the error on the 
ass is NaN, which indeed result in many outliers lying outside 

he main stream of the remaining 551 planets, plus 19 planets 
rst disco v ered by RV measurements which were found later to be

ransiting (yielding a total of 570 planets). We also draw lines relating
he radius to the mass of a (mainly solid) planet for pure ice, rock or
ron, from the formulas of F ortne y, Marle y & Barnes ( 2007a , b ). Also
isplayed on Fig. 13 are the regions depleted in planets, delimited by
orizontal or vertical black dashed lines: the sub-Saturn desert, the 
adius gap (as determined by Petigura 2020 ), and the Uranus gap as
uggested by our study in Section 3.3 . 

The existing planets are grouped along a domain delimited by a 
and crossing the radius/mass diagram in a diagonal direction, the 
and of existing planets. 

(i) the intersection of the mass Sub-Saturn desert and the radius 
ap occurs in a region where there is no planet at all: all planets in
his mass region have a radius showing a composition much lighter 
han pure iron, most of them being lighter than pure ice, containing
herefore a significantly massive atmosphere of hydrogen and helium, 
nd this intersection has no particular meaning. Similarly, the 
ntersection of the radius gap and the Uranus gap has probably no
pecial meaning. 

(ii) the sub-Saturn desert: it cuts the domain of existing planets 
ostly abo v e the pure ice core line, in a radius re gime abo v e ∼5 R ⊕,

ndicating that these planets are embedded in a large and significantly 
assive atmosphere. The classical explanation of this gap is that the 

ate of accretion from the disc is very rapid during the formation
rocess for this kind of mass, and the probability to stop the accretion
rocess by lack of gas in the disc is small. 
(iii) the radius gap: the inner edge of the radius gap at 1.8 R ⊕,

s found by Petigura ( 2020 ), intersects the band of observed planets
pproximately where the core of the planet is made of pure rock.
elow this radius, the core is made of a mixture of rock and iron.
bo v e this radius, the core contains some ice, and apparently is

ccreting also a significant atmosphere which increases the radius, 
hich will propel these planets beyond the outer edge of the radius
ap. Note that, with planets shown in Fig. 13 , the radius gap is
uch less obvious than the one resulting from the work of Petigura

 2020 ), reproduced on Fig. S4 (Supp.mat). This is because the planets
lotted in Fig. 13 come from the NASA archive with the originally
uoted radius, while Petigura ( 2020 ) has made some screening out
nd some corrections to the actually published values of the radius
f exoplanets. 
(iv) the Uranus gap (in mass) intersects the band of observed 

xoplanets approximately at the place of pure ice core. We could 
peculate that the inner edge of the gap is a limit to the mass of
he core of this population of planets, and if they acquire some
tmosphere, then they acquire a significant mass of atmosphere, of at 
east 10 per cent of the total mass ( � m / m = 0.1). Actually, the model
f initial mass function of Mordasini et al. ( 2009 ) displays a trough
n the range 5–10 M ⊕ (Fig. S5 of Supporting material). The putative
ranus gap might be an evolved remnant of this trough. 

It could be argued that the very existence of Uranus in the Solar
ystem, which mass puts it right in our tentative Uranus gap, is a
trong argument against the reality of such a Uranus gap. Ho we ver,
ranus is very special in the Solar system, with a spin axis inclined

t 98 ◦ from the ecliptic polar axis, almost in the ecliptic plane.
afronov ( 1966 ) suggested that this large inclination of the spin axis
as the result of an early collision with another massive planet. 
orbidelli et al. ( 2012 ) investigated this mechanism in order to
 xplain the observ ed system of satellites of Uranus. Kegerreis et al.
 2018 ) performed hydrodynamics simulations to investigate in detail 
he results of a giant impact on the young Uranus. They found that
 number of observed features (inclination of spin axis, lack of heat
ow from the interior, asymmetric magnetic field) are best explained 
y a collision with a 2 M ⊕ mass impactor, which mass will be added
o the mass of the pre-impact Uranus. Therefore, we may imagine
hat the pre-impact Uranus had a mass slightly below the lower edge
f the putative Uranus gap, and jumped into the Uranus mass gap
ith the collision of a 2 M ⊕ mass impactor. 

 C O M PA R I S O N  O F  T H E  MASS  DI STRI BU TIO N  

I TH  A  PLANETA RY  POPULATI ON  

YNTHESIS  M O D E L  

n principle, comparisons of observations to synthetic models should 
referably be done with the true mass distribution, after some 
e-biasing process accounting for RV surv e y biases, followed by
he presently proposed inversion, rather than with the raw m sin i
istribution. This is far beyond the scope of this paper. Ho we ver,
nasmuch as our inversion scheme is somewhat approaching the 
rue mass distribution more than than the raw m sin i distribu-
ion, and inasmuch as we anticipate that the mass de-biasing will

ainly increase more the number of lighter planets, it was felt
seful to compare our retrieved mass distribution results (after m 

in i inversion) on RV discovered planets with the recent work of
ordasini ( 2018 ) containing results of population synthesis model. 
n Fig. 14 is represented the results contained in his fig. 10 on the
ass distribution: black histogram, right scale. Actually, it is the 

raction of stars which contains at least one planet in the considered
ass bin. It is characterized (going up in mass) by a fast decreasing

istribution, a break point at 30 M ⊕, a gentle increase up to two 10 3 

 ⊕, and another fast decrease. 
In order to compare our results to this model prediction, we had to

creen out from our sample all stars which have two or more planets
n the same mass bin, keeping only one couple star/planet per mass
MNRAS 512, 5552–5571 (2022) 
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Figure 15. Result of one simulation of formation and evolution of planets 
(modeled distribution presented in fig. 8 of Mordasini 2018 ). Blue symbols 
are planets that have (partially) accreted volatile material (ices) outside of the 
iceline(s), while green symbols have only accreted refractory solids. The red 
points are giant planets with a mass of the gaseous envelope larger than the 
mass of the solid core. Only planets with mass > 0.03 M jup are kept from the 
original sample. The orbital period was computed from the semi-axis. The 
mass unit is M jup . The detection limits for RV surv e ys at 1, 10, 100 m s −1 are 
indicated. 
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in. Doing so, our sample of planets was reduced to 800 planets.
s we had done before with the original sample (Fig. 7 ), we have

nverted the distribution of m sin i with our method, and we plotted
he result also on Fig. 14 , histogram and points with their error bars
f the ‘true’ mass distribution. The mass bin grid is the same as
efore, but expressed in units of M ⊕. The bin limits of the synthetic
opulation are similar (but not fully identical) as our grid. We have
djusted the left scale (number of planets in the bin, only one couple
tar/planet per mass bin) to the right scale: a normalization in the
ass bin from 16 to 32 M ⊕. 
We see substantial differences between the model and the obser-

ation of the mass distribution: 

(1) For low mass planets, the observations show a moderate deficit
.r.t. the model in the bin 8–16 M ⊕, strongly increasing with smaller
asses. This deficit is of course the result of the lo wer sensiti vity of
V methods to lower masses. Basically, the RV sensitivity threshold

s of the order of 1 m s −1 . 
(2) The bin 32–64 M ⊕ contains much less stars/planets than the
odel: the drop of number of stars/planets is more severe in the

bservations than in the model, when progressing in mass from the
ormalization bin 16–32 M ⊕. This is the so-called sub-Saturn desert.
(3) For all masses above ∼64 M ⊕ there are many more observed

lanets than predicted by the model. 

While the first difference is clearly due to an artefact of the RV
ethod, it is our contention that the two other features (sub-Saturn

esert and strong peak of giant planets) cannot be due to an artefact
f the R V method. W e have not been able to imagine a mechanism
y which the RV method would be biased non-monotonously as a
unction of planet mass, or as a function of period. 

The data-model comparison can be refined by looking at the two-
arameters period-mass diagram (Fig. 9 ), or a-m (a is the semimajor
xis) diagram of Mordasini ( 2018 )). In order to ease the comparison,
he original population model (fig. 8 of Mordasini 2018 ) has been
edrawn (Fig. 15 ). The distribution has been truncated by keeping
NRAS 512, 5552–5571 (2022) 
lanets with mass ≥ 0.03 M jup ; the period was computed from the
emi-axis and third Kepler law around a star with 1 solar mass (which
s assumed in the population model). The unit of mass has been taken
s M jup to be consistent with Fig. 9 . 

There are three main differences that can be readily identified
by eye’ between data and model distributions in the mass/period
iagrams, by comparing Figs 9 and 15 , 

(1) the hot Jupiters cluster, conspicuous in the data, is absent in
he model. 

(2) the giant planet cluster is much less obvious in the model than
n the data. 

(3) the sub-Saturn desert identified in the data (in particular for
eriods ≤ 100 d) is weaker in the model, but not absent (better seen
n Fig. 14 ). 

We are aware of some different conditions between data and model
hich might affect the comparison. The RV sample is represented
ith the apparent mass m sin i , while the model gives the true mass.
here is also a bias factor of the RV method, fa v ouring detections
f larger masses and shorter periods, affecting the data but not the
odel. 
In spite of these different conditions and biases, we estimate that

he discrepancies between data and model most likely cannot be
ccounted on these differences/biases and are robust conclusions
han can be derived from the comparison. For instance, the cluster
f giant planets is waning for shorter periods at constant mass while
he RV sensitivity is increasing with shorter periods; the cluster of
ot Jupiters is waning for larger masses at constant period while the
V sensitivity is increasing with larger masses; the sub-Saturn desert
annot be produced, at constant period, by a mass bias. And we have
hown that accounting for the m sin i distribution through our method
f inversion actually increase the depth of the trough. 
As a result, it is now easier to interpret the data-model discrep-

ncies in the planet mass distribution of Fig. 14 . The sub-Saturn
esert is deeper in the observation, because of two reasons: (i) the
umber of observed planets are scarcer than in the model in the high-
ass tail of the distribution of light planets (32–64 M ⊕), at least for

eriods < 100 d; (ii) for periods > 100 d, in spite of the fact that the
bserved giant planets are more numerous than in the model, they
ave a strongly peaked mass distribution at 1.6–3.2 M jup which falls
ff rapidly with smaller mass, that would otherwise fill somewhat
he sub-Saturn desert. In that sense, it is also somewhat legitimate to
escribe this fast fall-off as a sub-Jupiter desert. 
Ho we ver, we consider that the question of the prolongation of the

ub-Saturn desert for periods longer than 100–1000 d is still open.
t is related to the mass distribution abo v e super Earths. Sumi et al.
 2010 ) analysed the sample of two super Earths, three cold Neptunes,
ne at ∼90 M ⊕, and four Jupiters disco v ered at long periods by the
icro-lensing technique. With a sophisticated de-biasing e x ercise,

hey estimated that existing cold Neptunes are three times more
bundant than Jupiters. This estimate is at variance with the observed
tatistics of R V planets. W e have plotted the mass distribution of RV
lanets with periods > 1000 d on Fig. S3 of the Supporting material
on line), which shows that there are 38 planets disco v ered in the
ange 0.8–1.6 M jup , only three in the range 16–32 M ⊕, and one in
he range 8–16 M ⊕. For a fair comparison these numbers should be
e-biased from known RV biases and inverted from m sin i , which
s beyond the scope of the present paper. Therefore we just mention
hat the micro-lensing estimate (based on a very small sample) is in
trong disagreement with the mass distribution model of Mordasini
 2018 ) (Fig. 14 ). 
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 C O N C L U S I O N S  

ased on a particular geometrical representation of exoplanet masses, 
e have designed a new numerical method (an algorithm) which 

llows to find the distribution f ( m ) of true planet masses that will fit
 xactly an observ ed distribution f 0 ( m sin i ) of apparent masses m sin i
etermined from the RV method. Of course, this is only a statistical
ethod, not allowing to determine the true mass of each observed 

lanets. 
On the methodological side, Lucy ( 1974 ) has investigated the 

roblem of V rot sin i (the rotation of stars) which is formally iden-
ical to exoplanet problem. He first identified a class of statistical

ethods, which consists of discretizing the solution of the integral 
quation ( 12 ) resulting in a linear system of equations. Clearly our
ethod belongs to this class of methods, with some peculiarities: we 

ave introduced an intermediate variable ρ( m 

′ 
), the ‘number density’ 

f planets with m ≤ m 

′ ≤ m + dm . 
Lucy ( 1974 ) preferred an iterative method that he successfully

pplied to a histogram of 251 stellar rotations. Though the proposed 
terative method is attractive and would deserve to be tested, it is much
eyond the scope of our present work. We also note a big difference
etween the planet problem and the stellar rotation case which might 
ender the iterative solution less attractive. The difference is that 
he dynamic range of the masses of exoplanets is huge in a linear
istogram (our Fig. 6 ), while the stellar rotation distribution is much
ore compact (a factor of 4 between most and least populated 

ins, Lucy’s fig. 5). This is certainly linked to the great difference
f physical processes involved: continuous slowing of the rotation 
f the stars on one hand, agglomeration/accretion of dispersed 
rains/planetesimals and gas on the other hand. One issue with the 
terative method is to decide, subjectively, when to stop the iterations: 
oing too far will take noise for real signal. Also, Lucy’s critic of
he statistical methods seem a little outdated by 2021: ‘Their wide 
pplication is, ho we ver, restricted by their demands on computer time 
nd programming skill’. In the atmospheric community, this method 
s now classical with the onion-peeling technique, and our algorithm 

s directly inspired from it. 
Our algorithm which is fully versatile in terms of mass bin sizes

as been applied to three different grids of masses and a RV sample
f 909 planets. The main result of our study is to show that the so-
alled sub-Saturn desert is confirmed at least for periods shorter than 
00 d, with a depletion of planets in the true mass range 0.1–0.2 M jup 

 ∼32 to 64 M ⊕). This is not due to an artefact that would be induced
y the fact that we measure only the apparent masses instead of the
rue masses. On the contrary, the depletion of planets in this mass
ange is even larger in the true mass distribution than in the apparent
ass distribution. Taking as a reference the peak of large masses in

he bin 1.66–3.22 M jup (for all periods), the ratio of number of planets
n the high mass peak bin to the bin trough (0.1 −0.2 M jup ) increases
rom 6.21 in the observed m sin i distribution to 10.7 in the true mass
istribution, a factor 1.72 of increase. This is a robust result that most
ikely will not change much with more sensitive RV instruments or
onger surv e ys. Indeed we hav e argued that the mass-dependent bias
actor is larger for lighter planets, and accounting for it will increase
he depth of the sub-Saturn at bin 32–64 M ⊕ w.r.t. the 16–32 M ⊕
in (Fig. 12 ). We note that the sub-Saturn desert is more obvious for
lanets with periods below ∼100 d than for longer periods (Fig. 12 .
t still exists, though shallow, for periods between 100 and 1000 d;
ig. S3 of Supporting information). 
We have also applied the algorithm to planets with apparent masses 

ighter than ∼200 M ⊕. We found a gap of planets in the observed m
in i distribution in the narrow range of 13.7–15.2 M ⊕ which contains
ranus (14.5 M ⊕) and seems to be statistically significant. This
ranus gap contains only three planets in the observed histogram 

f apparent masses, while adjacent bins contain 13 and 22 planets.
fter inversion to get the true f ( m ) mass distribution, the same bin

s fully depleted of planets. While the actual existence of such a gap
s still putative, it is argued that the very presence of Uranus in this
ap could be due to a gain of ∼2 M ⊕ during an collision, which
s generally invoked to explain the 98 ◦ inclination of Uranus spin 
xis. 

There are other observational biases than the m sin i which
s addressed with our algorithm, e.g. the sensitivity limit of RV
easurements, and the limited time span of observations, losing 

lanets with long periods. In spite of this limitation, we compared
ur inverted mass distribution with the synthetic population model 
f Mordasini ( 2018 )). We found two main differences: the observed
ub-Saturn desert is deeper than in the model, and the observed
eak of giant planets is larger and more peaked than in the model.
e think that this result is robust, and would be confirmed by a
ore complete analysis, accounting for mass biases, m sin i bias, and

eriod biases. We note that this m sin i inversion algorithm should be
sed in conjunction with other de-biasing methods, in order to better
onstrain the synthetic population models of planet formation and 
igration. 
Archimed (287–212 BC) lived in Syracuse, Sicily. He w ork ed

 lot on spheres and cylinders, in order to find the volume of a
phere. He expressed the wish that his tomb should be engraved
ith a figure showing a sphere and a cylinder. Our algorithm using

pheres and cylinders could be called by his name in recognition of
is passionated work. 
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Figure A1. A napkin ring is defined as the volume of a sphere (radius R ) 
which is outside of a cylinder (radius C < R ) of infinite length. It is generated 
by revolution of the hatched area about the x -axis. It is equal to the volume 
of the sphere minus the red portion of the cylinder and two spherical caps, of 
height h and one on each side of the cylinder. 

Figure A2. Perspective view of a napkin ring as defined in Fig. A1 , the 
volume of a sphere (radius R ) which is outside of a cylinder (radius C > R ) 
of infinite length. 

Figure A3. Left: A bracelet is defined as the difference of two napkins with 
same sphere radius R and between two cylinders C c and C d . Right: a (double) 
ring is defined as the difference of two bracelets. 
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e start from an observed distribution of apparent masses p =
 true sin i . The inversion problem (or retrie v al problem) is discretized
y deciding to cut the distribution to a maximum mass m max ,
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s chosen, defined by the limits of mass bins as a series of radii
f concentric spheres, with R 0 = m max , a set of decreasing radii R k 
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Figure A4. Left: Perspecti ve vie w of a bracelet, a volume inside a sphere 
and between two cylinders as defined in Fig. A3 . Right: Perspective view of 
a double ring as defined in Fig. A3 . It is a volume between two spheres and 
two cylinders. 
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Table A1. Elements of the volume matrix for a simple 
example with three equal mass bins : 1, 2, 3. 

Column 1 Column 2 Column 3 
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ith the last one being R kmax = 0 or a minimum value R kmax =
 min (here there is a notable difference with the usual atmospheric 
nion-peeling method, with the grid of radii being of course all much
reater than the radius of the Earth). An identical series of radii of
ylinders C i is also defined. The grid of spheres and cylinders radius
ay be chosen ad libitum : equally spaced or not, exponential; or

omposite. An element of matrix M is therefore the volume which 
s common to a spherical shell (defined by two radii R a and R b ) and
o a cylindrical shell (defined by two cylinders of infinite length and
adii C c and C d ). Such a volume is a double ring, as sketched on
igs A3 left and A4 left, and may be called V ring ( R a , R b , C c , C d ). Its
athematical expression may be found in three steps, as described 

elow. 

2 The volume of a napkin 

 napkin volume is defined as the volume of the part of a sphere of
adius R which is outside of a cylinder of radius C and infinite length.
he name comes from the shape of a volume generated by rotation
round X-axis of a portion of circle limited by a chord of length 2L,
ith L 

2 = R 

2 − C 

2 (Fig. A1 ). 
The volume of the sphere which is inside the cylinder is composed

f one cylinder, and two spherical caps, one at each end of the
ylinder. 

olume of sphere V R : V R = 4 / 3 πR 

3 . 

Volume of cylinder V C , radius C , length 2L, 

 C = 2 πC 

2 L. (A1) 

olume of one spherical cap of height h = R − L, 

 cap = πh 

2 ( R − h/ 3) . (A2) 

olume of napkin, 

 nap = V R − V C − 2 V cap = 4 / 3 πR 

3 − 2 πC 

2 L 

− 2 π ( R − L ) 2 ( R − ( R − L ) / 3) . (A3) 

If C = R , V nap = 0. By convention, we state that if C > R , V nap =
. 

3 The volume of a bracelet 

e define a bracelet as the portion of space inside a sphere (radius
 ) and comprised between two cylinders of radii C 1 and C 2 ( C 1 >

 2 ). We see (Fig. A3 ) that the volume of a bracelet is the difference
f the volumes of two napkins, 

 brac ( R, C c , C d ) = V nap ( R, C d ) − V nap ( R, C c ) . (A4) 

4 The volume of a ring 

e define the volume of a ring as the portion of space bounded by
wo spheres and two cylinders. In fact, it is a double ring of two equal
olumes (Figs A3 and A4 ), one being in front of the projection plane,
he other behind the projection plane. The volume of a (double) ring
s the difference of the volumes of two bracelets 

 ring ( R A, R B, C c , C d ) = V brac ( RA, C c , C d ) − V brac ( RB, C c , C d ) . 

(A5) 

hen RA and RB are contiguous in the grid of R k , like R k and R k + 1 ,
nd C c and C d are also contiguous ( C i and C i + 1 ), the (double) ring
ontain all planets which have the same true mass defined by the bin
 R k , R k + 1 ), and have been observed with an apparent mass m sin i
efined by the bin ( C i , C i + 1 ). Therefore, the element V ik on line i and
olumn k of the matrix M V relating the number densities of true mass
lanets ρ i and the distribution of apparent masses N k (equation 12 )
s 

 ik = V ring ( R k , R k+ 1 , C i , C i+ 1 ) (A6) 

hich may be computed form the expressions of V brac ( A4 ) and V nap 

 A3 ). 
As an example, we give in Table A1 the elements of the matrix of

imension 3 when R 0 = 3, R 1 = 2, R 2 = 3, R 4 = 0, and identical
alues for the cylinders: C 0 = 3, C 1 = 2, C 2 = 3, C 4 = 0. Only the
hree true masses 2 < m 0 ≤ 3, 1 < m 1 ≤ 2, 0 < m 2 ≤ 1 (arbitrary
nits) are considered. 

PPENDI X  B:  ABEL  I NVERSI ON  A N D  T H E  

N I O N  PEELING  A L G O R I T H M  

1 The Abel transform and its formal inversion 

e shortly describe the onion-peeling method, heavily used in space 
tmospheric physics, in order to retrieve the vertical profile f ( r ) of
he concentration [number of molecules cm 

−3 , or density] of one
tmospheric constituent from a series of measurements F ( y ) of the
ntegrated density (or column density, or slant path density, all the
ame thing, in cm 

−2 ) acquired by an orbiting space platform. An
xample is the series of line densities of ozone measured with stellar
ccultations by GOMOS on board ENVISAT platform as described 
n Bertaux et al. ( 2010 ). It is assumed that the atmosphere has a
pherical symmetry, the concentration depending only on altitude z, 
r radial distance r to the centre of the planet, r = R p + z, where
 p is the radius of the planet. Here, y is the impact parameter of the
OS from a space platform, the distance of the LOS from centre of

he planet. 
MNRAS 512, 5552–5571 (2022) 
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Figure B1. A geometrical interpretation of the Abel transform in two 
dimensions. An observer (I) looks along a line parallel to the x-axis at distance 
y abo v e the origin. What the observer sees is the projection (i.e. the integral) 
of the circularly symmetric function f ( r ) along the line of sight. The function 
f ( r ) is represented in grey in this figure (taken from Wikipedia 2021 ). The 
observer is assumed to be located infinitely far from the origin so that the 
limits of integration are ±∞ . The gaseous coma of a comet is an example of 
such a natural spherical distribution. 

Figure B2. Geometry of LOS abo v e the limb when an integrated density is 
obtained for each LOS (the case of GOMOS/ENVISAT, ozone, H 2 O). The 
spacecraft S is drifting on its orbit, allowing a series of measurements with 
various impact parameters p j of each LOS. 
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The column density F ( y ) may be written as 

 ( y ) = 2 
∫ ∞ 

y 

f ( r ) r dr √ 

r 2 − y 2 
. (B1) 

his is the mathematical definition of the Abel transform, which may
e represented as the sketch of Fig. B1 
The formal solution of the inversion of Abel transform does exist, 

 ( r ) = − 1 

π

∫ ∞ 

r 

d F 

d y 

d y √ 

y 2 − r 2 
. (B2) 

In principle, equation ( B2 ) gives the answer to the atmospheric
roblem. Unfortunately, in practice it does not work so well, because
here is a deri v ati ve d F /d y , which is usually affected by noise, and
akes unpractical the direct use of B2 in most cases, the resulting

rofile being very noisy, with often negati ve v alues of the local
ensity. Therefore, atmospherists hav e dev eloped since a long time
 numerical algorithm : the so-called onion peeling algorithm. 

2 The onion peeling numerical algorithm 

2.1 General 

he key, as usual in inversion problems, is to describe the forward
odel mathematically. Here, the forward model is the expression
NRAS 512, 5552–5571 (2022) 
f what should be observed, F ( y ), if we have the distribution f ( r ).
he forward model is formula B1 abo v e, which will be discretized.
he atmosphere is considered as an onion, with concentric spherical

ayers. The concentration is assumed to be constant into each layer.
t is assumed 0 outside of the most external layer. 

Consider a series of m measurements along various LOS at tangent
ltitudes z 0 , z 1 , z 2 ,... z j ,... z m − 1 going from top to bottom (Fig. B2 ).
t corresponds to impact parameters p 0 , p 1 , p 2 ,... p j ,... p m − 1 with p j =
 j + R p . We may define the radii of layers as follows (this is partially
rbitrary): 

r 0 = p 0 + ( p 0 − p 1 ) / 2 

r 1 = ( p 0 + p 1 ) / 2 

r 2 = ( p 1 + p 2 ) / 2 

... 

r n = ( p n −1 + p n ) / 2 

 m = p m −1 − something , and r m may be equal to 0, must be < p m −1 . 

2.2 Construction of lengths of segments of LOS through the layers 

e have to compute the length of segments of LOS L j , n between two
uccessive layers with the help of Pythagore theorem. The first index
 indicates on which LOS is the segment and its impact parameter p j .
he second index n indicates that the segment is included between

wo spheres with radius r n and r n + 1 , r n > r n + 1 . 
L 0, 0 is the half-segment of the cord which encompass the tangent

oint of the LOS, 

 0 , 0 = 

√ 

r 2 0 − p 

2 
0 

 1 , 0 = 

√ 

r 2 0 − p 

2 
1 −

√ 

r 2 1 − p 

2 
1 

n general, the length L j , n of segment ( j , n ) is 

 j,n = 

√ 

r 2 n − p 

2 
j −

√ 

r 2 n + 1 − p 

2 
j (B3) 

or n = j , there is a somewhat slightly different formula because the
phere of radius n + 1 is not involved, 

 j,j = 

√ 

r 2 j − p 

2 
j (B4) 

2.3 Step-by-step retrieval of densities in each layer from 

esolution of a system of linear equations 

he integrated densities F ( p ) are expressed with the sum of products
f lengths of cords by the constant density between two spherical
hells, along the LOS with impact parameter p. We use indifferently
 or r = R p + z and get a series of linear equations with unknowns
 ( z k ) and data F ( p j ), 

F ( p 0 ) = 2 f ( z 0 ) L 0 , 0 

F ( p 1 ) = 2 f ( z 0 ) L 1 , 0 + 2 f ( z 1 ) L 1 , 1 

. . . 

 

(
p j 

) = 2 
j−1 ∑ 

0 

f ( z k ) L 1 ,k + 2 f 
(
z j 
)
L j,j (B5) 

here sum 

∑ 

extends from k = 0 to k = j − 1, and the system
ontains m equations and m unknown f ( z k ). 

One way to solve this system ( B5 ) is to ‘peel the onion’ from
utside to inside. From the first equation of system ( B5 ) we extract
he density of the upper layer f ( z 0 ), 

 ( z 0 ) = F ( p 0 ) / 2 L 0 , 0 . (B6) 
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Then the value found for f ( z 0 ) is put in the second equation of sys-
em ( B5 ), which allows to extract the value of f ( z 1 ), and successively
rom one layer to the next belo w, do wn to the last LOS and spherical
hell. 

We may see also the problem of the onion peeling as the resolution
f a linear system of m equations with m unknowns, which may be
ritten under a matrix formulation, 

 = Mf . (B7) 

 is a triangular matrix of rank m . Its elements are the lengths of
egments of LOS between two spherical shells where the density f 
s assumed constant, and F is the vector of the series of observations
f integrated densities. 
Of course in order to be resolved, one has to have at least as many

alues of p (number of measurements) as the number of layers. 
therwise, the number of layers, their exact limits w.r.t the values 
f p i can be selected at will. If the number of layers is selected as
maller than the number of measurements, then there is a least-square 
olution to the problem, which makes use of the transpose matrix M 

T 

nd its product by M to get a square matrix. 
Different errors in the data (measurements) may be accounted 

or. In order to a v oid vertical oscillations in the retrie v al which are
ot physical, one often use the scheme of Tikhonov regularization 
Qu ́emerais et al. 2006 ). 

3 Change of power-law exponent in the Abel transform 

n Section 2.5 of the main text, we expressed the need to demonstrate
hat, if the true mass distribution is a power law with a certain value
f the exponent (or index), then the apparent mass distribution will 
ave show also a power law with the same index. The demonstration
equires to explore what happens in the Abel transform of a power
aw. 

So, we apply the Abel transform (equation B1 ) to the power law
 ( r ) = r −n . From Fig. B1 we derive the following relations, with x , y ,
 , and angle u are defined on Fig. B1 . 

 

2 + y 2 = r 2 

tan u = 

x 

y 

cos u = 

y 

r 

r = 

y 

cos u 

d r = y tan u 

1 

cos u 

d u 

F ( y) = 2 
∫ ∞ 

y 

r r −n √ (
r 2 − y 2 

) d r = 2 
∫ ∞ 

y 

r −n + 1 √ (
r 2 − y 2 

) d r. 

e replace r by y 

cos u and change the limits of integration with 
orresponding values of angle u . 

 ( y) = 2 
∫ π/ 2 

0 

y 

cos u 
−n + 1 

y tan u 

1 
cos u √ 

y 2 
(

1 
cos 2 u 

− 1 
) d u 

= 2 
∫ π/ 2 

0 

y 

cosu 

−n + 1 
y tan u 

1 
cos u 

y tan u 

d u = 2 
∫ π/ 2 

0 

y −n + 1 

cos −n + 2 u 

d u 

 ( y) = 2 y −n + 1 
∫ π/ 2 

0 
cos n −2 u d u. 
ince the integral has a definite value (a constant), the function F ( y )
s indeed also a power law, with a power law −n + 1: the exponent
as increased by + 1 during the Abel transform. 

For n = 2 = > F ( y) = 2 y −2 + 1 
∫ π/ 2 

0 cos 2 −2 u d u =
 y −1 ( π/ 2 − 0 ) = 

 

π
y 
. 

This result is well known from cometary scientists. Assuming a 
onstant production rate of a molecule from the nucleus, the cloud of
his molecule expands in vacuum at a constant velocity. Therefore, 
he density in this coma scales as r −2 (equaling the flux through a
phere of radius r to the constant production rate), and integrated
ensities (observed from outside by instruments) scale as y −1 ( y
eing the distance of LOS from comet nucleus). 
Let us define the constant W e = 

∫ π/ 2 
0 cos e u d u with e = n −

 used in the expression of F ( y ). We have already computed for
 = 0 , n = 2 , W 0 = 

π
2 . 

or e = 1 , n = 3 , W 1 = 

∫ π/ 2 

0 
cos 1 u d u = 1 . 

For other values of n and e, we may find a recurrence formula for
he constant, 

W e = 

∫ π/ 2 

0 
cos e u d u = 

∫ π/ 2 

0 
cos e−1 u cos u du 

= ( cos e−1 u sin u ) 

∣∣∣∣
0 

π/ 2 

+ + ( e − 1 ) 
∫ π/ 2 

0 
cos e−2 u sin 2 u d u 

= ( e − 1 ) 
∫ π/ 2 

0 
cos e−2 u 

(
1 − cos 2 u 

)
d u 

= ( e − 1 ) 

(∫ π/ 2 

0 
cos e−2 u d u −

∫ π/ 2 

0 
cos e u d u 

)

= ( e − 1 ) ( W e−2 − W e ) 

W e = ( e − 1 ) W e−2 . 

his formula is linking separately the series of odd and even values
f e. Therefore, we find that for e = 2 , n = 4 , W 2 = 

π
4 and so on and

o forth. 

PPENDI X  C :  SI MULATI ONS  O F  SEVERAL  

ASS  DI STRI BU TI ONS  

1 Adding one bin of large masses to the distribution, and 

ffect on the other bins 

n Fig. 7 we have studied a histogram with progressive bins limits,
ith a factor of 2 on the limits of one bin to the next. This exponential
istogram (Section 3.2 ) has 13 (apparent) mass bins, with the first
in (largest apparent masses) with limits between 12.89 and 25.77 
 jup . We had excluded all 24 RV planets reported with an m sin i
 25.77 M jup , reducing the original sample of 909 planets to 885

lanets. What is the influence, on the true mass histogram retrieved
y the algorithm, of excluding these high mass planets? 
In order to answer, one bin was added between 25.77 and 51.54
 jup , containing 17 large mass planets (or rather BD) which are

n the list of observed planets, but were excluded from the 13 bins
istogram (Table C1 , column m sin i (2)). The same inversion scheme
as applied to this 14 bins histogram. The new bin 25.77–51.55 M jup 

ontains 22.9 planets, in the second bin (first bin of 13 bin histogram),
he number of planets has decreased from 52.53 to 46.3, and all
he other bins contain almost identical values of planet. Therefore, 
e may conclude that eliminating from our observed sample all 
MNRAS 512, 5552–5571 (2022) 
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Table C1. Effect of excluding or including one bin with large masses on retrieved histogram. (1) excluding the largest mass bin. (2) including the largest 
mass bin. 

Bin Bin lim inf Bin lim sup Observed planet number Observed planet number Retrieved planet number Retrieved planet number 
number ( M jup ) ( M jup ) m sin i (1) m sin i (2) m (1) m (2) 

1 25 .77 51 .55 – 17 – 22 .90 
2 12 .88 25 .77 39 39 52 .53 46 .29 
3 6 .44 12 .88 73 73 84 .02 84 .43 
4 3 .22 6 .44 101 101 110 .19 110 .12 
5 1 .61 3 .22 149 149 165 .2 165 .2 
6 0 .805 1 .61 116 116 103 .6 103 .6 
7 0 .402 0 .805 80 80 68 .3532 68 .3533 
8 0 .201 0 .402 50 50 40 .16 40 .16 
9 0 .101 0 .201 24 24 15 .43 15 .43 
10 0 .0503 0 .101 51 51 60 .77 60 .77 
11 0 .0251 0 .0503 87 87 98 .85 98 .85 
12 0 .0125 0 .0251 62 62 52 .71 52 .71 
13 0 .00629 0 .0125 34 34 24 .91 24 .91 
14 0 .00314 0 .00629 19 19 14 .24 14 .24 

Figure C1. Simulation of the retrie v al. A mono-mass ensemble of 1000 
planets at 22.5 M jup (red solid histogram, dummy) are assigned a random 

sin i value, yielding the m sin i histogram (black line). This histogram is 
inverted, yielding the retrieved distribution indicated as the blue dashed line. 
Both dummy and retrieved histograms mostly overlap. 
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Figure C2. Simulation for a two peaks mass distribution. Red: Histogram of 
2000 planets with two values at 16.5 and 22.5 M jup . Black: Histogram of m 

sin i with sin i assigned at random. The retrieved distribution (after inversion 
with our algorithm) is indicated both by the blue dashed line and blue circles 
with the error bars. The two peaks are well retrieved. Both dummy and 
retrieved histograms mostly overlap. 
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lanets abo v e 25.77 M jup does not affect at all the v alues retrie ved
elow 12.89 M jup . In principle, one definition of an exoplanet is the
inimum mass required to get Deuterium burning, which is about 13
 jup . This e x ercise shows also that it is necessary to keep the observed
D up to ∼26 M jup in order to keep the exoplanet bin 6.44–12-88
 jup unaffected by the algorithm of inversion (edge effect). 

2 Simulation of a single peak mass distribution 

e start with a sample of 1000 planets, all having a mass of
2.5 M jup , the centre of bin 21–24 (the unit is not important). Its
istogram is represented by the red solid curve on Fig. C1 . Each
lanet was then assigned a random value of sin i to build an apparent
ass distribution, represented by the black dashed line on Fig. C1 .
inally, our retrie v al algorithm was applied to this simulated m sin i
istribution, yielding the retrieved distribution, indicated by the blue
ashed line. The bin 21–24 contains 1053.1 planets, instead of 1000
n the original sample. Below 21, the values in the bins are essentially
ear 0, with the exception of the bin 18–21 with a ne gativ e number
f −87.3 planets. 
NRAS 512, 5552–5571 (2022) 
3 Two peaks simulation 

n order to simulate a two peaks mass distribution, another mono-
ass distribution of 1000 planets with mass 16.5 M jup was added to

he previous single peak distribution (red solid line on Fig. C2 ). After
ssignment of a random value of sin i to each planet, the histogram
f the 2000 planets apparent masses is displayed as the black solid
ine. The retrieved distribution (after inversion with our algorithm) is
ndicated both by the blue dashed line and blue circles with the error
ars. The two peaks are well retrieved. We note a small excess at the
wo peaks, and a small deficit (ne gativ e values) in the two bins just
efore the two peaks, as in the single peak simulation. This small bias
eems systematic. Other bins have an error bar which encompasses
ero. The two bins abo v e the bin 21–24 are containing strictly 0
lanet, which is an inherent feature of the method. 
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ower index −2. Black circles: Histogram of m sin i , after assignment of a
andom sin i value. Blue lozenges: Retrieved true mass histogram after the
nversion method applied to black circles distribution. Dashed dark blue line: 
est-fitting power law to lozenges with index −2.0083 ± 0.0287. 

4 Power law simulation 

e have selected for this simulation a −2 power law distribution,
ith the number of planets per unit mass is d N /d m = Am 

−2 . We have
sed the mass bins as for the Fig. 6 inversion, 10 bins of 3 M jup width.
We started from a simulated histogram containing 994 planets, 

epresented by red crosses on Fig. C3 . The histogram numbers 
f planets are not integer values, in order to respect strictly the
ower law. In each bin, all the stars in the bin are assigned an
ndividual mass by spreading them regularly (linearly) within the 
imits of the bin. Then a random value of sin i was also assigned
o each planet, by drawing from an isotropic distribution of polar
xis. We obtained a dummy m sin i distribution, which histogram
s displayed as black circles on Fig. C3 . Note that the black circles
re below the red crosses, except for the lightest planets (bin 0 to

 M jup ). This can be explained as follows. When all true masses
re multiplied by a random value of sin i , the apparent mass m sin i
ecomes smaller than m . We may say that the mass has shrinked.
he average value of sin i is π4 = 0 . 785, the average shrinking factor.
fter multiplication by random sin i , some planets are going to mo v e

rom one bin to the next, containing lower mass planets. Except
or the last bin (0–3 M jup ), which number increases from 827 to
54, the other bins are losing planets, because more planets go to
he lighter bin than planets which enter this bin from the heavier
in (we have assumed a negative power law). We note also that the
ow (integer) numbers for the large mass bins display some strong
uctuations. 
Then we have applied our standard inversion scheme to find 

he ‘true’ mass distribution with its histogram represented by blue 
ozenges. One value at bin 21–24 M jup was ne gativ e (–0.75) and is
ot represented on the log–log plot of Fig. C2 . Discarding also the
wo other largest masses bins (24–30 M jup ) which contain very low
umber of planets and therefore subject to large statistical fluctua- 
ions, we have computed the best-fitting power law of the seven other
ins of lightest planets (0–21 M jup ). We found −2.0083 ± 0.0287,
ncompassing in its error bar the original −2 value. 

Therefore, we may say that our numerical scheme of inversion, 
perated on a power law of apparent mass distribution, retrieves the
orrect true mass power law. 
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