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ABSTRACT

Follow-up observations of large numbers of gamma-ray burst (GRB) afterglows, facilitated
by the Swift satellite, have produced a large sample of spectral energy distributions and
light curves, from which their basic micro- and macro-physical parameters can in principle be
derived. However, a number of phenomena have been observed that defy explanation by simple
versions of the standard fireball model, leading to a variety of new models. Polarimetry can be
a major independent diagnostic of afterglow physics, probing the magnetic field properties and
internal structure of the GRB jets. In this paper we present the first high-quality multi-night
polarimetric light curve of a Swift GRB afterglow, aimed at providing a well-calibrated data
set of a typical afterglow to serve as a benchmark system for modelling afterglow polarization
behaviour. In particular, our data set of the afterglow of GRB 091018 (at redshift z = 0.971)
comprises optical linear polarimetry (R band, 0.13-2.3d after burst); circular polarimetry
(R band) and near-infrared linear polarimetry (Ks band). We add to that high-quality optical
and near-infrared broad-band light curves and spectral energy distributions as well as afterglow
spectroscopy. The linear polarization varies between 0 and 3 per cent, with both long and short
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time-scale variability visible. We find an achromatic break in the afterglow light curve, which
corresponds to features in the polarimetric curve. We find that the data can be reproduced
by jet break models only if an additional polarized component of unknown nature is present
in the polarimetric curve. We probe the ordered magnetic field component in the afterglow
through our deep circular polarimetry, finding P < 0.15 per cent (20), the deepest limit yet
for a GRB afterglow, suggesting ordered fields are weak, if at all present. Our simultaneous
R- and Ks-band polarimetry shows that dust-induced polarization in the host galaxy is likely

negligible.

Key words: acceleration of particles — techniques: polarimetric — gamma-ray burst: individ-

ual: GRB 091018.

1 INTRODUCTION

Collimated outflows in the form of jets are ubiquitous, from active
galactic nucleus jets driven by accretion of material by supermas-
sive black holes in galactic centres to those associated with stellar
sources such as X-ray binaries and galactic microquasars. A par-
ticularly exciting view of the fundamental physics of jet sources
is offered by gamma-ray bursts (GRBs), which form the extreme
end of the energy and Lorentz factor parameter space. Since the
discovery of afterglows in 1997 (Costa et al. 1997; van Paradijs
et al. 1997) we have a broad picture of the origin and cause of
GRBs: through a catastrophic event (in the case of long-duration
GRBs this is the core collapse of a massive star), a jet of highly
relativistic material is ejected. In the standard fireball model (e.g.
Meészdros & Rees 1997), the resulting broad-band emission de-
tected from X-ray energies through to radio waves — the so-called
afterglow — is explained by the relativistic ejecta colliding with
the surrounding circumburst medium. The afterglow radiation we
detect is consistent with a synchrotron emission (e.g. Mészaros &
Rees 1992, 1997; Wijers & Galama 1999), characterized by a se-
ries of smoothly connected power laws, with characteristic break
frequencies and fluxes. The macroscopic properties of shocks are
largely understood, and the dynamics of the shock created when
the relativistic jet hits the circumstellar matter can be written down
in terms of the explosion energy, the density (and density gradient)
of the medium into which the shock ploughs and the composition
of the shocked material. However, outstanding questions remain
on the nature of the microphysics: how are the relativistic parti-
cles that radiate the observed emission accelerated? Where does
the magnetic field in the shocked region come from and what is its
structure?

Since its launch in 2004, the Swift satellite (Gehrels et al.
2004) has provided us with hundreds of well-sampled X-ray and
UV/optical afterglow light curves from seconds to months after burst
(see Gehrels, Ramirez-Ruiz & Fox 2009 for a review). These light
curves revealed complexity that was unexpected from pre-Swift light
curves (Piran & Fan 2007); the standard fireball model has received
a growing number of modifications, and the concept of a canonical
light curve was introduced to explain the steep fades, plateau phases
and multiple breaks in Swift X-ray light curves (Nousek et al. 2006).
In particular, discrepancies between X-ray and optical light curves
of GRB afterglows and the rich array of light curve morphology
including extended plateaux, rebrightenings and flares challenge
existing GRB models (see Piran & Fan 2007 for a review). Ex-
planations for these features include complex jet structure, energy
re-injection due to late-time central energy activity, variable micro-
physics and off-axis emission, with a combination of effects likely
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in action in most afterglows. However, these model variations are in
principle non-degenerate: linear and circular polarimetry have the
ability to separate out the various models for the behaviour of the
(early) afterglows in a completely independent way, as these models
have different implications for the magnitude and orientation of the
optical polarization, as well as for their time dependence (e.g. Rossi
et al. 2004).

The ground-breaking discovery and interpretation of sudden
achromatic steepening in light curves at ~1d post-burst in pre-
Swift GRBs — so-called jet breaks — provided the first convincing
evidence of highly collimated ejection (e.g. Rhoads 1997, 1999;
Sari, Piran & Halpern 1999) and allowed jet opening angles and
collimation-corrected energies to be derived (e.g. Frail et al. 2001).
Jet breaks were expected to be ubiquitous in Swift light curves, but
the added complexity and multiple breaks in these light curves have
made jet breaks difficult to identify unambiguously (e.g. Curran
et al. 2007a). In contrast, the linear polarization around the time of
the jet break is predicted to have a unique signature (Ghisellini &
Lazzati 1999; Sari 1999; Rossi et al. 2004): at early times a distant
observer located slightly off-axis will see the afterglow as a ring-
shaped source, which has strong polarization in the radial direction
(assuming that the magnetic field is compressed in the plane nor-
mal to the motion, i.e. ordered in the plane of the shock). In the
received light, integrated over the ring, the polarization will largely
cancel out. However, as the fireball decelerates the size of the ring
increases and at some point the edge of the jet is reached, at which
point the polarization does not completely cancel out anymore and
linear polarization is observed. As the ring expands further, the op-
posite edge of the jet is reached as well, giving rise to a second
peak in the linear polarization curve. Therefore polarimetry pro-
vides a useful tool to unambiguously identify jet breaks from other
light curve breaks, though measured polarization curves of GRB
afterglows have in some cases shown puzzling features (see e.g.
the cases of GRBs 030329 and 020405 discussed further in Section
4.1). In addition, the linear polarization properties probe jet inter-
nal structure, as different polarization properties are predicted for
‘uniform’ or ‘structured’ jet energy distributions (Rossi et al. 2004,
see also Section 4.2.2).

It has been shown that if some fraction of the magnetic field in
the shock has large-scale order, the light may also be circularly
polarized (Matsumiya & Ioka 2003; Sagiv, Waxman & Loeb 2004).
For the forward shock (in the ambient medium), most models pre-
dict 0.01-1 per cent circular polarization during the first day (e.g.
Matsumiya & Ioka 2003), depending on the strength and order of
the magnetic fields and the wavelength of observation. Part of this
range is within reach of large telescopes, as we will demonstrate in
Section 3.2.
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In the Swift era few polarimetric measurements have been per-
formed. Arguably the most successful have been the early-time lin-
ear polarization measurements of the afterglows of GRBs 060418
and 090102, performed with the RINGO polarimeter on the rapidly
responding robotic Liverpool Telescope (Mundell et al. 2007; Steele
et al. 2009), the latter GRB showing a linear polarization of 10 per
cent just 190 s after burst. Steele et al. (2009) interpret the light curve
properties and high degree of polarization in GRB 090102 — which
was detected when emission from the reverse shock dominated the
received optical light — as evidence for large-scale ordered magnetic
fields in the expanding fireball. This detection of significant polar-
ization at early times provides strong motivation for following the
polarization properties of the fading afterglow for many hours or
days after the GRB. However, late-time polarimetric observations
of GRBs (see Lazzati 2006 for an overview) show that the combi-
nation of fading afterglow and low levels of polarization (few per
cent) requires large telescopes to obtain polarimetric observations
over multiple days to high precision (<0.3 per cent), using multiple
filters to distinguish dust induced from intrinsic afterglow polariza-
tion. In this paper we present the first such data set for a Swift burst,
and the most extensive polarimetric data set of any burst since GRB
030329 (Greiner et al. 2003).

This paper is the first in a series on the afterglow of GRB 091018.
In this first paper we will describe our data set in detail and compare
the observed polarization light curves with those of other (pre-
Swift) bursts and theoretical models. In a forthcoming second paper
(Wiersema et al. in preparation; hereafter called Paper 2) we will
discuss the dust properties in GRB sightlines from a combination
of multi-wavelength polarimetry, spectroscopy, host imaging and
broad-band afterglow spectral energy distributions. In a third paper
(Paper 3) we will model the afterglow physics of GRB 091018 in
greater detail and fit the polarization data to more detailed models,
in particular considering energy injection.

This paper is organized as follows: in Section 2 we describe
the polarimetry, spectroscopy and broad-band photometry observa-
tions, the data reduction and data calibration techniques; in Sec-
tion 3 we discuss the detected features in the data and in Section 4
we compare the data to models and previous studies of afterglow
polarimetric light curves. Throughout this paper we adopt a cos-
mology with Hy = 71kms~! Mpc~!, @, = 0.27, Q4 = 0.73.

2 OBSERVATIONS

GRB 091018 triggered the Burst Alert Telescope (BAT) on board the
Swift satellite at 20:48:19 ut on 2009 October 18 (trigger 373172;
Stamatikos et al. 2009). The prompt emission shows the burst to
likely belong to the class of long bursts (Kouveliotou et al. 1993),
with a duration of T9g = 4.4 + 0.6 s (Markwardt et al. 2009; Ukwatta
et al. 2012 report a spectral lag of 143 £ 297 ms). An X-ray and
optical afterglow were found by the SwifrX-Ray Telescope (XRT)
and UV-Optical Telescope (UVOT). Chen et al. (2009) reported
an afterglow redshift of 0.971 shortly after. Based on the initial
brightness of the UVOT afterglow we activated our Very Large
Telescope (VLT) polarimetry programme (programme 084.D-0949,
PI: Wiersema).

2.1 R-band linear and circular polarimetry
2.1.1 Data acquisition

We acquired imaging polarimetry using the Focal Reducer and low
dispersion Spectrograph (FORS2) mounted on Unit Telescope 1

Figure 1. Small sections of data frames from the Infrared Spectrometer
and Array Camera (ISAAC) Ks-band polarimetry (Left; angle O frame from
linK1, see Section 2.2) and optical FORS2 polarimetry (right; angle —45
from circular polarimetry epoch cirl). The circles are 5 arcsec in radius in
each image and show the source in the 0 and e beams.

(Antu) of the VLT, using the FORS2 Ry filter. After passing
through a half or quarter wavelength plate (in the case of linear
and circular polarimetry, respectively), a Wollaston prism splits the
incoming light into an ordinary and extraordinary beam (hereafter
the o and e beams) that are perpendicularly polarized. These o
and e beams are imaged simultaneously, using a mask to avoid
overlap of the two beams on the chip, as shown in Fig. 1. For
each linear polarization data set we used four rotation angles of
the half wavelength plate of 0, 22.5, 45 and 67°5. The circular
polarization data were taken with —45° and +45° angles of the
quarter wavelength plate.

To ensure relatively homogeneous polarimetric uncertainties as a
function of time, exposure time was increased as the source faded.
We employed a small dithering pattern, while taking care not to po-
sition the afterglow too close to the edges of the mask. We acquired
a total of 20 linear polarization series and four circular polarization
series, see Table 1.

‘We began our FORS?2 polarimetric monitoring with a single short
sequence of linear polarimetry. After this, to make full use of the
brightness of the afterglow we switched to circular polarimetry,
for which the models predict a much lower degree of polarization,
requiring a large number of detected photons. Directly following
the circular polarization, we continued our linear polarimetry. We
obtained a further six sequences, and a further two at the end of the
night. The next night we obtained further data sets at the beginning
and the end of the night. A last, deep, point was obtained in the third
night. Note that for all FORS?2 polarimetry we position the afterglow
close to the centre of the FORS2 field of view, on chip 1, where
instrumental polarization is very low (well below our statistical
errors, Patat & Romaniello 2006).

2.1.2 Data reduction and calibration

We bias and flat field corrected all data using tasks in IRAF and using
standard twilight sky flats. We use our own software in combination
with IRAF routines to perform aperture photometry on the o and e
images of the afterglow to find the source fluxes f,, and f,, using the
same approach as Rol et al. (2003). We used a seeing matched aper-
ture of 1.5 times the on-frame full width at half-maximum (FWHM)
of the point spread function (PSF), fitted per frame independently
for the 0 and e as small differences in PSF shape may occur between
the 0 and e beams, particularly for objects far off-axis. The sky sub-
traction was done using an annulus of inner and outer radii three
and four times the FWHM. We measure f, and f, for all point-like
objects in all frames.

We express the polarimetry information in terms of the Stokes
vector § = (Q, U, V,I) (see e.g. Chandrasekhar 1960), where
the components of this vector have the following meaning: Q and
U contain the behaviour of the linear polarization; V the circu-
lar polarization and [ is the intensity. Generally we will use the

© 2012 The Authors, MNRAS 426, 2-22
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Table 1. Log of our polarimetric observations. The ID column gives a label to each polarimetric data set to
make discussion easier, with linear polarimetry data sets labelled ‘lin” and circular polarimetry ‘cir’. The
exposure time is the exposure time per retarder angle (four angles for linear, two for circular polarimetry).
The Q/I and U/I values are as measured: to obtain values corrected for scattering on Galactic dust, subtract

the values derived in Section 2.1.3.

FORS2, Rspecial

D T —To  Exposure time o Ui Vil
(mid; d) ()
linl 0.13189  180.0 —0.0014 +0.0009  —0.0036 £ 0.0009

cirl 0.14302  300.0
cir2 0.15133  300.0
cir3 0.15964  300.0
cird 0.16795  300.0

—0.0005 £+ 0.0014
0.0011 £ 0.0015
0.0003 £ 0.0015

—0.0017 £ 0.0015

lin2 0.18043  240.0 0.0009 £ 0.0009  —0.0040 +£ 0.0009
lin3 0.19701  300.0 —0.0012 £ 0.0008 0.0024 £ 0.0008
lind 0.21282  300.0 0.0010 £ 0.0009  —0.0023 +£ 0.0009
lin5 0.23030  300.0 —0.0006 + 0.0009  —0.0037 £ 0.0009
lin6 0.24611  300.0 0.0083 £ 0.0009  —0.0039 +£ 0.0009
lin7 0.26357  300.0 0.0056 & 0.0009  —0.0025 % 0.0009

lin8 0.27936  300.0
lin9 0.45483  300.0
linl0 0.47064  300.0
linll 1.13940  300.0

0.0057 £ 0.0009
0.0119 £ 0.0012
0.0067 £ 0.0012
—0.0162 £ 0.0023

—0.0063 £ 0.0009
—0.0025 £+ 0.0012
—0.0009 £ 0.0012

0.0078 £ 0.0023

linl2 1.15522  300.0 —0.0167 £ 0.0022 0.0260 £ 0.0023
linl3 1.17345  300.0 0.0088 £ 0.0023 0.0130 £ 0.0023
linl4 1.18926  300.0 —0.0123 £ 0.0023  —0.0147 £ 0.0023
linl5 1.20729  300.0 —0.0070 £ 0.0024  —0.0054 £ 0.0024
linl6 1.22310  300.0 —0.0126 +0.0024  —0.0080 £ 0.0024
linl7 1.36006  600.0 0.0022 £ 0.0018  —0.0056 £ 0.0018
linl8 1.39183  600.0 0.0014 £ 0.0018 0.0057 £ 0.0019

linl9 1.44926  600.0

—0.0141 £ 0.0019

—0.0031 £ 0.0019

lin20 2.39023  720.0 0.0111 +£0.0023  —0.0092 +£ 0.0023
ISAAC, Ks
linK*  0.4309 720.0¢ 0.0204 £ 0.0078 0.0008 £ 0.0083

“Combined value of three complete series (see Section 2.2).

normalized Stokes parameters ¢ = Q/I, u = U/l and v = V/I in
this paper. Theoretical models are often expressed in terms of the
polarization degree P and polarization angle 6. These quantities can
be found from the Stokes parameters through the relations

/Q2+U2
Plinzf

0 = %arctan(U/Q) + ¢

Po=V/I.

Constant ¢ is an offset defined so that the resulting angle 8 conforms
to the standard definitions of position angle (angle from north,
counterclockwise, see Fig. 2):

0° if Q >0and U > 0;
¢=1<180° if Q>0andU <O;
90° if 0 <O.

Note that the conversion from Stokes parameters to P brings with
it complications, discussed further below, so wherever possible we
will work in Stokes parameter space.

To measure the Stokes Q/I and U/I parameters a measurement
at two rotation angles suffices, but this introduces substantial sys-
tematic uncertainties, caused by imperfect flat fielding, imperfect

© 2012 The Authors, MNRAS 426, 2-22
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Figure 2. Coordinate definitions used in this paper.

background subtraction and imperfect behaviour of the half wave-
length plate and Wollaston prism. Using four rotation angles with a
constant stepsize (in this case of 22?5) means that several of these
systematic effects cancel out (in particular the effects of background
subtraction and flat fielding), leading to greatly improved polarimet-
ric error terms. With these angles one can write (Patat & Romaniello
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2006)
2 N-1

9=0/I= z_g F; cos (ir/2) and
.

u=U/l = NZF,- sin (i/2) ,

i=0
where N is the number of half wavelength plate positions, and F; is

the normalized flux difference of a source in the o and e beams at
the ith angle,

Fi=(foi=fei) ] (foi+ foi) = (foi— fei) /1.

For the circular polarimetry, taken with two angles of the retarder,
we can simply write

1
v=V/I= §(F45—F745)-

After measurement of the fluxes of the sources in the images we
compute their observed Stokes parameters and their uncertainties
using the expressions above. The afterglow is always positioned
on nearly the same position on CHIP1 (barring a small dither of
~16 pixels in the Y direction in some epochs), on the optical axis.
As such we expect the instrumental linear polarization to be negli-
gible; see Patat & Romaniello (2006) for a thorough error analysis
of FORS1, whose polarimetry optics were moved to the FORS2
instrument in 2009. Additionally, circular polarimetry Stokes V/I
has no instrumental polarization on axis. In conclusion, the values
of the Stokes parameters found through the methods above allow
an investigation of the time dependence of the afterglow ¢, u and v.

Theoretical models are generally expressed in terms of the linear
and circular polarization fractions Py, and P, and we therefore
convert the Stokes parameter information to these quantities using
the equations above. We note that the uncertainty on the linear
polarization angle is a function of the intrinsic polarization degree
(09 = op, /2Pin), which means that for the low polarization values
and faint fluxes of afterglows the uncertainties in 6 are very large.
Finally, the position angles found are corrected for the instrumental
zero angle offset, which is —1°48 at 655 nm (the central wavelength
of the filter).!

Errors on ¢ and u are generally distributed as a Normal distri-
bution and the Stokes parameters can have positive and negative
values. In contrast, Py, is a positive definite quantity. As demon-
strated in Simmons & Stewart (1985) (their Section 2), integrating
the equation for the distribution of measured (P, 6) over 6 shows that
Py, follows a Rice probability distribution rather than a Gaussian
one. Directly using the equations above will lead to overestimated
Py and incorrect confidence intervals, an effect generally referred
to as the linear polarization bias. The correction to the resulting Py,
and associated confidence ranges has been studied through both
analytical and numerical (Monte Carlo) methods. Generally speak-
ing, this correction depends on o p, P and the signal-to-noise ratio
(SNR) of f, + f, (i.e. the SNR of [;). In the literature one often sees
the Wardle & Kronberg (1974) prescription used, in which the input
P values are multiplied by /1 — (op/ P)? to find the bias-corrected
polarization. We follow Sparks & Axon (1999) in using a parameter
n = P x SNRy to trace the expected behaviour of the bias and o p:
when 1 > 2 the Wardle & Kronberg correction is valid, and o p is
as computed directly from the uncertainty of F. In our FORS2 data
set before correction for Galactic polarization (Section 2.1.3) all

! Tabulated at the FORS instrument webpages.

data points have 1 > 2, and the bias correction is in all cases small
compared to o p.

2.1.3 Polarization induced by the Galactic interstellar medium

To bring the afterglow ¢ and u to an absolute frame, we need to
correct for the linear polarization induced by scattering on dust in
our Galaxy (Galactic interstellar polarization, GIP). Note that V/I
does not require a correction as there is no circular GIP and the
resulting linear polarization is much smaller than the threshold for
noticeable linear—circular crosstalk (Patat & Romaniello 2006).

We assume here that the average intrinsic polarization of a suf-
ficiently large sample of field stars is zero, that the bulk of the
polarizing dust is between these stars and the observer and that
therefore the observed distribution of ¢ and u of field sources mea-
sures the GIP. We measure the Stokes g and u values of all sources
that have an SNR above 20 in the FORS2 field, on both chips and
in all epochs. A large number of artefacts are visible in our FORS2
imaging polarimetry, which have the appearance of a group of stars,
and which are likely caused by reflections at the retarder plate;*> we
take special care to avoid stars close to these artefacts.

We then eliminate sources that appear significantly extended
(galaxies), which may give spurious linear polarimetric signals if
seeing conditions change during a polarimetric sequence. We fur-
ther eliminate sources that are close to the mask edges and sources
that are close to saturation in one or more of the images.

It is well known that FORS1, whose polarimetric optics are now
cannibalized in FORS2, displayed a roughly radial instrumental
linear polarization pattern, with polarization magnitude depending
on the radial distance to the optical axis (see Patat & Romaniello
2006). The shape of the linear polarization pattern and its mag-
nitude depend on the wavelength, and was found to reach nearly
~1.5 per cent at the edges of the field of view (Patat & Romaniello
2006). While this effect is well calibrated for FORS1 in the V and /
bands, a similar analysis has not yet been performed for FORS2. We
therefore use a conservative approach and choose only stars close
(radially) to the GRB position. It is of some importance to select not
only the brightest stars (which would give smallest uncertainty in
the GIP value), as this may result in a bias towards the nearest stars
(in distance), and therefore may not sample the complete Galactic
dust column towards the GRB. We also make sure that stars are
selected with a fairly uniform distribution over the field (in terms
of position angle).

We determine the GIP ¢ and u values using three methods: we
find the weighted mean of the field star distribution; we fit one-
dimensional Gaussian curves on the histograms of the ¢ and u
distributions and we fit a two-dimensional Gaussian function (with
its orientation as a free parameter) on the (g, u) distribution after
converting this to a two-dimensional histogram (where a range of
bin sizes are used based on the number of input data points). We
perform these fits for a range of limit values on the maximum radial
distance r between the input stars and the GRB, and on the maxi-
mum allowed o p of the stars. Unfortunately there are only a small
number of fairly bright stars near to the GRB position, making it
necessary to use a large limit on the radial distance to obtain a suf-
ficient number of data points. We find a best balance between the
number of sources in the fit and the uncertainties on the resulting
gaip and ugp for limits o p < 0.35 per cent and r < 2.0 arcmin (103

2 http://www.eso.org/observing/dfo/quality/FORS2/qc/
problems/problems_fors2.html
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Figure 3. Measurements of ¢ and u of field stars to determine the contribu-
tion to the received polarization by scattering on dust within our Galaxy. The
dashed lines indicate ¢ = 0 and u = 0. Binsize used in this plot is 0.0025.

data points). Note that » = 2 arcmin would correspond to ~0.23
and ~0.34 per cent instrumental polarization in the V and / bands
in FORSI, respectively (Patat & Romaniello 2006). Using these
limits the three methods give very similar GIP values. In Fig. 3 the
distribution of data points (103 points) is shown. We find ggrp =
—0.0028 and ugp = —0.0036, or Pgip = 0.45 per cent, Ogp = 116°.
The two-dimensional fit gives the width of the Gaussian along the
q axis as o, = 0.0030 and along the u axis as o, = 0.0025, and
the rotation of the containment ellipse from the ¢ axis in radians,
counter-clockwise, as ® = 1.7 rad. The evidence for deviation from
radial symmetry is not very strong, but the analysis of Patat &
Romaniello (2006) shows that the FORS1 off-axis polarization pat-
tern exhibited non-radial behaviour in the B band. We use this ellipse
as a conservative error in the GIP Stokes parameters, following Rol
et al. (2003). The fairly large uncertainty in these is likely domi-
nated by the contribution of the unknown instrumental polarization
pattern and the low number of bright stars within ~1 arcmin of the
GRB position.

The empirical relation Pgp < 0.09E(B — V) (Serkowski,
Matheson & Ford 1975) gives Pgp ~ 0.3 per cent, which compares
well with the value derived above.

We now subtract from the GRB ¢ and u values the ggp and ugp
found above, to remove the (constant in time) component to the
polarization caused by the Galactic interstellar medium (ISM). We
propagate the errors on the GIP Stokes parameters into the resulting
corrected values ggpeorr and Ugipeorr- AS is clear from Table 1, the
afterglow polarization at very early times (e.g. lin/, lin3) all but
vanishes, indicating that at early times the detected polarization is
dominated by GIP. In many epochs, the ggipeorr and ugipcorr €ITOrS
are dominated by the uncertainties in the GIP Stokes parameters.
We compute GIP-corrected values for the polarization and position
angle, which will bring the measured values on to an absolute scale.
It is clear that the errors op are increased dramatically, while P
decreases in several epochs (to near zero in e.g. linl), i.e. a drop in
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Table 2. Linear polarization values, where coordinate definitions are
used as in Fig. 2. All values have been corrected for polarization bias
(after correction for GIP in the case of the last two columns), see Sec-
tion 2.1.3. The uncertainties in the GIP ¢, u value are fully propagated
and dominate the uncertainties in the GRB afterglow GIP-corrected ¢,
u. The GIP-corrected polarization is very low (with inferred values of
zero in two cases), and as such the errors on 6 are very large (as oy is a
function of 1/P, see Section 2.1.2).

ID Piin 0 Piin,GIPcorr 0GIPcorr

(per cent) (degrees) (per cent) (degrees)
linl 0364013  126.1+193 0 (0.32)"
lin2 038 +0.12 143.1+17.7 0.21 £0.31 177.0 £ 47.5
lin3 024 +£0.11  60.2 +£25.1 0.56 +£0.27  37.7+£24.7
lin4 0.224+0.12 1485+284 026+£031 924437
lin5 0354012  13214+19.0 0 (0.32)"
lin6 0.90+0.12 1689 +79 1.07 £0.30 179.2 + 16.1
lin7 0.59+0.12  1695+120 0.78+031 39+21.2
lin8 0.84 £0.13 1574 £8.8 0.84 £0.30 171.1 £19.9
lin9 1.20+£0.17 1755+ 8.1 144+032 22+126
linl0  0.65+0.17 177.7+147 094+032 8.0=£18.6
linll 1.77+£ 032  78.6 £ 10.2 1.73+£ 036 69.8 +11.7
lin12  3.07+032 62.8+59 3254+035 57.6%6.1
linl3 1.53+032 2954119 1.99+035 27.6 £ 10.0
linl4 1.89£032 1164 +98 142+£036 1146+ 14.0
linl5 0.81+033 110.2+21.7 0274038 101.6 +47.1
linl6 145+033 107.7+13.0 1.00+£0.38 102.2+20.2
linl7  0.54+025 147.0+240 0414034 168.8+36.6
linl8 0524+026 3954253 097 +£0.32 328+ 17.8
linl9 142+027 97.6 +10.7 1.08 £0.35 88.7+17.9
lin20 140+£032 161.6 £ 13.1 145+£037 169.0 £ 14.3
linK* 20408 10.9 + 20.9 20+0.8 10.9 + 20.9

4Combined value from linK1, linK2 and [inK3. The GIP correction in the
K band is more than an order of magnitude smaller than the statistical
error in the polarization, so no correction is made. PSee Simmons &
Stewart (1985) for the probability of correctly inferring true polarization
po = 0 from measured polarizations P using a maximum likelihood
estimator. The number in parentheses is the 67 per cent confidence
interval boundary.

Plo p. At the same time, the statistical detection signal to noise (i.e.
SNR of /;, simply referred to as SNR in Section 2.1.2) stays the
same. As the polarization bias is a function of both SNR and P/o p,
the polarization bias correction is much larger in several epochs
after GIP correction, showing the necessity of treating GIP effects
in ¢, u space rather than P, 6 space in low polarization regimes. In
several cases the Wardle & Kronberg prescription is not valid (see
Simmons & Stewart 1985), and we use the methods recommended
by Simmons & Stewart (1985) for low P/o p situations (which use
a maximum likelihood estimator; this estimator has the lowest bias
factor and lowest risk function values in this signal-to-noise range).
In two cases this led to robust zero polarization values. We refer to
Simmons & Stewart (1985) for a discussion on the probability of
correctly inferring zero polarization for different estimators.
All resulting values are listed in Table 2.

2.2 K-band linear polarimetry

2.2.1 Data acquisition

We obtained an imaging polarimetry data set using the short-wave
polarization (SWP) mode of the ISAAC instrument mounted on
Unit Telescope 3 (Melipal) of the VLT, using the K filter. Observa-
tions coincided in part with R-band linear polarimetry, see Table 1.
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ISAAC SWP mode uses a similar approach to FORS2 to obtain
polarimetry: a Wollaston prism is inserted in the light path, and the
incoming light is split into an ordinary and extraordinary beam (the
o and e beam) that are perpendicularly polarized. The o and e beams
are imaged simultaneously, using a mask to avoid overlap. The an-
gular separation of the 0 and e images is wavelength dependent. The
main difference between ISAAC and FORS?2 imaging polarimetry
is that a half wavelength plate is not present in ISAAC, requiring
rotation of the instrument to obtain observations at the necessary
angles, and the location of ISAAC in the Nasmyth focus.

At each instrument angle we use integration times of 4 x
15 s, executed four times with significant dithering to facilitate
sky subtraction. Because of the aperture mask, less than half of the
field of view is visible at any given rotation angle, and one generally
uses a dither pattern designed to sample the entire field. However,
as the afterglow is faint and polarization low, we dither such that
the afterglow always stays within the mask opening. After these
4 x 60 s exposures, the instrument is rotated, and observations are
repeated for the new position angle. By mistake we employed cu-
mulative rotation offsets of 0, 22.5, 22.5 and 22°5. As ISAAC does
not have a half wavelength plate, the better choice of cumulative an-
gles would have been 0, 45, 45, 45, so as to achieve the same effects
as in the FORS data (switching of the o and e images to minimize
flat-field errors and Wollaston throughput uncertainties). These se-
ries of observations are repeated three times, resulting in complete
sets linK1, linK2 and [inK3. Note that because of the rotation of
the instrument, field stars are only visible in some of the rotation
angles and rotate behind the mask at other angles. We note that a
series of data were taken before /inKI with an erroneous dither-
ing pattern: the afterglow disappeared behind the aperture mask at
the third and fourth angle. In further analysis we will only use the
complete cycles linK1-linK3: the calibration as described below
requires measurement of both ¢ and u for a given parallactic angle.

2.2.2 Data reduction and calibration

Data were corrected for dark current, flat fielded and background
subtracted using tasks in IRAF, and the four exposures of 60 s per
angle per cycle were co-added. Aperture photometry was performed
on the e and o images of the afterglow, in the same way as described
above for FORS2. We compute the normalized Stokes parameters:

Lo,0 — 1e0) (Up.45 — Io.45)
([0.0 + Ie,O) (10,45 + 1&,45) ’

using the data with rotation angles 0 and 45°. As we did not take
data with 90° and 135° angles, we cannot use these to cancel out
systematics as we did with the FORS2 data. We expect these effects
to be of the same order or smaller as the statistical errors (the
afterglow was faint in K). We also compute Stokes parameters from
the 2225 and 67°5 data:

g=0/1= and u=U/I=

(o205 — le2s)
= ( I) - and
o /1) 225+ 1 225)

_ Uper5 — Le615)
o615+ Le15)

which we will calibrate independently [they differ from (g, u) by a
rotation in coordinate basis].

ISAAC is a Nasmyth focus instrument, and as such less well
suited to accurate polarimetry: the instrumental polarization of Nas-
myth instruments is dominated by reflection of the tertiary mirror
M3 (at45°, therefore introducing strong polarization which is highly

u, = U/

dependent on position or parallactic angle), which requires partic-
ular care in calibration. Our calibration strategy closely follows the
recommendations of Joos et al. (2008) and Witzel et al. (2011).
These authors highlight in their papers the great benefits of using
a train of Mueller matrices to create a polarimetric model of the
instrument plus telescope for Nasmyth mounted instruments: all
elements contributing to instrumental polarization effects are de-
scribed in 4 x 4 matrices acting on the Stokes vector S. These
matrices are then multiplied to give a Mueller matrix of the whole
telescope/instrument for a given wavelength and a given set-up. We
refer to Joos et al. (2008) for a detailed breakdown of the required
matrix components. The Mueller matrix M(6, A) describing the ef-
fects of the M3 mirror on the polarization is a function of the light
incident angle 6, wavelength X and the refraction index components
n and k of the reflecting surface of M3. For these latter values we
use the values at the K band as derived by Witzel et al. (2011).

We obtained observations of the unpolarized DA white dwarf GJ
915 (WD 2359—434; Fossati et al. 2007) using the same instrument
rotation angles as the science data and at a similar parallactic angle
(60° at mid of the observation versus 50° for the mid of the range of
the science series). Our calibrator observations were obtained just
before the ISAAC science observations. We add to these observa-
tions from the European Southern Observatory (ESO) data archive
of unpolarized white dwarf WD 1620—391 (using identical rotator
angles as our data), taken on 2009 September 16, with parallactic
angle 76°. Using these stars and the Mueller matrices described
above we calibrate our Stokes parameters. Using our own standard
star observations and those of 2008 gave consistent results within
the errors. Because of the way we dithered our data and the low
number of bright field stars, we cannot refine our calibration using
field stars. We then rotate the (¢», u,) values to the same orientation
as (g, u). Because the source was fairly faint in the Ks band, the er-
rors on the Stokes parameters of /inK1-3 are large, and we therefore
combine them together, finding a combined g = 0.0204 & 0.0078
and « = 0.000 81 £ 0.0083.

There are no field stars available for an independent GIP cali-
bration in the Ks band, but we can estimate the likely contribution
of GIP to the observed values by using the approximate relation
p(L) oc A718 (see Martin & Whittet 1990). While the value of the
exponent has fairly large uncertainty, it is clear that a GIP in the
R band of ~0.45 per cent corresponds to an expected GIP contri-
bution in the Ks band of <0.1 per cent, i.e. an order of magnitude
smaller than the statistical uncertainties in the value above. We there-
fore make no correction to the Ks-band Stokes parameters above.
Using the same techniques as for the FORS2 data we compute a
bias-corrected linear polarization in the Ks band of 2.0 £ 0.8 per
cent with a position angle of 10.9 £ 20°9.

2.3 X-shooter spectroscopy

After the discovery of an optical afterglow, we activated our VLT
X-shooter (mounted on UT2 of the VLT, Kueyen) programme
for GRB afterglow spectroscopy (programme ID 084.A-0260, PI:
Fynbo). We obtained 4 x 600 s exposures with midpoint 0.1485d
(1.283 x 10 s) after burst. X-shooter is an echelle spectrograph with
three arms, the UVB, VIS and NIR arms, separated by dichroics,
resulting in a wavelength coverage ~0.3-2.4 pm. We used a 1 x
2 binning in the UVB and VIS arms (binning in the wavelength
coordinate). A 5 arcsec nod throw was used to facilitate accurate
sky subtraction, particularly important in the NIR arm, resulting in
exposures taken in an ABBA pattern. We processed the data using
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version 1.3.0 of the ESO X-shooter data reduction pipeline (Goldoni
et al. 2006), using the so-called physical mode.

Flux calibration is achieved using exposures of the flux standard
star BD+17 4708. Telluric line correction of the NIR arm spec-
trum was performed using methods outlined in Wiersema (2011)
with the spExToOL software (Cushing, Vacca & Rayner 2004), using
observations of the BOV star HD 16226. The resulting spectra are
normalized.

2.4 Optical and near-infrared photometry

2.4.1 GROND afterglow photometry

The seven-channel Gamma-Ray Burst Optical and Near-Infrared
Detector (GROND; Greiner et al. 2008) mounted on the ESO 2.2 m
telescope observed the field of GRB 091018 using the g', #', i’, 7, J,
H, Ks filters beginning as soon as the source became visible from
La Silla observatory (Filgas et al. 2009). Photometric calibration
was achieved through observations of photometric standard star
fields. A spectral energy distribution using some of the GROND
data presented here was published earlier in Greiner et al. (2011).

2.4.2 Faulkes Telescope South afterglow photometry

We observed the optical afterglow using the Faulkes Telescope
South (FTS), at Siding Spring, Australia. Observations were per-
formed at two different epochs (about 15.3 h and 3.7d after the
burst event), using the R and i filters. These observations are com-
plementary to those of GROND, filling the gap in coverage during
daytime in Chile. All the images were cross-calibrated using the
GROND field star measurement.

2.4.3 VLT afterglow photometry

As part of our linear and circular polarization monitoring cam-
paign described above, a large series of acquisition images were
taken for accurate positioning of the afterglow within the aperture
mask. Within each of these images the afterglow is detected at good
signal-to-noise levels. We reduce the 14 FORS2 and two ISAAC ac-
quisition images using flat fields, dark and bias fields taken the same
night. The FORS2 acquisition data were taken using the Rypecia fil-
ter, and the ISAAC data using the K filter. We use a sample of field
stars in the GROND data to bring the FORS2 acquisition photom-
etry to the same homogeneous calibration. The ISAAC data were
calibrated using four 2MASS stars in the field of view. The resulting
magnitudes were converted to AB magnitudes; the resulting values
are reported in Table 3.

In addition to the polarimetry acquisition images, we also pho-
tometer the acquisition image taken for the X-shooter spectroscopy,
calibrating on to the GROND system.

2.4.4 Gemini-South afterglow and host photometry

We followed the late-time afterglow with Gemini Multi-Object
Spectrograph (GMOS)-South, mounted on the Gemini South tele-
scope, Chile. We observed the source at three epochs, in Sloan r
band (GMOS filter r_G0326), see Table 3. We reduce the GMOS
images using twilight flat fields and bias fields taken the same night
using tasks from the GEMINI packages in IRAF. In all three data sets
the host galaxy of the burst is visible. Photometric calibration is
performed relative to the GROND calibration.
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Table 3. Log of our photometry. All magnitudes are AB magnitudes. These
magnitudes are not corrected for the Galactic foreground extinction.

Instrument, Filter ~ Time since burst ~ Exposure time Magnitude
(@ (s)

GROND, g 0.12693 115 19.06 £ 0.04
0.12906 115 19.05 £ 0.03
0.13125 115 19.08 £ 0.02
0.13344 115 19.06 £ 0.02
0.13575 115 19.06 £ 0.02
0.13793 115 19.07 £ 0.02
0.140 12 115 19.08 & 0.01
0.14231 115 19.09 £+ 0.01
0.144 57 115 19.11 £0.02
0.14670 115 19.12 4+ 0.02
0.148 89 115 19.14 £ 0.02
0.15109 115 19.12 £ 0.02
0.15330 115 19.15 £ 0.02
0.15551 115 19.15 £ 0.02
0.15762 115 19.14 £ 0.02
0.15985 115 19.15 £ 0.02
0.162 16 115 19.16 £ 0.02
0.16429 115 19.17 £ 0.02
0.166 48 115 19.17 £ 0.02
0.168 67 115 19.16 £ 0.02
0.17096 115 19.17 £ 0.02
0.173 18 115 19.22 £ 0.02
0.17541 115 19.23 £ 0.02
0.177 65 115 19.26 4+ 0.02
0.17998 115 19.32 +0.02
0.182 14 115 19.33 £ 0.02
0.18437 115 19.34 £ 0.02
0.186 60 115 19.34 £ 0.02
0.18891 115 19.35 £ 0.02
0.19115 115 19.34 £ 0.02
0.19333 115 19.36 £+ 0.02
0.19552 115 19.38 £ 0.02
0.197 81 115 19.39 £ 0.02
0.19996 115 19.42 £ 0.02
0.202 14 115 19.46 £+ 0.02
0.20433 115 19.47 £ 0.02
0.206 67 115 19.48 £ 0.02
0.208 86 115 19.48 £0.02
0.21105 115 19.51 £0.02
0.21324 115 19.54 £0.02
0.21556 115 19.54 £ 0.02
0.21767 115 19.53 £0.02
0.21985 115 19.54 £ 0.02
0.22204 115 19.54 £ 0.02
0.22433 115 19.53 £ 0.02
0.22648 115 19.51 £0.02
0.228 67 115 19.52 £ 0.02
0.23086 115 19.54 £ 0.02
023313 115 19.54 £ 0.02
0.23526 115 19.54 £ 0.02
0.23749 115 19.54 £ 0.02
0.23977 115 19.54 £ 0.02
0.348 60 675 20.01 £ 0.02
0.44872 688 20.21 £0.02
1.209 17 675 21.76 + 0.04
1.30936 688 21.82 £0.04
1.494 85 688 22.02 £+ 0.05
222673 1727 22.53 £0.04
3.15788 1722 22.94 4+ 0.07

GROND, r 0.12693 115 18.87 £ 0.03
0.12906 115 18.86 £+ 0.02

220z Yolely gz uo 4asn O LS| - SUND Ad €602001/2/1/9Z/9101Me/SeluLu/wod dno-dlwepede//:sdiy woly papeojumod



10 K. Wiersema et al.

Table 3 — continued

Table 3 — continued

Instrument, Filter ~ Time since burst ~ Exposure time ~ Magnitude Instrument, Filter ~ Time since burst ~ Exposure time  Magnitude
(@ (s) (@ (s)
0.13125 115 18.85 £ 0.02 0.13793 115 18.79 £ 0.02
0.13344 115 18.87 £+ 0.02 0.140 12 115 18.79 £+ 0.02
0.13575 115 18.88 £ 0.02 0.14231 115 18.78 £ 0.02
0.13793 115 18.91 £ 0.02 0.144 57 115 18.81 £ 0.03
0.140 12 115 18.91 £0.02 0.14670 115 18.80 £ 0.02
0.14231 115 18.92 £0.02 0.148 89 115 18.82 £+ 0.02
0.14457 115 18.93 £0.02 0.15109 115 18.80 £ 0.02
0.14670 115 18.93 £+ 0.02 0.15330 115 18.84 £+ 0.03
0.148 89 115 18.94 £0.02 0.15551 115 18.84 £ 0.02
0.15109 115 18.94 £+ 0.02 0.15762 115 18.84 £+ 0.02
0.15330 115 18.94 £0.02 0.159 85 115 18.84 £0.02
0.15551 115 18.96 £ 0.02 0.162 16 115 18.85 £ 0.02
0.15762 115 18.97 £0.02 0.16429 115 18.84 £0.02
0.15985 115 18.98 £ 0.02 0.16648 115 18.84 £+ 0.02
0.162 16 115 18.98 £+ 0.02 0.168 67 115 18.82 £ 0.02
0.16429 115 18.99 £ 0.02 0.17096 115 18.84 £+ 0.02
0.16648 115 18.98 £0.02 0.173 18 115 18.88 £ 0.02
0.168 67 115 18.97 £+ 0.02 0.17541 115 18.91 £0.02
0.17096 115 18.99 £0.02 0.17765 115 18.95 £0.02
0.173 18 115 19.03 £ 0.02 0.17998 115 18.97 £+ 0.02
0.17541 115 19.06 £ 0.02 0.182 14 115 19.01 £ 0.02
0.177 65 115 19.08 £ 0.02 0.18437 115 19.03 £ 0.02
0.17998 115 19.11 £0.02 0.186 60 115 19.02 £ 0.02
0.18214 115 19.14 £ 0.02 0.18891 115 19.03 £ 0.02
0.18437 115 19.15 £ 0.02 0.19115 115 19.02 £ 0.02
0.186 60 115 19.17 £ 0.02 0.19333 115 19.02 £+ 0.02
0.18891 115 19.15 £ 0.02 0.19552 115 19.02 £ 0.02
0.19115 115 19.17 £ 0.02 0.19781 115 19.07 £+ 0.02
0.19333 115 19.17 £ 0.02 0.19996 115 19.09 & 0.02
0.19552 115 19.18 £+ 0.02 0.202 14 115 19.12 £ 0.02
0.197 81 115 19.21 £0.02 0.204 33 115 19.13 £0.02
0.19996 115 19.24 £ 0.02 0.206 67 115 19.15 £ 0.02
0.202 14 115 19.25 £0.02 0.208 86 115 19.15 4+ 0.02
0.20433 115 19.27 £ 0.02 0.21105 115 19.16 £+ 0.02
0.206 67 115 19.30 £+ 0.02 0.21324 115 19.18 £ 0.02
0.208 86 115 19.32 £ 0.02 0.21556 115 19.20 £+ 0.02
0.21105 115 19.33 £0.02 0.21767 115 19.21 £0.02
0.21324 115 19.33 £ 0.02 0.21985 115 19.21 £ 0.02
0.21556 115 19.37 £ 0.02 0.22204 115 19.18 £0.02
0.21767 115 19.36 £+ 0.02 0.22433 115 19.21 £ 0.02
0.21985 115 19.37 £ 0.02 0.22648 115 19.20 £ 0.02
0.22204 115 19.36 £+ 0.02 0.228 67 115 19.21 £ 0.02
0.22433 115 19.33 £ 0.02 0.23086 115 19.21 £0.02
0.22648 115 19.34 £ 0.02 023313 115 19.24 £ 0.03
0.228 67 115 19.35 £ 0.02 0.23526 115 19.23 £ 0.02
0.23086 115 19.35 £ 0.02 0.23749 115 19.21 £ 0.03
0.23313 115 19.34 £ 0.02 0.23977 115 19.21 £ 0.03
0.23526 115 19.35 £ 0.02 0.348 60 675 19.67 £+ 0.02
0.23749 115 19.35 £ 0.02 0.44872 688 19.85 £+ 0.02
0.23977 115 19.37 £ 0.02 1.209 17 675 21.47 £ 0.06
0.348 60 675 19.82 £+ 0.02 1.309 36 688 21.51 £ 0.06
0.44872 688 20.01 £ 0.02 1.494 85 688 21.64 £ 0.10
1.209 17 675 21.59 £+ 0.03 2.22673 1727 22.03 £ 0.08
1.309 36 688 21.68 £0.03 3.15788 1722 22.53 £0.13
1.494.85 088 21.88 £0.05 GROND, z 0.12693 115 18.59 £ 0.05
2.22673 1727 22.34 £ 0.04
3.15788 1722 22.81 £0.10 0.12906 13 18.58 £0.05
0.13125 115 18.58 £ 0.03
GROND, i 0.12693 115 18.71 £ 0.04 0.13344 115 18.59 £+ 0.03
0.12906 115 18.71 £0.03 0.13575 115 18.61 £ 0.03
0.13125 115 18.72 £ 0.02 0.13793 115 18.65 £+ 0.03
0.13344 115 18.75 £ 0.03 0.140 12 115 18.63 £ 0.03
0.13575 115 18.76 £+ 0.03 0.14231 115 18.65 £+ 0.03
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Table 3 — continued

Polarimetry of the afterglow of GRB 091018 11

Instrument, Filter ~ Time since burst ~ Exposure time ~ Magnitude Instrument, Filter ~ Time since burst ~ Exposure time =~ Magnitude

(@ (s) () (s)
0.144 57 115 18.64 £+ 0.03 0.22789 730 18.77 £ 0.03
0.14670 115 18.66 £ 0.03 0.23674 730 18.79 4 0.03
0.148 89 115 18.70 £ 0.03 0.348 89 730 19.17 £ 0.03
0.15109 115 18.71 £ 0.03 0.44903 730 19.37 4+ 0.04
0.153 30 s 1870 £0.03 GROND, H 0.13048 730.08 18.19 £+ 0.05
0.15551 115 18.68 £+ 0.03

0.13932 730.08 18.18 & 0.04
0.15762 115 18.71 £ 0.03

0.148 12 730.08 18.24 4+ 0.04
0.15985 115 18.71 £ 0.03

0.156 88 730.08 18.27 £ 0.03
0.162 16 115 18.68 + 0.03

0.16570 730.08 18.22 +£0.04
0.16429 115 18.67 £+ 0.03

0.174 60 730.08 18.31 +0.03
0.16648 115 18.69 £ 0.03

0.18359 730.08 18.34 £ 0.03
0.168 67 115 18.68 £+ 0.03

0.19251 730.08 18.38 + 0.03
0.17096 115 18.70 £ 0.03

0.20136 730.08 18.51 £0.03
0.173 18 115 18.74 £ 0.03

0.21024 734.62 18.53 4+ 0.04
0.17541 115 18.80 £ 0.03

0.21909 726.82 18.60 & 0.04
0.177 65 115 18.82 £+ 0.03

0.22789 730.08 18.55 4+ 0.04
0.17998 115 18.82 £ 0.03

0.23674 730.08 18.57 £ 0.03
0.182 14 115 18.87 £ 0.03

0.348 89 730.08 19.04 £ 0.09
0.18437 s 18.90 £ 0.03 0.44903 730.08 19.22 4+ 0.09
0.186 60 115 18.87 £ 0.03 ' ’ ' ’
0.18891 115 18.89 £0.03 GROND, K 0.13048 730 17.95 £ 0.07
0.19115 115 18.88 £ 0.03 0.13932 730 18.06 £+ 0.07
0.19333 115 18.88 £ 0.03 0.148 12 730 17.96 £ 0.06
0.19552 115 18.89 £+ 0.02 0.156 88 730 18.10 £ 0.06
0.197 81 115 18.90 £ 0.03 0.16570 730 18.08 & 0.06
0.19996 115 18.91 £ 0.03 0.174 60 730 18.17 £ 0.06
0.202 14 115 18.94 4 0.03 0.18359 730 18.25 4 0.06
0.20433 115 18.93 £+ 0.03 0.19251 730 18.21 £ 0.06
0.206 67 115 18.99 4 0.03 0.201 36 730 18.37 & 0.06
0.208 86 115 19.03 £ 0.03 0.21024 735 18.32 4+ 0.06
0.21105 115 19.04 & 0.03 0.21909 727 18.35 4+ 0.06
021324 115 19.01 £ 0.03 0.22789 730 18.32 4+ 0.06
0.21556 115 19.06 & 0.03 0.23674 730 18.42 4 0.06
0.21767 115 19.05 4+ 0.03 0.348 89 730 18.83 £ 0.07
0.21985 115 19.08 & 0.03 0.449 03 730 19.07 4 0.08
0.22204 13 19.09 £ 0.03 FORS?2, Rypecial® 0.123 84 20 18.85 £ 0.03
0.22433 115 19.07 4 0.03

0.13707 20 18.90 £ 0.03
0.22648 115 19.08 4 0.03

0.17257 30 19.03 £ 0.03
0.228 67 115 19.10 & 0.03

0.18747 30 19.16 £ 0.03
0.23086 115 19.12 £ 0.03

0.22093 30 19.36 £+ 0.03
023313 115 19.06 £ 0.03

0.25426 30 19.37 £0.03
0.23526 115 19.05 £+ 0.03

0.44461 30 20.01 £ 0.03
0.23749 115 19.07 & 0.03

1.12910 60 21.33 £ 0.04
0.23977 115 19.07 £ 0.03

1.163 63 60 21.43 +0.03
0.348 60 675 19.51 +0.02

1.19748 60 21.46 £+ 0.03
0.44872 688 19.70 £ 0.03

1.34318 60 21.45 4+ 0.03
1.209 17 675 21.24 4+ 0.07

1.37520 60 21.56 & 0.03
1.309 36 688 21.32 +£0.08

1.43264 60 21.71 £ 0.03
1.494 85 688 21.61 £0.12 236948 120 22,40 + 0.05
2.22673 1727 22.00 £ 0.09 ’ ' ’
3.15788 1722 22.64 £0.20 X-shooter, R* 0.131725 20 18.91 £ 0.02

GROND, J 0.13048 730 18.34 +0.03 ISAAC, Ks 021572 60 18.70 £+ 0.10

0.13932 730 18.38 + 0.03 0.27302 60 19.01 & 0.09
0.148 12 730 1840 £0.03 Gemini GMOS, r  6.269 22 900 23.25 4+ 0.04
0.156 88 730 18.45 4+ 0.03

21.28034 900 23.42 £0.05
0.16570 730 18.38 + 0.03 23,392 84 720 23.40 4 0.10
0.174 60 730 18.52 4+ 0.03 ’ ' ’
0.18359 730 18.58 £ 0.03 FT-S, Bessel R“ 0.66238 1800 20.82 £+ 0.02
0.19251 730 18.58 4+ 0.03 0.758 56 1800 20.99 £ 0.03
0.20136 730 18.68 £+ 0.03 0.82398 1800 21.23 +£0.03
0.21024 735 18.73 +0.03 3.71735 3600 23.03 £ 0.09
0.21909 727 18.82 4+ 0.03
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12 K. Wiersema et al.

Table 3 — continued

Table 3 — continued

Instrument, Filter ~ Time since burst ~ Exposure time ~ Magnitude Instrument, Filter ~ Time since burst ~ Exposure time  Magnitude
(@ (s) (@ (s)

FT-S, Sloan i 0.63924 1800 20.49 £ 0.02 0.6312 7587.9 22.01 £0.19
0.73542 1800 20.71 £ 0.03 0.9308 24671.6 22.34+0.24
gzgg 22 }288 ;8;2 i 88451 UVOT, uvm?2 0.0095 19.8 17.66 £0.17
377179 900 2238 4+ 042 0.0124 19.7 18.05 £ 0.21
378300 900 2242 + 035 0.0764 199.8 20.02 £0.17

0.4599 899.8 21.29 £ 0.17

UVOT, white 0.0017 149.8 15.33 £0.02 0.5460 790.2 21.70 £0.23
0.0066 19.8 16.70 £ 0.05 0.7027 8389.3 22.10+£0.21
0.0086 19.7 16.97 £ 0.05 0.8646 899.7 22.04 £0.28
88122 }‘9‘987 i;ig i ggz UVOT, uvw2 0.0069 19.8 17.88 £0.15
0.0693 199.8 19.07 £ 0.04 0.0089 198 18.05£0.16
0.1471 361 19.75 £ 0.05 0.0139 198 18.52 4020
0.3406 1614.2 20.59 + 0.07 0.0717 199.7 20.37 £0.16
1.0156 566.6 21.73 £0.18 0.2581 748.1 21.2740.14
1.4510 40789.7 22.66 £+ 0.27 0.5236 899.8 2181 £0.18
1.9175 20362 2286 4 0.19 0.8314 19056.1 23.05 £ 0.32
2.5761 29994.8 23.35 £ 0.28 ;gégg ig? ?égé ii;z?
3.2865 46836 22.82£0.18 7.1639 325158.9 >22.50
3.9556 58829.1 22.64 £ 0.25
5.2311 138900.4 23.79 £0.36 “Calibrated on to Sloan r using GROND.

6.6682 98 684.1 23.26 £0.23
8.4084 1216247 >23.81 2.4.5 UVOT afterglow photometry

UVOT, v 0.0072 19.8 16.34 +0.14 Swift’s UVOT (Roming et al. 2005) began settled observations 68 s
0.0092 19.8 16.84 £0.18 . . . . .
00132 194.1 16.92 4 0.14 after the BAT trigger, beginning with a 150 s exposure in the white
0.0740 1998 1851 4017 filter followed by a 245 s exposure in the u band and thereafter cy-
0.2803 476 19.45 + 0.23 cling through all seven lenticular filters. We performed photometry
0.7414 36383.3 20.63 & 0.26 and created light curves using the tool uvotproduct provided in the

Swift software. The latest calibration data as of 2011 July were used.

Uvor, b 0.0063 197 1620 £ 0.08 We binned the data requiring a minimum detection significance of
0.0083 19.7 16.45 + 0.09 qung &

00143 1918 17.22 4 0.09 30 per bin; errors are given at the 1o level.

0.1304 1911.2 19.38 £ 0.14

0.1432 299.8 19.19 £0.12 3 RESULTS

0.3259 906.9 20.15 £ 0.15

8232 32(6)2 ;8; i gi; 3.1 Light curves and spectral energy distributions
?gg;é ég39212 5(1)345‘ i 824 3.1.1 X-ray light curve fits

UVOT, u 0.0047 2497 16.05 - 0.03 The Swift XRT X-ray data, as analysed through the Swift XRT
0.0080 19.7 16.71 & 0.08 catalogue® (see Evans et al. 2009 for details), show an initial shallow
0.0140 193.5 17.27 + 0.08 decay phase, with power-law decay index a; = 0.417)75. A break
0.0811 199.7 19.00 £ 0.08 in the light curve at 58775 s sees the decay continue with a steeper
0.2119 717.9 19.89 + 0.08 index ay = 1.24 & 0.04. Between ~10* and 10° s a broad bump
0.4035 907 20.57 £ 0.11 is visible in the X-ray light curve. The Swift XRT catalogue lists
0.4797 693 20.56 £0.13 the best-fitting solution (x2/dof = 117/133) using two breaks in
0.6411 7484.4 2124014 quick succession, at 2.24%3%, x 10* and 2.697}77 x 10* s, with the
?i?éi 23‘831769 6 ;32; i 82; first leading to a negative index (i.e. a brightening, but with poorly
22041 34276.6 2235 4 0.35 constrained index) and the last break leading to a final decay index
29720 87931 22,96 £ 0.3 of ay = 1.597( 7. It is likely that the behaviour between ~10* and
3.6073 12000.2 22.40 + 0.32 103 s is the result of a system of late-time flares (or some other form
5.0600 132 684.3 23.01 + 0.35 of short time-scale rebrightening), in which case a more realistic
7.4991 278015.6 23.33+0.28 alternative description may be that of a single break at 4.7 x 10*

UVOT. wowl 0.0077 198 1741 +0.13 s, withs = 1.17 £0.03 and a3 = 1.54713. This gives a poorer x>

’ 0.0098 198 17.70 + 0.15 statistic (x>/dof = 137/135), as a cluster of data points interpreted
0.0137 193.7 17.83 +0.11 as due to flaring/bump in this scenario are off the best fit. The X-ray
0.0788 199.7 19.80 + 0.13 light curve and the fit are shown in Fig. 10.
0.1885 434.9 20.27 £0.12
0.3930 899.7 20.96 £0.13
0.4704 899.8 21.35+0.17 3 http://www.swift.ac.uk/xrt_live_cat/
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Figure 4. Optical light curves used in this paper (for their values, see
Table 3). All magnitudes are in the AB photometric system, and the FORS2
Rgpecial magnitudes are converted to r. Light curves in different bands are
offset for clarity.

3.1.2 Optical light curve fits

The optical light curves presented in this paper have their densest
coverage through the GROND observations, as described above.
Figs 4, 5, 6 and 7 show the presence of bumps in the light curve, on
top of the usual power-law decay. Bumps in afterglow light curves
are fairly common, though they require good signal to noise to
be identified. Three distinct bumps, each lasting roughly half an
hour, are readily visible in the first night data, and are indicated by
dashed vertical lines in Fig. 6 (see Section 3.1; these bumps are also
detected by PROMPT (Panchromatic Robotic Optical Monitoring
and Polarimetry Telescopes), LaCluyze et al. 2009). Similar to the
X-rays, the presence of bumps makes the light curve fits somewhat
complex: y? fit statistics are largely driven by data points belonging
to bumps covered by GROND. To find a best possible way to dis-
cern bumps and power-law breaks, we use the method described in
Curran et al. (2007b): data from all filters were combined through a
free offset fit (i.e. we assume that data from all filters have the same
temporal decay but we make no assumptions regarding the relative
offsets). Simulated annealing is used to fit the offsets, temporal in-
dices and break times, and a Monte Carlo analysis with synthetic
data sets is used for error determination: the normalization error is
added in quadrature to the data points in the resulting combined light
curve. We exclude very early data (i.e. the first UVOT data point
at around 100 s), late-time UVOT data (>10° s) and the late-time
Gemini data, which are nearly entirely host dominated. The result-
ing shifted data points are placed on an arbitrarily scaled flux scale,
and we fit this resulting dense light curve. We fit a broken power

© 2012 The Authors, MNRAS 426, 2-22
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Figure 5. The linear polarimetry light curve with broad-band light curves
as reference. The top panel shows the XRT X-ray light curve over this
interval. The panel below that shows the r (red) and i (yellow) light curves
over this time interval (i magnitudes shifted by —0.5 mag). The lower two
panels show the linear polarization and polarization position angle. We plot
the polarimetric data points as observed, i.e. before correction for Galactic
dust-induced polarization. The inset shows the circular polarimetry (four
measurements of Stokes V/I) performed in between lin!/ and /in2. The
horizontal thin red line shows the V/I = 0 level, and the blue dashed line
shows the average of the four data points, V/I = —0.0002, with the solid
orange lines indicating the error 0.000 75, leading to a 2o limit 0.15 per cent.

law, which gives a reduced x> = 1.68 for 365 degrees of freedom
(dof). We then add Gaussian functions one by one to empirically
take care of the bumps in the light curve (i.e. this is not a physically
motivated description of light curve bumps). The best fit is obtained
using three Gaussians and a broken power law, and is displayed
in Fig. 10, with reduced x> = 1.12 (356 dof). We find best fitting
parameters for the broken power-law component of oy = 0.81 £
0.01, @, = 1.33 £ 0.02 and a break time of fyeax = 3.23 4+ 0.16 x
10* s. The three Gaussians have best fitting centre times 1.43 +
0.01 x 10% 1.68 + 0.01 x 10* and 2.13 & 0.06 x 10* s. Their
widths as given by the standard deviation of the fitted Gaussians
are o = 1140 £ 200, 370 £ 80 and 1026 + 230 s, respectively,
though we note that the third bump is only partially covered by
data points, resulting in the larger errors in central time and width.
Adding the late-time Gemini data to the data set after subtracting
the host brightness (the last Gemini epoch) does not change the fits.
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Figure 6. Panels are as in Fig. 5, showing the behaviour of the source dur-
ing the first night of polarimetric observations (/in/—lin10) — note the linear
time axis. The lower two panels show the linear polarization and polariza-
tion position angle, but this time we plot both the polarimetric data points
as observed (red) and after correction for Galactic dust-induced polariza-
tion (green). The open black squares give the ISAAC Ks-band polarization
degree and angle. Data points with zero GIP-corrected polarization have no
associated position angle measurement. We note that position angles range
[0-180], i.e. one can add 180° to green data points with low angle values
(to any data point one can add or subtract 180°) to visually verify that they
behave similarly to the trend seen in the data before GIP correction. The
dashed vertical lines indicate the centres of three bumps found in the optical
light curve (fits are in Section 3.1).

3.1.3 Spectral energy distributions and light curve interpretation

In a study of the host galaxy dust extinction properties of sightlines
towards GRB afterglows using single epoch broad-band spectral
energy distributions (SEDs), Schady et al. (2012) report on a late-
time SED of the afterglow of GRB 091018. This SED (at 3 x 10*
s, using GROND, UVOT and XRT data) is best fitted with a broken
power law, indicating the presence of a synchrotron cooling break
in between X-ray and optical/UV wavelengths. We extend this anal-
ysis, fitting the X-ray—optical SEDs at three representative epochs:
at 10%, 3 x 10* and 10° s, using a fitting method described in detail
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Figure 7. Panels are as in Fig. 5, this time showing the behaviour of the
source during the second night of polarimetric observations (linl1-lin19).
A 180° rotation of the position angle is apparent, sampled in the first six
data points.

in Kriihler et al. (2011). We assume that there is no change in X-ray
absorption and optical extinction between the three epochs. We fit
using a broken power law (with the two power-law indices linked
with B; = B, — 0.5) and Small Magellanic Cloud-like extinction
law, shown by Schady et al. (2012) to be the best fit for this after-
glow, with the E(B — V) and N(H) fit simultaneously for all three
epochs. Bands with a possible contribution from the Lyman limit
are excluded from the fit. The fit statistics are computed using C
statistics (C-stat) in the X-rays (see Evans et al. 2009) and x>
the optical. The fits are displayed in Fig. 11. The three SEDs are
best fitted (x> = 27.04 using 31 bins, C-stat = 315.35 using 433
bins) with the following properties (errors at 90 per cent level con-
fidence): E(B — V) = 0.02470%%° N(H) = 1.7 4 0.8 x 10*' cm™2
and power-law slope 8, = 0.58 & 0.07. These values are in agree-
ment with the results of Schady et al. (2012) We find power-law
break energies Eprear = 0.0570:0,,0.05751. and 0025709, keV for
the SEDs at 10, 30 and 100 ks, respectively.

We now compare the decay indices and spectral indices to clo-
sure relations for some simple models. The spectral indices found
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Figure 9. Emission lines of the [O 1] doublet in the spectrum. The 2D spec-
trum is shown in the top panel. Weak residuals from imperfect subtraction
of sky emission lines can be seen as vertical stripes, also showing up as
narrow residuals in the 1D spectrum.

from the SED fits imply a power-law index for the electron energy
distribution p = 2.16 + 0.14. If the blast wave propagates in a ho-
mogeneous density medium, the predicted afterglow decay index
for the regime v < v, is 3(p — 1)/4 =0.87 £ 0.11, and for v > v, it
is 1.12 + 0.11. A wind-like medium (where density decreases with
r?) for v < v, would imply & = (3p — 2)/4 = 1.37 & 0.11, and
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Figure 10. The optical light curve, in arbitrary flux units as described
in Section 3.1, is shown in blue (top), with the best fitting light curve
superposed: a broken power law and three Gaussian components describing
the behaviour of flares. The red data points show the X-ray light curve, in
units of count rate, fitted with a double broken power law, see Section 3.1
for the fit parameters.
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Figure 11. X-ray—optical spectral energy distributions at three epochs (ob-
server frame). Fits are done with a broken power law with a fixed difference
between the two power-law spectral indices, and with the same X-ray ab-
sorption and optical extinction for all three epochs.

for v > v, it has the same index as for the homogeneous medium.
The values for a homogeneous medium agree well with the values
determined from the light curve fits (using the two-break model on
the XRT data) for the pre-break slopes, and are consistent with the
presence of a cooling break between X-ray and optical frequencies.
In addition, in a wind-like medium the cooling break frequency
should increase with time, which is not observed.

The break times in optical and X-rays are broadly in agreement,
and the SEDs (Fig. 11; the first SED is before the break, the last
after) show no evidence that the break is wavelength dependent
(chromatic). As such, identifying this break with a jet break is com-
pelling, particularly as this break is the second light curve break seen
in the X-ray afterglow, with the first likely marking the end of en-
ergy injection. However, we note that the post-break decay indices
(1.33 + 0.02 and 1.54 +£ 0.15 for optical and X-rays, respectively)
are too shallow compared to predictions from the standard fireball
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model, both in the case of non-sideways spreading jets (which pre-
dicts post-break decay indices of 1.52 4= 0.11 for optical and 2.12 +
0.11 for X-rays) and sideways spreading jets (which should give
post-break decay indices of p).

An alternative interpretation could be that the break is not a jet
break, but rather a break marking the start of the ‘normal’ afterglow
phase, i.e. the decay indices after this break are pre-jet break indices,
and the phase before this break is dominated by energy injection. In
this case the post-break optical index of 1.33 £ 0.02 is consistent
with the closure relations in the case of a wind medium, which pre-
dicts 1.37 & 0.11. However, in that interpretation the optical decay
index should be steeper than the X-ray one, and the predicted X-ray
decay index of 1.12 £ 0.11 is not consistent with the measurement.

‘We note that the homogeneous analyses of large samples of Swift
XRT afterglows have shown that a large fraction of afterglows with
candidate jet breaks (i.e. a light curve break significantly after a
plateau phase) produce post-break decay indices that are too shallow
compared to simple model predictions (Willingale et al. 2007; Evans
et al. 20009, their fig. 10; and Racusin et al. 2009, their fig. 2). Both
these papers further point out several additions to the models that
can possibly explain some of this discrepancy, for example the
presence of low-level continuous energy injection past the plateau
phase, or peculiar jet structure and sightline configurations. In the
following we will consider the observed break a candidate jet break,
and will discuss alternative options as well.

If the break is a jet break, we can correct the isotropic energy
Ei,, for beaming. Using Ej;, = 3.7 x 10°! erg (Golenetskii et al.
2009) and making the same assumptions as in Kocevski & Butler
(2008), we find a jet opening angle 6;. ~ 0.059 rad, or 374, leading
to log (E,) ~ 48.9. This is a fairly low value for E,,, but not un-
precedented: similar values are found for several other Swift bursts
(Kocevski & Butler 2008) and pre-Swift bursts (Frail et al. 2001).

3.2 Circular polarization

The presence of a (weak) ordered magnetic field in addition to a
chaotic, incoherent magnetic field generated by the post-shock tur-
bulence has been proposed (e.g. Granot & Konigl 2003) to explain
the non-detection of the swing in the linear polarization position
angle at the time of the jet break, expected in some models (e.g.
Lazzati et al. 2003). In this picture, the observed polarization may be
dominated by the weak large-scale ordered field, while emissivity
is dominated by the random tangled field made by the post-shock
turbulence. Polarization variability occurs as a result of changes in
the ratio of the ordered to random mean-squared field amplitudes
(Granot & Konigl 2003). This results in much weaker changes in the
polarization and polarization position angle light curve around the
jet break time. A direct test of this proposition can come from deep
circular polarization. Some searches have been performed at radio
wavelengths during radio flares (Granot & Taylor 2005), but with
fairly poor sensitivity (the best upper limit on circular polarization
is 9 per cent for GRB 991216).

Our data set contains four measurements of circular polarization
in optical, R-band, wavelengths, see Table 1, each with uncertainties
of 0.15 per cent. Under the assumption that over the interval that
the data were obtained (~0.7h, see Table 1) there is no change
in circular polarization, we can combine these together. We find a
combined value of the circular polarization Stokes parameter of v =
VIl = —0.000 20 £ 0.000 75, which leads to a formal 20" upper limit
of Pire < 0.15 per cent: the deepest limit on circular polarization of
a GRB afterglow to date. Figs 4 and 6 show that during the circular
polarimetry epoch, the optical light curve shows a low-amplitude

bump. As such, the limit on the circular polarization can be seen as
a limit on the circular polarization of the light of the bump plus that
of the underlying afterglow.

3.3 Interstellar polarization within the host galaxy

The variability of the detected linear polarization indicates that the
majority of detected polarization can be associated with the after-
glow. However, scattering of afterglow light on to dust grains within
the host galaxy (host galaxy interstellar polarization — HGIP, follow-
ing the terminology of Gorosabel et al. 2010) can induce noticeable
linear polarization, depending on the dust scattering geometry and
grain size distribution. This can affect attempts to interpret polariza-
tion behaviour around jet breaks (e.g. Lazzati et al. 2003) or models
using the absolute level of polarization (e.g. Gruzinov & Waxman
1999; Gruzinov 1999). For example, the zero polarization seen in
e.g. linl could in principle be an unfortunate effect of HGIP on an
intrinsically non-zero polarized afterglow.

We can utilize the reasonable assumption that over the optical
range, the intrinsic afterglow linear polarization will be wavelength
independent as it is synchotron emission, whereas HGIP will be
strongly wavelength dependent. In the Galactic ISM, the polariza-
tion broadly follows an (empirical) relation known as the Serkowski
law (Serkowski 1973):

A'l'n')(
Piin = Pin max €Xp (K In® (TA)) .

In this relation, Pjin max 1s the maximum induced linear polarization
at wavelength A;.«. The wavelength A, traces the size (distribu-
tion) of the dust grains responsible for the observed polarization, and
as such is closely linked to Ry = Ay/E(B — V). Klose et al. (2004)
considered the effect of redshift in the Serkowski law, which results
in a substitution Ap, — (1 + Z)A}‘};’;; in the equation above, and
the relation A1 = Ry, /5.5. Klose et al. (2004) derive the observed
linear polarization Pj;,/Pyin max in standard photometric broad-band
filters of an intrinsically unpolarized afterglow due to the presence
of dust in the host, as a function of redshift z and Ry. Using the
results in Klose et al. (2004), we generate predictions for observed
Piin/Piin max in several broad-band filters as a function of Ry, using
z=0.971, shown in Fig. 8. From these, a predicted ratio Py, r/Piin x
is produced as a function of Ry, plotted in the lower panel of Fig. 8.
Multi-wavelength linear polarimetry has been possible for only a
small number of bursts: 020813 (Barth et al. 2003; Lazzati et al.
2004), 021004 (Lazzati et al. 2003) and 030329 (Greiner et al. 2003;
Klose et al. 2004). In these cases, no significant evidence for HGIP
has been observed.

Our Ks-band polarimetry is approximately simultaneous to the
R-band polarimetry epoch /in9 (to be exact, [in9 is simultaneous
with /inK3). The (GIP-corrected) Stokes parameters for /in9 and
linK are very similar, though we caution that the data were taken
during what appears to be a bump in the polarization light curve
(Fig. 6). The resulting position angles are identical within errors,
and we find Pyip g/Piinx = 0.72 £ 0.45. This, combined with the
strong detected variation of both polarization degree and angle,
demonstrates that (within errors) there is no indication of substantial
HGIP contribution to the observed polarization. Martin & Angel
(1976) demonstrate that the ISM induces a small degree of circular
polarization even in unpolarized sources. However, the levels of
induced circular polarization are an order of magnitude or more
below the limit we set in Section 3.2, considering the measured
Galactic GIP and the low extinction in the host galaxy (Section 3.1).
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In the following we therefore proceed with the assumption that
the GIP-corrected polarization is all intrinsic to the source. In a
future paper (Paper 2) we will further quantify the implication of
this measurement (and those of other GRB afterglows) on the dust
and gas properties in GRB sightlines. A possibility that we will
also address in Paper 2 is the effect of dust destruction by the GRB
and afterglow high-energy radiation, which may make the effect of
HGIP time dependent.

3.4 Linear polarization light curve

Our R-band linear polarimetric monitoring took place over three
observing nights, as described in Section 2.1.1. The behaviour over
the first two nights is illustrated in Figs 6 and 7, shown in linear time
coordinate. On the third night only one deep, final, measurement
was taken.

In the first night (see Fig. 6), the source starts off with very low
(consistent with zero, within the errors dominated by the uncertainty
in the GIP Stokes parameters) polarization, the lowest observed for
a GRB afterglow to date. Following that, a broad, low-amplitude
bump may be present in the polarimetric curve. GRBs 030329 and
021004 showed a correlation between linear polarization behaviour
and light curve bumps (e.g. Greiner et al. 2003). In Fig. 6 we
indicate the times of the three bumps we find in our data. Some
variability may be present related to these bumps, but the statistical
significance is very low. After the first eight data points obtained at
the start of the night, observations were resumed at the end of the
night, showing a decline from a higher polarization level (Table 2),
confirmed by the ISAAC polarimetry taken quasi-simultaneous to
lin9. Over the first night, some low-level variation in position angle
may be present, but the uncertainties are large because of the low
linear polarization: overall, the first night data are consistent with a
constant polarization angle.

The second night data (see Fig. 7) display short time-scale vari-
ability: a polarization bump, peaking at >3 per cent polarization,
accompanied by a clear rotation of the position angle. Following
this, the end of the night shows a slow rise in polarization, accom-
panied by further position angle variation. By the third night, the
afterglow had become too faint for detailed sampling, and one deep
data point, /in20, was obtained (Table 2). This last data point clearly
shows low-level contribution from the host galaxy in the received
light. We will attempt to interpret the polarimetric data in Section 4.

3.5 Environment of the burst

In a forthcoming paper on this data set (Paper 2) we will analyse
the GRB environment in detail. In this section we will derive some
properties most relevant to the afterglow physics, and to show that
this burst displays no indications of being unusual.

In the late-time images taken with Gemini (see Table 3) the host
galaxy can clearly be seen as an extended structure, see Fig. 12,
visibly extended in the east—west direction. An isophote fit using
elliptical isophotes (using the ellipse package within IRAF) gave
a best fit for an ellipse orientation of 89 + 4°. We determined the
position of the GRB within its host by performing image subtraction
of the three Gemini epochs using a modified version of the 1s1s2 code
(Alard & Lupton 1998). We detected a clear afterglow residual in
a subtraction of the first and third epoch, and between the first and
second epochs. No residual was detected in a subtraction between
the second and third epochs. We found the GRB location to be offset
by approximately 5.8 kiloparsec from the centre of the galaxy (as
found from the elliptical isophote fits), see Fig. 12. This offset, as
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Figure 12. The host galaxy of GRB 091018, from the second epoch Gem-
ini GMOS r-band data. The dashed tickmarks mark the position of the
GRB as determined from PSF-matched image subtraction of Gemini epochs
1 and 2.

well as the observed host magnitude, r = 23.4 (AB; see Table 3), is
well within the observed distribution for long GRBs at this redshift
(e.g. Bloom, Kulkarni & Djorgovski 2002; Savaglio, Glazebrook &
LeBorgne 2009).

The X-shooter afterglow spectra show very strong absorp-
tion lines (Fig. 13) composed of at least three discrete velocity
components, spanning ~300km s~!. No lines from intervening sys-
tems are detected. At the GRB redshift we detect both common res-
onance lines and a small number of transitions arising from excited
fine-structure and metastable levels (from Fenr and possibly Ni),
though the lines from these excited transitions are very weak in
our spectrum. Time-resolved spectroscopy of GRB afterglows has
shown that these excited transitions are excited through indirect UV
pumping (fluorescence) by the afterglow photons (e.g. Vreeswijk
et al. 2007). This unambiguously identifies the redshift z = 0.971
to be that of the GRB.

The X-shooter spectra were taken with the slit position angle
aligned with the parallactic angle, set at —90°8 at the start of ob-
servations, and therefore oriented broadly along the host galaxy.
In addition to absorption lines, we therefore also detect nebular
emission lines in the spectrum (e.g. H«, [O 11], [O m1]), though their
signal to noise is low as the afterglow strongly dominates the light
(see Table 3). The detection of the resolved [O 1] A 3726, 3729
doublet is shown in Fig. 9. Its flux of ~6 x 1077 ergs~! cm~2 can
be used to derive an estimate of the star formation rate (SFR): using
the equation from Kennicutt (1998) we find an SFR ([O 11]) ~4 M,
per year. If we instead use the empirical conversion from [O 1] line
luminosity to SFT derived by Savaglio et al. (2009) for GRB host
galaxies, we find SFR ([On]) ~1.6 M, per year (note that no ex-
tinction correction was applied to the [O 1] line luminosity). This
SFR ([Om]) is fairly typical for long GRB hosts (Savaglio et al.
2009). In conclusion, the afterglow spectrum, host magnitude and
morphology, and star formation rate are all in line with expectations
for a normal long GRB host galaxy.

In Paper 2 we will further analyse the spectrum and exploit the
rare opportunity where we can probe (interstellar) gas and dust in
the host galaxy using five methods simultaneously: through after-
glow absorption lines (including excited fine-structure lines), neb-
ular emission lines, afterglow SEDs, wavelength-dependent linear
polarimetry and host imaging.
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Figure 13. The UVB arm spectrum from X-shooter, smoothed with a 3 pixel boxcar for presentation purposes. Some commonly observed (resonance)
absorption lines are indicated with red, solid, vertical lines and are labelled. The dash—dotted, blue, vertical lines mark the positions of excited fine-structure
transitions of Fe 1, which are occasionally observed as highly variable lines in GRB afterglow spectra. The dotted, green, vertical lines mark the positions of

excited fine-structure transitions of Ni 1.

4 DISCUSSION

4.1 GRB 091018 compared to GRBs 030329, 021004, 020813,
020405 and 090102

It is instructive to compare the properties of the polarization of the
afterglow of GRB 091018 with those of the best studied previous
cases: the pre-Swift bursts 030329 (z =0.1687), 021004 (z = 2.323),
020813 (z = 1.254) and 020405 (z = 0.690). Each has multiple
measurements over more than one night. We also compare to Swift
burst 090102 (z = 1.547), which has only one single measurement,
which probes the poorly explored early-time afterglow.

Both 021004 and 030329 have well-studied bumps in their after-
glow light curves (021004: Bersier et al. 2003b; Fox et al. 2003;
Holland et al. 2003; Mirabal et al. 2003; Pandey et al. 2003. 030329:
Burenin et al. 2003; Matheson et al. 2003; Sato et al. 2003; Uemura
et al. 2003; Bloom et al. 2004; Lipkin et al. 2004), frequently at-
tributed to late-time energy injection (late-time activity of the cen-
tral engine). Both sources are pre-Swift bursts and therefore have
relatively poorly sampled X-ray light curves compared to bursts
in the Swift era, but well-sampled optical and radio afterglows.
GRB 030329 has the best sampled polarimetric light curve of any
burst to date, with polarization measurements extending to a month
after burst (Greiner et al. 2003). The data show some correlation
between the degree of linear polarization Pj;, and changes in the de-
cay index of the afterglow (bumps), though Pj;, and the light curve
do not change strictly simultaneously (Greiner et al. 2003). Simi-
larly, it appears that not every bump is associated with a polarization
change. Variability in both position angle and polarization degree
is detected for 021004 (e.g. Lazzati et al. 2003; Rol et al. 2003),
but an association with flare behaviour is not easy to make, in part
because the polarimetric coverage is less dense than for 030329. In
contrast to 021004 and 030329, the afterglow of 020813 is smooth,
and therefore this afterglow may be better suited to study global jet
properties. Similarly to 021004 and 030329, variability in polariza-
tion is detected in 020813. GRB 091018 is the first Swift burst to join
the small group of afterglows with observed polarimetric variability.

Bumps are observed in the broad-band optical light curves of this
source, but their amplitude is considerably less than those seen in
the afterglows of GRBs 021004 and 030329. If the bump amplitude
correlates with polarization amplitude, we may expect the bumps
to have a smaller effect on the observed overall polarization and be
in a better position to probe the properties of the jet as a whole.

GRB 020405 is of interest mainly because of the short time-
scale variability with high polarization amplitude (nearly 10 per
cent polarization) that this source appears to show (Bersier et al.
2003a; Covino etal. 2003), though near simultaneous measurements
described in Masetti et al. (2003) do not confirm this behaviour. No
jet break was seen in the afterglow light curve, and the polarization
curve could not be reconciled with standard models.

Jetted fireball models predict a clear change in polarization prop-
erties around the jet break time. The behaviour of Py, and the po-
larization position angle depends sensitively on the angle between
the jet axis and the observer, the internal structure of the jet, the
magnetic field properties within the jet and whether or not sideways
spreading of the jet occurs at around the jet break time (e.g. Rossi
et al. 2004 and references therein). Attempts to fit these models
to afterglow polarization data have been a little disappointing: in
030329 and 021004 the bumps in the light curve may have influ-
enced the fits (see e.g. Lazzati et al. 2003), whereas the polarimetric
sampling of 020813 was rather too low to favour a single jet model,
though several models could be excluded (Lazzati et al. 2004). The
afterglow of 020405 unfortunately shows no jet break within the
interval of polarimetric monitoring. The very well sampled 030329
has the relative disadvantage of a bright supernova contributing at
late times, in addition to the bumps at early times, and determining
a unique jet break time proved complicated (with best model likely
requiring two jet breaks, see e.g. Van der Horst et al. 2008 and refer-
ences therein). Our data of 091018 may therefore be one of the first
cases where a jet break can be probed in some detail through po-
larimetry, if the light curve break discussed in Section 3.1 is indeed
a jet break.

Our polarimetric follow-up starts at rest-frame time 0.067d
(5782 s) after burst trigger, considerably earlier than the earliest data
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points of 030329, 021004 and 020813. It is clear that polarimetry
very early after burst requires automated/robotic procedures. Using
such an approach, a very early afterglow polarimetric detection of
GRB 090102 was obtained by Steele et al. (2009), who secure a
detection of Py, = 10.2 £ 1.3 per cent at rest-frame time 75 s after
burst, using the robotic Liverpool Telescope. Such a high degree of
polarization, measured when the reverse shock component was still
bright, is consistent with the presence of large-scale ordered mag-
netic fields. Although our data on 091018 are taken considerably
later in time than those on 090102, the superb sensitivity of the VLT
may allow us to continue to probe the magnetic field structure at late
time through our high-precision linear and circular polarimetry.

4.2 GRB 091018 and models

4.2.1 Reverse shock

The start of our polarimetric monitoring was sufficiently late that
a contribution of reverse shock emission to the received light is
likely negligible. While this precludes study of some magnetization
properties (e.g. Granot & Taylor 2005), this makes a comparison
of the data with models easier, as only a forward shock model
needs to be considered. The low linear polarization at the start
of our monitoring appears to confirm this: emission from reverse
shocks is expected to be considerably polarized, as the shock travels
back into magnetized shocked material (e.g. Granot & Taylor 2005;
Steele et al. 2009).

4.2.2 Jet break

We compare our data with the model series computed by Rossi
et al. (2004), hereafter referred to as R04, who derive the expected
linear polarization curves (including position angle) for a grid of
different jet model parameters, assuming that there is no additional
coherent component of the magnetic field present and that HGIP is
negligible. In particular, RO4 consider the cases of homogeneous
jets, structured jets and Gaussian jets, each with a grid of different
viewing angles (in the case of homogeneous jets this is the angle the
line of sight makes with the jet axis), and for a range of wavelengths
and physical parameters. They further distinguish jet breaks with
and without sideways spreading.

We can briefly summarize the main differences between the var-
ious models as found by R04, and refer for details and explanations
to that paper (see also fig. 18 of R04):

(i) Homogeneous jets show two peaks in the polarization curves,
with the second peak always reaching a higher polarization than
the first. Structured and Gaussian jets show one peak only, with
peak time for a Gaussian jet significantly later than for a structured
jet, which has its peak around the time of the break. The peaks of
the structured and Gaussian jets are much wider than the ones for
homogeneous jets (i.e. rise time and decay time-scales are long).

(ii) The position angle for a homogeneous jet changes by 90° in
between the two peaks in the polarization curves: the two peaks
each have constant position angle, but are 90° different. Structured
and Gaussian jets have constant position angles throughout.

(iii) Structured jets show non-negligible polarization at early
times, whereas homogeneous jets and Gaussian jets have zero po-
larization at early times.

(iv) The shape of the bumps in the different jet structures is
different.
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Figure 14. All GIP-corrected linear polarization data plotted as a function
of the time since burst divided by the time of the break in the optical light
curve (i.e. fpreak = 3.23 x 10% s). Overplotted in blue is the model (from
Rossi et al. 2004) for a homogeneous jet with a jet break at #yreqx that does
not experience sideways expansion, with viewing angle 0ps = 0.26;¢;. The
model has been shifted slightly (by dividing the model #/fje; by 1.15). The
lower panel shows the polarization position angle. The dotted line for #/tje; <
1.5 shows the average position angle (6°). The dotted line for #/fje; > 1.5 is
set at 96°: the average value before this time plus 90°, to show the predicted
90° position angle swing. The inset shows the rapid polarization rotation at
t/tpreak ~ 3.16 (vertical dotted line in the inset), with the horizontal dotted
line at a position angle of 96°.

(v) Sideways expanding jets show lower polarization values than
non-sideways expanding jets (all other parameters being equal),
with wider bump(s) in the polarization curve.

We start by evaluating the data in time coordinates normalized by
the time of the break seen in the optical data (see Section 3.1). It is
clear that some polarization behaviour is observed occurring close
to t/tyeak ~ 1, as expected for jet breaks. In the case when this break
is a jet break, we can then directly compare the curves with those
in RO4. Fig. 14 shows a plot in these units. Comparing to the points
(1)—(v) listed above, there appears to be evidence that a model with
constant position angle throughout will not provide a good fit; early-
time polarization is consistent with zero (or at least is lower than
predictions for structured jets); a single bump model with a shape as
predicted by the models in RO4 seems inconsistent with the data. In
Fig. 14 we therefore plot a model for a homogeneous, non-sideways
expanding jet with viewing angle 6 ,ps = 0.20}; (from fig. 8 in R04).
We shift this curve slightly in time coordinate by dividing #/f;; by
1.15 to get a better visual match. The first bump in the polarization
curve appears to be well reproduced in both shape and amplitude,
including the zero polarization at early times. This model predicts a
constant polarization position angle over the first bump. We indicate
in Fig. 14 (dotted line) the average of the position angle at #/fyeax <
1.4. As required by the R0O4 model, the position angle is constant
over this bump.

The second bump predicted by the homogeneous jet model should
have a larger amplitude than the first, a position angle 90° offset from
the first bump and a morphology opposite to the first (in coordinates
used in Fig. 14). Some of the data points indeed have a higher
polarization than seen in the first bump, but the morphology of the
bump as predicted by the model is not observed. We examine the
behaviour of the position angle by adding 90° to the position angle
for t/tpreac < 1.4. In Fig. 14 this is the second horizontal dotted line.
Itis clearly seen that the value of the position angle is overall higher
than in the first bump, but is not constant as the model predicts,
showing considerable variability on a short time-scale (possibly
varying around the predicted position angle), including a rotation
of the position angle visible in the interval #/fyreoc ~ 3.0-3.3. The
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polarization curve shows, compared to the homogeneous jet model,
a deep short dip, in the interval #/fyeox ~ 3—4. This dip shows a
very steep decay in the first few data points, simultaneous with the
observed rotation in position angle. This behaviour is not predicted
by any jet break model.

We could consider the possibility that there is an additional polar-
ization curve component (hereafter simply referred to as the extra
component) on top of a slower behaviour as predicted by jet break
models. A third smooth, fairly narrow, polarized bump peaking at
around #/tyeac ~ 3—4 could be present, having a position angle sig-
nificantly offset from the 6 = 96° of the second bump from the
homogeneous jet model. The sum of this component and that of the
(second bump of the homogeneous) jet model can give rise to most
of the observations: the steep dip, where the contributions of the two
components nearly cancel due to differing position angles, and the
rotation in position angle, where the components are at similar am-
plitude but very different position angle. However, this is a rather
degenerate problem, as the amplitude as a function of time (the
shape) of the extra component and the position angle as a function
of time are all unknown. A component with a fixed position angle
but variable amplitude (i.e. a component much like the polarization
peaks from a jet break) can approximate the data (with a position an-
gle ~70° offset from the constant 96°, and peaking around #/fyeax ~
3.5), but a component with nearly constant amplitude but position
angle varying on very short time-scales can provide a reasonable
approximation too. Wu et al. (2005) evaluate the expected polar-
ization curves of afterglows from two-component jets (as proposed
for e.g. 030329, Berger et al. 2003), which show, as expected, a
large variety of behaviour, depending mostly on viewing angle and
contrast between the narrow and wide jet components. However,
the observed variability in the data of 091018 around # /#yreax ~ 3—4
is much more rapid than predicted by the models of Wu et al.
(2005). At the current data quality, and including the uncertainty in
and applicability of the underlying model (homogeneous jet model
from R04), we are not in a position to quantify the behaviour of this
putative component further. As the shape of the bump and time vari-
ability of the position angle are unclear, it is difficult to speculate
on the possible origin of such an additional component. The feature
occurs after the expected time of the peak of the second bump in
the R0O4 model and no such feature is visible at ¢ < fyeax. AS such,
it may be related to a discrete bright region (patch) on the jet that
comes into view just after the second bump peaks. In this scenario
we may expect a constant position angle of the component produced
by the patch (if the field in the patch is coherent), with a bump shape
reflecting the brightness profile of the bright patch. However, other
explanations, such as microlensing, two-component jets or others,
are difficult to rule out with the polarization data alone.

The time-span possibly most affected by the extra component,
t/toreax ~ 3—4, corresponds to 9.7-12.9 x 10* s. In the optical light
curves no significant slow variability at around that time is obvious.
The XRT data show a possible broad, slow softening around this
time, but our SED fits do not point to strong spectral variation at
this time. The shallow post-break decay indices and/or the flares
observed in the optical light curve (Section 3.1) may be related to
the observed polarization behaviour, i.e. be linked to the observed
extra component, but further modelling will be required to test
this.

There is at least one other source that shows a variability in the
polarization curve on short time-scales (intranight) and unrelated
to a jet break, GRB 020405. However, in that source only a sin-
gle data point showed the deviation from a constant polarization
degree (Bersier et al. 2003a), and the position angle was not seen

to vary over the available polarization measurements. No features
resembling jet break bumps were detected in that source, consistent
with the absence of a jet break in the light curves. The possible
detection of a variation at fairly short time-scales, with possibly a
constant position angle and likely unrelated to a jet break in GRB
091018 (the extra component in the polarization curve) may be an
indication that this type of behaviour is indeed real.

The conclusion from the above discussion is that none of the sim-
ple models of polarization behaviour of GRBs directly reproduces
the observed behaviour. Of the available models, the homogeneous
jet break model comes closest, but requires at least one additional
component, the nature of which is currently unknown.

4.2.3 Ordered fields

The circular polarization upper limit derived in Section 3.2 can be
used to probe large-scale ordered fields, which have been proposed
by several authors to explain various phenomena, such as the high
linear polarization at very early times (Steele et al. 2009), or the lack
of obvious polarization position angle shifts around the jet break
time for e.g. GRBs 030329 and 021004 (Granot & Konigl 2003).
Models of the expected circular polarization in optical wavelengths
for an external shock (Matsumiya & Ioka 2003; Sagiv et al. 2004;
Toma, Ioka & Nakamura 2008) generally find that afterglows should
show very low circular polarization in the absence of strong large-
scale ordered fields. Our detection limit of P, < 0.15 per cent is
in full agreement with these predictions (see e.g. Toma et al. 2008)
and excludes strong ordered field components. We note the timing
of our circular polarimetry: our data were taken when the reverse
shock emission is likely negligible, and when the linear polarization
was still very weak. It is clear that it is not easy to significantly
improve on the depth of this limit in optical wavelengths, but it
would be interesting to search for circular polarization in other
bursts, to establish whether this is a common feature, and to search
for circular polarization at early times when reverse shock emission
is still present.

4.2.4 Energy injection

An alternative explanation of the observed break in the light curves
is that this break marks the end of (continuous) energy injection,
though the post-break decay indices are not as expected from the
closure relations (Section 3.1). The occurrence of significant po-
larimetric variability at around #/fy.x ~ 1 indicates that if this
scenario is correct, the end of energy injection must be accompa-
nied by a geometric change, as the polarization position angle stays
constant. In a study of GRB 021004, Bjornsson, Gudmundsson &
Jéhannesson (2004) model the strong rebrightenings visible in the
afterglow light curve with discrete, powerful, energy injections and
demonstrate that the light curves are fairly well reproduced this
way. They demonstrate that their model shows some correlation
with the polarimetric data, i.e. that polarization is related to bumps.
For GRB 030329, Greiner et al. (2003) come to a similar conclusion
from their data. We see at least three low-amplitude bumps in the
optical light curve, at times given in Section 3.1, but a correlation
with polarimetric behaviour is not clearly visible, largely because of
the larger uncertainties in our polarization values compared to the
much brighter afterglow of 030329. Similarly, a possible relation
between the extra component in the polarization curve and the flar-
ing around the jet break time is unclear. Future (numerical) models
of light curve bumps/flares (e.g. Vlasis et al. 2011) and high-quality
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data (e.g. Kriihler et al. 2009) may provide the possibilities of com-
puting expected polarization signals from the simulations. These
may then be used to understand the connection between the physi-
cal parameters behind these bumps and the behaviour in polarized
light.

5 CONCLUSIONS

We presented a large polarimetry data set of the afterglow of GRB
091018, and add to that an extensive multicolour photometric data
set and medium resolution spectroscopy. We find an abundance of
absorption lines in the spectrum of the afterglow as well as a few
emission lines, from which we find a redshift z = 0.971. The X-
ray light curve shows at least two breaks, as well as a complex
of flaring activity. The densely sampled optical light curve shows
several flares as well, and through a fit using a broken power law
and three Gaussian components (to describe the flares), we find an
achromatic break at fozeq ~ 3.2 x 10* s. Our polarization data cover
this break, allowing us to probe its nature using linear polarimetry.
Our polarimetry results can be summarized as follows.

(1) In contrast to GRBs 030329 and 021004, there are no strong
rebrightenings that confuse our view of the polarization behaviour.

(ii) Our deep circular polarimetry at r ~ 0.15 d after burst shows
no circular polarization, with 20 limit P, < 0.15 per cent.

(iii) The quasi-simultaneous R- and Ks-band polarimetry shows
no strong indications of a considerable contribution of polarization
from the ISM in the host galaxy.

(iv) The linear polarimetry shows a constant position angle for
t/toreax < 1.4, and a considerably higher, but strongly variable, value
thereafter.

(v) At least two peaks are present in the polarization curve. The
first of these, as well as the constant position angle, is well repro-
duced by a model of a jet break using a homogeneous, non-sideways
spreading jet with small viewing angle (from R04).

(vi) If the observed break is a jet break, and if the model of a
homogeneous, non-sideways spreading jet is correct, an additional
component is required to reproduce the observed polarization curve
and position angles. This may be a short-duration bump with con-
stant position angle, offset from the position angle of the underlying
jet break component.

From the above it is clear that the models for polarization be-
haviour around the time of jet break (as in R04) cannot, in their
current form and on their own, explain the full behaviour of the
polarization curve of 091018. Further modelling efforts, in particu-
lar into the effects of rebrightenings/bumps and continuous energy
injection on the observed polarization, are vital to exploit the full
potential of polarimetry as probe of afterglow physics.

These results are the first of their kind for Swift GRBs, and indeed
GRB 091018 can be considered a ‘normal’ GRB, with none of its
prompt emission or afterglow properties particularly remarkable,
in contrast to some of the polarimetrically studied pre-Swift bursts
like 030329. This is in part because our selection criteria of sources
to study with polarimetry were only that: the source had to be a
Swift burst with a detected afterglow in both XRT and UVOT data.
This avoids a bias towards the brightest or slowest decaying optical
afterglows, and indeed it is clear from Section 3.1 that GRB 091018
is one of the faintest afterglows with multi-night polarimetry. Fur-
ther, similar observations of (Swift) bursts with different micro- and
macro-physical parameters (in particular energetics, jet opening an-
gle, density n and density gradient k) will be required to establish
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whether or not GRB 091018 is representative of the sample of GRB
afterglows as a whole.

Unfortunately, no long-wavelength (radio, (sub-)mm) observa-
tions were available for GRB 091018. A deep polarimetric cam-
paign on an afterglow, with radio and (sub-)mm light curve data in
addition to optical and X-ray light curves, would be particularly in-
teresting, since with the resulting broad-band SEDs (with sensitivity
redwards of the synchrotron peak frequency v,,) we would be able
to fit for parameters that are particularly relevant for polarimetric
interpretations, e.g. € and €p.
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