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ABSTRACT

We present new continuum and line observations, along with modelling, of the faint (6−8) Myr old T Tauri star ET Cha belonging
to the η Chamaeleontis cluster. We have acquired Herschel/PACS photometric fluxes at 70 μm and 160 μm, as well as a detection of
the [OI] 63 μm fine-structure line in emission, and derived upper limits for some other far-IR OI, CII, CO and o-H2O lines. These
observations were carried out in the frame of the open time key programme GASPS, where ET Cha was selected as one of the
science demonstration phase targets. The Herschel data is complemented by new simultaneous ANDICAM B−K photometry, new
HST/COS and HST/STIS UV-observations, a non-detection of CO J = 3 → 2 with APEX, re-analysis of a UCLES high-resolution
optical spectrum showing forbidden emission lines like [OI] 6300 Å, [SII] 6731 Å and 6716 Å, and [NII] 6583 Å, and a compilation
of existing broad-band photometric data. We used the thermo-chemical disk code ProDiMo and the Monte-Carlo radiative transfer
code MCFOST to model the protoplanetary disk around ET Cha. The paper also introduces a number of physical improvements
to the ProDiMo disk modelling code concerning the treatment of PAH ionisation balance and heating, the heating by exothermic
chemical reactions, and several non-thermal pumping mechanisms for selected gas emission lines. By applying an evolutionary
strategy to minimise the deviations between model predictions and observations, we find a variety of united gas and dust models
that simultaneously fit all observed line and continuum fluxes about equally well. Based on these models we can determine the
disk dust mass with confidence, Mdust ≈ (2−5) × 10−8 M� whereas the total disk gas mass is found to be only little constrained,
Mgas ≈ (5× 10−5−3× 10−3) M�. Both mass estimates are substantially lower than previously reported. In the models, the disk extends
from 0.022 AU (just outside of the co-rotation radius) to only about 10 AU, remarkably small for single stars, whereas larger disks
are found to be inconsistent with the CO J = 3 → 2 non-detection. The low velocity component of the [OI] 6300 Å emission line is
centred on the stellar systematic velocity, and is consistent with being emitted from the inner disk. The model is also consistent with
the line flux of H2 v = 1→ 0 S(1) at 2.122 μm and with the [OI] 63 μm line as seen with Herschel/PACS. An additional high-velocity
component of the [OI] 6300 Å emission line, however, points to the existence of an additional jet/outflow of low velocity 40−65 km s−1

with mass loss rate ≈10−9 M�/yr. In relation to our low estimations of the disk mass, such a mass loss rate suggests a disk lifetime of
only ∼0.05−3 Myr, substantially shorter than the cluster age. If a generic gas/dust ratio of 100 was assumed, the disk lifetime would
be even shorter, only ∼3000 yrs. The evolutionary state of this unusual protoplanetary disk is discussed.
Key words. stars: pre-main sequence – protoplanetary disks – astrochemistry – radiative transfer – line: formation –
stars: individual: ET Cha

1. Introduction

Gas-rich dust disks around young stars (hereafter, protoplane-
tary disks) provide the raw material to build up new planets.

� Appendices A–D are available in electronic form at
http://www.aanda.org

The physical, thermal, and chemical conditions in the disk, the
timescale over which the gas disperses, and the physical mecha-
nisms contributing to the gas dispersal are keys to understanding
what type of planets can form and on what timescales.

Significant progress has been made in the past few years in
measuring the dispersal timescale of the dust component of the
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disk. Infrared surveys of nearby star-forming regions and asso-
ciations have established that the frequency of optically thick
dust disks decreases exponentially with time (e.g. Mamajek
2009). By an age of 10 Myr only a few percent of pre-main
sequence Sun-like stars (T Tauri stars) still retain an optically
thick dust disk (see e.g. Hernández et al. 2008; Pascucci &
Tachibana 2010, for reviews). Since the near-mid infrared ex-
cess (λ <∼ 30 μm) is sensitive to the presence of small dust grains,
not larger than a few microns in size, these observations effec-
tively trace the dispersal of small grains within about 10 AU
from T Tauri stars. Millimetre observations, tracing colder dust
at hundreds of AU from the central star, indicate a similarly fast
clearing for the outer disk, within about 10−30 Myr for T Tauri
stars (Carpenter et al. 2005). There is growing observational ev-
idence that the dust disk lifetime depends on stellar mass. Disks
around intermediate-mass (>∼1.5 M�) stars disperse in less than
10 Myr, whereas disks around low-mass stars (M dwarfs and
brown dwarfs) persist for longer times (Carpenter et al. 2006;
Currie et al. 2007; Riaz & Gizis 2008).

Due to observational challenges in detecting gas lines from
disks and difficulties in interpreting them, much less is known
about the evolution of the gas component of the disks. Three ob-
servables point to a dispersal timescale similar to (or possibly
shorter than) the dust dispersal timescale: the exponential de-
crease with time in the frequency of accreting stars (Fedele et al.
2010); the non-detections of infrared gas lines from abundant
molecules and atoms in tenuous dust disks (Hollenbach et al.
2005; Pascucci et al. 2006); upper limits on the H2/dust mass ra-
tio of less than 10 in two ∼12 Myr old edge-on disks (Lecavelier
des Etangs et al. 2001; Roberge et al. 2005).

The aim of the Herschel open time key program “Gas in
Protoplanetary Systems” (GASPS, Dent et al., in prep.) is to pro-
vide new insights into the chemical and gas temperature struc-
ture of protoplanetary disks, the gas/dust ratio, the gas dispersal
timescale, and disk evolution. GASPS will acquire a large sam-
ple of sensitive far-infrared Herschel/PACS spectra for 240 disks
in nearby star-forming regions and associations that span the
critical 1−30 Myr age range over which disks are known to dis-
perse. The primary signatures of the gas in the disk are ex-
pected to be the forbidden [OI] 63.2 μm, [OI] 145.5 μm, and
[CII] 157.7 μm lines, as well as some CO and H2O lines. The
first GASPS papers have shown that (1) the [OI] 63 μm line can
be used as primary gas indicator and is often detected toward
protoplanetary disks (Mathews et al. 2010), (2) a combination of
far-IR and (sub-)millimetre gas lines provides a promising tool
to estimate the total gas mass of protoplanetary disks (Pinte et al.
2010), and (3) detailed models of individual sources allow for a
better characterisation of the disk structure and shape, and the
dust and gas components of protoplanetary disks (Meeus et al.
2010; Thi et al. 2010).

In this paper, we present an analysis of the circumstellar disk
of ET Cha, an approximately 8 Myr old late-type T Tauri star,
with the goals of characterising in detail its dust and gas content.
ET Cha is one of the few nearby relatively old stars still pos-
sessing an optically thick dusk disk (Sicilia-Aguilar et al. 2009)
and still accreting disk gas (Lawson et al. 2004). TW Hya and
PDS 66 are two other well-known old stars with properties sim-
ilar to ET Cha. Both disks have been studied in detail and show
evidence of evolution with respect to 1−2 Myr old T Tauri disks
in Taurus, for example, depleted inner disk in TW Hya (Calvet
et al. 2002) and flatter disk structure for PDS 66 (Cortes et al.
2009). Both disks are likely to have too low disk masses to form
giant planets at this evolutionary stage. ET Cha would be the

third such old disk system where observational data allows for
an in-depth-study of its dust and disk properties.

The paper is structured as follows. Section 2 provides
an overview of the prior knowledge of the source. We then
present new multi-wavelength observations of ET Cha in Sect. 3.
Section 4 presents a detailed dust and gas disk model for ET Cha.
We describe the main results of our models in Sect. 5. Finally,
we discuss some critical aspects of the modelling, and the im-
plications of both models, in Sect. 6, before we finish the paper
with our conclusions in Sect. 7.

2. ET Cha: an old T Tauri star with active accretion

ET Cha (2 MASS J08431857-7905181, ECHA J0843.3-7905,
also referred to as RECX 151) is a low-mass T Tauri star that
was identified by (Lawson et al. 2002) as a member of the
nearby, 8 Myr old η Chamaeleontis moving group (Mamajek
et al. 2000)2. The association is located only 97 pc away from
the Sun (Mamajek et al. 1999) and is virtually unaffected by ex-
tinction (Luhman & Steeghs 2004), an ideal set of conditions
to study circumstellar disks in detail. A slighly lower distance
to ET Cha of 94.3 pc was reported by van Leeuwen (2007), but
we have used the earlier and better known value of 97 pc for the
modelling in this paper. Brandeker et al. (2006) obtained high-
angular resolution images of ET Cha and concluded that it has
no companions (brown dwarfs) outside of 10 AU (30 AU).

ET Cha is one of the few association members that possess
a circumstellar disk, as indicated by a series of Spitzer obser-
vations that revealed the presence of dust including strong mid-
infrared silicate features (Megeath et al. 2005; Bouwman et al.
2006; Gautier et al. 2008; Sicilia-Aguilar et al. 2009). Despite
the age of the system, the infrared colours of the source are rem-
iniscent of those of much younger (1–2 Myr) circumstellar disks.
Furthermore, optical spectroscopy of ET Cha has shown that it is
undoubtedly accreting, with a very strong and broad Hα emission
line (Lawson et al. 2002; Lyo et al. 2004; Luhman & Steeghs
2004). Based on the observed Hα line, the mass accretion rate
of ET Cha has been estimated to be 10−9 M�/yr (Lawson et al.
2004), and the disk inclination (by modelling the Hα line pro-
file) to be about 60◦ as measured from face-on. The spectra also
reveal a series of forbidden optical emission lines ([OI], [SII],
[NII]) that unambiguously indicate the presence of a jet/outflow.
In addition, the stellar absorption lines in these spectra allowed
for precise spectral typing of the central star; all estimates agree
with a M3−M3.5 spectral classification.

Among all members of the η Cha association, ET Cha shows
the strongest variability in the visible of order 0.3−0.4 mag,
which places it at the high end of the variability distribution of
WTTS (see Fig. 1 in Grankin et al. 2008). The main feature in the
observed lightcurve is a ∼12 day period which has been found in
two consecutive years. Lawson et al. (2002) also noted a flare
lasting for about 1.7 days. The more regular 12 day variations
are most easily interpreted in terms of an accretion hotspot co-
rotating with the star. However, our re-analysis of optical absorp-
tion line profiles (see Sect. 3.6) suggests that the stellar rotational
period is much shorter, around 2 days. Therefore, the physical
origin of the ∼12 day period remains uncertain. The stellar vari-
ability casts some doubt on the derivation of stellar parameters,

1 The ROSAT survey reported by (Mamajek et al. 1999, 2000) lists
only RECX 1−12. Lables 13−15 have been used to denote three post-
ROSAT stars discovered in or near the cluster core, including ET Cha.
2 We note that Luhman & Steeghs (2004) derived an age of the η Cha
association of only 6+1

−2 Myr.
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Table 1. Observed Line Fluxes [10−18 W/m2] with Herschel/PACS and APEX.

[OI] [OI] [CII] o-H2O o-H2O o-H2O CO J = 36→ 35 CO J = 33→ 32 CO J = 29 → 28 CO J = 3→ 2
63.18 μm 145.52 μm 157.74 μm 78.74 μm 179.53 μm 180.49 μm 72.84 μm 79.36 μm 90.16 μm 866.96 μm
30.5 ± 3.2 <6.0 <9.0 <30 <5.0 <5.2 <8.0 <24 <9.6 <0.05

Notes. Detection are listed as FL ± σ; non-detections are listed as <3σ.
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Fig. 1. Herschel/PACS line observations, with overplotted Gaussian to
measure the integrated line flux of [OI] 63.18 μm. All other line obser-
vations are non-detections as listed in Table 1. Errorbars indicate the 1σ
noise level. The [OI] 63.18 μm line profile is dominated by the spectral
resolution of the PACS spectrometer R ≈ 3000.

because the photometry reported by Lawson et al. (2002) was
taken “near maximum light”, when e.g. an accretion hot spot
could contribute significantly to the observed flux. Furthermore,
it prevents using optical and near-infrared colours in case of non-
simultaneous data. For this reason, we have obtained new, simul-
taneous photometry, which is presented in Sect. 3.2.

Ramsay Howat & Greaves (2007) detected a clear gas signa-
ture from the disk of ET Cha in form of the H2 v = 1 → 0 S(1)
line in emission at 2.122 μm with Gemini/Phoenix, with an inte-
grated line flux of (2.5± 0.1)× 10−18 W/m2. These high angular
resolution observations showed a narrow line (FWHM = 18 ±
1.2 km s−1) centred on the stellar velocity to within ∼1 km s−1.
No angular offset between the line and the star was detected at
the level of 4 AU. Therefore, Ramsay Howat & Greaves (2007)
argue that this line is emitted by H2 gas in Keplerian rotation
at ∼2 AU. Ramsay Howat & Greaves (2007) observed 3 other
disk-bearing members of the η Cha association, but ET Cha was
the only one with detectable H2 emission. Bary et al. (2008) and
Martin-Zaïdi et al. (2009, 2010) reported on several detections of
H2-lines toward other sources where the emission is also likely
originating from the disk rather than from an outflow.

3. Observations and data reduction
3.1. Herschel/PACS

Herschel/PACS observations were obtained for ET Cha during
the science demonstration phase. The photometric observations
were obtained in the scan map mode in the blue (70 μm) and the
red (160 μm) filters. Two different scan map angles were used,
45◦ (obsid 1342187338, 133 s) and 63◦ (obsid 1342189366,
220 s). Both scans were obtained at a medium scan speed

of 20′′/s, with a cross scan step of 5′′ and scan leg length
of 3′. The number of scan legs was 8 for the 63◦ scan, and
4 for the 45◦ scan. For spectroscopic observations, a 1669 s
PacsLineSpec (obsid 1342186314) and a 5150 s PacsRangeSpec
(obsid 1342187019) were obtained. The PacsLineSpec pro-
vides two simultaneous spectra at wavelengths 62.93−64.43 μm,
and 180.76−190.29 μm. PacsRangeSpec covers six spectral
ranges of 71.81−73.28 μm, 78.37−79.76 μm, 89.28−90.48 μm,
143.59−146.53 μm, 156.70−159.47μm, and 178.51−180.96 μm.
Observations were taken in the chop-nod mode, with a narrow
2′′ dither. The target was centred at the central spaxel of the
9.4′′ ×9.4′′ grid of the PACS integral field unit. The data was
reduced using the Herschel interactive processing environment
(HIPE; Ott 2010) developer build version 3.0.1212, and the data
reduction scripts provided at the Herschel data reduction work-
shop held in January 2010.

For the photometric data, a mosaic was created from the two
scan maps. Aperture photometry was performed using an aper-
ture radius of 16′′ in the blue, and 19.2′′ in the red. An aper-
ture correction of 0.922 (blue), and 0.885 (red) was applied to
the photometry. The aperture corrections were obtained from the
PACS PhotChopNod release note (Feb. 22, 2010). The flux cal-
ibration uncertainty is estimated to be 5% in the blue and 10%
in the red. For the spectroscopic data, we extracted the spectrum
from the central spaxel, and then applied an aperture correction
in order to minimise the flux loss in the neighbouring spaxels.
Spectra from the central spaxel were extracted for both the A
and the B nods. We then applied wavelength binning to each nod
spectrum, using a bin size that is half the width of the instrumen-
tal resolution. The final spectrum is the mean of the wavelength-
binned spectra from the two nods. The absolute flux calibra-
tion uncertainty is estimated to be 40%. We have detected the
[OI] 63.2 μm emission line for ET Cha, while all other lines are
undetected (see Table 1). We used the IDL routine MPFITPEAK
to fit an error-weighted Gaussian to the observed [OI] 63.2 μm
line, and measured the integrated flux of the Gaussian line fit.
The 1-σ error to the line flux was calculated by setting the height
of the Gaussian equal to the continuum rms value, and the width
equal to the instrumental resolution. The continuum emission at
the rest wavelength of 63.18 μm was estimated by fitting a first-
order polynomial to the spectral region.

3.2. CTIO/ANDICAM photometry

We obtained new simultaneous optical/NIR photometry using
the dual-channel ANDICAM instrument on the CTIO 1.3 m
telescope on March 6, 2009. Photometric calibration was per-
formed using the PG 1047 Landolt field. Both the optical and
near-infrared data were reduced using standard procedures (flat-
fielding, cosmetic cleaning, shift-and add). The photometry on
ET Cha and the photometric standard was extracted within a
3′′ aperture and airmass and colour corrections were applying
using coefficients from the ANDICAM website3 in the optical

3 http://www.astro.yale.edu/smarts/smarts13m/
photometry.html
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Table 2. Photometric data of ET Cha.

λ [μm] mag Fν [Jy] Instrument Ref.
used data ...
0.091−0.111 – 9.81e-6 FUSE (scaled) GH
0.111−0.145 – 2.85e-4 HST/COS GH
0.145−0.205 – 1.69e-4 HST/COS/STIS GH
0.442 (B) 15.64 0.00195 ± 0.0001 CTIO/ANDICAM GD
0.55 (V) 14.68 0.0046 ± 0.00025 CTIO/ANDICAM GD
0.66 (R) 13.44 0.0111 ± 0.0005 CTIO/ANDICAM GD
0.82 (I) 12.23 0.033 ± 0.002 CTIO/ANDICAM GD
1.23 (J) 10.44 0.107 ± 0.005 CTIO/ANDICAM GD
1.63 (H) 9.79 0.124 ± 0.006 CTIO/ANDICAM GD
2.19 (K) 9.32 0.125 ± 0.006 CTIO/ANDICAM GD
3.60 8.38 0.125 ± 0.003 Spitzer/IRAC M
4.50 7.91 0.123 ± 0.001 Spitzer/IRAC M
5.80 7.42 0.124 ± 0.003 Spitzer/IRAC M
8.00 6.51 0.162 ± 0.001 Spitzer/IRAC M
24.0 3.52 0.280 ± 0.003 Spitzer/MIPS S
7.6−37 Spitzer/IRS low resolution spectrum B,S
70.0 – 0.18 ± 0.02 Herschel/PACS Phot BR
160.0 – 0.069 ± 0.007 Herschel/PACS Phot BR
870.0 – <0.036 APEX/LABOCA NP
unused data ...
0.45 (B) 15.07 0.00399 MSSSO 2.3m L,BR
0.558 (V) 13.97 0.00940 SAAO 1m La,BR
0.695 (R) 12.98 0.0199 SAAO 1m La,BR
0.90 (I) 11.77 0.0494 SAAO 1m La,BR
1.24 (J) 10.51 0.102 ± 0.003 2MASS T,NP
1.65 (H) 9.83 0.125 ± 0.004 2MASS T,NP
2.17 (K) 9.43 0.114 ± 0.004 2MASS T,NP
3.80 (L′) 8.14 0.14 ± 0.006 VLT/ISAAC H,IP
25.0 – 0.298 ± 0.03 IRAS I
60.0 – 0.281 ± 0.04 IRAS I
70.0 – 0.137 ± 0.008 Spitzer/MIPS S
160.0 – <0.12 Spitzer/MIPS G

Notes. Detections are listed as Fν ±σ whereas non-detections are listed
as <3σ. Abbreviations for references, data reduction and flux conver-
sion are: GH = Greg Herczeg, this paper; GD = G. Duchêne, this paper;
BR = B. Riaz, this paper; NP = N. Phillips, this paper; IP = I. Pascucci,
this paper; M =Megeath et al. (2005); S = Sicilia-Aguilar et al. (2009);
B = Bouwman et al. (2006); L = Lyo et al. (2004); La = Lawson et al.
(2002); H = Haisch et al. (2005); T = Cutri et al. (2MASS Point Source
Catalogue 2003); I=Moshir et al. (IRAS Faint Source Catalogue 1990);
G = Gautier et al. (2008).

and from Frogel (1998) in the near-infrared. The resulting
photometry is listed in Table 2 along with the mid- and far-
infrared fluxes adopted in our analysis. The new photometric
fluxes are substantially lower than previously published fluxes,
see Table 2.

3.3. APEX/LABOCA photometry

An upper limit at 870 μm has been obtained from new contin-
uum maps of the η Chamaeleontis association taken with the
LABOCA bolometer array on APEX (Siringo et al. 2009). The
data was reduced using the Bolometer array data Analysis (BoA)
software, with a pipeline optimised for faint compact sources.
Fluxes were extracted within BoA by fitting the amplitude of a
beam-sized Gaussian at specified positions within a map with
a pixel scale of 4.6′′/px. For each target the flux was extracted
at points in a 5 × 5 rectangular grid centred on the target with
a spacing of 37′′ (twice the beam FWHM). The sample stan-
dard deviation of the 24 off-source measurements is the 1-σ
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Fig. 2. Observed UV spectra and the stellar atmosphere model spectrum
for ET Cha (see Sect. 4.1). Blue: FUSE spectrum of TW Hya divided by
20. Green: HST/COS spectrum of ET Cha. Orange and red: G230L and
G430L HST/STIS spectra of ET Cha. Black: stellar atmosphere model
spectrum with Teff = 3400 K, log g = 3.89 and R� = 0.84 R�, at a
distance of 97 pc, plotted as dotted line (unused) for λ < 450 nm.

Table 3. Band integrated UV-fluxes for ET Cha.

Spectral band [Å] Integrated spectral flux [ erg/cm2/s]
912−1110 8.03 × 10−14

1110−1450 1.39 × 10−12

1450−2050 9.73 × 10−13

uncertainty quoted here. Using aperture photometry instead of
beam fitting, with a variety of aperture sizes, and aperture cor-
rections computed from the beam, yields very similar results
(9 ± 11 mJy/beam for apertures with r = HWHM).

3.4. UV observations

ET Cha was observed in the far-ultraviolet with the Cosmic
Origins Spectrograph (COS) and in the near-ultraviolet and blue
with the Space Telescope Imaging Spectrograph (STIS) on board
of the Hubble Space Telescope (HST) as part of the programme
“Disks, Accretion and Outflows of T Tau Stars” (P.I. G. Herczeg)
on 5 Feb. 2010. The far-ultraviolet observations were obtained
with the G130M and G160M gratings with 3891s and 4501s
integration times, respectively, to cover the 1140−1790 Å spec-
tral range with a resolution of ∼18 000. The data were reduced
with the COS calibration pipeline CALCOS and individual seg-
ments were combined with the IDL coaddition procedure de-
scribed by Danforth et al. (2010). The near-ultraviolet and blue
observations were obtained with the G230L and G430L gratings
with integrations of 45 s and 680 s, respectively, to cover the
1700−5700 Å spectral range with a resolution of ∼2000. The
data were reduced with custom-built software in IDL.

A FUSE spectrum of ET Cha covers the spectral region
shortward of 1140 Å but has poor signal-to-noise. Instead, the
912–1140 Å flux was estimated from a high-quality FUSE spec-
trum of TW Hya (Johns-Krull & Herczeg 2007), scaled to the
flux in the 1250–1700Å bandpass. All different data have been
smoothed to a common low resolution, see Fig. 2. Integrated
fluxes over three different UV bands as listed in Table 3.
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Fig. 3. Optical line spectra of ET Cha. All line profiles are continuum
subtracted and normalised to line peak emission= 1. The forbidden
oxygen line [OI] 6300 Å is the strongest emission line by a factor 5
or more, see Table 4, hence the increased noise level in the other lines.
The dip in the [OI] 6300 Å line coincides with the position of the telluric
component which has been carefully removed, see text. The LiI 6708 Å
absorption line has been used to determine the stellar velocity.

3.5. Re-analysis of high-resolution optical spectroscopy

A high-resolution optical spectrum of ET Cha was acquired on
June 26, 2002 with the 3.9 m Anglo-Australian Telescope AAT
and University College London coudé Echelle Spectrograph
(UCLES) as first published by Lawson et al. (2004). A 1.5′′ slit
was used delivering a resolving power of ∼30 000 (10 km s−1

at 6300 Å) and covering the wavelength range between 4980
and 9220 Å. The spectrum was calibrated using dome-flats, bias
frames and ThAr arc frames, making use of standard library rou-
tines such as ccdproc within IRAF (see Lawson et al. 2004, for
a detailed description). We have paid particular attention to the
removal of telluric contributions to these lines. We removed the
OI 6300 Å telluric contribution using the RECX 10 spectrum, a
star of similar spectral type but without any evidences of an ac-
cretion disk or outflow (Lyo et al. 2003), meaning that the mea-
sured OI 6300 Å emission from RECX 10 is thoroughly due to
the atmosphere of the Earth.

The average air-masses during observations of ET Cha and
RECX 10 are 2.6 and 2.7, respectively. We made a [OI] 6300 Å-
map by first removing the [OI] feature from the RECX 10 spec-
trum, and then subtracting this edited spectrum from the orig-
inal RECX 10 spectrum. The ET Cha spectrum was divided by
the [OI] 6300 Å-map to remove the OI telluric line. We used the
photospheric Li I absorption lines at 6707.76 Å and 6707.91 Å
to measure a stellar radial velocity of ∼22 km s−1 (∼34.6 km s−1

after heliocentric correction).
Figure 3 shows the observed profiles of ET Cha in the oxy-

gen line [OI] 6300 Å, with 3 other optical forbidden emission
lines overplotted that trace outflows, plus a Li I absorption line
to determine the systematic stellar velocity. The [OI] 6300 Å line
shows a broad component centred around the stellar systematic
velocity (low-velocity component LVC), and a blue component
shifted by about 42 km s−1 (high-velocity component HVC).
We have fitted the HVC and LVC by two Gaussian profiles.

Table 4. Measured optical emission line properties.

Line Remarks EW [Å] Lline [10−7 L�] vcen FWHM
[OI] 6300 Å HVC –6.0 170−260 –42 47 ±15
[OI] 6300 Å LVC –5.4 150−230 0 38 ±15
[SII] 6731 Å all –1.8 50−76 –35 n.a.
[SII] 6716 Å all –0.5 14−21 –32 n.a.
[NII] 6583 Å all –0.05 1.4−2.1 –40 n.a.

Notes. EW= equivalent width, HVC= high-velocity component,
LVC= low-velocity component. The luminosity interval corresponds
to the uncertainty in the red continuum as derived from photometry
R = (13.44−12.98) mag, compare Table 2. Negative values for the
centre velocity vcen indicate a blue-shift, n.a. means no values derived.
vcen and FWHM are in [km s−1].

Measured equivalent widths are listed in Table 4. Equivalent
widths for these lines are converted to line luminosities using
the procedure outlined in Hartigan et al. (1995), assuming a dis-
tance of 97 pc and zero visual extinction. As expected for out-
flows, the [NII] 6583 Å, [SII] 6716 Å and [SII] 6731 Å emission
lines emphasise the HVC, and are all blue-shifted by about the
same margin.

3.6. Projected stellar rotational velocity

The high resolution spectrum presented in Sect. 3.5 was addi-
tionally used to determine the projected rotational velocity of
the star vrot sin i. This quantity is typically derived from empirical
relations between the full-width at half-maximum of stellar ab-
sorption lines and vrot sin i (see e.g. Martínez-Arnáiz et al. 2010).
However, in this paper we use the Fourier transform of the line
profile (Gray 1992). The full power of this method is revealed in
case of very high spectral resolution and signal to noise (Reiners
& Schmitt 2003), but has also been applied successfully to mod-
erate and low quality data (Mora et al. 2001), using the following
simplifications.

The location of the first minimum of the Fourier transform
of any isolated photospheric line profile provides a measurement
of v sin i. If many lines are available, the average value and stan-
dard deviation can be estimated. The advantage of this method
is that the measurements are independent of empirical calibra-
tions and synthetic spectra, provided that enough lines can be
identified and the dominant line broadening mechanism is stel-
lar rotation. In terms of Fourier analysis, the latter requirement
is equivalent to the following condition: the first minimum of
the Fourier transform of photospheric line profiles must be at a
lower frequency than the Fourier transform of lines not affected
by rotation velocity (e.g. arc or telluric lines). In addition, the al-
gorithm is robust against the introduction of noise, and capable
of working with low signal to noise data.

The method has been applied to the visible UCLES spec-
trum of ET Cha as described in Sect. 3.5. Few lines could be
used for the analysis, due to the low signal to noise ratio (∼10
for unbinned data). A synthetic Kurucz spectrum with physical
parameters similar to those listed in Sect. 4.1 was used to iden-
tify isolated atomic photospheric lines. After clipping bad lines,
only 16 lines remained in the final average used below. Figure 4
shows a sample Fourier transform of both a photospheric and a
telluric line to illustrate the method. We obtain

vrot sin i = (15.9 ± 2.0) km s−1. (1)
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Fig. 4. vrot sin i determination: line profile Fourier transforms. The
Fourier transform of a photospheric line at 6709 Å (black line) and a
telluric line at 9196 Å (blue line) are shown. The location of the first
minimum of the photospheric line profile provides a measurement of
vrot sin i. The method requires that the main line broadening mechanism
is rotation velocity, that is, the first minimum of the photospheric line
must be located at a lower frequency than telluric or arc lines, as shown
in the figure. Arbitrary normalisation constants have been applied to the
curves to improve readability.

3.7. APEX 12CO J = 3→ 2

The source was studied in the J = 3→ 2 rotational transition of
12CO at 345.796 GHz using the APEX telescope and heterodyne
receiver system twice, in April and July 2010, for a total on-
source time of 100 minutes. A standard on-off switching scheme
was used, with reference position 180′′ off in Azimuth. With an
aperture efficiency of ηmb = 0.6, the effective area of the tele-
scope is 67.9 m2, and the beamsizeΩA at 345.796 GHz is 13.7′′.
The CO J = 3→ 2 line is commonly detected from disks of radii
100 AU or more; however, in the case of ET Cha, the line was
not detected (Fig. 6), down to an rms of 17 mK (antenna temper-
ature) for 0.425 km s−1 wide velocity bins. Assuming the under-
lying linewidth of the emitting region is 7.5 km s−1, as predicted
by the best fitting model (Sect. 5) and typical of CO lines from
disks, the upper limit to the line flux is 3σ = 5.5 × 10−20 W/m2.

4. Disk modelling

The strong near–mid IR continuum excess of ET Cha (see Fig. 7)
as well as the narrow H2 v = 1 → 0 S(1) emission line
at 2.122 μm (Ramsay Howat & Greaves 2007) indicate the
presence of a gas-rich protoplanetary disk. The optical high-
resolution spectrum with blue-shifted emission lines shows,
however, that in addition to the disk, there also exists an outflow
that might contribute to the gas emission lines. In the following,
we present a combined gas+dust disk model to explore in how
far a disk model alone can explain all photometric and spectro-
scopic observations of ET Cha. The possible contribution of an
outflow is discussed in Sect. 6.4.

The disk modelling procedure in this paper consists of three
phases. In phase 1, we make a Bayesian analysis, based on the
new BVRIJ photometric data, to obtain best fitting values for
the stellar parameters. In phase 2, we fix a few more parameters
like the inner disk radius based on physical assumptions, e.g.,
according to stellar luminosity and dust sublimation tempera-
ture, and in phase 3, we use the thermo-chemical code ProDiMo

(Woitke et al. 2009; Kamp et al. 2010) to calculate the gas- and
dust temperature structure in the disk, the chemical and ice com-
position, and to fit all remaining disk, dust, and gas parameters
of the model to the observations as good as possible.

4.1. Stellar parameters

While our new JHK photometry is consistent with the 2 MASS
photometry, the VRI photometry is about 0.5−0.7 mag fainter
than the data published in (Lawson et al. 2002). Indeed, our si-
multaneous photometry appears to represent the “faint” state for
ET Cha which, in the accretion hotspot scenario, is purely pho-
tospheric.

To estimate the stellar properties, we therefore adopt our new
simultaneous photometry. We only fit the BVRIJ fluxes to ensure
that our estimates are not biased by the near-IR excess from the
disk. We computed a grid of photospheric models, varying Teff
(using the log g = 4.5 NextGen models from (Allard et al. 1997),
AV (using the RV = 3.1-law from Cardelli et al. 1989), R� and
the distance d to ET Cha within generous ranges. The optical
extinction is defined by AV = 2.5 log10(e) τV where τV is the
optical depth in the visual due to interstellar dust extinction. We
note that the last two parameters are degenerate.

The results are shown in Fig. 5. A very good fit is obtained
with Teff = 3300−3400 K, d = 97−100 pc, R� = 0.84−0.89 R�
(corresponding to L� = 0.085 L�) and AV ≤ 0.2 mag. This is
in excellent agreement with the findings of Luhman & Steeghs
(2004), including the effective temperature which they derived
exclusively from their spectrum and not from photometry. For
the disk modelling, we adopt Teff = 3400 K and R� = 0.84 R�,
which is both the most probable combination of parameters and
the closest to the spectroscopically derived stellar properties.

Finally, we note that conducting the same analysis on the
previous photometric dataset (obtained in the “bright” state)
yields both a hotter central star (Teff ≈ 4000 K) and a substantial
foreground extinction (AV = 0.75 mag), both of which are in-
consistent with our prior knowledge of the source (see Sect. 2).

In the following, we use the nearest NextGen stellar in-
put spectrum for Teff = 3400 K, L� = 0.085 L� and solar
metallicities (resulting in log g = 3.89 and R� = 0.84 R� for
M� = 0.2 M�). According to the stellar evolutionary models of
Siess et al. (2000), our choice of Teff and L� is consistent with a
6−8 Myr old star of mass (0.2−0.3) M� and solar metallicities.

4.2. Stellar UV-excess

In the UV, stellar activity and mass accretion create an ex-
cess emission with respect to classical stellar atmosphere mod-
els. Therefore we use our composite observed UV spectrum of
ET Cha (Fig. 2) at λ < 450 nm as input instead. Although strong
Lyα emission from ET Cha was detected with HST/COS, no
emission was detected near line centre because of neutral hydro-
gen in our line of sight to the star. Based on an analysis of a sim-
ilar Lyα emission profile from TW Hya (Herczeg et al. 2004),
we roughly estimate that the total flux in this line is twice the
detected value. Therefore, we have doubled the detected flux be-
tween 1210 Å and 1220 Å for the construction of our UV input
spectrum “as seen by the disk”. This yields an integrated flux of
2.22 × 10−12 erg/cm2/s in the 1110−1450 Å band, in contrast to
Table 3. We have converted these integrated UV fluxes into ad-
ditional photometry points, see Table 2, and plotted these points
with large errorbars in Fig. 7. These data result in a fractional UV
luminosity fUV = LUV/L� = 0.017 with the UV luminosity LUV
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Fig. 5. Bayesian probability distributions for effective temperature Teff , visual extinction AV, distance D and stellar radius R� for ET Cha using our
new simultaneous BVRIJ photometry (solid histograms). The vertical dotted lines bracket the range of values explored for each parameter while
the vertical dashed line represent the absolute best fit photospheric model.

being integrated from 912 Å to 2500 Å as introduced by Woitke
et al. (2010). The “extra UV” is not important for the spectral
energy distribution (SED) modelling, but is essential for the gas
modelling, because the UV irradiation is a decisive factor for the
gas heating and chemistry in the disk.

4.3. Disk inclination and inner radius

For the disk modelling in Sect. 4.5 we have fixed two parame-
ters to reduce the dimension of parameter space for the fitting
problem, namely the disk inclination and inner radius.

First, the disk inclination is assumed to be i = 40◦ as mea-
sured from face-on orientation. As long as the disk is not in-
tersecting the line of sight to the star, this parameter does not
have a strong impact on the model results concerning both SED-
analysis and line flux predictions, and we do not have clear ob-
servations, e.g., images, that would allow us to determine this
quantity unambiguously. High values for the disk inclination are
supported by the Hα line analysis (60◦, Lawson et al. 2004), the
low outflow velocities observed (Sect. 3.5), and by the strongly
rotation broadened stellar absorption lines (Sect. 3.6), favouring
an edge-on rather than a face-on disk orientation.

However, our disk modelling suggests big disk scale heights
in the inner disk regions, needed to reproduce the strong near-
IR excess (see Fig. C.4). For inclinations of 60◦ and higher, the
observer’s line of sight to the central star would therefore inter-
cept the disk. This would cause a dramatic reduction of the ob-
served fluxes at optical and UV wavelengths, as well as a strong
reddening of the optical colours. This is inconsistent with our
initial assumption that the star is seen directly, used to estimate
the stellar properties. In principle, one could increase both the
intrinsic stellar luminosity and effective temperature of the star
to compensate exactly for this reddening, but to match the ob-
served SED, the required Teff is well beyond values consistent

Fig. 6. Deep APEX spectrum of ET Cha at 345.796 GHz (866.963 μm),
showing the mean beam temperature Tmb versus local standard of rest
velocity vlsr . The 12CO J = 3→ 2 line was not detected.

with the M3–M3.5 spectroscopic classification of ET Cha. For
inclinations >∼60◦ we furthermore observe that the 10 μm and
20 μm silicate features are no longer in emission, which clearly
contradicts of observed SED of ET Cha.

Second, concerning the disk inner radius, the strong and con-
tinuous near-IR fluxes of ET Cha suggest a disk which extends
inward close to the star, with no dust holes or gaps. T Tauri disks
are generally assumed to be truncated by the stellar magneto-
sphere near the co-rotation radius, with material accreting along
magnetic field lines onto high-latitude regions of the star (Königl
1991; Shu et al. 1994). From the analysis of optical absorption
lines of ET Cha (Sect. 3.6) we have inferred a projected stellar
rotation velocity of vrot sin i = (15.9 ± 2.0) km s−1. At i = 40◦,
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Fig. 7. Comparison of model SED to observations. Blue bullets are pho-
tometric data points used for the fitting (see Table 2). Light blue sym-
bols refer to other, unused photometry points. Symbols with downward
arrows indicate 3σ upper limits. The black line is the SED from our
best-fitting model. The red line shows the assumed stellar input spec-
trum, completed by piecewise constant fluxes Fν in three UV bands as
obtained by integrating over our UV observations (Table 3).

this translates into vrot = (25±3) km s−1 (about 12% of the break-
up velocity) and, by assuming M� = 0.2 M� and R� = 0.84 R�
(Sect. 4.1), into a stellar rotation period of P = (1.7 ± 0.2) days,
and a co-rotation radius of (0.015 ± 0.002) AU.

However, the dust temperature at the co-rotation radius
(0.015 AU) is higher than 1500 K, associated with the subli-
mation temperature of silicates. Therefore, we have assumed a
slightly larger inner disk radius, Rin = 0.022 AU, where the dust
temperature is about 1500 K.

4.4. A single disk model

For a single disk model, we use the radiation thermo-chemical
disk code ProDiMo (Woitke et al. 2009; Kamp et al. 2010) to cal-
culate the dust continuum radiative transfer, and the gas thermal
balance and chemistry throughout the disk. We use 10 elements,
76 gas phase and solid ice species, and 992 reactions including
a detailed treatment of UV-photorates (see Kamp et al. 2010),
H2 formation of grain surfaces, vibrationally excited H�2 chem-
istry, and ice formation (adsorption, thermal desorption, photo-
desorption, and cosmic-ray desorption) for a limited number of
ice species (see Woitke et al. 2009, for details). We also use
ProDiMo in this paper to compute all observables including the
SED, images, and gas emission line fluxes and profiles. Latest
improvements to the ProDiMo model include X-rays chem-
istry and heating, a parametric prescription for dust settling,
UV fluorescent pumping, PAH ionisation and heating/cooling,
[OI] 6300 Å pumping by OH-photodissociation, H2-pumping by
its formation on grain surfaces, formal solutions of the line trans-
fer problem, and chemical heating. These improvements are ex-
plained in Appendices A.2 to A.8.

Our modelling of ET Cha is based on a prescribed disk
density structure, using power-laws for the surface density
distribution and disk flaring, see Appendix A.1. This approach
allows for a rapid model computation (avoiding the structure it-
eration loop, see Fig. 1 in Woitke et al. 2009), and is hence more

Table 5. Parameters of the best-fitting disk model.

Quantity Symbol Value
stellar mass M� 0.2 M�
effective temperature Teff 3400 K
stellar luminosity L� 0.085 L�
disk gas mass� Mgas 6.1 × 10−4 M�
inner disk radius Rin 0.022 AU
outer disk radius� Rout 8.2 AU
column density power index� ε –0.020
reference scale height� H0 0.011 AU
reference radius r0 0.1 AU
flaring power index� β 1.09
disk dust mass� Mdust 2.6 × 10−8 M�
minimum dust particle radius amin 0.05 μm
maximum dust particle radius amax 1 mm
dust size dist. power index p 4.1
minimum settling particle size as 0
dust settling power index s 0
dust material mass density ρgr 3 g cm−3

dust composition Mg2SiO4 32.9%
(volume fractions) amorph. carbon 24.4%

MgFeSiO4 23.0%
SiO2 8.8%

MgSiO3 7.6%
cryst. silicate 3.3%

strength of incident ISM UV χISM 1
cosmic ray H2 ionisation rate ζCR 5 × 10−17 s−1

PAH abundance rel. to ISM� fPAH 0.081
chemical heating efficiency� γchem 0.55
α viscosity parameter α 0
disk inclination i 40◦
distance d 97 pc

Notes. Parameters marked with � have been varied in the evolutionary
optimisation run depicted in Fig. 8. The values of the other parameters
have been assumed, fitted by hand, or have been obtained from addi-
tional evolutionary optimisation runs not discussed here.

suitable for a deep search for fitting values in parameter space.
In this mode, the disk code uses altogether 25 physical parame-
ters, most of which are considered as fixed for the modelling of
ET Cha (for instance the stellar properties, see Table 5).

4.5. Parameter fitting procedure

The determination of the remaining free disk, gas and dust pa-
rameters, like the total disk gas mass for instance, is a key ob-
jective of the modelling of individual targets. These parameters
are “determined” in this paper by considering the values (better
the ranges of values) that lead to a satisfying match between pre-
dictions and observations in the frame of the model, henceforth
called “solutions”. Practically all determinations of properties of
astrophysical objects work that way, even if it’s just a simple
one-dimensional dependence between property and observable,
because the desired quantities are rarely accessible via direct ob-
servations. This is the well-known problem of model inversion
in astronomy (Lucy 1994), with all the usual shortcomings and
concerns which can be subdivided into four families:

1. Concerns about the quality of the model itself (miss-
ing physics, poorly determined input quantities like
cross-sections and rate coefficients, numerical issues like
grid resolution, etc.).
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2. Concerns about the completeness of solutions found in
parameter space, for instance, how can we be sure of having
found the best solution?

3. Under-determination, i.e. a weak dependence of observables
on model parameters in combination with considerable
uncertainties in the observables.

4. Non-uniqueness of inversion procedure (multiple solutions).

Given the complexity of the disk model at hand, with 8−14 free
parameters for the modelling of the disk of ET Cha, we have
to take into account the possibility that different solutions exist
which practically achieve the same degree of agreement between
model results and observations. Whereas in a low-dimension pa-
rameter space this seems to a be a weird, seldom special case, it
occurs frequently in high dimensions, with numerous local min-
ima. The manifold of solutions in a multi-dimensional parameter
space can be (and usually is) astonishingly rich and complicated
in structure.

Furthermore, it is important to note that, in a high-dimen-
sional parameter space, an exhaustive search is practically im-
possible. This is even more so for our disk modelling, since
one complete model takes about 1 CPU hour on a single 3 GHz
processor machine. For 10 parameters, with 20 well-selected
values around a main solution each, one would need to run
2010 ≈ 1013 models which would take about 1.2 × 109 CPU yrs.

Therefore, we are not able to fully devitalise the concerns (1)
to (4), but have to face the fact the any parameter determina-
tion by model inversion in high-dimensional parameter space
is an intrinsically uncertain business. Our strategy in this paper
is as follows. We use an evolutionary strategy to find a hand-
ful of well-fitting disk models, corresponding to different local
minima in parameter space. Among these, we select a “best-
fitting” model, the properties of which are described in detail in
Appendix C. The best-fitting model is then re-run with different
choices of input physics in Appendix D, to explore the principal
effects of e.g. X-rays and the treatment of H2-formation.

We then conclude about the confidence intervals of derived
parameter values in Sect. 5 by considering (i) small deviations of
single parameters around the best fitting solution, (ii) overall ex-
perience from fitting by hand and variance of different solutions
found by the evolutionary strategy, and (iii) direct constraints
from physical arguments like optical depth and column densi-
ties. We admit that this modelling procedure is not entirely sat-
isfactory. A more complete discussion of our modelling strategy
will be the topic of a forthcoming paper.

4.6. Fit quality and evolutionary strategy

Mathematically, all model inversion techniques can be formu-
lated in terms of a certain strategy to minimise χ2, i.e. to find a
minimum of the deviations between model predictions and ob-
servations in parameter space. In this paper, we use the following
logarithmic measure of these deviations as

χ2 =
1
N

N∑
i=1

Δ2
i with

Δi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

log
(
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i
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)
σi

F/F
i
obs

, Fi
obs ≥ 3σi

F

Fi
mod

3σi
F

, Fi
obs < 3σi

F .

(2)

Fi
obs and σi

F are an observed flux and its uncertainty, and Fi
mod is

the predicted flux by the model. The logarithmic nature of our χ2

is motivated by the need to assign an equally high (bad) number
to χ if a model flux is a factor 10 too strong as if it is a factor 10
too weak, analog to considering deviations in magnitudes4.

Equation (2) is applied separately to all photometric data, all
λ-points in the Spitzer spectrum, and to the line fluxes of CO J =
3 → 2, [OI] 63 μm, [OI] 6300 Å (LVC) and o-H2 2.122 μm, re-
sulting in χ2

Phot, χ
2
Spit, and χ2

Line, respectively. The total fit quality
of a model is then calculated as

χ2 = wPhotχ2
Phot + w

Spitχ2
Spit + w

Lineχ2
Line (3)

with adjustable weights wPhot, wSpit and wLine, normalised as
wPhot + wSpit + wLine = 1.

We have applied the (1, 11) -evolutionary strategy with adap-
tive step-size control of Rechenberg (2000) to minimise χ, i.e. to
find best-fitting values of our remaining free gas, dust and disk
parameters. The strategy uses 1 parent producing 11 offsprings
with slightly modified parameters, the best of which will become
the parent of the next generation (the parent always dies). The
step-size δ is transmitted to the children and treated as addi-
tional parameter to be optimised. After some experiments, we
have chosen wPhot = 0.35, wSpit = 0.45 and wLine = 0.2 for opti-
mum performance of the evolutionary strategy.

Figure 8 visualises one exemplary run of the evolutionary
strategy, showing the changing model parameters and results
over 300 generations. We started from a generic disk setup with
Mgas = 10−3 M�, gas/dust ratio of 100, and an outer disk radius
of Rout = 100 AU. This model fails badly to explain the SED
and, in particular, the line fluxes. CO J = 3 → 2 is about 10
times too strong and both [OI] 6300 Å and o-H2 2.122 μm are
more than a factor of 100 too weak. However, after about 300
generations, the model has achieved a good fit of all available
continuum and line observations. The final parameter values are
far from these initial guesses, yielding a disk that is less than
10 AU in radius and much less massive. All models from about
generation 50 onwards fit the dust observations about equally
well, the SEDs from these models are almost indistinguishable
by eye when plotted as in Fig. 7. A good fit to the line observa-
tions was achieved only from generation 200 onward, after the
disk radius has shrunk to about Rout <∼ 10 AU while continuing
to fit the dust observations about equally well. Thus, the line ob-
servations can help to break the degeneracy of SED-fitting.

5. Results

We identify the result of the evolutionary run depicted in Fig. 8
as our main “best-fitting” model. The resulting parameters are
listed in Table 5, the computed line fluxes are summarised in
Table 6 and the resulting SED is plotted in Fig. 7. More details
about the internal physical and chemical structure of this disk
model are shown in Appendix C.

However, the identification of a best-fitting model was not
at all straightforward. Altogether 17 runs of the evolutionary
strategy have been executed with about 50 to 300 generations
each, choosing different parameters to be varied, different ini-
tial guesses of the model parameters, or using different setups
of the evolutionary strategy. Not all of these runs succeeded to

4 Defining a magnitude as mi
obs ∝ log Fi

obs, the error thereof is σi
m =

∂ log(Fi
obs)/∂F

i
obs × σi

F = σ
i
F/F

i
obs and hence the deviation Δi = (mi

obs −
mi

mod)/σi
m is equivalent to Eq. (2).
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Fig. 8. Auto-optimisation of model parameters to fit all continuum and line observations of ET Cha. The first row shows the evolution of some
model parameters as function of generation (total gas mass Mgas [M�], total dust mass Mdust [M�], outer disk radius Rout [AU]). The two l.h.s. plots
in the second row show the resulting χ for photometry and Spitzer spectrum. The other four plots shows the resulting line fluxes as labelled, where
the orange bars indicate the observed line flux ranges with 1σ errors. At generation 94, the evolutionary strategy got stuck in an unsatisfactory
solution (local minimum) with well-fitting SED, but very bad line fits χLine ≈ 5, i.e. a mean deviation between model and observed line fluxes
of (e5 ≈ 150)σ. We have manually changed parameters at generation 95, increasing the disk mass by a factor 10. The evolutionary strategy then
found a well-fitting model which can reproduce all available line and continuum observations within about 1σ on average.

find well-fitting solutions. Some almost equally well-fitting so-
lutions are listed in Table 7. Based on these diverse model inver-
sion results, we have to be very careful with conclusions about
the disk properties of ET Cha. The following section summarises
our confidence intervals for the various disk shape, dust and gas
parameters and discusses which observations are key for their
determination.

5.1. Dust mass

ET Cha’s spectral energy distribution (SED) is characterised by a
strong near and mid IR excess relative to the star, similar to other

much more massive T Tauri disks, see Fig. 7. However, in the
far-IR, the fluxes are very faint. 69 mJy at 160 μm was too weak
to be detected by Spitzer, and we have not detected the object at
870 μm with APEX. Thus, the new Herschel photometry points
at 70 μm and 160 μm allow for the most complete SED analysis
of the source to date.

In all computed disk models for ET Cha, the disk is optically
thin at 160 μm. The observed flux at distance d is hence given by

Fν =
κabs
ν Bν

(〈Tdust〉) Mdust

d2
(4)
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Table 6. Computed line fluxes [10−18 W/m2], at d = 97 pc and i = 40◦
from the best-fitting disk model, in comparison to the observations.

Line λ [μm] Observed Model

[OI] 3P1 → 3P2 63.18 30.5 ± 3.2 34.5
[OI] 3P0 → 3P1 145.52 <6.0 2.6
[OI] 1D2 → 3P2 (HVC) 0.6300 73 ± 25 –
[OI] 1D2 → 3P2 (LVC) 0.6300 65 ± 25 69.6
[CII] 2P3/2 → 2P1/2 157.74 <9.0 0.11
CO J = 3→ 2 866.96 <0.05 0.014
CO J = 29 → 28 90.16 <9.6 4.9
CO J = 33 → 32 79.36 <24 3.3
CO J = 36 → 35 72.84 <8.0 2.6
o-H2 v = 1→ 0 S(1) 2.122 2.5 ± 0.1 2.4
o-H2O 221 → 212 180.49 <5.2 1.1
o-H2O 212 → 101 179.53 <5.0 1.4
o-H2O 432 → 312 78.74 <30 11.1
p-H2O 322 → 211 89.99 <9.6 6.4

Notes. Non-detections are listed as <3σ upper limits.

Table 7. Parameters of different, about equally well-fitting models from
different runs of the evolutionary strategy.

Parameter Model 1 Model 2 Model 3 Model 4
Mgas [10−4 M�] 0.088 0.65 6.1 25
Mdust [10−8 M�] 3.3 2.6 2.6 3.7
Rout [AU] 5.9 7.5 8.2 8.3
H0 [AU] 0.0103 0.0096 0.0110 0.0108
ε 1.16 0.046 −0.020 0.008
β 1.33 1.15 1.09 1.07
p 3.2 3.9 4.1� 4.2
as [μm] 0.05� 0.01� 0� 0�

s 0.01 0.13 0� 0�

fPAH 0.081 0.098 0.081 0.081
γchem 0.14 0.20 0.55 0.09

results
χPhot 0.48 0.78 0.50 0.45
χSpit 0.91 0.51 0.51 0.50
χLine 1.03 1.04 1.25 1.02

Notes. Each final model is located in a solid local χ-minimum, the
essence after trying a few thousand models. Parameter symbols are ex-
plained in Table 5. Other fixed model parameters are as listed in Table 5.
Model 3 was selected as best-fitting model. Parameters marked with �

have been fixed during the evolution.

where 〈Tdust〉 is the dust mass averaged dust temperature, κabs
ν the

dust absorption coefficient in [cm2/g(dust)] and Bν the Planck
function. In the best-fitting model we measure 〈Tdust〉 ≈ 56 K,
and κabs

ν = 34 cm2/g(dust) at 160 μm, which, according to
Eq. (4), results in a 160 μm flux of 48 mJy which is in good
agreement with both, the computed flux from the full disk model
(51 mJy) and the observed value of 68 mJy.

Therefore, the observed 160 μm-flux leaves no doubt that the
mass of the dust in the disk of ET Cha must be low, Mdust ≈ 2.6×
10−8 M� according to our best fitting model. More massive disks
produce too strong 160 μm continuum fluxes. Although there
are certainly some ambiguities in the dust mass determination,
e.g. if other dust size parameters are used, leading to a different
κabs
ν , but among all parameters, Mdust certainly belongs to those

which are only little influenced by other parameters and can be
determined with some confidence. Across all SED-fitting disk
models, with varying dust composition and size parameters, the
value for Mdust ranges in (2−5) × 10−8 M�.

5.2. Dust disk characteristics and particle sizes

According to the low dust mass we derive, the disk of ET Cha has
only low optical depths across the disk. Our best-fitting model
has vertical dust absorption optical depths <1 for λ >∼ 4 μm, ex-
cept for the optically thick 10 μm and 20 μm silicate features.
This is valid for all radii since the column density exponent
ε ≈ 0. However, the radial optical depths are much larger. The
midplane radial dust extinction optical depth at 1 μm is about
150. Therefore, the disk of ET Cha is on the borderline between
optically thin and thick. It has a complex dust temperature struc-
ture due to radial shielding effects (see Fig. C.2), but the vertical
dust emission could be treated in the optically thin limit at most
wavelengths.

Some conclusions about the dust particle sizes can be drawn
from the shape of the 10 μm and 20 μm silicate features, which
are clearly seen in emission for ET Cha (Fig. 7). We need a
strong amplitude of opacity variation across these features (see
Fig. C.1) to model the SED of ET Cha, which favours small,
(sub-) micron sized dust particles. Since the peaks are optically
thick, warm and small grains must be located in front of cooler
dust along the line of sight. We notice that it is easier to fit the
observed silicate features with low values of the column density
power-law index ε, i.e. a roughly flat surface density distribu-
tion, and small disk inclinations. For larger ε or higher disk in-
clinations (closer to edge-on), the silicate features weaken and
eventually vanish.

If dust and gas are well-mixed (no dust settling, e.g. models 3
and 4 in Table 7), the models clearly favour very small particles.
We can fit the entire SED with a uniform dust population that is
either truncated at about 1 μm, or, alternatively, with a contin-
uous size distribution ranging from 0.05 μm to 1 mm, but with
an unusually large power-law index of p = 4.1. The second ap-
proach allows for slightly better SED-fits. These findings with
ProDiMo have been carefully checked against the Monte Carlo
radiative transfer code MCFOST (Pinte et al. 2006, 2009), show-
ing a very good agreement in calculated dust temperatures and
continuum fluxes.

However, if dust settling is taken into account (in the ap-
proximate way explained in Appendix A.2), Table 7 demon-
strates that lower p = 3.9 or even p = 3.2 are also possible,
in which case the volume-integrated dust size distribution in
ET Cha would not be unusual at all, close to the default value
of p = 3.5. Our honest conclusion about ET Cha is hence that
it’s dust must predominantly be made of (sub-) micron particles
at the disk surface, where the silicate emission features form. We
have therefore decided to refrain from quoting any errorbars to
our results concerning the dust size parameters.

5.3. Dust composition

In our best fitting model, we assume an effective mix of about
33% amorphous fosterite Mg2SiO4 (Jäger et al. 2003), 24%
amorphous carbon (Zubko et al. 2004), 23% amorphous olivine
MgFeSiO4 (Dorschner et al. 1995), 9% amorphous silica SiO2
(Posch et al. 2003), 8% amorphous enstatite MgSiO3 (Dorschner
et al. 1995), and 3% crystalline fosterite Mg2SiO4 (Servoin &
Piriou 1973). The citations indicate our sources for the complex
refractory indexes of the various pure materials. The dust ab-
sorption and scattering opacities are calculated by applying ef-
fective mixing theory (Bruggeman 1935) and Mie theory, based
on these optical data and volume fractions, and assuming that the
chemical dust composition and unsettled dust size distribution is
unique throughout the disk. The inclusion of crystalline fosterite
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Fig. 9. Systematic variation of single parameters around the values of the best-fitting disk model, showing the dependencies on total disk gas mass
Mgas [M�] (l.h.s.), on total dust mass Mdust [M�] (middle) and on outer disk radius Rout [AU] (r.h.s.). The full black line shows the total χ, and the
dotted, dashed and dashed-dotted lines show its constituents, χPhot, χSpit and χLine, see Eq. (3). The computed line flux ratios with respect to the
observations Fline/Fobs (Fline/(3σ) for CO 3 → 2) are shown by the coloured lines as labelled, with tickmarks on the right axis). The grey shaded
box marks the parameter-interval where χ is no more than twice its minimum.

is motivated by the fine-structure of the observed second silicate
feature at 20 μm (Bouwman et al. 2006), see (Sicilia-Aguilar
et al. 2009), which shows several narrow peaks close to the fos-
terite peak positions in the data of Servoin & Piriou (1973). The
resulting volume fractions are a by-product of our automated fit-
ting procedure from additional runs of the evolutionary strategy
not shown in Table 7. We do not claim, however, to have deter-
mined the dust composition of ET Cha, as our method is focused
on fitting the overall shape of SED rather than individual dust
features.

The inclusion of 24% amorphous carbon, however, was an
important step to understand the SED of ET Cha. A compar-
ison model without amorphous carbon (green line in Fig. 10)
demonstrates its impact on the SED. First, amorphous carbon
reduces the dust albedo at UV to near-IR wavelengths (see
Fig. C.1). Pure laboratory silicates have an albedo of about
80−99% around 1 μm. This leads to a substantial starlight am-
plification via scattering by the disk at UV to near-IR wave-
lengths, which is inconsistent with the photometric data. Second,
amorphous carbon enhances the absorption and thermal emis-
sion in the near-mid IR. As a consequence, the disk is more ef-
fectively heated by star light, and produces more thermal emis-
sion shortward of the 10 μm silicate feature, just where ET Cha
is very bright, resulting in a much better fit of the SED if we
include amorphous carbon. However, any other kind of impu-
rities or inclusions, metallic iron for instance, would cause a
similar increase of the dust absorption opacities at optical to
near-IR wavelengths, amorphous carbon is just one of the op-
tions. The formation of small alien inclusions in the dust ma-
terial has been demonstrated by Helling & Woitke (2006) and
Helling et al. (2006) to be a natural consequence of the refrac-
tory dust formation process in somewhat different oxygen-rich
environments, namely in brown dwarf atmospheres. Concerning
ET Cha we conclude that strong near-IR dust absorption opaci-
ties are needed to fit the SED, substantially stronger than those
of pure amorphous or crystalline silicates which have a “glassy”
character.

5.4. Outer disk radius

Any outer disk radius, at least up to 200 AU, works fine to fit
the SED alone. However, the non-detection of CO J = 3 → 2
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Fig. 10. Comparison between predicted SEDs of two models with dif-
ferent dust material composition. The black model shows once more
the SED of our best fitting model, with dust composition as listed in
Table 5. In the green model, we have omitted the amorphous carbon.
All model parameters are identical otherwise.

and the modest [OI] 63 μm line flux put severe constraints on
Rout. As Figs. 8 and 9 demonstrate, the CO line flux depends
very strongly and robustly on Rout. All calculated models with
Rout>25 AU would violate the 3σ upper limit of CO J = 3→ 2.
Only models with Rout < 10 AU are consistent with the 1σ CO
line flux upper limit. The CO lines are extremely optically thick,
τline ≈ 105 (see Sect. 5.5). Therefore, even if the CO abundance
was reduced by a factor of 103 throughout the disk, for example
by very efficient CO ice formation, the conclusion that the disk
of ET Cha must be small would still be valid. The relatively ro-
bust determination of Rout ≈ (6−9) AU is demonstrated by Fig. 9
and Table 7. Lower values of Rout are actually inconsistent with
the measured [OI] 63 μm line flux (unless interpreted as origi-
nating form an outflow, see Sect. 6.4), because the outer disk is
responsible for the [OI] 63 μm line emission (see Sect. 5.5).
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Fig. 11. Line profiles, intensity maps, and spatial origin of some emission lines according to the best-fitting disk model. The upper row of fig-
ures shows the calculated continuum level, line profile, and continuum-subtracted frequency-integrated line intensity-map for [OI] 63.2 μm (left),
[OI] 6300 Å (middle) and o-H2v = 1 → 0 S(1) 2.122 μm (right), based on formal line transfer solutions at inclination = 40◦. Note the different
scaling of velocity axis for the different lines. The lower row of figures visualises the vertical line and continuum optical depths as function of
radius, the cumulative line flux, and the species density [cm−3]. The vertical dashed lines indicate where the line flux is coming from, bracketing
70% of the cummulative line flux in radius. The thick black lines in the lowest boxes mark those grid cells that contribute most to the vertical line
flux; they mark the geometrical depth of the line formation region. For the analysis figures in the lower row, we have directly applied the upwards
escape probability formalism (without formal solutions of line transfer). These analyses are hence only approximate in nature and valid for strictly
upward line propagation only (inclination = 0◦). The line fluxes calculated in this way deviate from the proper results under 40◦ by less than 8%.

5.5. Spatial origin and characteristics of gas emission lines

Before we continue to conclude about the determination of the
disk gas mass of ET Cha, we first have to clarify where the ob-
served spectral lines come from and what they tell us. Figure 11
shows the calculated line fluxes and profiles of the three detected
lines [OI] 63 μm, [OI] 6300 Å (LVC) and o-H2 2.122 μm. We
also plot here the vertical line and continuum optical depths and
the cumulative line flux as function of radius, to facilitate the
discussion of the lines’ spatial origin. These plots are based on
the best-fitting disk model, but the drawn conclusions about the
spatial origin of the spectral lines are quite general and valid
for all calculated disk models that fit the observations of ET Cha.

The far-IR [OI] 63 μm line probes the outer disk layers, about
2−7 AU in this tiny model, and is optically thick with vertical
optical depths τline ≈ 100−1000 in this radial region5. The con-
tinuum is optically thin. Since the line is collisionally excited,

5 For more typically extended disks, Rout = 100−500 AU, the
[OI] 63 μm line mostly originates in 10−100 AU, slightly more ex-
tended in case of Herbig Ae disks (Kamp et al. 2010).

with an excitation energy of about 228 K, the line flux probes
first and foremost the existence of warm gas (Tgas >∼ 50 K) in the
disk surface, here at relative heights z/r = 0.4−0.5. In this re-
gion, PAH heating is usually the most important heating process.
Therefore, this line shows a strong correlation with the assumed
PAH abundance, fPAH, UV irradiation, and disk flaring.

The optical [OI] 6300 Å line originates from hot gas in the
inner disk, about 0.06−0.7 AU in this model. As a forbidden
line, with very low Einstein coefficient A41 ≈ 6.5 × 10−3 s−1,
it is mostly optically thin τline ≈ 0.1−1. With an excitation
energy of ∼15 900 K, it probes the existence of hot and dense
gas Tgas >∼ 3000 K in front of an optically thick continuum. To
our surprise, this line is not significantly excited by OH photo-
dissociation in the model. Neglecting this pumping effect (see
Appendix A.5) weakens the [OI] 6300 Å line flux by only 14%.
Thus, the [OI] 6300 Å line comes from the bottom of the hot
atomic layer, from about z/r = 0.3−0.4 in this model. As soon as
molecules form, for example OH and CO, the temperature drops
significantly by molecular line cooling, and the [OI] 6300 Å line
cannot be excited any longer. Since the line is optically thin,
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its flux reacts quite sensitively on disk mass. We note that the
predicted line FWHM = 35.7 km s−1 is in excellent agreement
with the observations, FWHM = (38 ± 15) km s−1, meaning that
the spatial origin of the [OI] 6300 Å line is about correct in the
model.

The near-IR o-H2 v = 1→ 0 S(1) 2.122 μm line also probes
the inner disk regions, 0.05−0.6 AU in this model. The line is
quite optically thick, τline ≈ 5−10 in this region, where the
dust is also optically thick. Since its Einstein coefficient is ex-
tremely small, A61 ≈ 7×10−7 s−1, the line needs high H2 column
densities of order 1023 cm−2 to become visible over the con-
tinuum level. Such column densities are only reached in quite
deep layers, z/r ≈ 0.15, so this line forms in much deeper lay-
ers than the [OI] 6300 Å line. The temperature contrast between
gas and dust is already quite weak in these layers (Fig. C.2),
which limits the o-H2 2.122 μm line flux. The excitation energy
of the line is about 7000 K, i.e. Tgas >∼ 1000 K is required to
collisionally excite it. In the best-fitting model such conditions,
Tgas >∼ 1000 K � Tdust, are provided by the effect of exother-
mic chemical reactions (see Appendix A.8) which is active in the
warm and dense gas close to the inner rim, deep but not too deep,
just where this line forms. Therefore, we see a clear correlation
between the o-H2 2.122 μm line flux and the assumed heating ef-
ficiency of exothermic reactions γchem. The line is also substan-
tially pumped by H2-formation on grains (see Appendix A.6).
When neglecting this effect, the line attains a flux of only 35%
of the value from the full model. We conclude that the H2 line
is sensitive to a temperature contrast between gas and dust, and
H2-formation, in quite deep disk layers close to the inner rim.
However, the predicted line is too broad (FWHM = 37 km s−1)
as compared to the observations (FWHM = 18±1.2 km s−1). We
were unable to find any disk model, among the ∼20 000 models
computed, that shows such a narrow o-H2 2.122 μm line. Thus,
the line forms too close to the star in the model, and we must be
very careful when drawing our conclusions about the nature of
ET Cha from the observed o-H2 2.122 μm line.

The sub-mm CO J = 3 → 2 line (not depicted in Fig. 11)
probes the size of the disk and the gas temperature in the out-
ermost disk layers. It is massively optically thick, τline >∼ 105 in
the line forming region 2−7 AU, where the dust is optically thin.
Its flux is roughly proportional to the projected disk area times
the gas temperature at relative heights z/r ≈ 0.4−0.5 in these
outermost parts of the disk.

5.6. Disk gas mass and disk shape

The determination of the total disk gas mass of ET Cha in this
paper is based on three detected gas emission lines, namely
[OI] 63 μm, [OI] 6300 Å (LVC), and o-H2 v = 1 → 0
S(1) 2.122 μm, which probe complementary radial and vertical
disk regions. However, the first line, [OI] 63 μm, is massively
optically thick, and the latter two lines mainly probe the hot gas
in the inner disk regions. CO J = 3→ 2 was not detected. These
circumstances immediately suggest that a robust gas mass deter-
mination of ET Cha is difficult.

Table 7 shows that various solutions in form of well-fitting
disk models can be found where the total gas mass differs by up
to two orders of magnitudes (factor 300). A careless reading of
Table 7 would suggest that the particular values for Mgas, ε and β
do not matter much, but this is not true. Careful inspection of the
solutions in Table 7 by systematic variation of selected parame-
ters (see e.g. Fig. 9 for the best-fitting model) shows that these
solutions all represent well-defined local minima, where slight
changes of any parameter leads to a considerable deterioration

of the combined line + continuum fit quality χ. If one would
measure the uncertainty of gas mass determination from these
dependencies alone (for instance the deviation ΔMgas where χ
doubles) one would arrive at relatively small errors, about 40%.
But such an error estimate would be misleading as it would not
take into account the complicated manifold of local minima in
parameter space.

All solutions in Table 7 fit our entire set of line and contin-
uum observations about equally well. The different values for
the gas mass, however, come in certain combinations with other
disk shape parameters, like the column density power-law expo-
nent ε and the flaring power β. Certain fine-tuned combinations
of Mgas, ε and β do apparently all provide the proper density and
temperature conditions in the disk that result in almost exactly
the same observables, for example low Mgas in combination with
high values for ε and β, or vice versa.

These relations can be understood by minimum column den-
sities of warm H2 and atomic oxygen in the inner disk parts
that are inevitably required to make the [OI] 6300 Å (LVC) and
o-H2 2.122 μm lines visible over the strong continuum at opti-
cal and near IR wavelengths. For example, in the least massive
model 1 in Table 7, there is so little gas in the disk that a rela-
tively large value of ε = 1.16 is required to concentrate the mass
in the inner disk parts and so to provide the necessary column
densities there. All line fluxes are in good agreement with the
observations then, but the model has problems to find a good fit
of the 10 μm and 20 μm silicate features. Also the flaring index
of β = 1.33 is quite extreme, leading to a relative disk height of
about z/r = 1.2 in the outer disk parts – such a “disk” would be
taller than wide. From these arguments, we will discard model 1
from our selection of valid solutions in the following, and claim
a minimum gas mass of about 5 × 10−5 M� to achieve the nec-
essary minimum gas column densities in the inner disk regions
and to fit the silicate dust emission features simultaneously.

Concerning the other direction, we find it hard to provide any
solid argument why the disk gas mass must not exceed a cer-
tain maximum value. In combination with our quite robust dust
mass determination of Mdust ≈ 3 × 10−8 M�, however, even our
minimum gas mass of 5 × 10−5 M� already implies a very high
gas/dust ratio of 2000. An even higher gas mass would translate
into an accordingly higher gas/dust ratio. The highest value we
found with our evolutionary strategy is 2.5 × 10−3 M�.

Summarising our modelling efforts, after having tried about
20 000 disk models and various choices of input physics, we con-
clude that the disk gas mass of ET Cha is only little constrained,
our confidence interval is about Mgas ≈ (5× 10−5−3× 10−3) M�.
The surface density exponent ε and the flaring parameter β are
likewise poorly constrained, although the models favour small
ε ≈ 0 to fit the silicate dust emission features.

In view of the outflow discussion (Sect. 6.4), we note that
the unclear physical origin of [OI] 63 μm obviously increases
our uncertainty in gas mass determination. We have set up a
similar evolutionary optimisation run as depicted in Fig. 8, but
now treating the [OI] 63 μm line flux, as emitted by the disk,
as an upper limit with <2 × 10−18 W/m2. This run resulted in
a disk of similar mass as compared to the best-fitting model,
Mgas = 5.5 × 10−4 M�, but of even smaller size Rout = 2.1 AU,
with an [OI] 63 μm line flux of ∼4 × 10−18 W/m2. We conclude
that the [OI] 63 μm emission line flux is not crucial for the disk
gas mass determination of ET Cha, because this disk is tiny and
the hot gas responsible for our detected [OI] 6300 Å (LVC) and
o-H2 2.122 μm lines is located in the inner regions. For other,
more extended protoplanetary disks, the [OI] 63 μm line will be
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less optically thick and hence more useful for the purpose of gas
mass determination (Kamp et al. 2010; Pinte et al. 2010; Woitke
et al. 2010).

6. Discussion
6.1. Scale heights and unidentified heating

From the SED fitting, we get surprisingly robust results
concerning the assumed vertical disk scale height, H0 =
(0.008−0.011) AU at reference radius r0 = 0.1 AU, throughout
all SED-fitting models. In the model, the reference scale height
in combination with the flaring power β determines how much
star light is captured by the disk. This light (unless scattered
away) is absorbed by the dust in the disk surface and then ther-
mally re-emitted, heating also the inner disk parts. Thus, H0 reg-
ulates the dust temperature in the disk. Since ET Cha is very
bright in the (3−8) μm region, we require large relative scale
heights of the order of 10% close to the star to create enough
dust emission from warm and hot grains to fit the near and mid
IR.

Appendix D.4 (see lower left plot in Fig. C.4) demonstrates,
however, that our prescribed scale heights are significantly
larger, by a factor of 2−3, than those derived from self-consistent
models where vertical hydrostatic equilibrium is assumed. This
mismatch can be interpreted in three ways: (1) the close mid-
plane regions of T Tauri disks are not in hydrostatic equilibrium,
(2) the midplane temperatures are actually 4-9 times higher than
assumed in the model (assuming H ∝ cT ∝

√
T ), or (3) there is

an additional dust heating process active in the close disk mid-
plane regions that leads to an additional energy flux through the
dust component resulting in more observable near-mid IR pho-
tons without changing the temperatures much. Possibility 1 can-
not be excluded per se. Possibility 2 seems unrealistic because
it would cause the dust to evaporate. We favour possibility 3.
Appendix D.5 shows that the inclusion of non-radiative dust
heating via inelastic gas-dust collisions (thermal accommoda-
tion, driven by gas-dust temperature differences created through
exothermic chemical reactions) leads to similar effects than in-
creasing the scale height. Because of the ρ2-scaling of chemi-
cal reactions, this additional heating affects the dust primarily
in high-density regions, increasing the production of near IR
photons needed to fit the SED of ET Cha with moderate scale
heights. By means of an extra run of the evolutionary strategy,
we found out that we can reduce the scale height by about 35%
to fit the SED, if we include this effect.

More unidentified dust heating processes may be active in
the close midplanes of T Tauri disks. However, viscous heating
(according to the formulation by Frank et al. 1992) is not doing a
particularly good job in explaining the scale height inconsisten-
cies of ET Cha, see Appendix D.3. Viscous heating dumps ad-
ditional energy ∝ρ, i.e., after volume-integration, preferentially
into the outer cold regions, leading to the production of more far
IR photons. Moreover, viscous heating simply has little effect on
the resulting disk temperatures and observable continuum flux in
case of low-mass disks as for ET Cha. In fact, the viscous heat-
ing according to the formulation by (Frank et al. 1992) produces
artifacts in the uppermost tenuous disk layers, where the viscous
heating ∝ρ cannot be balanced by any cooling ∝ρ2.

6.2. Effects of other physical processes

Appendix D discusses a number of further physical processes
and their influence on the model that have not been included or

discussed so far. To summarise, we find that

(i) X-rays have very little effect (see Appendix D.2) and the ne-
glecting of X-rays in our main model for ET Cha is fully
justified. An X-ray luminosity of LX = 6 × 1028 erg/s, as
observed for ET Cha (López-Santiago et al. 2010), turns out
to be much less important for the disk heating and ioni-
sation as compared to the strong FUV of ET Cha, LUV =

6.5× 1031 erg/s as measured between 912 and 2500 Å, based
on our HST/COS and HST/STIS observations;

(ii) the treatment of H2-formation on grain surfaces is one of the
most important yet quite uncertain processes for astrochemi-
cal modelling. Appendix D.6 shows that different approaches
to calculate the H2-formation rate lead to a systematic uncer-
tainty in the model for the computation of the o-H2 2.122 μm
about a factor of 5. Other spectral lines are less effected.

6.3. Disk inclination and outflow velocity

The low blue-shifts (−42 km s−1) seen in the optical emission
lines (Fig. 3) are quite unusual for the jets/outflows of T Tauri
stars. Typical outflow velocities are >∼100 km s−1 (Hartigan et al.
1995). A possible explanation could be the projection effect in
case of a strongly inclined disk (i.e., close to edge-on). Adopting
100 km s−1 as a lower limit for the outflow velocity of ET Cha
would suggest a disk inclination of >65◦.

However, as argued in Sect. 4.3, we find that inclinations in
the range 0◦−50◦ are in agreement with the observations, but
higher inclination angles would result in a partial obscuration of
the star by the disk, with dramatic effects on the SED. The SED
analysis therefore leads to the conclusion that the inclination of
the system, as measured from face-on, is 50◦ or less which, in
turn, translates to an outflow velocity of 65 km s−1 at most. If
this interpretation is correct, this would make the outflow from
ET Cha one of the slowest known outflows from a T Tauri star.

6.4. Outflow and disk lifetime

Our analysis of the optical [OI] 6300 Å and [SII] 6731 Å emis-
sion line profiles and fluxes (see Appendix B) results in an es-
timate of the outflow mass-loss rate of ET Cha of Ṁoutflow ≈
10−9 M�/yr. Such an outflow can contribute to the [OI] 63 μm
emission, which would render the [OI] 63 μm line flux, as emit-
ted from the disk, weaker as assumed in Sect. 4.5. In summary,
Appendix B shows that both approaches, the simple energetic
outflow analysis by Hollenbach (1985), as well as the shock
models computed by (Hartigan et al. 2004), suggest that the
outflow from ET Cha does contribute a substantial, if not dom-
inant, fraction of the observed [OI] 63.2 μm emission line flux.
However, without spatially or velocity resolved observations of
the outflow, and its subsequent detailed modelling (rather than
using some “template” shock models), it is presently impossible
to assess the exact contribution of the outflow to the line emis-
sion.

Our estimate of the outflow rate of ET Cha is high compared
to the total disk mass we derive, Mdisk ≈ 6 × 10−4 M�, as it
suggests a disk lifetime of only Mgas/Ṁoutflow ≈ 0.7 Myr, incon-
sistent with the age of the Chamaeleontis cluster of ∼8 Myr. If
we would assume a generic gas/dust ratio of 100 and take our
dust mass determination for granted, Mdust ≈ 3 × 10−8 M�, it
is even worse. The disk lifetime would be even shorter in this
case, only 3000 yrs, way too short to be feasible, unless we are
just observing a temporary but short-lived 100× peak in outflow
rate.
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We also notice that the mass accretion rate of ET Cha was
estimated by Lawson et al. (2004) to be equally high, Ṁacc ≈
10−9 M�/yr as the outflow mass loss rate, leading to simi-
lar lifetime inconsistencies. Furthermore, a branching ratio of
Ṁoutflow / Ṁacc ∼ 1 is highly unusual, a few percent seems to be
a well-established value for T Tauri stars (see e.g. Hartigan et al.
1995).

Murphy et al. (2011) reported on highly variable Hα equiv-
alent widths and, accordingly, mass accretion rate, for the old
T Tauri stars in the ηCha cluster. A factor of 100 variation in
the accretion rate is observed in one newly-identified halo mem-
ber of ηCha. But only a simultaneous reduction of both Ṁacc
and Ṁoutflow would help to resolve the aforementioned lifetime
inconsistency, which doesn’t seem very likely.

One possible explanation would be a massive but short-lived
outflow due to a flare from a former epoch, when the mass accre-
tion rate was at least 10 times higher. An outflow of 100 km s−1

would need ∼50 yrs to reach a distance of 1000 AU. This would
be in agreement with the somewhat slow outflow velocity we
derive, 42−60 km s−1, because the outflow might have slowed
down ever since. However, the optical emission lines do not
show any evidence for a red-shifted HVC, as one would expect
for a symmetric bi-polar outflow. The only plausible explanation
of the missing red-shifted HVCs is that these components from
the far side are attenuated by the dust in the disk. According to
our disk model, the disk is optically thick at 6300 Å up to the
outer radius ∼10 AU (see Fig. 11). Therefore, the line emitting
region of the blue-shifted optical emission lines must be quite
small, less than 5 AU if seen under 60◦ disk inclination, which
corresponds to an age of only 0.25 yr.

7. Summary and conclusions

This paper has reported on new observations of ET Cha
with several instruments: Herschel/PACS, CTIO/ANDICAM,
HST/COS/STIS, and APEX. In combination with published data
from Spitzer, Gemini/Phoenix and AAT/UCLES, we have col-
lected an unprecedented observational data set about this ob-
ject, including photometry, UV spectra, high-resolution optical
spectrum, near and mid IR spectra, and far IR and sub-mm line
fluxes.

We have calculated united gas and dust models for the disk
of ET Cha that can simultaneously fit all line and continuum ob-
servations, except for a too broad o-H2 2.122 μm emission line
profile. The observations also show some blue-shifted compo-
nents of optical emission lines that point to an outflow and are
not included in the models.

This paper has explored the parameter space of the disk mod-
els by using an evolutionary strategy to minimise the discrepan-
cies between model predictions and observations. The paper has
also introduced a number of basic improvements to the ProDiMo
disk modelling code concerning the treatment of PAH ionisation
balance and heating, heating by exothermic chemical reactions,
several non-thermal pumping mechanisms for selected gas emis-
sion lines, and formal solutions of the line transfer problem at
given inclination (Appendix A).

From the disk modelling we find a rich variety of fitting disk
models that can explain our observations about equally well.
Some of the model parameters (like the dust mass and the outer
radius) can be determined with some confidence whereas other
parameters (like the disk gas mass) are poorly constrained:

– The new Herschel/PACS photometric fluxes at 70 μm and
160 μm constrain the disk dust mass of ET Cha to be about

Mdust = (2−5)×10−8 M�, putting the object at the borderline
between optically thin and optically thick.

– Then strong near IR excess of ET Cha can be fitted
with a disk that is truncated at Rin ≈ 0.022 AU (where
Tdust ≈ 1500 K) which is located slightly outside of the
co-rotation radius of 0.015 AU. The latter is calculated
according to the assumption that the star rotates with a
period P = 1.7 days as suggested by our vrot sin(i) analysis
of rotationally broadened stellar absorption lines.

– From the APEX CO J = 3 → 2 non-detection, we can
infer, with confidence, that the disk of ET Cha must be tiny
in radius. The models favour an outer disk radius as small
as Rout ≈ (6−9) AU. All disk models with Rout >∼ 25 AU
would violate the 3σ CO J = 3 → 2 non-detection limit,
independent of chemical details.

– The SED-fitting suggests that the dust grains in the surface
of the protoplanetary disk of ET Cha (where the near-mid
IR continuum forms) must be small in radius (sub-micron
sized) and opaque in the optical and near-mid IR, i.e.
absorption must dominate over scattering opacities. In
the models, these spectral properties are provided by the
inclusion of about 25% amorphous carbon, but other options
like metallic iron are also possible.

– The disk gas mass of ET Cha is poorly constrained
by our line observations CO J = 3 → 2 (non-
detection), [OI] 63 μm, [OI] 6300 Å (LVC), and o-
H2v = 1 → 0 S(1) 2.122 μm. We find a variety of
about equally well fitting disk models with total gas masses
Mgas = (5 × 10−5−3 × 10−3) M�. The forbidden lines of
[OI] 6300 Å (LVC), and o-H2 2.122 μm are close to optically
thin and hence quite useful for gas mass determination,
but originate from hot gas in the inner disk regions only.
[OI] 63 μm is massively optically thick and, hence, does
not discriminate much between the various disk models for
the case of ET Cha. We would need to observe additional
far-IR or sub-mm spectral lines that originate from the
outer disk parts to determine the gas mass with more
confidence. However, in order to explain the [OI] 6300 Å
(LVC) and o-H2 2.122 μm lines with a disk model, we
require line optical depths τline >∼ 1 which translates into
total vertical column densities in the inner disk regions of
about NO >∼ 1021 cm−2 and NH2 >∼ 1024 cm−2 for atomic
oxygen and molecular hydrogen, respectively. Such column
densities are incompatible with Mgas < 5 × 10−5 M�.

– The wide range of fitting gas masses is related to particular
values of the disk shape parameters, namely the column
density exponent ε and the disk flaring power β. High gas
masses need to be combined with low values for ε and β,
and vice versa.

– From our SED modelling of ET Cha we derive disk scale
heights of the order of 10% relative to radius close to the star,
which is about a factor of 2−3 larger than the scale heights
inferred form self-consistent models that assume hydrostatic
equilibrium. This discrepancy can partly be explained by an
additional non-radiative heating of the dust close to the star,
for example via exothermic chemical reactions.

These results suggest a surprisingly high value for the overall
gas/dust mass ratio of ET Cha of at least 2000, or even 20 000.
Whether or not the gas responsible for the [OI] 6300 Å and o-
H2 2.122 μm emissions is still physically connected to the disk
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is not entirely clear, but the observations show that this gas is
at least not moving much with respect to the disk. Possibly, the
overwhelming majority of dust particles responsible for the near
to far-IR emission of the star has already been transformed into
bigger pebbles or solid bodies, which have negligible opacities.

The fluxes in blue-shifted emission line components like
[OI] 6300 Å (HVC) suggest an outflow with mass-loss rate
Ṁoutflow ≈ 10−9 M�/yr, on a similar level as the reported mass
accretion rate of ET Cha. The low velocities (≈−42 km s−1) sug-
gests a high inclination angle of at least 60◦ (rather more).
However, inclinations in excess of 50◦ are inconsistent with our
SED-modelling, which favours i <∼ 40◦, from which we deter-
mine an outflow velocity of 65 km s−1 at most (typical values
are in excess of 100 km s−1 for T Tauri outflows Hartigan et al.
1995). If this interpretation is correct, ET Cha would possess one
of the slowest known outflows from a T Tauri star.

An outflow with mass loss rate Ṁoutflow ≈ 10−9 M�/yr is
likely to contribute significantly to the [OI] 63μm line flux as
observed with Herschel/PACS. Given the observational data we
have collected in this paper, we cannot distinguish between out-
flow or disk origin of [OI] 63 μm.

To conclude, ET Cha seems to be an extraordinary and puz-
zling object concerning the evolution of protoplanetary disks.
Despite its age of about (6−8) Myr, there is evidence of active
accretion onto the central star, on a similar level as the derived
outflow mass-loss rate. According to the low disk masses we de-
rive, the disk lifetime Mgas/Ṁacc ≈ (0.05−3) Myr is inconsistent
with cluster age. If a generic gas/dust ratio of 100 was assumed,
the disk lifetime, based on our relatively robust determination
of the disk dust mass, would be even shorter, only ∼3000 yrs.
Either the object is actually much younger than the age of the
Chamaeleontis cluster or the object is going through a phase of
unusually high mass accretion rate and outflow.
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Appendix A: New features in ProDiMo

A.1. Fixed disk structure

In contrast to earlier publications, we use a parametrised descrip-
tion for the shape and distribution of gas and dust in the disk in
this paper

ρ(r, z) = ρ0

(
r
r0

)−ε H0

H(r)
exp

(
− z2

2 H(r) 2

)
(A.1)

between an inner and outer disk radius, Rin and Rout, respectively,
with sharp edges. ρ(r, z) is the local gas mass density. H(r) is the
vertical scale height of the disk, assuming to vary with radius as

H(r) = H0

(
r
r0

) β
· (A.2)

H0 is the reference scale height at reference radius r0. ε is
the column density power-law index and β the flaring power.
The constant ρ0 is adjusted such that the integrated disk mass
2π
�
ρ(x, z) dz r dr equals Mdisk.

A.2. Dust size distribution and dust settling

The dust grains are assumed to have a power-law size distribu-
tion in the unsettled case as

f (a) ∝ a−p (A.3)

between minimum and maximum grain radius, amin and amax,
respectively. The free constant in Eq. (A.3) is adjusted to result
in the prescribed unsettled dust/gas mass ratio ρd/ρ.

A very simple recipe has been implemented to account for
the major effects of vertical dust settling. We assume that the
dust grains are distributed vertically with a smaller scale height

H′(a, r) = H(r) ·max
{
1, a/as

}−s/2 (A.4)

where H(r) is the gas scale height, and s and as are two free
parameters. Since ProDiMo can self-consistently calculate the
vertical stratification of gas from the resulting gas temperatures
and mean molecular weights, in which case H(r) does not exist,
Eq. (A.4) can not be used directly in the general case. Instead,
we make use of the equation that defines H(r), namely cT =
H(r)Ω(r) and write

c′T(a) = cT ·max
{
1, a/as

}−s/2
, (A.5)

where cT is the local gas isothermal sound speed, c′T(a) is the
reduced variant for dust size a, Ω = vKepler/r is the angular ve-
locity and vKepler the Keplerian velocity. Equation (A.5) is then
used to calculate the vertical distribution of dust particles of dif-
ferent sizes with respect to the already determined gas stratifica-
tion by treating them like an independent fluids with lower cT as
compared to the gas

1
ρ′(a)

dp′(a)
dz

= −gz =
1
ρ

dp
dz

(A.6)

where p = c2
T ρ belongs to the gas, and p′(a) = c

′2
T (a) ρ′(a) be-

longs to dust particles in [a, a + da]. gz is the local z-component
of gravity. The solution of the differential Eq. (A.6) is

f ′(a, z) =
const(a)

c
′2
T (a, z)

exp

⎛⎜⎜⎜⎜⎝ c2
T(z)

c
′2
T (a, z)

ln
(
c2

T(z) f (a, z)
)⎞⎟⎟⎟⎟⎠ , (A.7)

where f ′(a, z) da = ρ′(a)/md(a) is the settled dust size distri-
bution function, and cT(z) and f (a, z) ∝ ρ(z) are considered as
known. The constant const(a) is then determined to make sure
that the vertical column density of dust particles for every size is
conserved
∫

f ′(a, z) dz =
∫

f (a, z) dz. (A.8)

According to these assumptions, all dust quantities that used to
be constant, such as the local dust/gas mass ratio ρd/ρ, the dust
moments 〈a〉, 〈a2〉, 〈a3〉, and the dust opacities per mass, be-
come spatially dependent quantities. The dust absorption and
scattering opacities are calculated by applying effective mixing
(Bruggeman 1935) and Mie theory, based on f ′(a, z).

A.3. PAH ionisation equilibrium and PAH-heating

We consider a typical size of PAH molecules with NC = 54
carbon atoms and NH = 18 hydrogen atoms (circumcoronene),
motivated by studies that PAHs with much less carbon atoms
would not be stable around young stars on timescales of a
few Myr. Much larger PAHs are not consistent with the spa-
tial extent of observed PAH emission in various bands (see e.g.
Visser et al. 2007). We include PAH−, PAH, PAH+, PAH2+ and
PAH3+ as additional specimen in the chemical reaction net-
work. Circumcoronene is probably among the smallest PAHs
that can survive in a disk around Herbig Ae stars (Visser
et al. 2007). The following processes are considered in de-
tail: PAH-photoionisation (Tielens 2005), electron recombina-
tion and some charge exchange reactions (Wolfire et al. 2008;
Flower & Pineau des Forêts 2003). These reactions do not
change the basic PAH lattice, but only affect the charging of the
PAH molecules. Hence, the total amount of PAHs is conserved
and treated like an element with given element abundance

ε (PAH) = fPAH XISM
PAH

50
NC
, (A.9)

where XISM
PAH = 3 × 10−7 being the standard ISM particle abun-

dance with respect to hydrogen nuclei (Tielens 2008), and fPAH
is the fraction thereof assumed to be present in the disk.

Concerning the photo-ionisation reactions, we consider the
PAH absorption cross sections σk

PAH(ν) [cm2] from Li & Draine
(2001, see their Eqs. (6)−(12) and (A2, A3)) with recent updates
for the resonance parameters from Draine & Li (2007). We use
their neutral PAH cross section for charge k = 0, and the charged
cross section otherwise. The photo-ionisation rates [s−1] for PAH
molecules with charge k are calculated as

Rk
ph(r, z) =

4π
hc

∫ λthr

912 Å
σk

PAH(ν) νJν(r, z) Yk
ν sν(r, z) dλ (A.10)

where ν [Hz] is the frequency, Jν(r, z) [erg/cm2/s/Hz/sr] the
mean intensity as computed by the dust continuum radiative
transfer, and sν(r, z) the following self-shielding factor

τPAH
ν (r, z) ≈ ε(PAH) 〈σ〉PAH(ν) Min

{
Nver
〈H〉(r, z),Nrad

〈H〉(r, z)
}
(A.11)

sν(r, z) = exp
(
−τPAH
ν (r, z)

)
. (A.12)

Nver
〈H〉 and Nrad

〈H〉(r, z) are the radial inward and vertical upward

hydrogen nuclei column densities [cm−2] in the disk, as
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Table A.1. Larger non-LTE model atoms.

Species #Levels #Lines Coll. partners References
O I 91 647 p-H2, o-H2, H, H+, e− Λ, NIST, K, S
C I 59 117 p-H2, o-H2, H, H+, He, e− Λ, NIST
C II 10 31 p-H2, o-H2, H,e− Λ, NIST

References. Λ = Schöier et al. (2005), NIST=Ralchenko (2009), K=
Krems et al. (2006), S= Störzer & Hollenbach (2000).

measured from point (r, z). For simplicity, we put 〈σ〉PAH(ν) =
0.5

(
σ 0

PAH(ν) + σ+1
PAH(ν)

)
. The photo-electron yield is taken from

(Jochims et al. 1996)

Yk
ν =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, hν > IP k + 9.2 eV
hν − IP k

9.2 eV
, IP k + 9.2 eV > hν > IP k

0, hν < IP k.

(A.13)

According to Weingartner & Draine (2001), the ionisation po-
tentials IP k depend on PAH-size and charge k. Using their
Eqs. (1) and (2) for NC = 54, the results are IP−1 = 3.10 eV,
IP 0 = 6.24 eV, IP+1 = 9.38 eV and IP+2 = 12.5 eV. The for-
mula is an approximation that reproduces the ionisation potential
of benzene as the smallest PAH and graphite as infinitely large
PAH. The threshold wavelengths are given by λk

thr = hc/IPk.
With these photo-ionisation and recombination rates, the lo-

cal particle densities of PAH−, PAH, PAH+, PAH2+ and PAH3+

are calculated consistently with the gas-phase and ice chemistry,
with a considerable influence on the resultant local electron den-
sity. Once these particle densities nk

PAH have been determined,
the total PAH heating rate [erg/cm3/s] can be calculated as

ΓPAH =
4π
hc

∑
k

nk
PAH

λk
thr∫

912 Å

σk
PAH(ν) νJν Yk

ν sν
(
hν − IP k) dλ. (A.14)

The PAH recombination cooling rate is calculated as

ΛPAH =
∑

k

nk
PAH ne kk

PAH(Tg)
(
1.5 kTg

)
(A.15)

where kk
PAH(Tg) [cm3 s−1] is the PAH recombination rate coeffi-

cient, ne is the electron density and Tg the gas temperature. As a
general result, we obtain a top-down layered PAH charge struc-
ture, with PAH2+ in the uppermost layers with reduced PAH-
heating, but PAH− and intensified PAH-heating close to the mid-
plane. For massive disks (unlike ET Cha), where the electron
density virtually vanishes in the deepest layers, the PAH charge
becomes neutral again in the midplane.

A.4. Fluorescent UV-pumping

We have replaced the small model atoms for O, C and C+ (as
listed in Table 4 of Woitke et al. 2009) by larger ones, see
Table A.1 (this paper), to account for fluorescent UV and op-
tical pumping of the lower levels responsible for the far IR fine-
structure lines. The new model atoms have collisional data only
among the lowest states, but much more radiative data. The ad-
ditional energy levels and transition probabilities are taken from
the National Institute of Standards and Technology atomic spec-
troscopic database (Ralchenko 2009). We selected all evaluated
transitions longward of 912 Å. Rovibronic transitions are permit-
ted and their probabilities are of the order of (1−106) s−1, much
higher than typical collision rates (∼10−9 s−1).

Collisional data connecting the two first electronic-excited
states 1D2 at 22830 K and 1S0 at 48370 K of neutral oxygen and
the three spin-orbit split ground states 3P exist with electrons
and hydrogen atoms as collision partners (Störzer & Hollenbach
2000; Krems et al. 2006). For C and C+, we use the rates col-
lected in the Leiden Lambda database (Schöier et al. 2005),
whose collision rates are mostly limited to the ground state elec-
tronic levels.

A.5. [OI] 6300 Å -pumping by OH photo-dissociation

Photo-dissociation of OH by absorption of UV photons into the
1 2Σ− state, λ � (973−1350) Å, produces an electronically ex-
cited oxygen atom O(1D) as

OH + hν −→ O(1D) + H, (A.16)

while absorption into the 1 1Δ and 3 2Π states, λ �
(1100−1907) Å, leads to the ground state 3P. According to van
Dishoeck & Dalgarno (1984), about 55% of the OH photodisso-
ciations by an interstellar UV field6 result in an O-atom in the
1D2 state, which happens to be the upper level of the 6300 Å line
1D2 → 3P2. This chemical pumping was suggested by Acke
et al. (2005) to play a major role in the formation of the 6300 Å
line around Herbig Ae/Be stars. We take this effect into account
by introducing a quasi-collisional pumping rate [s−1]

Cchem
l u = 0.55 × nOH R OH

ph

/
nO (A.17)

where R OH
ph is the OH photodissociation rate [1/s]. We apply

Eq. (A.17) to l = {1, 2, 3}, where 1 =3 P2, 2 =3 P1, 3 =3 P0,
and u = 4 =1 D2. We add these excitation rates to the other colli-
sional excitation rates Cl u (see Sect. 6.1 in Woitke et al. 2009). In
writing Eq. (A.17), we rely on statistical equilibrium and assume
that the majority of chemical reaction channels forming OH start
from the 3 lowest 3P levels with nO ≈ nO(1) + nO(2) + nO(3),
making sure that nO

(
nO(1)

nO
Cchem

1 4 +
nO(2)

nO
Cchem

2 4 +
nO(3)

nO
Cchem

3 4

)
=

0.55 nOH R OH
ph , where nO(l)

nO
are the fractional populations.

A.6. H2-pumping by its formation on dust surfaces

The formation of H2 on grain surfaces liberates the binding en-
ergy, causing the newly formed H2 molecules to leave the surface
in a vibrationally highly excited state. Duley & Williams (1986)
estimated that the H2 molecules will be released in vibrational
states as high as v <∼ 7, but in the rotational ground state J = 0
for p-H2 and J = 1 for o-H2.

H + H + dust −→ H2(v ≤ 7, J = 0/1) + dust. (A.18)

We treat this formation-pumping by

Cchem
l u = α ∗ nH R H2

dust

/
ntot (A.19)

where R H2

dust is the H2 formation rate on dust surfaces [1/s], u is
the index of the highest state with v≤ 7 and J ≤ 1 that still has
collisional de-excitation rates in the database, and Eq. (A.19)
is applied to all states l < u, i.e. to all states that have lower
excitation energy than u. ntot is the total ortho or para H2 parti-
cle density, respectively, and α = no/p−H2/nH2 is the prescribed
ortho/para-H2 fraction.

6 We note that the branching ratio could be different for our adopted
star+UV spectrum. A maximum branching ratio of 100% would would
increase our [OI] 6300 Å line predictions by less than a factor of 1.8.
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Our formulation of the H2-pumping, therefore, leads to a
constant de-population of all states l < u with a certain timescale
Cchem

l u [s−1] (simulating the disappearance of H2 in all states due
to other chemical channels that are feeding the H2 formation)
and an equally strong population [cm−3 s−1] of the state u due to
the formation of H2 on grains.

The condition of state u being collisionally connected avoids
artifacts at very low densities, where collisions are rare and
the pumping would lead to an almost complete de-population
of all low-lying states. According to our current collection of
collisional H2 de-excitation rates, this condition implies u =
(v = 3, J = 0/1). We checked that our modelling of the o-
H2v = 1→ 0 S(1) line at 2.122 μm does not depend much on the
choice of this upper level u as long as v > 1.

A.7. Line transfer

During solving the chemistry and energy balance of the gas,
ProDiMo calculates the various level populations of atoms, ions
and molecules by means of an escape probability method (see
Sect. 6.1.1 in Woitke et al. 2009). These are stored and used later
to perform a formal solution of line transfer for selected spectral
lines.

The continuum + line radiative transfer equation is given by

dIν
ds
= κext
ν

(
Sν − Iν

)
, (A.20)

where Iν is the spectral intensity and s the distance on a ray. The
source function and extinction coefficient are given by

Sν =
εDν + φνε

L
ν

κext
ν

(A.21)

κext
ν = κ

D
ν + φνκ

L
ν . (A.22)

Assuming isotropic dust scattering, the continuum and line
transfer coefficients are given by

εDν = κ
abs
ν Bν(Tdust) + κsca

ν Jν (A.23)

κDν = κ
abs
ν + κ

sca
ν (A.24)

εLν =
hν
4π

nuAul (A.25)

κLν =
hν
4π

(
nlBlu − nuBul

)
, (A.26)

where κabs
ν and κsca

ν [cm−1] are the local dust absorption and scat-
tering coefficients, Bν is the Planck function, Jν is the local mean
intensity (taken from the results of the continuum radiative trans-
fer), ν is the line centre frequency, nu and nl are the level popu-
lations [cm−3] in the upper and lower state, respectively, and Aul

and Bul, Blu are the Einstein coefficients.
The profile function φν [Hz−1] is assumed to be given by a

Gaussian with thermal + turbulent broadening

x = v′ + n · u (A.27)

φν =
c

ν
√
πΔv

exp

(
− x2

Δv2

)
, (A.28)

where v′ is the observers velocity with respect to the star along
backward ray direction n, u is the 3D-velocity of the emitting
gas with respect to the star (assumed to be given by Keplerian
orbits), and x the local velocity shift. The velocity width is Δv2 =
v2th + v

2
turb and the thermal velocity v2th = 2kTg/m where m is the

mass of the line emitting species.

We use the same setup of parallel rays as described in Thi
et al. (2011, see their Sect. 2.3), organised in about 150 log-
equidistant concentric rings in the image plane, each subdi-
vided into 72 angular segments. Equation (A.20) is solved nu-
merically on each of these rays in the observer’s frame on 151
velocity grid points to sample v′, where the transport coeffi-
cients are pre-calculated on the grid points and later interpolated
along the rays, whereas the profile function is always calculated
from scratch. The numerical scheme features a variable step size
which is controlled by comparing the results after two consecu-
tive steps with the results obtained after one step of double size.

A.8. Chemical heating

By definition, exothermic chemical reactions convert chemical
potential energies into heat, whereas endothermic reactions con-
sume internal kinetic energy and actually cool the gas. We cal-
culate this chemical heating/cooling rate [erg/cm3/s] as

Γchem =
∑

r

R(r) γchem
r ΔHr (A.29)

where r is an reaction index, R(r) is the reaction rate [1/cm3/s]
and ΔHr [erg] is the reaction enthalpy, which is positive for
exothermic reactions and negative for endothermic reactions

ΔHr =
∑

pr

ΔH0
f (pr) −

∑
ed

ΔH0
f (ed). (A.30)

ΔH0
f [erg] is the heat of formation of the chemical species in-

volved in the reactions (pr means products, ed means educts). By
simplification, we neglect the temperature-dependence of ΔHf ,
and take the values for the heat of formation for all species from
(Millar et al. 1997), who list ΔH0

f [kJ/mol] at 0 K in their Table 2.
The details of exothermic reactions are quite difficult and of-

ten not precisely known. The excess chemical binding energy is
seldomly released in form of kinetic energy directly (although
there are some exceptions like, for example, dielectronic recom-
bination which is radiationless). But in the vast majority of cases,
the reaction will create products in some kind of electronic, vi-
brational and rotational excited states.

The energy temporarily stored in these excitational states can
then be either radiated away (in which case there is only little net
heating), or subsequent collisional processes can thermalise the
excess energy. The ratio between these two competing processes
depends on the critical density for collisional de-excitation,
which strongly depends on type and amount of excitation, for
example ∼1015 cm−3 for permitted electronic transitions down to
∼103 cm−3 for rotational transitions. Further complications arise
in possibly high optical depth where created photons cannot es-
cape directly, scatter around and drive secondary processes, with
a higher probability to get (partly) thermalised. To avoid all these
complications, we have simply introduced an efficiency γchem

r
in Eq. (A.29). We also exclude certain types of reactions from
Eq. (A.29): reactions which are known to produce or absorb
photons, cosmic ray and cosmic ray-induced reactions, X-ray
primary and secondary reactions, reactions on grain surfaces,
and reactions which are energetically treated in larger detail else-
where. Some of the most important reactions are found to be

H− + H→ H2 + e− ΔHr=+3.72 eV (A.31)

H2 + O↔ OH + H ΔHr=±0.079 eV (A.32)

H2 + H→ H + H + H ΔHr=−4.48 eV (A.33)

H2 + H2 → H2 + H + H ΔHr=−4.48 eV, (A.34)

A44, page 21 of 27



A&A 534, A44 (2011)

Fig. A.1. Sketch of energetics in astrochemical reaction cycles.

where we put γchem
r = 1 for the last two “collider” reactions,

assuming that these highly endothermic reactions, which only
occur in hot gases, are in fact driven by the kinetic energies of
the colliding atoms and molecules.

In kinetic chemical equilibrium, as assumed in this paper,
there is no net formation/destruction of any chemical species,
but the chemistry is organised in complicated reaction cycles as
sketched in Fig. A.1. In the absence of cosmic rays, UV photons
and X-ray irradiation, only the energetically most favourable
chemical configurations, like H2,H2O,CO,CH4,NH3 etc., are
abundant. However, due to the impact of these high-energy pho-
tons and particles, much less stable molecules, atoms and ions
are continuously created which, via some complicated chemi-
cal paths, come cascading down in energy again, eventually re-
forming the abundant stable molecules. Along these paths, some
of the chemical potential energy can be lost in form of sec-
ondary photons. The net effect of this cycle is typically a heat-
ing, because we have – by definition – excluded the primary UV,
X-ray and CR reactions from Eq. (A.29). The chemical heat-
ing is hence yet another way to partly thermalise the energy of
incoming high-energy photons and particles through secondary
exothermic reactions.

To our surprise, the chemical heating, even with low effi-
ciency γchem

r = 0.1, results to be an important heating process
in protoplanetary disks, in particular at the bottom of the warm
molecular layer where many of the near-mid IR spectral lines
are formed, and densities are of order 109−1011 cm−3, which, as
far we are aware of, has not been noticed so far in other disk
modelling papers.

Appendix B: The outflow model

We have used the HVC [OI] 6300 Å and [SII] 6731 Å line lumi-
nosities to estimate the outflow mass loss rate in two independent
ways as suggested by Hartigan et al. (1995, see their Eqs. (A8)
and (A10)). Assuming the same values for electron density (only
necessary for the OI line) and the projected velocity of the jet as
used by in Hartigan et al., we obtain an outflow mass loss rate of
Ṁoutflow = (0.9−2) × 10−9 M�/yr, similar to the mass accretion
rate as estimated by (Lawson et al. 2004).

Hollenbach (1985) showed that it is possible to relate the
mass outflow rate to the [OI] 63.2 μm line luminosity by assum-
ing that each atom in the outflow passes through a single shock
wave and that the gas with Tg < 5000 K cools by radiating only
in the [OI] 63.2 μm line. This procedure is likely to overestimate
the resulting line flux since other cooling processes can be ac-
tive as well, and since the jet material typically passes through
several shock waves close to the star. Nevertheless, we use the
formula derived by Hollenbach (1985) to obtain a rough esti-
mate of the [OI] 63.2 μm line luminosity as would be expected
for an Ṁoutflow = (0.9−2) × 10−9 M�/yr outflow. The result is
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Fig. C.1. Dust opacities assumed in the best-fitting disk model, calcu-
lated with effective mixing and Mie theory according to the parame-
ters listed in Table 5. Note that the absorption coefficient (red dotted)
is higher than the scattering (black dashed) also at optical and near IR
wavelengths, which is untypical for pure silicates.

a [OI] 63 μm line luminosity equal to (0.6−1.5) times the ob-
served value. This estimate suggests that a substantial part of the
[OI] 63.2 μm line as seen by Herschel might originate in the out-
flow rather than in the disk. We note, however, that the peak of
the HVC is shifted only by about −42 km s−1 with respect to the
stellar velocity, and the formulae used above may not be appro-
priate to such unusually low outflow/shock velocities.

Another way to estimate the [OI] 63.2 μm emission line flux
from an outflow is to use the shock models of (Hartigan et al.
2004), which predict the line ratio [OI] 6300 Å/[OI] 63.2 μm
for a variety of outflow shock parameters. The authors find
6300/63.2 line ratios of about (0.8−2). For ET Cha, the mea-
sured HVC [OI] 6300 Å line flux is (37−87) × 10−18 W/m2,
hence the predicted [OI] 63.2 μm outflow line flux should be
(30−175) × 10−18 W/m2, which is just consistent with the line
flux as observed with Herschel, (30.5±3.2)×10−18 W/m2. If we
include the LVC and work with the total [OI] 6300 Å emission
line flux, the results become inconsistent, i.e. the outflow model
alone would already over-predict the measured flux.

Appendix C: Details of the best-fitting disk model

Figure C.1 shows the dust opacities assumed in the best-fitting
model, which results to be absorption-dominated and to scale
roughly like λ, except for the 10 μm and 20 μm silicate features.

Figure C.2 visualises the densities, UV radiation field
strength, and resulting gas and dust temperatures of the best-
fitting model. We obtain the typical Tdust-pattern for passive
disks (see e.g. Pinte et al. 2009) with a shadow casted by the
innermost disk regions and dust temperatures of the order of
1450 K at the inner rim at 0.022 AU, and ∼35 K at the outer disk
edge located at 8.2 AU. The gas temperature structure Tgas(r, z)
follows the dust temperature structure in the midplane (where
thermal accommodation dominates) but shows substantial devia-
tions at higher altitudes where the disk starts to become optically
thin to UV radiation.
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Fig. C.2. Physical details of the best-fitting disk model. Upper row: total hydrogen nuclei density n〈H〉 [cm−3], with overplotted contours for visual
extinction AV = 1, and gas temperature Tgas = 1000 K, and strength of UV radiation field with respect to interstellar standard χ. Second row: dust
and gas temperature structures, Tdust and Tgas (note the different scaling). Lower row: most important heating and cooling processes.

A44, page 23 of 27

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201116684&pdf_id=14


A&A 534, A44 (2011)

Table D.1. Computed line fluxes [10−18 W/m2] from a model where
Tgas = Tdust is assumed in comparison to the best-fitting disk model.

Line λ [μm] Tgas = Tdust Best model

[OI] 3P1 → 3P2 63.18 5.2 34.5
[OI] 1D2 → 3P2 (LVC) 0.6300 2.3 69.6
CO J = 3→ 2 866.96 0.0053 0.014
o-H2 v = 1→ 0 S(1) 2.122 0.0073 2.4

In particular, there is a “hot finger” at relative heights z/r ≈
0.3−0.6 in this model, stretching out from the inner rim to about
4 AU in radius. Here, gas temperatures of the order of 5000 K
are achieved in this model due to PAH heating versus FeII and
MgII line cooling. Just below the hot atomic layer, there is a
warm molecular layer with temperatures 300−1500 K, heated
by PAHs and chemical heating, balanced by CO ro-vibrational
cooling. The outermost layers beyond 4 AU are featured by an
equilibrium between PAH and chemical heating, versus OI, OH,
H2O and CO rotational line cooling.

Figure C.3 shows some details about the chemical structure
of the disk. There is a quite sudden transition of the charge of
the PAHs from 3 to –1 where the ionisation parameter χ/n〈H〉 is
about 100. The PAHs are mostly negatively charged then, except
for the outer midplane where the gas almost completely neu-
tralises. The neutral carbon, CO, OH and H2O concentrations
are typical of a photon dominated region (PDR-structure).

Appendix D: Variation of input physics

D.1. Difference between dust and gas temperature

A control model where the gas temperature is assumed to be
equal to the dust temperature resulted in the line fluxes shown
in Table D.1. We conclude that modelling the gas energy bal-
ance, mostly leading to Tgas > Tdust in the line forming regions,
is absolutely essential to understand the gas emission lines from
protoplanetary disks.

D.2. Influence of X-rays

We have run a comparison disk model with X-ray heating and
chemistry included, as has recently been implemented by Aresu
et al. (2011), with X-ray luminosity LX = 6 × 1028 erg/s (XMM
observations by López-Santiago et al. 2010). We assumed an
X-ray emission temperature of TX = 107 K and a minimum
energy of X-ray photons of 0.1 keV. This model does not re-
sult in any observable changes in the calculated line fluxes. The
modification by X-rays are only –0.5%, 1.1%, 1.4% and 0.05%
for CO J = 3 → 2, [OI] 63 μm, [OI] 6300 Å (LVC) and o-
H2 2.122 μm, respectively. Since the X-rays are attenuated by
gas in the model, but the UV photons by dust, and our best-
fitting model is extremely gas-rich (assumed gas/dust mass ratio
∼23 000, see Table 5), the X-rays do not penetrate deep enough
to change the energy balance in the line emitting regions.

D.3. Influence of viscous heating

We have run a comparison disk model with viscous (gas) heating
included, via the formula of Frank et al. (1992)

Γvis =
9
4
ρ νkin Ω

2
kep, (D.1)

where ρ is the gas mass density, νkin = α cT Hp the viscosity, α
the viscosity parameter, cT =

√
p/ρ the isothermal sound speed,

Hp = cT/Ωkep the pressure scale height, and Ωkep =
√

GM�/r3

the Keplerian angular velocity. Putting the viscosity parameter
to α = 0.01, we find no significant changes in the far-IR and
(sub-)mm lines, but modest changes in the calculated line fluxes
in the optical and near-IR. The enhancement by viscous heating
is 1.0%, 2.4%, 25% and 16% for CO J = 3 → 2, [OI] 63 μm,
[OI] 6300 Å (LVC) and o-H2 2.122 μm, respectively. Since the
viscous heating scales as Γvis ∝ ρ, but most cooling processes
scale as Λ ∝ ρ2, the effect of the viscous heating is actually
strongest in the low density uppermost disk regions, which is
counter-intuitive. It renders the gas temperature in these layers
unbound (artificially limited by 20 000 K), as no implemented
cooling process is able to balance the viscous heating according
to Eq. (D.1) in a thin gas. We therefore refrain from discussing
the effects of viscous heating any further in this paper.

D.4. Self-consistent disk structure

Figure C.4 visualises the density structure as resultant from a
self-consistent disk model where the vertical disk stratification
is a result of radiative transfer, chemistry, and gas energy bal-
ance, assuming vertical hydrostatic equilibrium. We find a good
match concerning the flaring angle (the slope in the lower left
plot), but a generally flatter disk structure, more condensed to-
ward the midplane. The z-dependent scale heights from the self-
consistently calculated disk model are calculated as

H2
p(z) =

z2

2 log [p(r, z)/p(r, 0)]
, (D.2)

where p denotes the gas pressure. In the lower left plot of
Fig. C.4 we have plotted two scale heights from the self-
consistent disk model, one measured close to the midplane (at
relative height z/r = 0.05, red dotted line) and one measured
high above the midplane (at z/r = 0.5, blue dotted line). The dif-
ference between these two scale heights is a natural consequence
of our calculated gas temperature structure, with cold conditions
in the midplane and a warm/hot disk surface.

We observe a fair match of the scale heights at z/r = 0.5 with
the prescribed scale-heights from our best-fitting model, but in
the midplane the scale heights of the best-fitting model are about
a factor of 2−3 too large. Figure C.4 also demonstrate that, con-
sequently, we loose our SED-fit when using the self-consistent
model. The self-consistent model intercepts less star light, re-
sulting in a significant cooling and flux deficit in the near and
mid IR as compared to the observations.

D.5. Influence of non-radiative dust heating

In our best-fitting model, we have ignored non-radiative heat-
ing/cooling of the dust grains when determining the dust tem-
perature structure Tdust(r, z). However, since the gas is typically
warmer than the dust, inelastic gas-grain collisions (thermal ac-
commodation) lead to a collisional, i.e. non-radiative, heating
of the dust. If we include this effect (see Eqs. (14) and (108)
in Woitke et al. 2009), we do not observe much of an effect on
the calculated line fluxes, but the dust temperatures result to be
slightly higher, with noticeable effects on the SED, see Fig. D.1.

According to this model with the dust in non-radiative equi-
librium, the temperature contrast between gas and dust is mainly
driven by exothermic chemical reactions which are active even
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Fig. C.3. Chemical details of the best-fitting disk model. Upper row: electron concentration nel/n〈H〉 and mean PAH-charge, with overplotted con-
tours for ionisation parameter log(χ/n〈H〉). Second row: neutral carbon and CO-concentration, the CO-plot includes contours for dust temperature
(blue) and gas temperature structure (white). Lower row: OH and H2O concentration.

A44, page 25 of 27

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201116684&pdf_id=15


A&A 534, A44 (2011)

prescribed disk structure calculated disk structure

0.02 0.04 0.06 0.08 0.10 0.12
r [AU]

0.00

0.02

0.04

0.06

0.08

z 
[A

U
]

300K

500K

1000K

6 8 10 12 14
log n

<H> 
[cm-3]

 
 

0.02 0.04 0.06 0.08 0.10 0.12
r [AU]

0.00

0.02

0.04

0.06

0.08

z 
[A

U
]

300K

500K

500K

1000K

6 8 10 12 14
log n

<H> 
[cm-3]

 
 

0.1 1.0
r [AU]

0.001

0.010

0.100

1.000

H
p [

A
U

]

0.1 1.0 10.0 100.0 1000.0
λ [μm]

-13

-12

-11

-10

lo
g 

ν 
F ν [e

rg
/c

m
2 /s

]

dist = 97.0
 
pc

star + UV
calculated
prescribed
Spitzer IRS

Fig. C.4. Density structure of inner rim and impact on SED. The upper left plot shows the prescribed density structure of our best-fitting model.
Dashed contour lines in the upper panel refer to the calculated dust temperatures. The upper right plot represents a model with identical parameters
where, however, the vertical disk structure is calculated consistently with the resultant gas temperatures and mean molecular weights, which results
in a flatter midplane close to the star and too little near-mid IR excess (lower right plot). Note the “soft inner edge” (see Woitke et al. 2009). The
lower left plot compares the prescribed scale height of the best-fitting model (full line) with the scale heights resulting from the model with
calculated vertical disk stratification. The red dotted line shows these results in a deeper layer at z/r = 0.05, and the blue dotted line at z/r = 0.5.

in quite deep and dense layers (see Fig. C.2), causing an overall
heat transfer from gas to dust in the disk of ∼4.5 × 10−3 L�, i.e.
about 5% of the stellar luminosity. It is this additional energy in-
put that leaves the disk in form of additional mid IR continuum
photons, causing the depicted variations in Fig. D.1.

The effect of non-radiative dust heating on the SED is simi-
lar to increasing the scale heights. We have performed an addi-
tional run of the evolutionary strategy with enabled non-radiative
dust heating. This run did not entirely converge. The final pa-
rameter set had a gas mass of 1.2 × 10−3 M�, a scale height of
only 0.007 AU, i.e. a reduction of ∼35% with respect to our best-
fitting model. Unfortunately this is a slow and unstable option,
because there is an additional outer iteration necessary between
gas and dust temperature determination, to achieve consistent re-
sults, which requires about 3 times more computational time.

D.6. Influence of treatment of H2-formation

The formation of H2 on dust grain surfaces is one of the most
important first steps to initiate a rich molecular chemistry. It
has profound effects also on other abundances, for instance the
C+/C/CO transition (because of the mutual H2/C shielding) and
on the formation of OH and H2O. Yet its rate is still rather un-
certain. Our default choice is to calculate this key chemical pro-
cess according to (Cazaux & Tielens 2004, called “model B”
in Table D.2). We have run two comparison models with two
other formulations, one with a typically lower H2-formation rate
according to (Sternberg & Dalgarno 1995). And one with a typ-
ically higher rate according to (Cazaux & Tielens 2010).

Concerning the formulation of Sternberg & Dalgarno (1995),
which is valid for standard ISM size distribution and dust/gas
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Fig. D.1. Comparison between predicted SEDs of two models with and
without non-radiative dust heating. The black model shows once more
the SED of our best fitting model, without non-radiative dust heating.
In the green model, non-radiative dust heating through thermal accom-
modation is included. All model parameters are identical otherwise.

ratio only, we add a scaling factor to account for deviations of
the total dust surface per hydrogen nucleus in disks as

R form
H2 = 3 × 10−18n〈H〉

√
Tgas

〈a2〉 ndust/n〈H〉
5.899 × 10−22 cm2

· (D.3)

Table D.2. Calculated o-H2 and o-H2O line fluxes [10−18 W/m2] and
FWHM [km s−1] of models with different treatment of the H2-formation
on grain surfaces.

o-H2 2.122 μm o-H2O 179.53 μm o-H2O 78.74 μm
flux FWHM flux FWHM flux FWHM

model A 1.81 30 1.41 8.2 11.2 8.5
model B 2.35 37 1.40 8.2 11.1 8.5
model C 11.3 41 1.51 8.3 12.2 8.6
observed 2.5 ± 0.1 18 ± 1.2 <5.0 − <30 −

Notes. Model A = Sternberg & Dalgarno (1995), model B (best-fitting
model) = Cazaux & Tielens (2004), model C = Cazaux & Tielens
(2010). The other calculated gas emission lines are less affected.

The H2-formation rate coefficient R form
H2 [1/s] needs to be

multiplied by the neutral hydrogen atom density nH to get
the H2-formation rate in [cm−3 s−1]. The normalisation factor
in Eq. (D.3) results from 〈a2〉ISM [ndust/n〈H〉]ISM = 5.899 ×
10−22 cm2 under interstellar conditions, i.e. for amin = 0.005 μm,
amin = 0.25 μm, p = 3.5, ρgr = 3 g/cm3 and ρdust/ρgas = 0.01.

Table D.2 shows a strong dependence of the predicted o-
H2 2.122 μm line on the assumed H2-formation rate on grains.
The Sternberg & Dalgarno (1995)-formalism results in a fac-
tor of 0.77 weaker and the Cazaux & Tielens (2010)-formalism
in a factor of 4.8 stronger line flux. This is a daunting exam-
ple of hidden uncertainties in astrochemical modelling. We note
that the Sternberg & Dalgarno (1995)-formalism gives a lower
FWHM ≈ 30 km s−1 that brings this model closer to the obser-
vations. All other calculated gas emission lines (including those
of H2O) are less affected.
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