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1Centre National de la Recherche Scientifique/École Polytechnique, CNRS/INSU, UMR8539, Palaiseau-Cedex, 91128,
France
2The Catholic University of America, Washington DC, 20064, USA
3NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
4Colorado State University, Fort Collins, CO, 80523, USA
5National Center for Atmospheric Research, Boulder, 80307, CO, USA

Correspondence to:A. G. Feofilov (artem.feofilov@lmd.polytechnique.fr)

Received: 24 October 2011 – Published in Atmos. Chem. Phys. Discuss.: 9 December 2011
Revised: 31 July 2012 – Accepted: 19 September 2012 – Published: 2 October 2012

Abstract. Among the processes governing the energy bal-
ance in the mesosphere and lower thermosphere (MLT),
the quenching of CO2(ν2) vibrational levels by collisions
with O atoms plays an important role. However, there is
a factor of 3–4 discrepancy between the laboratory mea-
surements of the CO2-O quenching rate coefficient,kVT ,
and its value estimated from the atmospheric observa-
tions. In this study, we retrievekVT in the altitude region
85–105 km from the coincident SABER/TIMED and Fort
Collins sodium lidar observations by minimizing the dif-
ference between measured and simulated broadband limb
15 µm radiation. The averagedkVT value obtained in this
work is 6.5 ± 1.5 × 10−12 cm3 s−1 that is close to other es-
timates of this coefficient from the atmospheric observa-
tions. However, the retrievedkVT also shows altitude de-
pendence and varies from 5.5 ± 1.1 × 10−12 cm3 s−1 at 90 km
to 7.9 ± 1.2 × 10−12 cm3 s−1 at 105 km. Obtained results
demonstrate the deficiency in current non-LTE modeling of
the atmospheric 15 µm radiation, based on the application
of the CO2-O quenching and excitation rates, which are
linked by the detailed balance relation. We discuss the pos-
sible model improvements, among them accounting for the
interaction of the “non-thermal” oxygen atoms with CO2
molecules.

1 Introduction

Infrared emission in 15 µm CO2 band (I15µm) is the domi-
nant cooling mechanism in the Earth’s mesosphere and lower
thermosphere (MLT, see also Appendix A for the abbrevia-
tions not explained in the text for readability’s sake) (Gordi-
ets, 1976; Dickinson, 1984; Goody and Yung, 1989; Sharma
and Wintersteiner, 1990). On Earth, the magnitude of the
MLT cooling affects both the mesopause temperature and
height; the stronger the cooling, the colder and higher is the
mesopause (Bougher et al., 1994). This process is also impor-
tant for the energy budgets of Martian and, especially, Venu-
sian atmospheres (Bougher et al., 1999), where CO2 cooling
compensates for the EUV heating of the dayside upper atmo-
sphere. TheI15µm radiation is used to retrieve vertical tem-
perature distributionsT (z) in Earth’s atmosphere by a num-
ber of satellite instruments: the CRISTA (Offermann et al.,
1999), the SABER (Russell et al., 1999), the MIPAS (Fis-
cher et al., 2008) and in the Martian atmosphere the MGS
TES observations (Smith et al., 2001; Feofilov et al., 2012).
It is generally accepted that the main mechanism linking the
15 µm CO2 atmospheric radiation to the heat reservoir (trans-
lational degrees of freedom of atmospheric constituents) is
the inelastic collision of CO2 molecules with O(3P) atom;
first, atomic O excites the CO2 bending vibrational mode
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during the collision:

CO2(ν2) + O(3P) → CO2(ν2 + 1) + O(3P) (1)

after which the excitation may be quenched either by an-
other collision with some molecule or atom or by emis-
sion of the radiation quantum: CO2(ν2 + 1) → CO2(ν2) +

hν(667 cm−1), whereν2 is the bending mode quantum num-
ber. Both the cooling efficiency andI15µm strongly depend
on the rate coefficient of the process (1) and on the atomic O
volume mixing ratio (VMR). To be consistent with a gener-
ally accepted way of describing this process, we will refer to
the rate coefficient of the reaction inverse to Eq. (1) and will
call it the “CO2-O quenching rate coefficient” orkVT , where
VT index stands for vibrational-translational type of interac-
tion. Generally, it is assumed that the velocity distribution of
atomic oxygen is Maxwellian and that the fine structure of
atomic oxygen does not affect the process (1) and its inverse.
First, we will use these assumptions that are typical for at-
mospheric modeling and then will address their applicability
in the discussion part of the work (Sect. 4).

It is self-evident that both the calculation of radiative cool-
ing/heating rates in CO2 and the interpretation of measured
I15µm radiation require the best possible knowledge of the
kVT (see e.g., Garcia-Comas et al., 2008). However, despite
the importance ofkVT for the atmospheric applications, the
values, obtained in the laboratory and retrieved by fitting
the space observations, vary by a factor of 3–4 (see Table 1
and Sect. 2 below for more details). In this work, we de-
scribe the retrieving of thekVT from the coincidental space
and lidar observations. For this purpose, we used an exten-
sive data set provided by the SABER instrument aboard the
TIMED satellite which contains, besides other information,
vertical profiles ofI15µm(z) limb radiation, O(z), and, more
recently, CO2(z) (Rezac, 2011) VMRs. This dataset was sup-
plemented withT (z) in 80–110 km altitude range measured
by the Fort Collins lidar (40.6◦ N, 105.2◦ W). We show that
the synergy of these two instruments enables one to retrieve
kVT and study its behavior in the MLT. The comparison of
the SABER temperature retrievals with the Fort Collins li-
dar measurements has already been done by Remsberg et
al. (2008) who found that these data sets agree consider-
ing 50 % error in quenching rate (kVT = (6.0 ± 3.0) × 10−12

[cm3 s−1]). In this work, we try to make a step forward and
get into more details of the MLT physics by applying strin-
gent overlapping criteria and by treating the individual al-
titude layers of the overlapping region separately. The dif-
ference of the present study from the work of Remsberg et
al. (2008) is in thekVT retrieval algorithm: instead of compar-
ing the temperatures retrieved with differentkVT values, we
perform thekVT(z) estimate by minimizing the differences
between the measured and calculatedI15µm(z). All the cal-
culations presented in this work were carried out using the
non-LTE ALI-ARMS code package (Kutepov et al., 1998;
Gusev and Kutepov, 2003; Feofilov and Kutepov, 2012). The
background for the non-LTE problem for the molecular gas

and the review ofkVT measurements and estimates is given
in the next section.

2 Non-LTE problem for the molecular gas in the
atmosphere andkVT rate coefficient

Inelastic molecular collisions determine the population of
molecular levels in the lower atmosphere. As a result, local
thermodynamic equilibrium (LTE) exists where the popula-
tions obey the Boltzmann law with the local kinetic temper-
ature. In the MLT, the frequency of collisions is lower, and
the vibrational level populations must be found taking into
account all the processes, which populate and depopulate vi-
brational levels: the absorption of atmospheric and solar ra-
diation in the ro-vibrational bands, spontaneous and stim-
ulated emission, chemical sources, vibrational-vibrational
(V-V) and vibrational-translational (V-T) energy exchange
processes. The altitude, above which the LTE approxima-
tion is not applicable, depends on the relationship between
these processes: in general, if the V-T processes dominate or
the radiative processes are balanced (optically thick media),
the vibrational levels populations are close to LTE. For the
CO2(ν2) vibrational levels involved in formation ofI15µm,
the non-LTE effects become significant above∼ 75–80 km
altitude (Ĺopez-Puertas and Taylor, 2001; Kutepov et al.,
2006; Feofilov and Kutepov, 2012).

The importance ofkVT rate coefficient for the calcula-
tion of CO2 emission in the MLT was first discussed by
Crutzen (1970). He suggested an estimate for this value with
the upper limit of 3.0 × 10−13 cm3 s−1. The first laboratory
measurement ofkVT was performed at high temperatures
(T >2000 K) (Center, 1973) using shock tube technique. The
extrapolations of these measurements to room temperatures
by fitting the Landau-Teller expression (Taylor, 1974) pro-
vided the values of about 2.4 × 10−14 cm3 s−1. The average
value of this rate coefficient obtained in later studies has
changed by two orders of magnitude, and since the middle
of 1980-s, thekVT is accepted to be on the order of (1.0–
10.0) × 10−12 cm3 s−1 (see Table 1). However, as we show
below, these variations are still large both for the adequate
estimation of the radiative budget of the MLT region and for
temperature retrievals from 15 µm CO2 radiation. There is
a well-known discrepancy between the laboratory measure-
ments ofkVT and its retrieval from the atmospheric measure-
ments. Generally, laboratory measurements provide low val-
ues ofkVT centered around 1.3 × 10−12 cm3 s−1. Huestis et
al. (2008), based on the analysis of experimental data and
quantum-mechanical calculations, recommend usingkVT =

1.5 × 10−12 cm3 s−1. However, applying this value to the in-
terpretation ofI15µm measurements leads to overestimating
the MLT temperatures. Instead, the values required for an ad-
equate interpreting of atmospheric measurements performed
in recent∼ 20 yr are usually about 5.5 × 10−12 cm3 s−1 with
the exception ofkVT = 1.5 × 10−12 cm3 s−1 retrieved by
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Vollmann and Grossmann (1997) from the sounding rocket
observations.

To demonstrate the influence ofkVT on the MLT area,
we performed a sensitivity study for an average midlati-
tude summer atmospheric scenario from MSIS-E-90 model
(Hedin, 1991) using a standard set of V-V and V-T rate co-
efficients (Shved et al., 1998; Kutepov et al., 2006) and the
kVT , which was first set to 1.5 × 10−12 cm3 s−1 and then to
6.0 × 10−12 cm3 s−1. The results are presented in Fig. 1a–c.
Figure 1a demonstrates the population of the firstν2-excited
level shown as vibrational temperature (see the figure caption
for the vibrational temperature definition). Figure 1b shows
the sensitivity of the total cooling/heating rate to thekVT
change. After obtaining the non-LTE populations of all vibra-
tional levels involved in the task, the broadbandI15µm was
simulated in line by line mode and the resulting spectrum was
convolved with the “narrow” 15 µm SABER bandpass func-
tion for two test runs. The corresponding change in the limb
radiance is shown in Fig. 1c. As one can see, the MLT area is
sensitive to thekVT changes above∼ 85 km altitude, which
is used as the lower limit for thekVT retrieval in this work.
Below this level, the sensitivity rapidly decreases, and 85 km
altitude can be considered as a lower limit for thekVT es-
timates fromI15µmobservations. The upper limit of 105 km
for the kVT retrieval is defined by the fading of the signal
strength with increasing altitude and by the uncertainties in
the O(z) distributions.

3 Retrieving kVT from the overlapping SABER and
lidar measurements

3.1 ThekVT retrieval approach

The general idea for thekVT rate coefficient retrieval from
overlapping satellite and lidar measurements is in mini-
mizing the difference between the measured and simulated
I15µm by varying thekVT . The simulations are performed
with the “reference” temperature profiles measured by the li-
dar instrument, which are not affected by the uncertainties
in the kVT coefficient. A similar approach was utilized by
Feofilov et al. (2009) who used the H2O VMR profiles mea-
sured by the ACE-FTS instrument (Bernath et al., 2005) as
reference ones and estimated three rate coefficients neces-
sary for the calculation of H2O(ν2) populations in the MLT.
Retrieving thekVT from comparing the measured and sim-
ulated I15µm is somewhat more complicated because the
CO2(ν2) populations depend not only onkVT but also on
atomic oxygen concentration (or VMR), which contributes
to uncertainties in retrievedkVT . The way of overcoming this
limitation will be described below. First, let us consider a
simplifed case of a single overlap for which everything ex-
cludingkVT is known. Since calculations demonstrate mono-
tonic dependence of CO2(ν2) populations and limb radia-
tion on kVT at all altitudes (see Fig. 1a, c in this work and

Sect. 3.6.5.1 in Ĺopez-Puertas and Taylor, 2001), the devia-
tion ζ (kVT,z) = |Imeas(z)− Isimul(kVT,z)| will have a single
minimum at each altitudez and in the ideal case of noiseless
signal the retrieved rate coefficient will be unique. Adding
noise to the experimental radiationImeas(z) and adding un-
certainties to calculated radiationIsimul(kVT,z), which are
linked with uncertainties in lidar temperatures and spatiotem-
poral variability of the area, respectively, will blur the mini-
mum ofζ(kVT,z) that will, finally, define the uncertainty for
the kVT retrieval. Let us now consider the case, for which
both atomic oxygen andkVT are not known. This exercise
is necessary since even though the SABER retrieves individ-
ual O(z) profiles (Smith et al., 2010), any offsets or errors
in O(z) will propagate tokVT . However, this problem might
be overcome if the average Oaver(z) profile is known with
a sufficient accuracy (from climatology, modeling or other
measurements). In this case, one can search for a minimum
of ζ(γ,z) with respect to a new variableγ = kVT × O over
a large number of the SABER/lidar overlaps. At this stage,
individual distributions O(z) are not needed. It is crucial to
choose a grid forγ in such a way that the following criteria
are satisfied: (a)γ variation range includes theγmin value that
corresponds to an absolute minimum ofζ(z,γ ); (b) the grid
step is fine enough to hit the minimum ofζ(z,γ ). When the
minimum of ζ(z,γ ) is found over a large number of over-
laps, one can retrieve the optimal value of rate coefficient:
kVT = γmin/Oaver for each altitude point where Oaver is the
average value of atomic oxygen VMR obtained either from
the SABER or the other sources. At this point, the accuracy
of Oaver(z) becomes important and will be discussed below.
From the methodological point of view, if the dependence
of radiance onγ is strongly non-linear, and theγ variabil-
ity at each altitude is high, then the retrieval approach should
be modified and the correspondingζ (kVT,z) should include
the weights, which are proportional to the radiance responses
at givenγ . However, as the analysis performed for this work
shows, non-linear effects have little influence on the retrieved
kVT for the conditions considered in this work.

3.2 Using the Colorado State Sodium lidar temperature
measurements forkVT retrievals

In this study, we usedI15µm(z), T (z), P(z), CO2(z), and
O(z) from the SABER V1.07 database and coincidentalT (z)

measured by the Colorado State Sodium lidar described in
details in (She et al., 2003). Briefly, the lidar is a two-
beam system capable of simultaneous measurement of the
mesopause region temperature and winds, day and night,
weather permitting. This lidar was modified in 1999 in re-
sponse to TIMED satellite objectives. The lidar setup can
perform simultaneous measuring of the mesopause region
Na density, temperature, zonal and meridional wind pro-
files with both daytime and nighttime capability. The mea-
surement precision of the lidar system for temperature and
wind with 2 km spatial resolution and 1 h integration time
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Table 1.Historical review of thekVT{CO2-O} quenching rate coefficient measurements and atmospheric retrievals atT = 300 K.

kVT{CO2-O} [cm3s−1] Reference Comments

3–30 × 10−14 Crutzen (1970) First guess
2.4 × 10−14 Taylor (1974), Center (1973) Laboratory measurements
5.0 × 10−13 Sharma and Nadille (1981) Atmospheric retrieval
1.0 × 10−12 Gordiets et al. (1982) Numerical experiment
2.0 × 10−13 Kumer and James (1983) Atmospheric retrieval
2.0 × 10−13 Dickinson (1984); Allen (1980) Laboratory measurements
5.2 × 10−12 Stair et al. (1985) Atmospheric retrieval
3.5 × 10−12 Sharma (1987) Atmospheric retrieval
3–9 × 10−12 Sharma and Wintersteiner (1990) Atmospheric retrieval
1.5 × 10−12 Shved et al. (1991) Laboratory measurements
3–6 × 10−12 López-Puertas et al. (1992) Atmospheric retrieval
1.3 × 10−12 Pollock et al. (1993) Laboratory measurements
5.0 × 10−12 Ratkowski et al. (1994) Atmospheric retrieval
5.0 × 10−13 Lilenfeld (1994) Laboratory measurements
1.5 × 10−12 Vollmann and Grossmann (1997) Atmospheric retrieval
1.4 × 10−12 Khvorostovskaya et al. (2002) Laboratory measurements
1.8 × 10−12 Castle et al. (2006) Laboratory measurements
6.0 × 10−12 Gusev et al. (2006) Atmospheric retrieval
1.5 × 10−12 Huestis et al. (2008) Recommended value
1.3–2.7 × 10−12 Castle et al. (2012) Laboratory measurements

Fig. 1. The sensitivity of(a) CO2(010) main isotope vibrational level populations,(b) infrared cooling/heating rate in CO2 bands, and
(c) I15µm(z) to kVT . For panels(a) and (b): lines with circles correspond tokVT = 1.5 × 10−12cm3 s−1 and lines with triangles corre-

spond tokVT = 6.0 × 10−12cm3 s−1. The non-LTE populations in panel(a) are presented as vibrational temperatures, which represent the
vibrational level excitation against the ground level 0:n1/n0 = g1/g0 exp[−(E1 − E0)/kTv ], wheren0,1, g0,1, andE0,1 are populations,
degenerations, and energies of the ground state and first vibrational level, respectively. The atmospheric model used for this sensitivity study
is the midlatitude summer profile of temperature, pressure, and atomic oxygen VMR from the MSIS-E-90 combined with the WACCM CO2
VMR profile for the corresponding conditions. The curves with squares/triangles in panel(c) show theI15µm(z) responses for the cases

when thekVT changes from 1.5 to 6.0 × 10−12cm3 s−1 and varies within estimated uncertainties in Fig. 2c, correspondingly (see also the
discussion in Sect. 4).
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were estimated for each beam under nighttime fair sky con-
ditions to be, respectively, 0.5 K and 1.5 m s−1 at the Na peak
(92 km), and 5 K and 15 m s−1 at the edges (81 and 107 km)
of the Na layer. Depending on the purpose of the analysis,
the temporal resolution may be made between 10 min and
several hours. We have searched for the SABER/lidar simul-
taneous common volume measurements in 2002–2005 using
stringent criteria for time and space overlapping:1 lat< 2◦,
1 long< 2◦, 1t < 10 min. Most of the profiles selected in
way (85 %) fall in 18–6 h local time interval. We substi-
tuted the SABERT (z) in 80–110 km altitude range with the
corresponding lidarT (z) and hydrostatically adjusted P(z)

to newT (z). Atomic O is changing in this period and us-
ing individual O(z) is not reasonable; therefore, we used
the γ = kVT × O variable discussed in Sect. 3.1. To reduce
the number of runs with obviously incorrectγ values, we
used the following approach: at each altitude the grid onγ

was built using the available O(z) and 21 points forkVT in
the (1.0–10) × 10−12 cm3 s−1 range with 5 × 10−13 cm3 s−1

step. The correctness of theγ grid selection was verified
at each altitude and for each overlapping event by check-
ing for the existence of theζ(γ,z) minimum. For each over-
lapping event, the non-LTE populations of CO2 vibrational
levels were found at all altitudes andI15µm was simulated
in line by line mode and then convolved with the corre-
sponding SABER bandpass function. This procedure was re-
peated for all grid points of theγ variable. Then at each al-
titude pointz we calculated the radiation differenceζ(γ,z)
(Fig. 2a). All ζ(γ,z) curves up to 105 km (cyan curve) have
a clear minimumζmin(γ,z) that washes out forζ(γ,z) de-
pendencies above that altitude (not shown in Fig. 2a). This
behavior is explained both by larger lidarT (z) and by larger
I15µm(z) uncertainties at higher altitudes. The values ofγ

corresponding toζmin(γ,z) form a separate scientific prod-
uct γmin(z) that may be used in midlatitude atmospheric ap-
plications for theI15µm calculations. The retrievedγmin(z)

values are 1.1 × 10−14; 5.7 × 10−14; 2.0 × 10−13; 5.1 × 10−13;
6.4 × 10−13 [cm3 s−1 ] for z = 85; 90; 95; 100; 105 km, re-
spectively. To obtain thekVT(z) profile (Fig. 2c) we di-
vided theγmin(z) profile by average atomic O VMR profile,
Oaver(z), (Fig. 2b). The dashed lines in Fig. 2c represent stan-
dard deviations estimated from input data uncertainties.

4 Discussion

Overall, thekVT(z) values shown in Fig. 2c fit well to the
atmospheric retrievals: the averaged value ofkVT is equal
to 6.5 ± 1.5 × 10−12 cm3 s−1. However, Fig. 2c also demon-
strates the altitudinal variability ofkVT(z) that goes slightly
beyond its uncertainties in 85–105 km altitude range. Obvi-
ously, this variability does not imply thatkVT rate coefficient
depends on altitude. Let us consider possible reasons for the
observedkVT behavior. The retrievedkVT(z) depends on:
(a) lidarT (z) in 80–110 km, (b) the SABER P(z) andT (z)

below 80 km, (c)I15µm(z) (d) CO2(z), (e) O(z), (f) CO2 non-
LTE model. Offsets in any of these parameters will lead to
offsets in the retrievedkVT(z). The quality of the SABER
V1.07 product has been evaluated by Remsberg et al. (2008).
As they show, in general, SABER V1.07 temperatures are 1–
3 K higher than lidar in the lower stratosphere and∼ 1–3 K
lower than lidar in the upper stratosphere and lower meso-
sphere. Assuming a 3 K positive temperature change in the
lower stratosphere and 3 K negative temperature change in
the upper stratosphere and lower mesosphere, we have es-
timatedI15µm limb radiation change above 85 km. In this
test performed for the mid-latitude atmospheric scenario, the
pressure profile has been hydrostatically adjusted, the non-
LTE populations have been found, andI15µm has been calcu-
lated and compared toI15µm calculated for unperturbed pres-
sure/temperature distribution. This test shows that changes in
I15µm above 85 km do not exceed 1 %. At the same time, the
sensitivity of I15µm to kVT change within the error bars is
much higher: 4 % at 85 km, 8 % at 90 km, 15 % at 95 km,
20 % at 100 km, and 25 % at 105 km (see a solid curve with
triangles in Fig. 1c). Correspondingly, the propagation of the
systematic error in pressure/temperature distributions below
85 km to the area of our particular interest through hydrostat-
ics is negligible. The main contributor to the 15 µm upwelling
radiative flux at the mesospheric altitudes is the stratopause
area where temperatures are high and the concentration of the
emitters is still high. In this area, SABER temperatures are
in reasonable agreement with other measurements (Rems-
berg et al., 2008), and the uncertainty of the upwelling flux
associated with temperature uncertainty can be estimated as
± 2 %. There are not too many CO2(z) data sets for the MLT
area. In Fig. 3a we show the average vertical distributions of
CO2, which were calculated in WACCM model (Garcia et al.,
2007; Smith et al., 2011), retrieved from SABER V1.07 in
(Rezac, 2011), and retrieved from the ACE-FTS occultation
observations (Beagley et al., 2010). The distributions agree
within standard deviation limits (shown only for ACE-FTS
for readability of the plot, the others are of the same order of
magnitude). We did not consider CRISTA CO2 distributions
(Kaufmann et al., 2002) because there was no temporal over-
lap with the data sets used in the present study: almost 10 yr
have passed since the CRISTA-2 operation.

The most critical component for thekVT(z) retrieval is
Oaver(z). A detailed analysis of the SABER V1.07 data
shows that the O density is at least twice that from several
other data sources (Smith et al., 2010 and references therein).
However, reducing Oaver(z) by factor of two will mean in-
creasingkVT(z) by the same factor, which will make it 8–10
times larger than the laboratory measured values (line with
squares in Fig. 3b). On the other hand, there is increasing ev-
idence for the reliability of the O determined from SABER
(Xu et al., 2012) and additional observations with similar
high O VMRs (Sheese et al., 2011). The retrieval of O(z)

in the SABER V1.07 also depends on temperature. How-
ever, as discussed by Smith et al. (2010), the contributions
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Fig. 2. Estimating the optimalkVT from the overlapping SABER and lidar measurements:(a) deviations between calculated and measured
I15µm at different altitudes with respect to a combinedγ value (see text). Eachζ(γ,z) curve in this panel represents the average over 72
individual deviations. Note the existence ofζ(γ,z) minima at all heights up to 105 km (cyan curve);(b) solid line: average O(z) built for all
overlapping events, dashed lines: standard deviations for O(z) estimated in Mlynczak et al. (2012);(c) solid line:kVT(z) obtained as a result
of dividing the individual minima found in the left panel by atomic O VMRs from the middle panel; dashed lines: standard deviations for
kVT .

of uncertainties in temperature to O(z) are small. Moreover,
any appreciable errors in temperatures would upset the ex-
cellent agreement between daytime and nighttime O(z) (see
discussion in Smith et al., 2010). In this work, we have used
the O(z) uncertainties from (Mlynczak et al., 2012) for the
kVT(z) error bars estimates shown in Fig. 2c.

It is worth noting that the altitude dependence of the re-
trieved kVT(z) follows the temperature distribution in the
MLT. As the quantum-mechanical calculations show (de
Lara-Castells et al., 2006), the vibrational quenching of
CO2(ν2) is significantly enhanced by spin-orbit interaction,
the probability of which depends on energy, so positive tem-
perature dependency should be expected. In the present study
we already used a standard(T /300)1/2 temperature scaling
of kVT , so one has to assume that the temperature depen-
dency is stronger thanT 1/2. However, the most recent lab-
oratory measurements ofkVT in the 142–490 K temperature
range (Castle et al., 2012) do not confirm this prediction and
demonstrate negative temperature dependency. In Fig. 3b we
showkVT(z) estimates for this case. As one can see,kVT al-
most reaches the value of 1.2 × 10−11 cm3 s−1 at 105 km. We
believe that the contradiction between laboratory measure-
ments and theoretical estimates of temperature dependency
of kVT is just another hint for deficiency of the CO2 non-LTE
model with respect to CO2-O collisions, which will be dis-
cussed further.

The standard pumping term in the non-LTE model, which
describes total production of CO2(ν2) in the state with the

number of bending mode quantaν2 due to collisions with the
O(3P) atoms has the form of

Yν2 = nO(3P){nν2−1kν2−1,ν2 − nν2kν2,ν2−1} (2)

wherenO(3P) is the O(3P) density,nν2−1 andnν2 are the vi-
brational states populations, andkν2−1,ν2 andkν2,ν2−1 are rate
coefficients for one-quantum excitation and de-excitation, re-
spectively. In current non-LTE models, including the one ap-
plied in this study, it is usually assumed thatkν2−1,ν2 = k0,1
andkν2,ν2−1 = k1,0. It follows from Huestis et al. (2008) that
if the velocity distribution of O(3P) atoms is Maxwellian and
their fine structure is thermalized then the laboratory mea-
suredk0,1 andk1,0 are linked by the detailed balance relation:

k0,1 = k1,0 ·
g1

g0
· e

−E1/kT (3)

whereg0 andg1 are the statistical weights of the lower and
upper vibrational states, respectively,E1 is the vibrational
energy of the firstν2 vibrational level,k is the Boltzmann
constant, andT is the local kinetic temperature. Sharma et
al. (1994) showed that both above-mentioned conditions are
valid for O(3P) atoms in the Earth’s atmosphere up to at least
400 km, which seems to justify usage of Eqs. (2) and (3) in
the non-LTE models. However, as Balakrishnan et al. (1998)
and Kharchenko et al. (2005) show, the non-thermal O(3P)
and O(1D) atoms are produced by O2 and O3 photolysis and
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Fig. 3. (a)Average vertical distributions of CO2 VMR distributions for 40.6 ± 2◦ N in 2002–2009 for WACCM and SABER, and in 2008–
2009 for ACE-FTS. Dashed blue lines denote standard deviation for the ACE-FTS CO2 profile; (b) estimated vertical profile ofkVT(z) for
O(z) divided by 2 and for a negative temperature dependency ofkVT according to the latest laboratory measurements (Castle et al., 2012).

O+

2 dissociative recombination reactions in the MLT. These
“hot” atoms may serve as an additional source of CO2(ν2)

level excitation. Therefore, the expression (2) may need to
be replaced by an expression like

Yν2 = nO(3P) ·
[
(1− α) ·

{
nν2−1kν2−1,ν2 − nν2kν2,ν2−1

}
+α ·

{∑
ν

nν2−νk
hot
ν2−ν,ν2

− nν2

∑
ν

khot
ν2,ν2−ν

}]
(4)

whereα is the fraction of total O(3P) density, which corre-
sponds to hot atoms,khot

ν2−ν,ν2
andkhot

ν2,ν2−ν are the rate coef-
ficients for excitation and de-excitation of CO2 molecules,
respectively, due to collisions with hot atoms, assuming also
multi-quantum processes. These rate coefficients are not re-
lated by the detailed balance since hot O(3P) atoms are
not thermalized. Comparing Eq. (2) which is applied in the
model used in our study with Eq. (4), one can see that the
rate coefficient values retrieved in this work and in other at-
mospheric studies are some sort of effective rate coefficient.
This may be expressed as

kretr
1,0(z) = kretr

ν2,ν2−1(z) = (1− α(z)) · kν2−1,ν2

+α(z) ·

∑
ν

nν2k
hot
ν2−ν,ν2

(5)

which includes the contribution of hot O(3P) atoms. We note
here that thekhot

ν2−ν,ν2
in Eq. (5) relates only to the pump-

ing term and, therefore,kretr
1,0 , strictly speaking, should not

be treated as a reaction coefficient of the balanced process

anymore, which is important for the future studies of this
problem. In addition to non-thermal oxygen, one can also
consider other sources of collisional excitation as, for ex-
ample, collisions with thermal and non-thermal hydrogen,
electronically-excited atomic oxygen O(1S), charged compo-
nents, or multi-quantum excitation of CO2 by thermal oxy-
gen (Ogibalov, 2000). In any case, the effective collisional
rate coefficient and the VMR of this “unknown” component
with respect to O(z) may be represented in a way similar to
Eq. (5). However, in the case of multi-quantum excitation
khot
ν2−ν,ν2

must be replaced with the multi-quantum excitation
rate, whileα(z) in this approach should be constant with alti-
tude, which is in contradiction with variablekVT(z) observed
in the present study.

Simple calculations show that assumingkν2−1,ν2 to be
fixed at (5.0) × 10−12 [cm3 s−1], the rate coefficients for the
collisions with hot oxygen,khot

ν2−ν,ν2
, should be 10 times

larger thankν2−1,ν2 andα(z) should vary linearly from 0 % at
85 km to 2 % at 105 km in order to account for the observed
kVT(z) increase with altitude. As Kharchenko et al. (2005)
show, the hot oxygen fraction at these heights is∼ 5 % dur-
ing daytime. Even though most of the overlapping profiles
used in this work fall in 18–6 h local time interval, the MLT
area is illuminated by the sun in at least half of the se-
lected events (the shadow level at 100 km corresponds to so-
lar zenith angleθz = 101◦, and the averageθz is 105 ± 30◦).
The magnitudes ofkhot

ν2−ν,ν2
are larger thankν2−1,ν2 (Shizgal,

1979) though obtaining the exact values requires complicated
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quantum-mechanical calculations (V. Kharchenko, personal
communication, 2011). It is also important to calculate the
thermalization timescales for hot oxygen atoms. To summa-
rize: the concept of hot oxygen as an additional pumping
source for the CO2(ν2) levels is apossibleexplanation of
thekVT(z) variation and the discrepancy between laboratory
measurements and atmospheric estimates of this rate coeffi-
cient. Of course, the simplified analysis given above is not
intended to be the ultimate explanation of our result. How-
ever, it may indicate the direction toward its interpretation.

5 Summary

In this work, we discussed a refined methodology for retriev-
ing kVT , the quenching rate for theν2 vibrations of CO2
molecules by collisions with O atoms. The suggested ap-
proach differs from those used in the previous studies (see
the “atmospheric retrieval” values in Table 1), where thekVT
was retrieved by fitting the measurements of the CO2 15 µm
emissions. The method (a) combines space-born radiance
measurements with the ground-based (i.e. lidar) temperature
observations, (b) allows retrievingkVT independently at vari-
ous altitudes, (c) allows retrieving the parameterγ = kVT × O
(where O is the VMR of atomic oxygen), which is the con-
tribution of atomic oxygen quenching to the total quenching
rate of the CO2(ν2) vibrations. Using theγ variable instead
of the kVT in minimizing the difference between measured
and simulated limb radiance significantly improves the sta-
bility and accuracy of retrieving.

The suggested technique is applied to the overlapping
SABER/TIMED (15 µm radiance, CO2 and O(3P) VMRs)
and Fort Collins lidar temperature measurements. The ob-
tained γ values are 1.1 × 10−14; 5.7 × 10−14; 2.0 × 10−13;
5.1 × 10−13; 6.4 × 10−13 [cm3 s−1] at 85; 90; 95; 100;
105 km, respectively. The average value of the retrieved
kVT in 85–105 km altitude range is 6.5 ± 1.5 × 10−12 cm3 s−1

that is in excellent agreement with other values esti-
mated from space-borne observations. However, we also
observed an altitude dependence of the retrievedkVT ,
which varies from 5.5 ± 1.1 × 10−12 cm3 s−1 at 85 km to
7.9 ± 1.2 × 10−12 cm3 s−1 at 105 km. We link the observed
variation as well as the discrepancy between the “atmo-
spheric” and laboratory measurements to a simplification
in the traditional consideration of CO2(ν2)+ O(3P) interac-
tions in the current non-LTE models, including the model
applied in this study, where the rate coefficients of the vi-
brational quenching and excitation are linked by the detailed
balance relation. We discuss that both problems may be ex-
plained by interaction of CO2 molecules with the hot oxy-
gen atoms, which is missing in the current models. We sub-
divide the oxygen atoms in the MLT to “normal” and “ex-
cited” or “hot” groups, with differentkVT rate coefficients
for each of the groups and keep in mind that rate coefficients
for the former group are balanced, whereas those for the lat-

ter group do not obey the detailed balance relation. Further
studies to explain the current results are needed including (a)
quantum-mechanical calculations for the collisions of CO2
with “hot” O atoms and, possibly, other atmospheric compo-
nents needed to improve the non-LTE model of the IR emis-
sion formation in the MLT, (b) new comparisons of space
radiance observations with the lidar temperature measure-
ments at various locations (including those for polar regions).
The radiative cooling rate calculations for general circulation
models and calculations of the emerging IR radiation will ob-
viously depend on the mechanism of interaction between the
radiation field and atmosphere, which will be revealed in the
course of these additional studies. However, one result fol-
lows already from the present work: for the practical temper-
ature retrievals from the 15 µm CO2 atmospheric radiation
observations, thekretr

1,0(z) values obtained in this study may
be recommended. As we show in our discussion, at the cur-
rent stage of the non-LTE model development these values
provide better presentation of the CO2-O interactions, which
relies at best fitting of coincidental atmospheric radiance and
ground based temperature observations.

Appendix A

Abbreviations

ACE FTS Fourier-Transform Spectrometer in
Atmospheric Chemistry Experiment

ALI-ARMS Accelerated Lambda Iterations for Atmo-
spheric Radiation and Molecular Spect

ASTRO-SPAS Astronomical Shuttle-Pallet Satellite
CRISTA Cryogenic Infrared Spectrometers and

Telescopes for the Atmosphere, on board
the ASTRO-SPAS satellite

EUV Extreme Ultraviolet
LTE Local Thermodynamic Equilibrium
MGS TES Thermal Emission Spectrometer onboard

Mars Global Surveyor satellite
MIPAS Michelson Interferometer for Passive At-

mospheric Sounding
MLT Mesosphere/Lower Thermosphere
SABER Sounding of the Atmosphere using

Broadband Emission Radiometry
TIMED Thermosphere Ionosphere Mesosphere

Energetics and Dynamics
VMR Volume Mixing Ratio
WACCM Whole Atmosphere Community Climate

Model
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