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ABSTRACT
We investigate the hydrodynamics of the interaction of two supersonic winds in binary systems.
The collision of the winds creates two shocks separated by a contact discontinuity. The
overall structure depends on the momentum flux ratio η of the winds. We use the code
RAMSES with adaptive mesh refinement to study the shock structure up to smaller values of
η, higher spatial resolution and greater spatial scales than have been previously achieved.
2D and 3D simulations, neglecting orbital motion, are compared to widely used analytic
results and their applicability is discussed. In the adiabatic limit, velocity shear at the contact
discontinuity triggers the Kelvin–Helmholtz instability. We quantify the amplitude of the
resulting fluctuations and find that they can be significant even with a modest initial shear. Using
an isothermal equation of state leads to the development of thin shell instabilities. The initial
evolution and growth rates enables us to formally identify the non-linear thin shell instability
(NTSI) close to the binary axis. Some analogue of the transverse acceleration instability is
present further away. The NTSI produces large amplitude fluctuations and dominates the long-
term behaviour. We point out the computational cost of properly following these instabilities.
Our study provides a basic framework to which the results of more complex simulations,
including additional physical effects, can be compared.

Key words: hydrodynamics – instabilities – methods: numerical – binaries: general – stars:
massive – stars: winds, outflows.

1 IN T RO D U C T I O N

The stellar winds of massive stars are driven by radiation pressure to
highly supersonic terminal velocities v∞ ≈ 1000–3000 km s−1, with
mass-loss rates that can reach Ṁ ≈ 10−6 M� yr−1 in O stars and
10−4 M� yr−1 in Wolf–Rayet stars (Puls, Vink & Najarro 2008).
The interaction of two such stellar winds in a binary system creates
a double shock structure where the material is condensed, heated
and mixed with important observational consequences (see Pittard
et al. 2005 for a review). For instance, these colliding wind binaries
(CWBs) have much larger X-ray luminosities than seen in isolated
massive stars due to the additional emission from the shock-heated
material. The increased density in the shock region also has an im-
pact on the absorption of light within the binary. Further away from
the system, free–free emission is detected in the radio, possibly sup-
plemented by synchrotron radiation from electrons accelerated at
the shock. High-resolution imaging in infrared (Tuthill, Monnier &
Danchi 1999) and radio (Dougherty et al. 2003) has made it possible
to trace the large-scale spiral structure created by the winds with the
orbital motion of the stars. The interpretation of these observations
requires knowledge of the shock structure and geometry.

�E-mail: astrid.lamberts@obs.ujf-grenoble.fr

Assuming a purely hydrodynamical description, the interaction
results in the formation of two shocks separated by a contact dis-
continuity. In the adiabatic limit, the gas behind the shock is heated
to temperatures T ∼ M2Tw (where Tw is the wind temperature and
M > 1 is the Mach number of the wind). The structure is shaped
primarily by the momentum flux ratio of the winds (Lebedev &
Myasnikov 1990):

η ≡ Ṁ2v∞2

Ṁ1v∞1
. (1)

The subscript 1 stands for the star with the stronger wind, the sub-
script 2 for the star with the weaker wind. For reasons of symmetry,
the contact discontinuity (CD) is on the mid-plane between the stars
when η = 1. Pilyugin & Usov (2007) obtained a complete semi-
analytic description of the interaction region for this specific case.
When η �= 1 the shock structure bends towards one of the stars
as the stronger wind gradually overwhelms the weaker wind. This
leads to a bow shock shape close to the binary and the CD shows an
asymptotic opening angle at large scales (neglecting orbital motion;
Girard & Willson 1987). The shock structure must then be derived
from numerical simulations (Luo, McCray & Mac Low 1990). It
depends on other parameters (Mach number, velocity ratio of the
winds) and, crucially, on the cooling properties of the gas. Cooling
becomes efficient when the radiative time-scale of the shocked flow
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Unstable colliding winds at high resolution 2619

becomes shorter than its dynamical time-scale (Stevens, Blondin &
Pollock 1992). In this case, the kinetic energy of the wind (typically
∼1036 erg s−1) is radiated away and the incoming gas is strongly
decelerated at the shock (v = v∞/M2 in the isothermal limit com-
pared to v = v∞/4 in the adiabatic limit). The interaction region
becomes thin and the double shock structure indistinguishable from
the contact discontinuity. Analytical solutions for the interaction ge-
ometry can be derived in the limit of an infinitely thin shock (Girard
& Willson 1987; Luo et al. 1990; Dyson, Hartquist & Biro 1993;
Canto, Raga & Wilkin 1996; Gayley 2009; see Section 3 below).

The analytical solutions provide useful approximations but their
validity may be questioned as numerical simulations show that
shocks become unstable (see Section 4). The CD separates two
media with different tangential velocities, triggering the Kelvin–
Helmholtz instability (KHI) in adiabatic or radiatively inefficient
shocks. The impact is more or less pronounced (Stevens et al. 1992;
Lemaster, Stone & Gardiner 2007; Pittard 2009; Parkin & Pittard
2010; van Marle, Keppens & Meliani 2011) and has not been quanti-
fied yet. Thin shocks become violently unstable and have garnered
more attention. The instability was initially seen in simulations
where the gas was assumed to be isothermal, mimicking the effect
of efficient cooling (Stevens et al. 1992; Blondin & Koerwer 1998
but see Myasnikov, Zhekov & Belov 1998), and has since also been
seen in simulations including a more realistic treatment of radiative
cooling (Pittard 2009; van Marle et al. 2011). The resulting mix-
ing and variability can have important observational consequences.
The origin of the instability remains unclear (Walder & Folini 1998).
Two mechanisms have been proposed in the thin shell limit: the non-
linear thin shell instability (NTSI; Vishniac 1994) and the transverse
acceleration instability (TAI; Dgani, Walder & Nussbaumer 1993;
Dgani, van Buren & Noriega-Crespo 1996); both may be at work
in colliding winds (Blondin & Koerwer 1998).

Much progress has been made in including more realistic physics
in simulations of CWB (wind acceleration, gravity from the stars,
radiative inhibition, cooling functions, heat conduction, orbital mo-
tion etc.). These are undoubtedly important effects to consider when
comparing with observations but they complicate the comparison
with basic analytical expectations which, in turn, makes it more
difficult to assess their contributions. Here, we present simulations
neglecting all these effects, assuming a polytropic gas P ∝ ργ

with γ = 5/3 (adiabatic) or γ = 1 (isothermal). Our purpose is to
understand how the shock region compares to expectations and to
constrain the conditions giving rise to instabilities particularly in the
limit of low η. We performed a systematic set of 2D and 3D numer-
ical simulations using the hydrodynamical code RAMSES (Teyssier
2002) with adaptive mesh refinement (AMR), allowing us to reach
the high resolutions required for thin shocks and low η while keep-
ing a wide simulation domain to study the asymptotic behaviour
(Section 2). Notable features of the wind interaction region are dis-
cussed and compared to the analytical solutions: shock location,
width, opening angle and the presence of reconfinement shocks at
low η (Section 3). We present our investigations of the instabilities
in the adiabatic and isothermal case in Section 4. We find that the
NTSI is the dominant mechanism for isothermal winds. We then
replace this work in its larger context, discussing the impact that
including additional physics would have on our conclusions and the
computational cost required to follow the instabilities (Section 5).

2 N U M E R I C A L S I M U L AT I O N S

We use the hydrodynamical code RAMSES (Teyssier 2002) to perform
our simulations. This code uses a second-order Godunov method to

solve the equations of hydrodynamics:

∂ρ

∂t
+ ∇ · (ρv) = 0, (2)

∂(ρv)

∂t
+ ∇ · (ρvv) + ∇P = 0, (3)

∂E

∂t
+ ∇ · [v(E + P )] = 0, (4)

where ρ is the density, v the velocity and P the pressure of the gas.
The total energy density E is given by

E = 1

2
ρv2 + P

(γ − 1)
, (5)

γ is the adiabatic index, its value is 5/3 for adiabatic gases and
1 for isothermal gases. For numerical reasons γ is set to 1.01 for
isothermal simulations (Truelove et al. 1998). We use the MinMod
slope limiter. We compare our simulations with analytic solutions
in Section 3. In order to do this, we prevent the development of
instabilities in the shocked region by using the local Lax-Friedrich
Riemann solver, which is more diffusive. An exact Riemann solver
is used to study the development of instabilities in Section 4. We
perform 2D and 3D simulations on a Cartesian grid with outflow
boundary conditions. We use AMR which enables to locally in-
crease the spatial resolution according to the properties of the flow.
In 2D the grid is defined by a coarse resolution nx = 128 with up to
six levels of refinement. In 3D the grid is defined by nx = 32 with
up to five levels of refinement. The refinement criterion is based on
density gradients.

2.1 Model for the winds

Our method to implement the winds is similar to the one developed
by Lemaster et al. (2007) and described in the appendix of their
paper. The main aspects are recalled here for completeness. Around
each star, we create a wind by imposing a given density, pressure
and velocity profile in a spherical zone called mask. The masks are
reset to their initial values at all time-steps to create steady winds.
The velocity is purely radial and set to the terminal velocity v∞ of
the wind in the whole mask. Setting the velocity to v∞ supposes
the winds have reached their terminal velocity at the interaction
zone. This might not be applicable for very close binaries or if η �
1 because the shocks are then very close to one of the stars. Our
2D set-up differs from those usually found in the literature (e.g.
Stevens et al. 1992; Brighenti & D’Ercole 1995; Pittard et al. 2006)
in that we work in the cylindrical (r, θ ) plane instead of the (r,
z) plane. A drawback of our 2D method is that the structure of
the CWB is not identical when going from a 2D to 3D simulation
with the same wind parameters. However, as described later, we
found that the 3D structure is mostly recovered in 2D by using the
scaling

√
η3D → η2D. An advantage of our 2D approach is that it

is straightforward to include binary motion without resorting to full
3D simulations. Such simulations will be described elsewhere (see
Lamberts, Fromang & Dubus 2011, for preliminary calculations).
The density profile is determined by mass conservation through the
mask:

ρ3D = Ṁ

4πr2v∞
(3D), ρ2D = Ṁ

2πrv∞
(2D), (6)

where r is the distance to the centre of the mask. The pressure
is determined using Pρ−γ = K with K constant in each region.
Time is expressed in years and mass-loss rates are expressed in
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2620 A. Lamberts, S. Fromang and G. Dubus

10−8 M� yr−1. We decide to scale all distances to the binary sepa-
ration a. This way the results of a simulation can easily be rescaled
to systems with a different separation. For each simulation, the in-
put parameters are the mass-loss rate, terminal velocity and Mach
number M at r = a of each wind. We then derive the hydrodynami-
cal variables at a. After that the corresponding density, pressure and
velocity profile in the mask are computed.

For η � 1 the shocks form very close to the second star. In this
case, the mask of the star has to be as small as possible so that
the shocks can form properly (Pittard 1998). However a minimum
length of eight computational cells per direction is needed to obtain
spherical symmetry of the winds. We thus fix the size of the masks
to eight computational cells in each direction for the highest value of
refinement. We performed tests with a single star for different sizes
of the mask ranging from 0.03a to 1.5a. The tests were performed for
nx = 128 and four levels of refinement. The resulting density profiles
all agree with the analytic solution with less than 1 per cent offset.
The surrounding medium is filled with a density ρamb = 10−4ρ(a)
and pressure Pamb = 0.1P(a). This initial medium is pushed away by
the winds. Simulations with different ρamb and Pamb show the same
final result, to round-off precision. The size of the computational
domain varies between lbox = 2a and 80a according to the purpose
of the simulation. Except where stated otherwise, we took Ṁ1 =
Ṁ2 = 10−7 M� yr−1, M1 = M2 = 30, v∞2 = 2000 km s−1 and η

was varied by changing v∞1. Hence, our low momentum flux ratios
can imply very high velocities for the first wind.

3 T H E S H O C K R E G I O N

In this section we study the dependence on η of the geometry of the
interaction zone. We discuss the analytic solutions for the colliding
wind geometry, in 2D and 3D, to which we compare our simu-
lations. Simulations are performed with adiabatic and isothermal
equations of state. In both cases the numerical diffusion introduced
by the solver is sufficient to quench the development of instabilities.
Section 4 deals with high-resolution simulations of the development
of these instabilities.

3.1 Analytical approximations

The overall structure of the CWB is given in Fig. 1. The density
map shows two shocks separating the free winds from the shocked
winds. The shocked winds from both stars are separated by a contact
discontinuity. The Bernouilli relation is preserved across shocks
hence
1

2
v2

∞1 = γ

γ − 1

P1s

ρ1s
+ 1

2
v2

1s (7)

across the first shock. The subscript ‘s’ refers to quantities in the
shocked region and we have neglected the thermal pressure in the
unshocked wind due to its high Mach number. A similar equation
holds for the second shock. The Bernouilli relation is constant in
each shocked region but discontinuous at the CD. There, P1s ≡ P2s

by definition and v1s = v2s = 0 on the line of centres so that the
two Bernouilli equations combine to give ρ1sv

2
∞1 = ρ2sv

2
∞2, with

ρs the value of the density on each side of the contact discontinuity.
Assuming that the density is constant in each shocked region on the
binary axis (the numerical simulations carried out below show this
is a very good approximation) then

ρ1v
2
∞1 ≈ ρ2v

2
∞2, (8)

where ρ1 (ρ2) is the value of the density at the first (second) shock.
The above relation states the balance of ram pressures (Stevens et al.

Figure 1. Density map of the interaction zone for η = 1/32 = 0.03125
(3D simulation). It is a cut perpendicular to the line of centres taken from
a 3D simulation. A zoom on the binary system is shown at the bottom
right-hand corner. The stars are positioned at the intersections of the dotted
lines. The first star has coordinates (0, 0), the second one has coordinates
(a, 0). There are three density jumps (for increasing x). The first shock
separates the unshocked wind from the first star from the shocked wind.
The CD separates the shocked winds from both stars. It intersects the line
of centres at the standoff point Rs. The second shock separates the shocked
and unshocked parts of the wind from the second star. As the wind from
the second star is collimated, there is a reconfinement shock along the line
of centres. R(θ1) is the distance between the CD and the first star, θ1 is the
polar angle. The asymptotic opening angle is given by θ1∞. l is the distance
to Rs along the contact discontinuity.

1992). Using equations (1) and (6) then yields

r2 ≈ √
ηr1 (3D), r2 ≈ ηr1 (2D), (9)

where r1 is the distance between the first star and the first shock,
and r2 the distance between the second star and the second shock.
If the shock is thin then r1 + r2 ≈ a and the distance Rs ≈ r2 of the
CD to the second star is

Rs

a
≈

√
η

1 + √
η

(3D),
Rs

a
≈ η

1 + η
(2D). (10)

Note that, for a given η ≤ 1, the CD is closer to the second star for
a 2D geometry than for a 3D geometry.

The shock positions are not easily derived away from the line
of centres, where the density is not constant in the shocked winds.
Analytic solutions have been derived based on the thin shell hypoth-
esis, which considers both shocks and the CD are merged into one
single layer. Stevens et al. (1992) (see also Luo et al. 1990; Dyson
et al. 1993; Antokhin, Owocki & Brown 2004) derive the following
equation for the shape of the interaction region by assuming that it
is located where the ram pressures normal to the shell balance:

dx

dy
= x

y
−

(
a

y

) [
1 + √

η

(
r2

r1

)2
]−1

. (11)

The same analysis for the 2D structure (equation 6) leads to

dx

dy
= x

y
−

(
a

y

) [
1 + √

η

(
r2

r1

)3/2
]−1

. (12)

Canto et al. (1996), extending the work of Wilkin (1996), found
an analytical solution in the thin shell limit based on momentum
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Unstable colliding winds at high resolution 2621

Figure 2. Dependence of the shock geometry with η in 2D. Top left-hand
panel: position of the different density jumps: first shock (black crosses),
CD (blue diamonds) and second shock (green asterisks). The 2D analytic
solution for the CD (equation 10) is overplotted (blue solid line). Top right-
hand panel: ratio of the shock positions measured from the simulations and
compared to equation (9). Bottom left-hand panel: position of the reconfine-
ment shock. Bottom right-hand panel: asymptotic opening angle (crosses)
compared with the asymptotic angle derived from the Canto et al. (1996)
(dashed line) and Stevens et al. (1992) (solid line) solutions.

conservation (hence, taking into account the centrifugal correction
i.e. the forces exerted on the gas as it follows a non-linear path along
the shock; Baranov, Krasnobaev & Kulikovskii 1971; Dyson 1975;
Girard & Willson 1987):

θ2cot θ2 − 1 = η (θ1cot θ1 − 1) (13)

(see Fig. 1 for the definition of θ1 and θ2). The same analysis in 2D
leads to

cos θ2 − 1

sin θ2
= η

cos θ1 − 1

sin θ1
. (14)

3.2 2D study

We performed a systematic study of the 2D geometry of the in-
teraction zone in the adiabatic case for η ranging from 1 down to
1/128 with Mach number M = 30 for both winds. Fig. 2 shows
how the main features of the CWB vary with η. The positions of
the discontinuities on the binary axis (top left) were computed by
determining the local extrema of the slope of the density, excluding
the masks. There is very good agreement with the analytic solution
for the position of the standoff point (equation 10). The relation
for the ratio of shock positions (equation 9) is also verified (top
right). As η decreases both shocks and the CD get closer to the star
with the weaker wind. Since the thickness of the shell decreases as
η decreases, proper modelling of the interaction region for low η

requires a higher numerical resolution. For η � 0.25, the second
wind is totally confined and there is a reconfinement shock on the
line of centres behind the second star (see Fig. 1). This shock draws
closer to the second star as η decreases (Fig. 2, bottom left). Similar
structures were found by Myasnikov & Zhekov (1993) and Bogov-
alov et al. (2008) (in the latter case for η < 1/800). The last panel
(Fig. 2, bottom right) shows the asymptotic opening angle of the
contact discontinuity. The solution from Stevens et al. (1992) gives
a better agreement for low values of η.

For given Mach numbers, the geometrical structure of the CWB
is set by η. We performed a series of tests for η = 1/8 = 0.125
and different combinations for v∞1, v∞2, Ṁ1 and Ṁ2. Although the
density and velocity fields were different in all cases, both shocks
and the CD were located at the same place along the line of centres.
Further away from the star we notice that the reconfinement shock
position changes up to �25 per cent when changing the velocity
and mass-loss rate of the winds. All other discontinuities are located
at the same place. Simulations with M1 = M2 = 100 do not show
differences from the case M1 = M2 = 30, as could be expected
since thermal pressure is negligible in both cases. However, the
structure for given η depends somewhat on the Mach number of
the winds if these are not very large. Fig. 3 shows the density maps
for 2D simulations with η = 0.25 but with different values for the
wind Mach numbers obtained by changing the wind temperature.
If both winds have M = 5 instead of M = 30, the shocked
region is wider and a reconfinement shock appears at ≈15a (beyond
the region shown in Fig. 3). The position of the CD remains the
same. When both winds have different Mach numbers, the whole
shocked structure is more bent towards the wind with the higher
Mach number: thermal pressure from the low Mach number wind is
not negligible in the shock jump conditions (see equation 7) and the

Figure 3. Density maps for 2D simulations with η = 0.25 and different Mach numbers for the winds (M1, M2). The 2D analytic solutions derived from the
assumptions of Canto et al. (1996) and Stevens et al. (1992) are represented, respectively, by the dashed and solid line. The analytic solutions both assume
infinite Mach numbers for both winds.
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2622 A. Lamberts, S. Fromang and G. Dubus

Figure 4. Density maps for 3D simulations with η = 0.5 and η = 1/32 = 0.03125 in the adiabatic (γ = 5/3) and isothermal (γ = 1.01) limits. The stars are
located at the intersections of the dotted lines. The dashed line represents the solution from Canto et al. (1996), the solid line the solution from Stevens et al.
(1992). The length-scale is the binary separation a.

added term displaces the shock away from the low Mach number
wind.

We also investigated the overall structure in the isothermal case,
quenching the strong instabilities that are present in this case (see
Section 4.2) by using a highly diffusive solver. In this case pressure
support is weaker and the shell is much thinner, as expected. The
double shock structure and CD are only visible on the line of centres
when using a very high spatial resolution. The position of the thin
shock structure on the line of centres is within 10 per cent of the
CD position found in adiabatic simulations. The asymptotic angle
is difficult to assess as the shock structure is smoother than in
the adiabatic case (see e.g. Fig. 4) but the bracketing values are
consistent with those found in the adiabatic case. We find that the
weaker wind can be fully confined as in the adiabatic case. However,
this occurs further away from the star than in the adiabatic case
shown in Fig. 2 (at ≈6.4a for η = 1/16 and 2.2a for η = 1/32).

3.3 3D study

We completed this 2D study with the analysis of a few large-scale
3D simulations, computationally more expensive than the previous
2D simulations. Fig. 4 shows the density maps for adiabatic and
isothermal 3D simulations with η = 0.5 and 1/32 (M = 30). In the
adiabatic case, one can clearly see the two shocks and the contact
discontinuity. For η = 1/32 the weaker wind is totally confined
with maximum extension along the axis up to 5a away behind the
star. For η = 1/64 ≈ 0.016 (not shown) we find the reconfine-
ment shock occurs at 1.0a. This is consistent with the 2D results
(Fig. 2) if assuming the rough mapping

√
η3D → η2D suggested

by equation (10). Indeed, we find no reconfinement shock for 3D
simulations with η = 0.08 (which would correspond to η2D ≈ 0.29
in Fig. 2). Pittard & Dougherty (2006) performed 2D axisymmetric
simulations showing a reconfinement shock for η = 0.02 but not for
η = 0.036. We performed several 3D simulations with η = 1/32 =
0.03125 or η = 0.02 and for different values of the Mach number
M (assumed identical in both winds). We found that reconfinement
occurs in all cases when M = 30 or 100 but that no reconfinement
occurs for η = 0.02 or 1/32 when M = 5. As in the 2D case,
non-negligible thermal pressure has an impact on the structure of
the CWB. Whereas the presence of reconfinement for low η and
high Mach numbers around a threshold value 0.02–0.03 appears
robust, the precise determination of this threshold value or of the
properties of the reconfinement region is sensitive to the exact wind
properties (Mach number). Radiative cooling, which is neglected
here, can also have an impact on reconfinement (e.g. 2D isothermal
simulation showed reconfinement further away from the star than
in the adiabatic case, Section 3.2).

The positions of the discontinuities along the line of centres agree
within 2 per cent with the expected values. As with the 2D case,
the shock shape is better approximated by the solution of Stevens
et al. (1992) at low η. For η = 0.5 we find θ∞ = 71◦ whereas the
asymptotic angle from both Stevens et al. (1992) and Canto et al.
(1996) give 78◦; for η = 1/32 = 0.03125 we get 23◦ compared to
theoretical estimates of 27◦ (Stevens et al. 1992) and 35◦ (Canto
et al. 1996). On the other hand, Figs 3 and 4 show that the analytic
solution of Canto et al. (1996) is a better approximation to the CD
shape at high η. For η ≥ 1/32, close to the line of centres, the
shocked region is thinner in the 3D case than in the 2D. For smaller
values of η, the shocked zone is thicker in the 3D case. In all cases
the CD is further away from the second star in the 3D case than in
the 2D case.

We have studied the geometry of the interaction region in 2D and
3D. We conclude that analytic solutions give satisfactory agreement
with the results of the simulations. The solution based on ram pres-
sure balance normal to the shock reproduces better the asymptotic
opening angle of the flow at low η. We also find that the weaker
wind can be entirely confined for low values of η. However, the in-
teraction region is susceptible to instabilities that can modify these
conclusions. This is investigated in the next section.

4 INSTA BI LI TI ES

4.1 The Kelvin–Helmholtz instability

When the exact Riemann solver is used, there is less numerical
diffusion and the velocity shear at the CD leads to the development
of the KHI. The interface of two fluids is unstable to any velocity
perturbation along the flow in the absence of surface tension or
gravity (Chandrasekhar 1961). The growth rate of the instability in
the linear phase is τKHI = λ/(2π	v), where 	v is the difference of
velocity between the two layers and λ the wavelength of the pertur-
bation. In practice, numerical simulations are limited by diffusivity
and the minimum resolvable structure, inevitably stunting the in-
stability at small λ. At the other end of the scale, the development
of instabilities with large wavelengths can be hampered by their
advection in the flow. The dynamical time-scale can be estimated
by τ dyn ∼ a/cs, where cs is the post-shock sound speed, which is
of the order of the wind velocity v∞ in a strong adiabatic shock.
Hence, the scale of the perturbations may be expected to be limited
to λ/a < 	v/v. For two identical winds with terminal velocities of
2000 km s−1 and a = 1 au, τ dyn � 6.8 × 104 s = 2.2 × 10−3 yr.

We performed a set of simulations with η = 1, increasing the
velocity v∞1 of the first wind to investigate the impact of the KHI
in the adiabatic case. The mass-loss rate Ṁ1 was simultaneously
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Unstable colliding winds at high resolution 2623

Figure 5. Development of KHI in the adiabatic case for η = 1. Upper panel: density maps from left to right: v∞1 = 1.1v∞2, ρ1 = 0.91ρ2; v∞1 = 2v∞2, ρ1 =
0.5ρ2; v∞1 = 20v∞2, ρ1 = 0.05ρ2. Lower panel: rms of the velocity perturbations on a logarithmic scale. The fastest wind originates from the star on the
left-hand side.

decreased and the Mach number M1 of the wind was kept equal to
30. The size of the domain is 8a and the resolution is nx = 128 with
five levels of refinement. The simulations were run up to t = 600τ dyn.
A steady state is reached well before the end of the simulation,
as determined by looking at the time evolution of the total rms
of the density or velocity perturbations over the whole simulation
domain. Restricting ourselves to this steady state interval, which we
checked to be much longer than the advection time along the contact
discontinuity, we then computed the time average of the velocity
rms for each cell of the domain. We used the median value over the
same time period as our reference. The purpose was to quantify the
saturation amplitude of the perturbations.

The results are shown in Fig. 5. The upper panels give the density
maps for the different cases while the corresponding lower panels
show the time average of the rms of the velocity fluctuations. No
instabilities are present when the two winds are exactly identical, as
expected since there is no velocity shear. Introducing a 10 per cent
difference in the velocity of the winds leads to low-amplitude per-
turbations that are significant only close to the contact discontinuity.
A dominant wavelength can be identified, probably because growth
for such a weak velocity shear is restricted to a small domain by
diffusivity at short wavelengths and advection at long wavelengths.
The rms of the velocity and density perturbations saturates at about
10 per cent. When v∞1 = 2v∞2 small-scale eddies are visible. They
are stretched in the direction of the flow. The position of the shocks
is barely affected by the instability. The perturbations affect a larger
zone on both sides of the CD but their amplitude remains around
a few tens of per cent rms, somewhat higher for the density than
for the velocity perturbations. When v∞1 = 20v∞2 (fourth panel)
the instability has become non-linear judging by the 100 per cent
rms of the velocity (and density) fluctuations. The location of the
CD fluctuates significantly yet the region with the strongest rms is
not much wider than for the previous cases. We also investigated

in this last case whether keeping the wind temperature constant as
v∞1 is varied, instead of keeping M1 constant, led to differences.
The outcome was similar.

A similar set of simulations was performed with η = 1/16 =
0.0625 (Fig. 6). There is no velocity shear or CD when v∞1 =
v∞2, even in the case η �= 1. This can be proven as follows. The
Bernouilli constant (equation 7) has the same value in both shocked
region when v∞1 = v∞2, so the densities are identical at the CD
(where pressures equalize) on the line of centres. The gas is poly-
tropic with P ≡ Kρ−γ and K constant in each region. Writing that
ρ and P are equal on both sides of the CD on the line of cen-
tres requires that K has the same value in both shocked regions.
Therefore, ρ1s = ρ2s along the contact discontinuity. Using that
the Bernouilli constant is the same in both shocked regions then
proves that v1s = v2s at the contact discontinuity. Actually, there
is no discontinuity in this case. The simulation with v∞1 = v∞2

confirms that there is no velocity shear and that the KHI does not
develop. When v∞1 = 1.1v∞2 only weak perturbations are seen,
limited to a small region close to the contact discontinuity. A domi-
nant wavelength can be identified as in the case η = 1. When v∞1 =
2v∞2 the centre line of the perturbations approximately matches the
shape of the unperturbed contact discontinuity. The first shock is
not affected by the instability. The velocity perturbations affect all
the region of the shocked second wind and part of the shocked wind
of the first star. The density perturbations have a higher rms than
the velocity perturbations, reaching close to 100 per cent close to
the contact discontinuity. The velocity perturbation is strong when
v∞1 = 20v∞2 and is mostly confined to the shocked second wind.
High rms density fluctuations extend to the first wind, distorting
slightly the first shock. (The sawtooth appearance of the wings in
the v1∞ = v20∞ rms maps is an artefact of the limited time range
over which the average was done.) The backward reconfinement of
the wind of the second star is affected by the instability, occurring
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2624 A. Lamberts, S. Fromang and G. Dubus

Figure 6. Same as Fig. 5 but for η = 1/16 = 0.0625.

much closer to the second star than in the case with equal wind
velocities.

The KHI modifies the interaction region as soon as the wind
velocities are slightly different. The simulations suggest that the
relative amplitude of the perturbations becomes significant when
v1 � 2v2, although we cannot rule out that limited numerical res-
olution does not impact the growth of the instability for smaller
velocity shears. The instability does not erase completely the con-
tact discontinuity. However, the turbulent motions tend to smooth
out the initial structures in the region of the wind with the smaller
velocity.

4.2 Isothermal equation of state: thin shell instabilities

When thermal support in the shocked zone is too weak, the shell
becomes thin and unstable. This occurs for instance when the adia-
batic index is decreased (Mac Low & Norman 1993). More realistic
numerical simulations including radiative cooling functions also
show the shocks become thinner and unstable as cooling increases
(Stevens et al. 1992; Pittard 2009, but see Myasnikov et al. 1998).
The instability is usually referred to as ‘thin shell instability’ al-
though several physical mechanisms may be at work, including the
KHI. The NTSI (Vishniac 1994) is found in hydrodynamical sim-
ulations when the thin shell is moved away from its rest positions
by perturbations with an amplitude at least greater than the shell
width (Blondin & Marks 1996). The instability is due to an imbal-
ance in the momentum flux within the shell as shocked fluid moves
towards opposing kinks. The TAI (Dgani et al. 1993, 1996) occurs
when at least one of the colliding flows is divergent and assumes an
infinitely thin shell. Both linearly unstable breathing and bending
modes are found. The breathing mode is due to the acceleration of
the flow along the shell, whereas the bending mode arises from the

mismatch in ram pressure of the wind impacting each side of the
thin shell when it is displaced from its equilibrium value.

We studied the growth of thin shell instabilities in CWBs using
2D simulations with an isothermal equation of state. Initial investi-
gations showed that the thin shock structure (Section 3.2) becomes
unstable only if there are a sufficient number of cells available
(�4) to resolve the shock structure. The minimum number of cells
required is even larger if a highly diffusive solver is used. Low-
resolution simulations without mesh refinement (256 × 256 cells)
do not resolve the shock structure and stay stable. We decided to
use those steady state solutions as the initial input for simulations
at higher resolution, so as to be able to study in as much as possible
the initial linear growth phase of the instabilities. The winds are
chosen to have identical velocities in order to exclude any seeding
by the KHI (Section 4.1).

The evolution of a CWB with η = 1, identical velocities and
an isothermal equation of state is shown in Fig. 7. The size of the
domain is 3a. The left-hand panels show the case with one level
of mesh refinement, the right-hand panels show the case with four
levels. At low resolution (left-hand panels), perturbations become
visible away from the line of centres early in the simulation (t =
9.5 × 104 s). These perturbations grow slowly as they are advected,
thickening the layer. At t = 1.5 × 105 s another instability develops
close to the binary with a growth rate faster than the advection rate
and a distinct morphology. In this case matter piles up in the convex
parts of the shell, which move steadily away from the initial shock
position without the oscillatory behaviour seen in the wings. At the
end of the simulation (t = 3.1 × 105 s) the colliding wind region is
dominated by these large-scale perturbations. At higher resolution
(right-hand panels), the initial instability appears earlier and is also
present closer to the binary axis. At t = 9.5 × 104 s there already is a
superposition of modes and one cannot define a unique wavelength
any more. At t = 1.8 × 105 s oscillations are present even on the

C© 2011 The Authors, MNRAS 418, 2618–2629
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/418/4/2618/1028810 by C
N

R
S - ISTO

 user on 29 M
arch 2022



Unstable colliding winds at high resolution 2625

Figure 7. Density maps showing the evolution of a 2D colliding wing binary
when η = 1 and γ = 1.01. Time is given in seconds. t = 0 corresponds to the
restart at high resolution of an initial low-resolution simulation (256 cells,
no mesh refinement). On the left-hand panel there is one level of refinement
(maximum resolution equivalent to 512 cells), on the right-hand panel there
are four levels (maximum resolution equivalent to 4096 cells).

binary axis and the structure is not symmetric any more. The final
density maps show a thicker shell with small-scale structures. The
oscillations are smaller than for the low-resolution simulation at
this time. The evolution at subsequent times shows comparable
amplitudes in the oscillations at high and low resolution.

Similar behaviour was described by Blondin & Koerwer (1998)
in their simulations of stellar wind bow shocks. We tentatively
associate the small amplitude instability that develops first, away
from the binary axis, with the TAI. This is a linear instability that
can be seeded by the initial numerical noise. The large amplitude

instability that develops later on the binary axis is likely to be the
NTSI. We examine below the supporting evidence.

4.2.1 Evidence for the non-linear thin shell instability

The NTSI shows the highest growth rate for perturbations of order
of the shell width L. The theoretical estimate is τ th = L/cs = 2.0 ×
104 s (Vishniac 1994) for the parameters appropriate to our simu-
lations, smaller than the advection time-scale (τ dyn � 6.8 × 104,
increasing near the binary axis as the flow velocity in the shocked
region goes to zero on axis). Hence, the fastest growing mode of
the NTSI should be seen, independently of the numerical resolu-
tion, as long as the shell is resolved. We compared this estimate
with the time evolution of the velocity perturbations in four sim-
ulations with one, two, three and four levels of refinement, using
an exact Riemann solver. For each simulation, we computed the
rms of the velocity for a line of cells along the binary axis, where
the NTSI is presumed to dominate. We normalized the data to the
value at the same arbitrary reference time taken close to the begin-
ning of each simulation. The rms were smoothed to suppress small
wavenumber perturbations that appear at high resolutions. The log-
arithm of the rms is shown in Fig. 8. The shell readjusts to the
higher numerical resolution up to t � 9.5 × 104 s. Close inspection
of the density maps reveals the presence of density fluctuations on
the scale of the shock width during this transition. This numerical
relaxation triggers the NTSI close to the binary axis (left-hand pan-
els of Fig. 7). In the simulations with highest numerical resolution
(right-hand panels of Fig. 7) the NTSI develops in regions that are
already perturbed by the growth of the first instability (most likely
the TAI, see Section 4.2.2). These fast growing perturbations may
contribute to trigger the NTSI. The NTSI moves the shock away
from its rest position as the bending modes are amplified and mass
collects at the extrema (Vishniac 1994). The exponential growth
time-scale estimated from fitting the rms values are τ ≈ 3.1 × 104,
2.9× 104, 4.5× 104 and 4.7× 104 s for increasing resolutions (mesh
refinement). There is an increase of 50 per cent of the measured
growth time-scale whereas the cell size (and therefore the available
wavelength range potentially accessible) increases by a factor of
16. This is in reasonable agreement with the theoretical value and
the expected behaviour with changing resolution, confirming that
the NTSI is triggered in our simulations. Fig. 8 also shows that
the saturation amplitude is somewhat smaller as the resolution is

Figure 8. Logarithm of the rms of the velocity on the line of centres as a
function of time. The curves represent maximal resolutions of 512 (dotted),
1024 (dot–dashed), 2048 (dashed) and 4096 (solid) cells per dimension. The
thin straight lines show the fits to the linear phase for each resolution.

C© 2011 The Authors, MNRAS 418, 2618–2629
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/418/4/2618/1028810 by C
N

R
S - ISTO

 user on 29 M
arch 2022



2626 A. Lamberts, S. Fromang and G. Dubus

increased (compare also the bottom left- and right-hand panels of
Fig. 7) and that it converges to a resolution-independent value.

4.2.2 Evidence for the transverse acceleration instability

The numerical simulations show that the initial perturbations are
preferentially located off the binary axis, have an oscillatory be-
haviour with a small wavelength and grow faster when the spatial
resolution is increased (Fig. 7). The rapid development of these
perturbations is consistent with a linear instability. These properties
are reminiscent of the TAI. The TAI studied by Dgani et al. (1993,
1996) is an overstability with an oscillation frequency of the veloc-
ity perturbations ∝1/λ. The growth time-scale is ∝√

λ and indeed
smaller wavelength perturbations grow faster at higher resolution.
Vishniac (1994) noted that the growth is limited by pressure effects
and that the TAI grows faster than the NTSI when

l

Rs
>

2π

M2

Rs

λ
. (15)

Here, l is the minimum distance along the CD (l = 0 on the binary
axis) beyond which the TAI can develop for a given wavelength λ.
The relevant wavelengths are smaller than Rs and larger than the
shell width L ∼ Rs/M2, with the smaller scales growing faster.
The instability develops preferentially along the wings (Blondin &
Koerwer 1998). The presence of the TAI closer to the binary axis at
the highest resolution may explain why the growth rate of the NTSI
(see Fig. 8) does not perfectly match the theoretical value.

Despite the similarities, we could not formally identify the TAI.
One difficulty is that we were not able to quantify the growth rates
as several modes interact quickly and make the linear phase very
short. Another is that we found that our initial velocity profile along
the shock is inconsistent with the equilibrium solution proposed by
Dgani et al. (1993). This was corrected by Myasnikov et al. (1998)
but they concluded that the set of equations used by Dgani et al.
(1993) led to inconsistencies in the dispersion relations, casting
doubt on the theoretical rates to expect. We suggest that it is not
possible to neglect, as was done, the derivatives ∂/∂θ in the equa-
tions (θ corresponds to the polar angle to the binary axis with the
origin at the stagnation point), since there is a significant change in
the azimuthal speed of the incoming flow as it is decelerated and
redirected along the shock. Although our results still support the
presence in the simulations of some form of the TAI, the simula-
tions also show that the saturation amplitude of this instability is
low compared to the NTSI. In all the simulations we performed,
the non-linear evolution was dominated by the large-scale, high-
amplitude perturbations induced by the NTSI. At best, the TAI may
play a role in the early stages as a seed instability for the NTSI, as
described in Section 4.2.1.

4.2.3 Evolution with an initial velocity shear and at low η

In real systems the velocities of the winds are never exactly equal
and the CD is subject to the KHI. Even for a 1 per cent velocity dif-
ference between the winds, this instability theoretically has a larger
growth rate than the TAI and NTSI. Fig. 9 compares simulations
for η = 1 with equal winds or v1∞ = 2v2∞, subject to the KHI.
We also include here a map of the rms of the velocity fluctuations
observed over a long averaging period. There is little difference in
the outcome between equal winds and v1∞ = 2v2∞, either in the
appearance of the turbulent region (top row) or in the rms of the
perturbations (second row). If anything, the KHI seems to increase

Figure 9. Top row: density maps for η = 1 with v1∞ = v2∞ (left-hand panel,
from the same model shown in Fig. 7) and v1∞ = 2v2∞ (right-hand panel).
Second row: corresponding time-averaged rms of the velocity fluctuations
(on a log scale). Bottom two rows: same for η = 1/16 = 0.0625.

slightly the region where strong fluctuations occur. The NTSI dom-
inates the final non-linear phase even when the KHI is initially
present. The rms values close to one are the expected outcome of
the NTSI (Vishniac 1994).

We found the same results for simulations with η = 1/16 =
0.0625. The corresponding density maps and velocity perturbations
are given in the bottom two rows of Fig. 9. The NTSI was studied
theoretically for planar shocks but the η = 0.0625 simulations show
it is also present and dominant when the shock is curved, although
following it requires high numerical resolutions. The simulations
were performed with nx = 128 and five levels of refinement in a box
of size 8a. For lower resolutions the NTSI is not triggered and the
final result is stable (the same is observed for η = 1). The density
maps for equal winds and v1∞ = 2v2∞ look similar. The highest
velocity perturbations are at the same location but the rms values
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Unstable colliding winds at high resolution 2627

Figure 10. Left: density map of 2D colliding wing binary when η = 1, γ =
1.01 and M = 6 for the highest resolution. Time is given in seconds. Right:
time-averaged map of the rms of the velocity fluctuations.

are higher when an initial shear is present. We conclude that hav-
ing a velocity shear in a thin shell increases the amplitude of the
perturbations but does not affect much the morphology of the un-
stable flow, which is mostly set by the NTSI. This is consistent with
Blondin & Marks (1996) who concluded from their simulations of
perturbed slabs that the KHI does not strongly modify the outcome
of the NTSI.

4.2.4 Effect of increasing pressure in the stellar winds

Pressure has a stabilizing effect on both instabilities. We performed
a simulation with M1 = M2 = 6 with all other physical and
numerical parameters identical to those of the η = 1, v1∞ = v2∞
simulations. Both instabilities are seen to develop but more slowly.
Keeping the wind velocity constant, a lower Mach number implies a
higher sound speed but the thickness of the shell increases faster so
that the growth time-scale of the NTSI (∝L/cs ∝ 1/M) is longer.
The NTSI is also harder to trigger as it requires a perturbation
of amplitude comparable to the size of the shell. The TAI develops
more slowly as pressure suppresses the development of small wave-
lengths perturbations in the radial directions (Dgani et al. 1993). The
final non-linear phase with high-amplitude perturbations, shown in
Fig. 10, appears later than in Fig. 7. The shell is indeed thicker
and presents smaller density contrasts than for high Mach numbers.
Comparing Fig. 9 with Fig. 10, the amplitude of the variations in
shock location or the rms of the fluctuations do not appear to change
much but the oscillations in shock location seem to have a longer
wavelength.

4.3 A comparison of unstable adiabatic and isothermal cases

Finally, we compare the non-linear outcome of simulations with
unstable colliding wind regions in the isothermal and adiabatic
cases. Figs 5 and 6 and Fig. 9 show cases with η = 1 or 1/16
and v1∞ = 2v2∞ for both the adiabatic and isothermal cases. The
rms amplitude is larger for isothermal winds than for adiabatic
winds when the same wind parameters are used. The unstable region
extends beyond the wings of the CD in the case of isothermal winds,
unlike the adiabatic case where most of the fluctuations seem to
take place within the shocked region of the weaker wind. The NTSI
creates more small-scale structures and higher density contrasts
are possible when the winds are isothermal. The weaker wind still
propagates freely over a significant fraction of the domain despite
the strong perturbations at the interface in the isothermal case. In
contrast, the adiabatic simulations show that the free flowing weaker
wind is confined to a very small region (Section 4.1). The wind is
still expected to be confined at some distance from the star in the

isothermal case (see Section 3.2) but this happens further away than
in the adiabatic case even when the thin shell instabilities develop.

5 D I SCUSSI ON

5.1 Morphology of the interaction region

We have carried out 2D and 3D hydrodynamical simulations of
colliding winds to study the morphology of the interaction region
and the instabilities that can affect it when orbital motion can be
neglected. We first examined the relevance of widely used analytical
estimates. The position of the standoff point is very well predicted by
the standard ram pressure balance on the line of centres. Away from
the binary axis, when η is close to 1, the opening angle of the CD
is well approximated by the analytical solution proposed by Canto
et al. (1996), which assumes conservation of mass and momentum
in a thin shell. The semi-analytical solution of Stevens et al. (1992),
which assumes balance of the ram pressures normal to the surface,
is a better approximation when η � 1. This clarifies the range
of validity for these approximations that have found widespread
practical use in the literature.

Numerical simulations also show that the weaker wind can be
fully confined for low η, with the presence of a backward termi-
nation (reconfinement) shock, for both isothermal and adiabatic
winds. The region where the weaker wind propagates freely is re-
duced when the Mach number of the wind is small, when the KHI
develops or when the wind is isothermal. This may have some ob-
servational consequences. One possibility is that the lines from the
confined wind show unusual profiles or intensities because the wind
terminates very close to the star. Another possibility is stronger, vari-
able absorption instead of smooth absorption when the line of sight
crosses the region where a freely expanding wind is expected.

More realistic simulations would include wind acceleration and
radiative inhibition or braking (Stevens & Pollock 1994; Owocki
& Gayley 1995; Pittard 2009; Parkin & Gosset 2011). The wind
velocity at the stagnation point is then different from its asymptotic
value, increasingly so when ram pressure balance occurs close to
one of the stars. The principal consequence is to change the location
of the stagnation point (Antokhin et al. 2004). The basic geometry
of the interaction region does not change although the asymptotic
values e.g. of the CD are probably best described by some effective
η. In some extreme cases a stable balance may not be achieved and
the wind–wind collision region collapses on to the star with the
weaker wind (Stevens et al. 1992; Pittard 1998). Another possible
consequence is that a velocity shear may appear even if the coasting
velocities of the winds are assumed to be equal, generating the KHI
where it would not be expected.

Orbital motion must be included when studying the large-scale
structure of colliding winds. The interaction region wraps around
the binary at distances of order v∞Porb, where v∞ is the velocity of
the stronger wind (Walder, Folini & Motamen 1999). On smaller
scales (intrabinary), a non-zero orbital velocity skews the interaction
region by an angle tan α ∼ vorb/v∞ at the apex (Parkin & Pittard
2008). The opening angles of the shocks are slightly modified on
the leading and trailing edges but the morphology of the interaction
region does not dramatically change on scales �v∞Porb (Lemaster
et al. 2007). Exploratory simulations show that the reconfinement
shock is still present when orbital motion is included in a low η

model. According to our results (Section 3.3), no such shock is
expected to form in the adiabatic simulation of van Marle et al.
(2011) since it has η = 1/7.5 ≈ 0.14. Reconfinement shocks can
occur at some phases and not at others in binaries with highly
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2628 A. Lamberts, S. Fromang and G. Dubus

eccentric orbits, as different cooling or wind velocities are probed
when the separation changes (e.g. the periastron passage of the
η Carinae; see Parkin et al. 2011). The morphology also depends
on the history of the shocked gas and can exhibit strong hysteresis
effects in eccentric systems (Pittard 2009).

5.2 Impact of instabilities

Hydrodynamical instabilities have a major impact on the structure
of the CWB. Although the overall aspect of the interaction region
can still be recognized in a time-averaged sense, the wind interface
can become highly turbulent, generating strong time and location-
dependent fluctuations in the flow quantities. Velocity shear at the
CD in the shock region leads to the development of the KHI. An
accurate Riemann solver is required to follow this instability. Eddies
are already present at the interface even with a 10 per cent velocity
difference. The amplitude of the perturbations can be significant
with rms values in the tens of per cent for the case of adiabatic
colliding winds with v1∞ = 2v2∞. The mixing is limited to the
region of the weaker wind, with the strongest perturbations located
close to the initial contact discontinuity. The KHI has no impact on
the location of the stagnation point. Equal winds are not expected
to trigger the instability but introducing orbital motion was found
to generate a small velocity shear even for this case (Lemaster et al.
2007). Curiously, van Marle et al. (2011) find the opposite i.e. no
KHI for nearly adiabatic winds with orbital motion, v1∞ = 1.3v2∞
and η = 0.14. We would expect to see significant mixing in the
inner binary system, where the interaction region is only slightly
skewed, unless it is dampened by numerical diffusion.

In isothermal simulations, an instability reminiscent of the TAI
develops initially away from the binary axis. A second instability
develops on the axis whose growth rate and properties identify as
the NTSI. The NTSI dominates the non-linear evolution of isother-
mal colliding winds, leading to highly turbulent structures and large
amplitude fluctuations in the location of the interface, including the
stagnation point on the binary axis. Our results confirm the conclu-
sions of Blondin & Koerwer (1998) who stressed the dominance of
the NTSI and the stabilizing effect of pressure in their simulations
of bow shocks. They also saw ‘wiggles’ developing early on in the
shock with the same properties as those we attribute to the TAI-like
instability. The trigger for the NTSI is not discussed but it is likely
provided by the wiggles. However, they did not attribute these to
the TAI and instead argued that the TAI acts only once the shell is
perturbed by the NTSI.

The presence of instabilities in real systems is probably unavoid-
able. The KHI may lead to moderate mixing of the material in
adiabatic situations. The strongest mixing is obtained for high ve-
locity shears which, in astrophysical systems, is likely to mean that
at least one of the winds is radiatively efficient and not adiabatic.
The radiative efficiency of the wind is classically parametrized by
the ratio χ of the cooling and advection time-scales, which can be
evaluated as (Stevens et al. 1992)

χ ≈
( v

1000 km s−1

)4 ( a

1012 cm

) (
10−7 M� yr−1

Ṁ

)
, (16)

with χ � 3 for an adiabatic wind and χ � 3 for a radiatively efficient
wind. The ratio χ 1/χ 2 is therefore ∝(v1/v2)5η. Because v appears
with a large power, a significant difference in wind velocities essen-
tially implies that the slowest wind will be close to isothermal. In
this case, thin shell instabilities develop but their outcome may be
different because of the stabilizing effect of thermal pressure from
the neighbouring adiabatic shock (Stevens et al. 1992; Walder &

Folini 1998; Pittard 2009; Parkin & Pittard 2010; van Marle et al.
2011). For thin, highly radiative shocks, the NTSI can probably be
triggered by wind variability or changes in shock width as χ varies
along the orbit, if it is not already triggered by the TAI or KHI.
The saturation amplitude depends strongly on the radiative losses
and including a realistic cooling function in the energy equation of
the fluid is essential for a detailed comparison with observations
(Strickland & Blondin 1995; Walder & Folini 1996). The shock
will necessarily be larger than the idealized isothermal case so the
saturation amplitudes of the fluctuations can be expected to be in
between the adiabatic and isothermal cases. Other instabilities may
also be at work in radiative shells (Chevalier & Imamura 1982;
Walder & Folini 1996). Compressed magnetic fields in the shock
region, if present, can also modify the growth rates and saturation
amplitudes. For instance, the KHI is stabilized when the flow is
parallel to the magnetic field and the velocity shear is smaller than
the Alvén speed (Gerwin 1968). Heitsch et al. (2007) find that an
ordered magnetic field has a stabilizing effect on the NTSI in a thin
slab.

In conclusion, the impact of the instabilities studied here is con-
veniently summarized by saying that some amount of variability
and mixing is expected in all cases but that the strongest variability
and mixing are expected to be associated with the most radiative
(hence luminous) colliding winds.

5.3 Computational requirements

Following these instabilities is computationally demanding, espe-
cially for low momentum flux ratios η, and imposes a minimum
spatial resolution together with an accurate Riemann solver. There
are three numerical constraints on the spatial resolution. First, there
must be enough cells within the stellar masks to properly generate
the winds. For a coasting wind the mask can be larger than the actual
size of the star. This cannot be the case if the stagnation point is
close to one of the stars (low η) and/or if wind acceleration, braking
or inhibition is taken into account. The second condition is that the
resolution must be sufficient to resolve the location of the stagna-
tion point on the binary axis. This is increasingly demanding as η

decreases, but the increase in computational cost is steeper when
working in the 2D set-up (see Section 3.1). The last conditions re-
lates directly to the instabilities. For η = 1/32 = 0.03125, in a 8a
simulation box, we found that a simulation with nx = 128 needs
seven levels of refinement in order to avoid numerical damping of
the instabilities. At lower resolutions we see the initial develop-
ment of the TAI far from the binary but it is quickly advected out
of the simulation box without being maintained. The NTSI is not
triggered and the final result is stable. We find that the shell needs
to be resolved by at least four computational cells on the binary
axis in order to develop the NTSI. Resolving the shell, i.e. shock
structure is the stringiest constraint on the numerical resolution.
The thickness of the shell for the 2D adiabatic simulations given in
Fig. 2 (upper left-hand panel) can be used to estimate the numer-
ical resolution required to achieve this for a given η. It drastically
decreases for low values of η (slightly less so in 3D, which show
thicker structures when η ≤ 1/32 = 0.03125, see Section 3.3). The
shell width is thinner in the isothermal case so the values derived
from Fig. 2 are strict lower limits for the required resolution.

Large-scale simulation of a system with low η and isothermal
winds require high resolutions for the instabilities to develop. The
NTSI develops at slightly lower resolutions when the KHI is present
and acts as the initial seed perturbation. For instance, with η = 1/32,
isothermal winds and v1∞ = 2v∞ the NTSI develops with six levels
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of refinement instead of seven in the case of equal winds. However,
it seems that the effect decreases with lower values of η. The shell
always needs to be resolved, if only minimally, because the NTSI
involves an imbalance of momentum within the thin shock layer. The
KHI in adiabatic winds is easier to model. It develops even for low-
resolution simulations when the velocity difference between both
winds is large enough. For η = 1/32, adiabatic winds and v1∞ =
2v∞ the instability develops for four levels of refinement. The study
of the large-scale 3D evolution of unstable colliding winds remains
a tremendous computational challenge.

6 C O N C L U S I O N

We have studied the morphology and the instability of colliding
wind regions using numerical simulations. Compared to previous
works, our study extends to much lower values of the wind momen-
tum ratio, larger simulation domain and higher spatial resolution,
thanks to AMR. We investigate the applicability of semi-analytical
estimates for the contact discontinuity, finding that the solution of
Stevens et al. (1992) is the best approximation to the asymptotic
opening angle for small η. We find that the weaker wind can be
entirely confined to a small region instead of expanding freely up
to infinity over some solid angle when low η colliding winds are
considered in both the isothermal and adiabatic limits. Instabilities
in the colliding wind region are important because of the mixing and
variability they induce. Resolving the shock structure is required to
follow the development of instabilities, which imposes increasingly
stringent minimal numerical requirements for smaller η. Simula-
tions that do not meet these requirements artificially dampen the
instabilities that may be present. We follow the evolution of the
KHI triggered by the velocity shear at the CD between two winds
and show that the eddies yield large fluctuations even for moder-
ate initial shears. We formally identify the NTSI in our isothermal
simulations and find that it dominates the long-term behaviour. An-
other instability, similar to the TAI, is present at the beginning of
the simulations. Thin shell instabilities yield large fluctuations of
the flow quantities over a wide region. Our study clarifies several
issues in CWB models and provides a basic framework to which the
results of more complex simulations, including additional physical
effects, can be compared.
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