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ABSTRACT

Context. While pulsar wind nebulae (PWNe) and their associated isolated pulsars are commonly detected at X-ray energies, they are
much rarer at near infrared (nIR) and optical wavelengths.
Aims. Here we examine three PWN systems in the Galactic plane – IGR J14003−6326, HESS J1632−478 and IGR J18490−0000 – in
a bid to identify optical/nIR emission associated with either the extended PWNe or their previously detected X-ray point sources.
Methods. We obtain optical/nIR images of the three fields with the ESO – New Technology Telescope and apply standard photometric
and astrometric calibrations.
Results. We find no evidence of any extended emission associated with the PWNe in any of the fields; neither do we find any
new counterparts to the X-ray point sources, except to confirm the magnitude of the previously identified counterpart candidate of
IGR J18490−0000.
Conclusions. Further observations are required to confirm the association of the nIR source to IGR J18490−0000 and to detect
counterparts to IGR J14003−6326 and HESS J1632−478, while a more accurate X-ray position is required to reduce the probability
of a chance superposition in the field of the latter.

Key words. infrared: general – pulsars: general – X-rays: individuals: IGR J14003−6326 – X-rays: individuals: HESS J1632−478 –
X-rays: individuals: IGR J18490−0000

1. Introduction

Along with the typical supernova remnant (SNR), a rapidly-
rotating, highly-magnetised neutron star, or pulsar, is frequently
an end product of a supernova explosion. The pulsar has par-
ticularly high levels of rotational energy which is dissipated via
a highly relativistic particle wind. The interaction of this wind
with the surrounding medium, i.e., the ejecta of the supernova
explosion itself, causes a continuously refreshed shock wave
known as a pulsar wind nebula (PWN). These PWNe emit via
synchrotron and inverse Compton processes and are observed
across the spectrum from radio to optical to X-ray and higher
energies (for a detailed review of PWNe see, e.g. Gaensler &
Slane 2006; Slane 2011). The pulsars themselves, as well as be-
ing detected as point sources in radio and X-ray where the pul-
sations are observed, may be detected at optical or near infrared
(nIR) wavelengths. However at these wavelengths the emission
will be that of an isolated, non-accreting neutron star which is in-
trinsically dim and hence very few (12 out of ∼1800) have been
detected in this regime (Mignani 2011).

Here we examine three such PWN systems in the
Galactic plane – IGR J14003−6326, HESS J1632−478 and
IGR J18490−0000 – in a bid to identify extended optical/nIR
(OIR) emission associated with the PWNe or optical/nIR

� Based on observations collected at the European Organisation for
Astronomical Research in the Southern Hemisphere, Chile under ESO
programs 080.D-0864, 081.D-0401, 084.D-0535 (P.I. Chaty).

counterparts to the X-ray point sources. The intrinsic OIR dim-
ness of both PWNe and isolated neutron stars is further com-
pounded in these cases by the high level of optical extinction in
the direction of the Galactic plane (Schlegel et al. 1998); hence
observing at nIR wavelengths, where this is less pronounced,
may increase the chance of a detection. However, at these posi-
tions in the Galactic plane nIR source density is relatively high
so even with accurate X-ray positions care must be taken to
understand the probability of chance superpositions. In Sect. 2
we introduce our observations and reduction method while in
Sect. 3, after briefly introducing each source, we detail the re-
sults of those observations. In Sect. 4 we discuss these results
and summarise our findings in Sect. 5. Throughout, positions
(J2000) are given with 90% confidence while all others values,
including magnitudes, are given with 1σ confidence.

2. ESO-NTT observations and data analysis

Optical (B,V,R, i) and nIR (J,H,Ks) data were obtained
with the ESO Faint Object Spectrograph and Camera (v.2;
EFOSC2) and the Son of ISAAC (SofI) infrared spectro-
graph and imaging camera on the 3.58 m ESO – New
Technology Telescope (NTT). Data were obtained on the nights
of March 8, 2008 (IGR J18490−0000), September 16 & 18,
2008 (IGR J14003−6326; optical & nIR) and March 27, 2010
(HESS J1632−478). All data used a dithered pattern of 3 × 60 s
or 9×10 s per final image in the optical and nIR respectively (see
Table 1).
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Table 1. Observation log.

Field Date
Filter Exp (s) Seeing (′′) Limit
IGR J14003−6326 September 16 & 18, 2008
Ks 90 1.7 >17.2
H 90 1.7 >18.0
J 90 1.7 >19.2
i 180 1.6 >21.2
R 180 1.8 >21.0
V 180 1.7 >21.8
B 180 1.7 >22.3
HESS J1632−478 March 27, 2010
Ks 90 0.9 >17.7
IGR J18490−0000 March 8, 2008
Ks 90 1.6 >17.7

The NTT data were reduced using the IRAF package
wherein crosstalk correction, flatfielding, sky subtraction, bias-
subtraction and frame addition were carried out as necessary.
The images were astrometrically calibrated against 2MASS
(Skrutskie et al. 2006) or USNO-B1.0 (Monet et al. 2003) within
the GAIA package and quoted 90% positional errors include
a 0.16′′ 2MASS systematic uncertainty. Relative point spread
function (PSF) photometry was carried out on the final im-
ages using the DAOPHOT package (Stetson 1987) within IRAF.
Magnitudes were calibrated against Persson et al. (1998) or
Landolt (1992) photometric standards, observed on the same
night (Table 2) and errors include both statistical and calibra-
tion errors. The equation, i − I = (0.247 ± 0.003)(R − I) (Jordi
et al. 2006), was used to transform the cataloged I magnitudes of
the standard stars into i magnitudes with which to calibrate the
images.

Images were inspected visually for any background emis-
sion that might be associated with the extended emission of the
PWNe; this was done both to the reduced images and to those
images after the PSF subtraction of point sources in the field.
We find no evidence of any extended emission associated with
the PWN in any of the images, but due to uncertainties in the ex-
tent of the PWN and the quality of point source subtraction we
are unable to put a flux limit on possible emission. Point source
upper limits are approximated from the dimmest observable ob-
ject in the field.

3. Results

We find no evidence of any extended emission associated with
the PWN in any of the images, even after the PSF subtrac-
tion of point sources in the field. Neither do we find any
nIR counterparts to the X-ray point sources, except to confirm
the Ks magnitude of the previously identified counterpart of
IGR J18490−0000 (Ratti et al. 2010).

3.1. IGR J14003–6326

Based on Chandra spectra, Tomsick et al. (2009) confirm that
IGR J14003−6326 (Keek et al. 2006) is an SNR with a PWN,
while Renaud et al. (2010) discovered a 31.18 ms X-ray/radio
pulsar at its centre. Tomsick et al. do not find any higher energy
(TeV, GeV) counterparts to the source but Renaud et al. obtain
radio observations which reveal counterparts to both the point
source and the PWN.

We find no source within 3σ of the Chandra poition of
IGR J14003−6326, down to the magnitudes given in Table 1.

However there is a dim source detected at J = 18.6 ± 0.2 and
marginally at i = 20.90 ± 0.15, at RA, Dec = 14:00:45.45,
−63:25:41.8 (±0.3′′) or ∼5σ from the Chandra position. We are
unable to discern if this is a point or extended source due to its
faintness but it is likely unrelated to the X-ray source given the
distance discrepancy.

3.2. HESS J1632–478

HESS J1632−478 was initially suggested to be associated with
IGR J16320-4751 (Aharonian et al. 2006) though this was sub-
sequently rejected after deep XMM-Newton observations of the
source (Balbo et al. 2010). It was instead associated with an in-
dependent X-ray point source with diffuse emission. These au-
thors also obtained data from radio and high energy archives or
catalogs to describe the nature of the source, which they suggest
is an energetic PWN with a, yet to be confirmed, central pulsar.

We find no source within the XMM error circle of
HESS J1632−478, down to a limiting magnitude of Ks > 17.7.
However, there is a dim source 2.6′′ ∼ 2.6σ to the East (source 1)
with a magnitude of KS = 16.74 ± 0.05, though we cannot pro-
pose this as the counterpart with any certainty given the lack of
colour information and weak positional agreement. Neither can
we compare the colour of this source to other sources in the field
to demonstrate that it has similar properties and is thus likely
to be a field source, unrelated to the suggested pulsar. There is
also a bright 2MASS source (J16320846−4749005) to the West
(source 2), though it is at a distance of ∼3.5σ so is even less
likely related to the high energy source.

3.3. IGR J18490–0000

First reported by Molkov et al. (2004), IGR J18490−0000 is a
PWN (e.g., Ratti et al. 2010) with a confirmed 38.5 ms pulsar
(Gotthelf et al. 2011). Ratti et al. also suggest a nIR counter-
part of magnitude KS = 16.4 ± 0.1 at RA, Dec = 18:49:01.563,
−00:01:17.35 (±0.1′′) but find no evidence of any nIR extension
as one might expect for a PWN.

Within the Chandra error circle of IGR J18490−0000, we
confirm the proposed nIR counterpart of Ratti et al. (2010) at
a consistent magnitude of Ks = 17.2 ± 0.4 (source 1). We also
note, as those authors did, that the object is heavily blended with
a nearby source of magnitude Ks = 15.58± 0.05 (source 2). Due
to the lack of colour information for the proposed counterpart
we are unable to gain any information regarding its equivalent
spectral classification, or to compare it to other field sources to
demonstrate that it has different properties that may indicate it is
associated with the pulsar.

4. Discussion

The lack of detected compact counterparts for IGR J14003−
6326 and HESS J1632−478, particularly in the optical, is not
surprising given the high levels of Galactic extinction (Schlegel
et al. 1998) towards the sources: EB−V = 3.83 (AK ∼ 1.3,
AV ∼ 12; Cardelli et al. 1989) and EB−V = 11.18 (AK ∼ 3.9)
respectively. Likewise IGR J18490−0000 suffers significant ex-
tinction of EB−V = 6.62 (AK ∼ 2.3). Note that all these
extinctions should be treated with caution as estimates so close
to the Galactic plane (<5 deg) are unreliable. The magnitude lim-
its of the non-detections are consistent with the V band detec-
tions of other isolated neutron stars (Mignani 2011); exclud-
ing the Crab at V = 16.6, these range from 22 to 28 mag
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Fig. 1. NTT-SofI J (IGR J14003−6326) or Ks (HESS J1632−478, IGR J18490−0000) band images of each of the three fields with the best X-ray
positions (Table 2; white circles) marked along with the positions of the optical sources (black crosses) discussed in Sect. 3.

Table 2. X-ray and optical positions (90% uncertainties) and optical apparent magnitudes for the three X-ray point sources (first lines) and the
nearby optical sources (numbered lines), as labelled in Fig. 1.

Source
(optical source) RA Declination Error (′′) Magnitudes
IGR J14003−6326a 14:00:45.69 −63:25:42.6 0.64

(1) 14:00:45.45 −63:25:41.8 0.3 J = 18.6 ± 0.2, i = 20.90 ± 0.15
HESS J1632−478b 16:32:08.8 −47:49:01 1.6

(1) 16:32:09.06 −47:49:01.6 0.3 KS = 16.74 ± 0.05
(2) 16:32:08.47 −47:49:00.6 0.16 KS = 11.35 ± 0.01, K† = 11.695 ± 0.040,H† = 13.284 ± 0.065

IGR J18490−0000c 18:49:01.59 −00:01:17.73 0.6
(1) 18:49:01.57 −00:01:17.6 0.3 KS = 17.2 ± 0.4
(2) 18:49:01.52 −00:01:16.9 0.2 KS = 15.58 ± 0.05

References. References to X-ray positions: a Tomsick et al. (2009), b Balbo et al. (2010), c Ratti et al. (2010). † 2MASS magnitudes.

(corresponding to Ks >∼ 18.6 for a spectral index of −1), at low
optical extinctions (EB−V � 0.2) in the nearby Galaxy (<∼1 kpc
for most). On the other hand, the detection of a proposed coun-
terpart to IGR J18490−0000 at Ks ∼ 17 is significantly brighter
than any other optical identification of an isolated neutron star,
except for the Crab; it should also be noted that the proposed
counterpart is significantly brighter than a simple power-law ex-
trapolation of the X-ray spectra (Gotthelf et al. 2011) which
implies a magnitude of Ks ∼ 23 (uncorrected for Galactic extinc-
tion). While the power-law extrapolation of the X-ray spectra of
HESS J1632−478 (Balbo et al. 2010) is not constraining, that of
IGR J14003−6326 (Renaud et al. 2010) implies that a counter-
part should be much dimmer than the observed optical limit, at
approximately Ks ∼ 22. The extrapolations should however be
treated with caution as the extracted X-ray spectra themselves
may suffer from contamination from the surrounding PWN and
thus inaccurate spectral slopes and fluxes. By using a simple
power-law extrapolation, we have assumed that the spectra do
not evolve between the X-ray and nIR regimes, while it quite
possibly breaks to a shallower spectral index or, alternatively,
may be described by thermal emission which naturally turns over
at lower frequencies. We have also implicitly assumed that the
nIR emission originates from the same emission region as the
X-ray spectra, which is not necessarily true, but assuming that it
is, the above approximations can be treated as lower magnitude
limits on how bright we might expect a nIR counterpart to be,
before correction for Galactic extinction.

To approximate the probability of a chance superposition of
the 90% X-ray positions of the compact sources with random

sources in the respective fields, we calculate P ≈ 1−exp−(ρN×AErr);
where ρN is the surface area number density of observed sources
down to the limiting magnitude and AErr is the area of the X-ray
positional error. For IGR J14003−6326 and IGR J18490−0000,
which have positions accurate at the sub-arcsecond level, we find
probabilities of chance superpositions of 3% and 5% respec-
tively, making the positional coincidence of IGR J18490−0000
with a nIR object reasonably compelling evidence for its asso-
ciation. However, for HESS J1632−478, with only an arcsec-
ond accurate position, the probability is much greater at 50%,
though the source is in a relatively less densely populated region
of the field, where the local probability is ∼40%. In this case,
even if a source had been found within the 90% error circle,
its association with the X-ray source would be weak, meaning
source 1 at a distance of ∼2.6σ is likely unrelated. To associate a
nIR counterpart with this source based on positional coincidence
will require a significantly better constrained position from e.g.
Chandra.

Along with the optical extinction in their directions, the de-
tection of extended emission from the PWNe is complicated
by the high level of background in nIR observations as well as
the generally high density of field sources in the Galactic plane
which contaminate the background. Deep nIR images from
larger telescopes better able to resolve field sources, may be able
to detect PWN emission, as well as increasing the probability
of detecting the compact sources, but in these directions source
confusion will always be a major impediment to detection of
point or extended sources.
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5. Conclusions

We find no evidence of any extended nIR emission associated
with the PWNe in any of the fields or any new counterparts to
the X-ray point sources, but we do confirm the magnitude of the
previously suggested counterpart of IGR J18490−0000. While
there is a low probability of chance coincidence of the X-ray po-
sition with a nIR object in this field, the candidate source is sig-
nificantly brighter than most other isolated pulsars and brighter
than a simple extrapolation of the X-ray spectra to the nIR, mak-
ing its association with the X-ray source less certain. If future
observations can confirm the association it seems that an ad-
ditional emission component will be necessary to explain the
excess nIR flux. The non-detection of the other two sources,
IGR J14003−6326 and HESS J1632−478, may be understood
by the high level of Galactic extinction in their direction and
by the intrinsically faint nature of isolated neutron stars, which
the compact objects are assumed to be; it may be reasonable
to expect the counterparts of these sources to be at magnitudes
Ks >∼ 18.6.
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