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ABSTRACT

Context. With the arrival of the next generation of ground-based imaging interferometers combining from four to possibly six tele-
scopes simultaneously, there is also a strong need for a new generation of fringe trackers able to cophase these arrays. These instru-
ments have to be very sensitive and to provide robust operations in quickly varying observational conditions.
Aims. We aim at defining the optimal characteristics of fringe sensor concepts operating with four or six telescopes. The current
detector limitations lead us to consider solutions based on co-axial pairwise combination schemes.
Methods. We independently study several aspects of the fringe sensing process: 1) how to measure the phase and the group delay, and
2) how to combine the telescopes to ensure a precise and robust fringe tracking in real conditions. Thanks to analytical developments
and numerical simulations, we define the optimal fringe-sensor concepts and compute the expected performance of the four-telescope
one with our dedicated end-to-end simulation tool sim2GFT.
Results. We first show that measuring the phase and the group delay by obtaining the data in several steps (i.e. by temporally modu-
lating the optical path difference) is extremely sensitive to atmospheric turbulence and therefore conclude that it is better to obtain the
fringe position with a set of data obtained simultaneously. Subsequently, we show that among all co-axial pairwise schemes, moder-
ately redundant concepts increase the sensitivity as well as the robustness in various atmospheric or observing conditions. Merging
all these results, end-to-end simulations show that our four-telescope fringe sensor concept is able to track fringes at least 90% of the
time up to limiting magnitudes of 7.5 and 9.5 for the 1.8- and 8.2-meter VLTI telescopes respectively.

Key words. techniques: high angular resolution – techniques: interferometric – instrumentation: high angular resolution –
instrumentation: interferometers – methods: analytical – methods: numerical

1. Introduction

The sensitivity of ground-based interferometers is highly lim-
ited by the atmospheric turbulence and in particular by the ran-
dom optical path difference (OPD) between the telescopes, the
so-called piston. By making the fringes randomly move on the
detector, the piston blurs the interferometric signal and prevents
integration times longer than the coherence time of the atmo-
sphere τ0 (typically a few 10 ms in the near infrared). To reach
their ultimate performance and increase their number of poten-
tial targets, interferometers need fringe trackers, i.e., instruments
dedicated to measuring and compensating in real-time the ran-
dom piston. By keeping the fringes locked with a precision bet-
ter than λ/10, they ensure a fringe visibility loss lower than 20%
with integration times of a few seconds. Up to now, fringe track-
ers had to cophase arrays up to three telescopes by combining
two baselines (e.g., the FINITO fringe tracker at VLTI, Gai et al.
2003; Le Bouquin et al. 2009). The new generation of interfer-
ometric instruments, such as MIRC at CHARA (Monnier et al.
2004), MROI (Jurgenson et al. 2008) or GRAVITY (Gillessen
et al. 2010), MATISSE (Lopez et al. 2008) and VSI (Malbet et al.
2008) at the VLTI, requires to cophase arrays of four and possi-
bly six telescopes, raising new fringe tracking challenges. This
paper aims at defining the optimal concept of a fringe sensor for
these arrays.

� Postdoctoral Researcher F.R.S.-FNRS (Belgium).

This study is focused on solutions based on co-axial pair-
wise combination of the light beams, as currently used in exist-
ing and planned fringe-trackers such as FINITO, CHAMP, and
GRAVITY. The reason is that fringe sensing is generally car-
ried out in the detector-noise limited regime and that multi-axial
combinations require a larger number of pixels than pairwise co-
axial combination. Additionally, we consider only the concepts
providing measurements of both the phase delay (phase of the in-
terferometric fringes) and the group delay (position of the white-
light fringe). Indeed, the group delay resolves the 2π ambiguity
on the phase and is mandatory to ensure an efficient and robust
fringe tracking.

To define the optimal four- and six-telescope fringe sensor
concepts based on the co-axial pairwise combination, we study
three independent points. In Sect. 2 we study the phase estimator.
We compare two different implementations of the ABCD fringe
coding depending on whether the ABCD samples are obtained
simultaneously or sequentially. In Sect. 3 we study the two possi-
ble ways to measure the group delay, either by temporally modu-
lating the OPD or by spectrally dispersing the fringes. In Sect. 4
we compare the efficiency of beam combination schemes with
various degrees of redundancy (that is, forming all possible base-
lines of the array or not). We show that the result is a tradeoff be-
tween precision and operational robustness. Finally in Sect. 5 we
merge the results of the three previous sections to define the op-
timal concept in the four-telescope case. We perform a detailed
estimate of its performance in the VLTI environnement.
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Fig. 1. ABCD estimator. Left: conceptual representation of the four
phase states sampling the fringes. Right: the measured phase states
functions of the time for static (top) and temporally modulated (bottom)
ABCD. The total integration time is t0.

2. Phase estimation

Measuring the phase is essential for a fringe tracker to stabi-
lize the fringes and to cophase the array within a fraction of
wavelength. In this section, we therefore consider that we are
in a cophasing/phase tracking regime in which the group delay
is known. We compare the precision of two different implemen-
tations of a phase estimator depending on whether the required
measurements are simultaneous or not. The simplest and most
efficient way to measure the fringe phase is the so-called ABCD
estimator (Shao et al. 1988). It consists in sampling four points
in quadrature in the same fringe (see Fig. 1, left), so that the real
and imaginary parts of the coherent signal are extracted{

A −C ∝ V cos φ
D − B ∝ V sin φ, (1)

where V and φ are the fringe visibility and phase respectively,
the cotangent of the latter being then estimated by

tan φ̂ =
D − B
A − C

· (2)

Considering a total integration time t0 to obtain a phase estima-
tion, there are two possible ways to perform the ABCD measure-
ments (Fig. 1, right):

– Temporal ABCD: it consists in temporally modulating the
OPD as for FINITO at VLTI (Gai et al. 2004), CHAMP at
CHARA (Berger et al. 2006), or the Keck Interferometer
fringe tracker (Colavita et al. 2010). We will consider in the
following an implementation using a sampling of both out-
puts of a beam-splitter (in phase opposition) simultaneously.
This allows the recording of two phase states A and C (in
phase opposition) from t = 0 to t0/2, and the B and D phase
states by adding a temporal π/2 phase and recording between
t = t0/2 and t0. This way one can generate an ABCD fringe
coding (see Fig. 1, right and bottom). There is consequently
a t0/2 time delay between the (A, C) and (B, D) samples.
Other possible implementations (for instance at the Keck
Interferometer fringe tracker) consider a continuous modu-
lation over one fringe and only use one of the two interfero-
metric outputs to measure the phase. Providing an exhaustive
comparison between possible temporal algorithms is out of
the scope of this paper but it might lead to select a different
implementation.

– Static ABCD: with this method we simultaneously measure
the four phase states from t = 0 to t0. This method is im-
plemented in the PRIMA FSU at the VLTI (Sahlmann et al.
2009) and is expected to be used on future instruments such
as GRAVITY. In this case, there is no time delay between the
ABCD samples.

In both cases the same signal-to-noise ratio (SNR) is achieved
since the same number of photons is collected. The static ABCD

requires twice as many measurements simultaneously, so that
the output flux is divided by 2, but each pixel integrates the sig-
nal twice as long. However, the temporal and static ABCDs are
not fully equivalent in real conditions because of atmospheric
and/or instrumental disturbances. We now compare them by tak-
ing these effects into account.

2.1. Phase measurement errors

When considering piston or photometric disturbances, the phase
quadratic error σ2

φ decomposes into the sum of two terms

σ2
φ = σ

2
sig + σ

2
del, (3)

the first one is the noise caused by the interferometric signal de-
tection σsig, which includes detector and photon noises (Shao
et al. 1988). The second one, the so-called delay noise σdel, is
caused by external disturbances (piston or photometric varia-
tions) that combine with a delay between the ABCD measure-
ments. By definition, the temporal ABCD is affected by this
noise, but not the static ABCD, since the four measurements are
simultaneous. Because this noise is an additionnal term, inde-
pendent of the source brightness, we can already anticipate that
it limits the phase measurements precision at high flux.

2.1.1. Detection noise

While integrating the signal, the fringes move slightly because
of the atmospheric piston. Their contrast is attenuated by a fac-
tor exp(σ2(φp, t1)/2), where φp is the piston phase and σ2(φp, t1)
its variance for an integration time t1. The integration time per
phase state is twice as large in the static case compared with
the temporal case (see Fig. 1, right), implying a more significant
contrast loss. Combining this effect with the expression of the
detection noise for an ABCD estimator derived from Shao et al.
(1988), we obtain

σ2
sig = 2

4σ2
e + K

V2 K2
×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
(
0.5σ2

(
φp, t0/2

))
in the temporal case

exp
(
0.5σ2

(
φp, t0

))
in the static case,

(4)

where σe is the read-out noise in electrons per pixel, V is the
fringe contrast and K is the number of photo-events for a total
integration time t0. The left term corresponds to the sum of the
detector and photon noises respectively.

2.1.2. Delay noise

Delay noise is the consequence of piston and photometric vari-
ations between the (A, C) and (B, D) measurements, and there-
fore only affects the temporal method. These disturbances can
be induced by the atmosphere (piston and scintillation) or by the
instruments (vibrations). Because atmospheric piston and scin-
tillation are independent (Fried 1966), we can separate the delay
noise into two terms that are owing to to the piston and the scin-
tillation respectively

σ2
del = σ

2
pist + σ

2
sci. (5)

To compute these noises we assume that the disturbances are
constant while integrating the (A, C) signal, and that they sud-
denly change while integrating (B, D).
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Table 1. Typical seeing and atmospheric coherence time τ0 for the dif-
ferent observing conditions considered.

Condition Excellent Good Medium Bad
Seeing [arcsec] 0.46 0.55 0.64 1.10
τ0 [ms] 8.7 3.1 2.7 2.0

Piston noise – Because of the piston variation between the
(A, C) and (B, D) measurements, the phase difference between
them is not π/2, as it should be. Taking the point in the middle of
the interval t0 as the reference, the measured signal is therefore⎧⎪⎪⎨⎪⎪⎩ A −C ∝ V cos

(
φ + φp (t − t0/4)

)
D − B ∝ V sin

(
φ + φp (t + t0/4)

)
,

(6)

the comparison with the ideal signal in Eq. (1) shows that the
estimated phase φ̂ is biased if φp has varied between measure-
ments. When we take into account the piston statistics, this bias
results in the following piston noise of variance

σ2
pist = 0.125σ2

(
δφp, t0/2

)
, (7)

where σ2(δφp, t0/2) is the variance of the difference of piston
separated by t0/2. Details of the computation can be found in
Appendix A.

Scintillation noise – The fringe visibility depends on the flux
imbalance between the two beams I1 and I2 of the interferometer.
These unequal fluxes reduce the fringe visibility by a factor

Vsci =
2
√

I1I2

I1 + I2
· (8)

Because of scintillation, I1 and I2, and therefore Vsci, change be-
tween the (A, C) and (B, D) measurements. Still considering the
middle of the interval t0 as the reference, the measured signal is{

A −C ∝ Vsci (t − t0/4) cos φ
D − B ∝ Vsci (t + t0/4) sin φ. (9)

By comparing this equation to the ideal signal (Eq. (1)), we see
that a single phase estimation is biased if Vsci varies, that is if I1
and/or I2 vary. Assuming the beams I1 and I2 to be independent
and of same statistics, the scintillation noise is

σ2
sci ∼ 0.04σ2 (x, t0/2) , (10)

where x = (I1(t+ t0/4)− I1(t− t0/4))/I1(t) is the relative flux vari-
ation between the (A, C) and (B, D) exposures, 〈x〉 its mean and
σ2(x, t0/2) its variance during a time t0/2. Note that to compute
this noise, we consider the extreme case of a mean unbalance
between the interferometric inputs equal to 10. Details of the
calculations can be found in Appendix A.

2.2. Performance comparison

To put quantitative numbers to the previous results, we used data
provided by ESO collected at the Paranal Observatory in 2008.
The FITS files contain the photometric flux and the fringe phase
as measured by the FINITO fringe-tracker in the H-band. Data
were collected at a frequency of 1 kHz for ATs and 2 kHz for
UTs, and for various atmospheric conditions (see Table 1). We
computed the variance of the difference of piston and photome-
tries separated by t0/2, for different values of t0. We finally in-
serted the results in Eqs. (7) and (10) to evaluate piston and scin-
tillation noises in atmospheric conditions ranging from Excellent

Fig. 2. Relative errors σφ/λ of temporal (dash) and static (solid) ABCD
phase estimators in the H-band as a function of the number of de-
tected photo-events K. Black, blue, magenta, and red curves represent
Excellent, Good, Medium and Bad conditions respectively as defined in
Table 1. The plots are made for the ATs for an integration time of 2 ms
for the specific ABCD implementation considered here. Note that for
the static ABCD, the black, blue, and magenta curves are superimposed
because of close performances.

Table 2. Piston and scintillation noises computed from Eqs. (7)
and (10).

Piston noise σpist Scintillation noise σsci

ATs
t0 [ms] 2 4 8 2 4 8
Good λ/92 λ/60 λ/35 λ/499 λ/369 λ/290
Bad λ/29 λ/19 λ/12 λ/101 λ/67 λ/37

UTs
t0 [ms] 1 2 4 1 2 4
Good λ/33 λ/21 λ/12 λ/162 λ/122 λ/59
Bad λ/21 λ/14 λ/9 λ/101 λ/52 λ/21

Notes. They are expressed as a function of the wavelength (in the
H-band) for three different integration times. Atmospheric conditions
are Good (G) and Bad (B). For more details, see Tables A.1 and A.2 in
Appendix A.

to Bad (see Table 2). We note that whatever the conditions and
the integration time, σpist is always at least twice as large as σsci:
when measuring the phase, the piston is therefore far more harm-
ful than the relative variations of flux – this is all the more true
when we consider an extremely unfavorable case for scintillation
noise, as explained in the previous section.

We now compute the phase error σφ in realistic conditions
for the temporal and static ABCD methods. Figure 2 repre-
sents the phase error relative to the wavelength (i.e. σφ/λ) in
the H-band with both methods. It clearly shows that the static
ABCD outperforms the temporal one in almost all regimes. It
is only in the photon-poor regime and in bad conditions that
modulating the fringes is a little more efficient, that is, when
the fringe contrast attenuation on the static ABCD becomes im-
portant. Yet, regarding the large phase error (σφ > λ/10, see
Table 2), phase tracking would be very poor – if possible at all –
in such conditions.
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Fig. 3. Top: example of polychromatic fringes (solid line) with longitu-
dinal dispersion, modulated by the coherence envelope (dashed lines).
Bottom: corresponding phase and group delay measurements (in blue
and red respectively) presented in microns.

In the photon-rich regime, the plateau for the temporal
method is caused by the delay noise. For the 1.8-m Auxiliary
Telescopes (ATs) at the VLTI, it has an almost null impact on
phase tracking in good conditions (σφ < λ/35) even for in-
tegration times as long as 8 ms. In bad conditions with inte-
gration times longer than 2 ms there could be some limitations
(σφ > λ/20) depending on the actual implementation of the tem-
poral ABCD.

Observations with the 8-m Unit Telescopes (UTs) show
a higher piston noise, partly owing to instrumental vibrations
(Di Lieto et al. 2008): in good conditions, the noise level is sim-
ilar to that of ATs in bad conditions. Passing from good to bad
conditions, the integration time has to be divided by 2 to main-
tain the performance in a photon-rich regime. In particular, in
bad conditions and t0 > 4 ms, the noise level is higher than λ/10
whatever the source, and phase tracking can be almost impossi-
ble with a temporally modulated ABCD. This probably explains
the difficulty of the FINITO fringe-tracker to close the loop on
the UTs for faint objects.

In conclusion, with a temporal phase estimator, the fringe
tracking capabilities are compromised in bad atmospheric con-
ditions and on faint sources that require long integration times.
Therefore, from a performance point of view, a static method
should be preferred because of its lower sensitivity to distur-
bances.

3. Group delay estimation methods

The group delay (GD) is a measurement complementary to the
phase and is mandatory to ensure an efficient fringe tracking.
Indeed, a phase estimator only determines the fringe position
modulo 2π. The GD lifts this ambiguity (see Fig. 3). It al-
lows one to find and recover the position of maximum contrast,

which provides the highest SNR. This is of particular interest
when the fringe-tracking is unstable and/or when unseen fringe
jumps occur regularly. Moreover, monitoring both the GD and
the phase allows one to determine the amount of dispersion in-
duced by atmospheric water vapor (Meisner & Le Poole 2003).
This is done routinely at the Keck Interferometer for cophasing
in the N-band while measuring the phase and group delay in the
K-band (Colavita 2010).

I(λ) and V(λ) being the flux and the complex visibility of the
interferometric signal, the coherence envelope is linked to the
complex coherent flux I(λ)V(λ) through a Fourier transform

E(x) ∝
∣∣∣∣∣
∫ ∞

0
I(λ)V(λ)ei2πxGD/λ e−i2πx/λ dλ

∣∣∣∣∣ , (11)

where x is the OPD. Consequently, it is possible to estimate the
group delay with two different methods:

– the temporal method estimates the GD by measuring the en-
velope amplitude (in other words, the fringe contrast) E(x) at
several points around its maximum by modulating the OPD.
BEcause the phase needs to be measured at the same time
to ensure fringe tracking, the OPD is modulated near the en-
velope center to keep a high SNR. This method is currently
used in FINITO and CHAMP;

– the spectral method uses the Fourier relation between the co-
herent spectrum I(λ)V(λ) and the coherence envelope E(x).
The coherence envelope is recovered by measuring the co-
herent spectrum over few spectral channels. This method has
been successfully implemented at PTI (Colavita et al. 1999),
and more recently in PRIMA (Sahlmann et al. 2009) and in
the KI fringe tracker (Colavita et al. 2010).

We could not obtain a realistic analytical description of these
group delay estimators. Therefore we decided to compare them
with Monte-Carlo simulations, taking into account atmospheric
disturbances.

3.1. Description of the simulations

We aim to compare both methods fairly, so that

– we use the same fringe coding, i.e. a static ABCD because
of its lower sensitivity to disturbances (see the previous sec-
tion);

– the signal is integrated during the same amount of time so
that each method collects the same amount of photons and is
prone to the same disturbances;

– in both cases, the group delay is estimated in the same way
by fitting an envelope model to the processed data. This al-
lows a comparison of the intrinsic quality of the data for
both methods. There are obviously many other ways to es-
timate xGD from a set of data, but we assume that this is a
second order problem. Indeed, Pedretti et al. (2004) com-
pared three different algorithms to estimate the group delay
with a temporal method and noted only little differences in
the performance, even with an algorithm as sophisticated as
the one proposed by Wilson et al. (2004).

These choices made, temporal and dispersed methods can also
be optimized to improve their performances. Below we describe
the characteristics of each method.

3.1.1. Temporally modulated interferogram

Simulations have shown that the temporal estimator is strongly
affected by atmospheric and instrumental disturbances. Their
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Fig. 4. Conceptual representation of the signal processing for group delay estimation. Temporal method (left): an envelope model is fitted on
the three envelope amplitude measurements to determine the group delay. Dispersed method (right): from the spectral sampling of the complex
coherent signal, an approximated envelope is computed with a Fourier transform operation. The envelope position is determined by fitting an
envelope model.

effect is all the more minimized than the envelope is more
quickly scanned. Our study shows that the optimal way to pro-
ceed is to successively measure the fringe contrast in three differ-
ent points over a five-fringe range (OPD equal to −2.5λ, 0 and
2.5λ near the envelope maximum). This result agrees with the
CHAMP choice (Berger et al. 2006). Once the three contrasts
are measured, they are fitted with an envelope model to deter-
mine the group delay. A schematic overview of this method is
displayed in Fig. 4, left.

The input fluxes have to be monitored to compensate in real
time for the photometric/contrast variations that occur between
the three measurements. For the sake of simplicity, we consider
these photometric estimations to be noise-free. The simulated
performance for the temporal method will thus be optimistic.

3.1.2. Spectrally dispersed interferogram

Thanks to the ABCD measurements, we can compute the chro-
matic complex visibility I(λ)V(λ) on each spectral channel. An
approximated coherence envelope is then computed by taking
their discrete Fourier transform (Colavita et al. 1999). It is pos-
sible to disperse the fringes over three channels to optimize the
sensitivity, but we decided to use five channels to enhance the
spectral sampling and thus the robustness of the estimator (see
Sect. 3.2). For each exposure, a set of dispersed ABCD data is
obtained, which enables a new GD estimation.

For a fair comparison between the temporal and the spectral
method, they are both fed with the same disturbances and num-
ber of photons: therefore we make three GD estimations with
the dispersed estimator, introducing disturbances between each
estimation, and finally average them.

3.2. Linearity and dynamic range

A reliable estimation of the group delay is of prime importance
since it ensures the measurements to be made in the highest SNR

area. We study two quantities in this section, the linearity and the
dynamic range, by looking at the response x̂GD of both methods
to a given OPD ramp xGD. We define the linearity η as the local
slope of x̂GD versus xGD

η =
∂x̂GD

∂xGD
, (12)

a perfectly linear estimator is one where η = 1. Otherwise the
estimator is biased and the envelope is not perfectly stabilized.

The group delay is extremely important for the fringe track-
ing robustness, that is the ability of the estimator to keep the
fringes locked in the highest SNR area, in particular after a strong
piston stroke (≥15 μm). In practice, there are limits outside
which the group delay estimation is highly biased and makes
the fringe tracker diverge from its operating point. The interval
between these limits corresponds to the so-called dynamic range
(DR), which is used here to characterize the robustness of the es-
timators. In practice, the limits of the DR are reached when the
slope of x̂GD versus xGD changes sign (in other words, when η
becomes negative) or when we observe a strong wrapping effect.

In the following paragraphs, we simulate noise-free ideal in-
terferograms in the H-band with a sinc-shaped coherence enve-
lope. We fit the results with two different envelope models (a
parabola and a sinc function) to study its impact on the GD esti-
mation. The results of this study are presented in Fig. 5.

3.2.1. Temporally modulated interferogram

In the temporal method, the envelope model is critical to ensure a
good linearity. Using the most appropriate sinc model with ideal
interferograms (Fig. 5, top, dashed line), the linearity is excel-
lent (η = 1), but the DR is limited to 10 fringes (±8 μm), i.e.,
to the width of the central lobe. Outside this range the GD es-
timation is totally non-linear but never crosses the y-axis: the
fringe-tracking loop should not diverge but it should recover the
envelope center with difficulty, or even could risk to lock the
fringes far away from the envelope center.
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Fig. 5. Response of the dispersed and temporal group delay estimators (solid and dashed lines respectively) to an OPD ramp xGD in the H-band.
The ideal response is represented by the large gray line. In all cases, the coherence envelope has a sinc shape. Top: the envelope model is a sinc
function. Bottom: the envelope model is a parabola. Figures on the right are a zoom on the central part of the left-hand side figures. The DR limits
are represented with blue arrows on the top-left plot in the ideal case for both estimators.

Using a wrong envelope model (e.g., a parabola; see Fig. 5,
bottom, dashed line) leads to a relative bias higher than 10% (η ∼
0.9) whatever the OPD within the dynamic range. Increasing
the number of samples or the scan length does not improve
the results, which emphasizes that the problem arises from the
wrong envelope model. Because of the number of chromatic
variables (particularly the longitudinal dispersion), which con-
tinually vary during a night and slightly modify the envelope
shape, the envelope model cannot be perfect and the temporal
estimator will therefore be consistently nonlinear by a few per-
cents. Interestingly, the DR is still equal to the width of the main
lobe1 and seems weakly affected by the model quality.

3.2.2. Spectrally dispersed interferogram

On the contrary, the dispersed method is not affected by the en-
velope model (see Fig. 5, solid lines): because we sample the
complex coherent spectrum, we can directly compute a real-
istic coherence envelope and the fitting model has therefore a

1 Simulations show that the DR can be increased with a higher number
of contrast samples and a higher scan length. But in real operations it
also increases the influence of atmospheric disturbances, which is not
suitable for precision purposes (see Sect. 3.3).

weak influence. Dispersing fringes on five spectral channels in
the H-band, the linearity is excellent (η ∼ 1) over an OPD range
of ±20 μm. Beyond these points a sharp wrapping effect is ob-
served (Fig. 5, left), which marks the DR limits: the discrete
sampling of the spectrum induces aliasing effects on the com-
puted envelope (obtained from a discrete Fourier transform of
the complex coherent signal, see Eq. (11)), so that outside the
DR the GD is estimated on a replica of the true envelope. In
practice, if the GD is measured after such a wrap, the fringe
tracker will correct the OPD in the wrong direction and finally
lock the fringes on a point even more distant from the envelope
center than previously. However, because we chose to use five
spectral channels, the DR (±20 μm) is larger than the strongest
piston fluctuations which are typically observed on a few mil-
liseconds (∼15 μm). Working in the K-band increases the dy-
namic range up to ±40 μm, which almost cancels these prob-
lems. It is actually possible to infer an expression for the DR
with dispersed fringes. Let us assume a spectral band with an
effective wavelength λ0 and a width Δλ, and that the fringes are
dispersed over Nλ channels. The dynamic range is then ideally
(see Appendix B)

DR = Nλ
λ2

0

Δλ
· (13)

A121, page 6 of 17

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201016222&pdf_id=5


N. Blind et al.: Optimized fringe sensors for the VLTI next generation instruments

Fig. 6. Relative errors σGD/λ of temporal (dash) and dispersed (solid)
GD estimators in different atmospheric conditions. Black, blue, ma-
genta, and red curves represent Excellent, Good, Medium, and Bad
conditions respectively as defined in Table 1. The plots are made for
the ATs, for a total integration time of 3 ms, constituted of three single
exposures of 1 ms.

The larger the number of spectral channels, the lower the aliasing
and therefore the larger the DR. This relation excellently agrees
with the simulation results.

When longitudinal dispersion is taken into account, the lin-
earity and DR are slightly reduced because the undersampling
of the coherent spectrum leads to a less precise envelope com-
putation. Refining the spectral sampling with more channels im-
proves both linearity and DR, as shown by the simulations.

In conclusion, spectrally dispersing the fringes appears to be
the most robust method to measure the group delay. It provides
an estimator with

– a good linearity without the need of a good envelope model,
because it inherently computes a realistic envelope;

– a large DR allowing robust operations and quick recovery
of the fringes over an OPD range larger than typical piston
variations.

3.3. Group delay measurements precision

We now compare the precision of the GD estimators as a func-
tion of the incoming flux and of the disturbances strength. The
simulations consist of computing noisy interferograms in the
H-band, introducing detector and photon noises as well as pis-
ton and photometric disturbances, which are taken from actual
FINITO data. For each simulation, we estimate a noisy GD
(x̂GD). Its statistics over several thousands of iterations gives the
statistical error σGD for both estimators.

The results for ATs and an integration time of 1 ms are pre-
sented in Fig. 6. It shows the relative error σGD/λ on the group
delay measurements as a function of the number of photo-events
for various atmospheric conditions. The limitation of the tempo-
ral estimator is obvious, with a plateau caused by atmospheric
disturbances (piston mainly), which acts like an independent,
additional noise at high flux, increasing when atmospheric con-
ditions get worse. The dispersed estimator on the other hand
appears to be weakly sensitive to these disturbances. Although
we used a favorable hypothesis for the temporal method (the

required photometric monitoring is considered noise-free), there
is no regime in which this concept is better than the dispersed
one. For UTs, the results are similar but with stronger limita-
tions: it appears that the statistical error of the temporal estima-
tor never goes below λ/4 with an integration time as low as 1 ms,
whatever the conditions.

Additionally, all the simulations show the same dependency
of the statistical error of both GD estimators with respect to the
incoming flux K and the visibility V2

σ2
GD ∝

1
K V2

in the photon noise regime (14)

σ2
GD ∝

1
K2 V2

in the detector noise regime. (15)

Interestingly, we find the same kind of dependency than for the
phase (Eq. (4)) in the equivalent regimes.

In conclusion, temporally modulating the OPD to estimate
the group delay is not as good as the spectrally dispersed fringe
method, both in terms of robustness and precision. This is in
line with the conclusion of Sect. 2, which showed the sensitivity
of temporal fringe coding to external disturbances. We therefore
strongly conclude that a static fringe coding scheme dispersed
across a few spectral channels should be used to measure the
fringe phase and group delay.

4. Optimal co-axial pairwise combination schemes

Theoretically, it is possible to cophase an array of N telescopes
by measuring only N−1 baselines. However because of the noisy
measurements and of the varying observing conditions during a
night, some baselines can deliver information of poor quality,
so that it is beneficial to have some redundancy with additional
baselines. It is then possible to retrieve the phase on a baseline
in several different ways, ensuring a better fringe tracking sta-
bility. The drawback is that when the number of measured base-
lines increases, each one is less sensitive because the flux of the
telescopes is divided between more baselines. The sensitivity of
the fringe sensor then depends on a competition between the in-
formation redundancy and the sensitivity of the individual base-
lines. The aim of this section is to determine the most efficient
schemes with respect to their intrinsic performance and opera-
tionnal advantages.

Several on-going projects will work with four (GRAVITY,
MATISSE) to six (VSI, MIRC) telescopes. Therefore we focus
on these two cases, assuming that all telescopes are identical. We
consider the following schemes, which are illustrated in Fig. 7:

– the open schemes are made up of the minimal number of
baselines, that is N − 1, and are noted NTO. In this case the
interferometric outputs are intrisically imbalanced in flux to
have baselines with equivalent performance. For instance, in
the 4TO case, we do not distribute 50% of the intensity of
the telescope 2 onto baselines {12} and {23}, but ∼40% and
∼60% respectively (see Appendix C.2.2 for the details of this
optimization);

– in the redundant schemes, the flux of each telescope is
equally divided between the same number R of baselines.
When R = 2 the schemes are more precisely called circu-
lar. The nomenclature to designate them below is NTR, on
occasion with an additionnal letter when there are several
possibilities for the same value of R.

2 These empirical relations are only valid when there is no disturbance
for the temporal method.
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Fig. 7. Various conceptual schemes studied for the 4T and 6T cases (top and bottom respectively) with the associated nomenclature. As explained
in Sect. 4.1, we did not study schemes with intrinsically imbalanced photometric inputs other than the open ones, because of lower performance.

4.1. Study of the combination schemes

We decided to compare the various schemes on the base of three
considerations: their intrinsic performances, their ability to pro-
vide the individual beam photometries without dedicated out-
puts, and their robustness to unpredictable and rapidly varying
observing conditions.

4.1.1. Performance study

The principle of our analysis is similar to the one that led to the
GRAVITY fringe tracker by Houairi et al. (2008). It consists in
computing the vector of the optimal optical path estimators x
used to drive the delay lines from the noisy and possibly redun-
dant phase information φ. These quantities are linked by the in-
teraction matrix M, which is known

φ =M x. (16)

With redundant schemes, the system is overdetermined so that
we use a χ2 minimization procedure to compute the control ma-
trix W and then x

x =W φ. (17)

Because φ is noisy, we have to take into account the error on the
measurement when computing W to reduce the impact of
the noisiest baselines and prevent the solution from diverging.
The quantity of interest is finally the error σi j on the corrected
differential pistons calculated for each baseline {i j} with respect
to a reference noise σ0, which corresponds to the error of a sim-
ple two-telescope interferometer. The expression of σ0 is de-
rived from Shao et al. (1988) or, in a more general form, from
Tatulli et al. (2010). It depends on the considered noise regime,
so that the detector and photon noise regimes can be indepen-
dently studied

σdet
0 =

A
K V

(18)

σ
phot
0 =

B√
K V
, (19)

where A and B are proportionality factors depending only on
the fringe coding, so that this study is independent of the phase
and the group delay estimators used. Results for the different

Table 3. Results of the performance study in the ideal case, where all
baselines are equivalent and noted {i j}.

Detector noise Photon noise
Scheme εi j εi j

4TO 1.6 1.3
4T2 1.7 1.2
4T3 2.1 1.2
6TO 1.8 1.4
6T2 1.8 1.3
6T3A 2.2 1.3
6T3B 2.2−2.3 1.3
6T4 2.6 1.3
6T5 2.9 1.3

schemes are therefore perfectly comparable within the same
regime. Note that the above expressions also agree with our pre-
vious results concerning the group delay (Eqs. (14) and (15)).

To analyse the behaviour of the different schemes in realistic
conditions, we consider the following three cases:

– Ideal case: all baselines are strictly equivalent in terms of
flux and visibility.

– Resolved-source case: one baseline of the array is highly re-
solving the source (cases e.g. of an asymmetric source or of
a very long baseline). To study this case, we set the fringe
visibility to 0.1 on one particular baseline, and to 1 on the
others.

– Low-flux case: the flux of one telescope is set to one tenth of
the others to simulate a quick variations of flux (e.g. scintil-
lation) or a technical problem.

The results for these three cases are presented in Tables 3 to 5,
showing the relative error εi j = σi j/σ0 on the corrected piston
for the various baselines {i j}.

In the ideal case (Table 3), the redundancy slightly degrades
the performance in the detector noise regime (because the sig-
nal is coded on a larger number of pixels) but does not im-
pact the performance in the photon noise regime. The differ-
ences are at maximum of the order of 30% between the various
schemes. Open and circular schemes provide a similar perfor-
mance. However, in the open schemes, the flux is not divided
equally between the various baselines to reach an optimal SNR
(see Appendix C.2.2). Although the baselines at both ends of the
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Table 4. Results of the performance study when the baseline {12}
resolves the source.

Detector noise Photon noise
Scheme ε12 εi j ε12 εi j

4TO 16.2 1.6 13.1 1.3
4T2 3.4 2.0 2.4 1.4
4T3 3.0 2.1−2.4 1.7 1.2−1.4
6TO 18.1 1.8 13.6 1.4
6T2 4.3 2.0 3.1 1.4
6T3A 3.3 2.3−2.4 1.9 1.3−1.4
6T3B 3.2−3.6 2.2−2.5 1.8−2.1 1.3−1.4
6T4 3.3 2.6−2.8 1.7 1.3−1.4
6T5 3.5 2.9−3.1 1.6 1.3−1.4

Notes. The other baselines are noted {i j} and are roughly equivalent.

Table 5. Results of the performance study in the flux drop-out case.

Detector noise Photon noise
Scheme ε1 j εi j ε1 j εi j

4TO 5.1 1.6 3.1 1.3
4T2 4.7 1.9 2.5 1.4
4T3 5.6 2.4 2.5 1.4
6TO 5.7 1.8 3.2 1.4
6T2 4.8 1.9 2.6 1.4
6T3A 5.8 2.2 2.5 1.4
6T3B 5.7−5.8 2.2−2.5 2.5−2.6 1.2−1.4
6T4 6.6 2.7−2.9 2.5 1.3−1.4
6T5 7.3 3.1 2.5 1.4

Notes. The pupil 1 has a low flux and the related baselines are no-
ted {1 j}. The unaffected baselines are noted {i j}.

array receive roughly 40% more photons than the others, they are
affected by a photometric imbalance, leading to a fringe contrast
loss of roughly 10% (i.e. an SNR loss around 20%): this points
to a suboptimal use of the input photons. On the other hand,
the schemes with more baselines benefit from some redundancy.
This explains why open schemes are slightly less sensitive in the
photon noise regime than redudant – and balanced – ones. A sim-
ilar conclusion concerning open schemes was already reached by
Houairi et al. (2008) in the 4T case.

If a baseline resolves the target (Table 4), the benefit of
redundancy clearly appears. Indeed, whereas the measurement
error on the resolving baseline strongly increases with open
schemes, the performance degradations are well contained with
the redundant ones. There is still a significant improvement be-
tween R = 2 and 3, but only limited differences between more
redundant schemes.

When a telescope has a reduced flux (Table 5), the overall
results do not significantly vary between the various schemes.
Having a minimal redundancy (R = 2) appears optimal in the
detector noise regime, because more baselines induce a larger
overall read-out noise. In the photon noise regime, redundant
schemes have very close performances and are slightly more ef-
ficient than the open ones. Hence, circular scheme should be
favoured with respect to open ones and the use of more re-
dundant schemes is not essential from the performance point of
view.

Taking into account the relatively close performance be-
tween the redundant concepts and regarding their instrumental
complexity (number of baselines to be coded, optical transmis-
sion, etc.), schemes with R = 2 or 3 should be favoured.

4.1.2. Extracting the photometry

The knowledge of the photometry is theoretically not mandatory
to measure the fringe phase. However, a real-time photometric
monitoring is very useful during operation: it provides an addi-
tional diagnosis in case for flux-related issues and it allows the
image quality to be optimized in all beams simultaneously (oth-
erwise the only way to optimize the flux of each telescope is
to optimize them sequentially). Moreover, the knowledge of the
photometries allow the fringe visibility to be computed in real-
time, revealing possible technical issues (or even astrophysical
“problems” such as unknown binaries).

Some of the schemes that we study allow the instantaneous
photometry to be extracted on each pupil without the need of
dedicated photometric outputs. We found that in the context of
pairwise combinations, the photometry can be recovered from
the fringe signal itself for every pupil that is part of a closed
(sub-)array constituted of an odd number of pupils. Otherwise,
the system linking the fringe signals to the photometries is de-
generated. Thus, the 4T2, 6T2 and 6T3A schemes cannot extract
the photometry since they only contain rings of four and/or six
telescopes, whereas the 4T3 and 6T3B can, since there are trian-
gular sub-arrays. This is summarized in Table 6. For arrays with
an odd number of telescopes, circular schemes (R = 2) always
allow the photometry to be directly estimated.

4.1.3. Robustness

When observing unknown asymmetrical sources, such as well
resolved binary stars, unpredictable baselines can exhibit very
low visibilities, changing with a time scale of less than one hour
(see Fig. 8 for an example). The fringe position may then be-
come impossible to measure on some baselines, leading to a
possible discontinuity in the array cophasing. The case of a re-
solved source previously studied (see Table 4) is an example of
such a situation: when one baseline highly resolves the source,
the comparison between the open schemes and the redundant
ones clearly shows the benefit of having additional baselines. If
we now assume that two baselines fully resolve the source, the
schemes with R ≥ 3 provide better performances than the open
and circular schemes, and so on. In general, redundancy allows
bootstrapping to be performed and therefore the tracking stabil-
ity to be increased along an observation night, so that schemes
with a high number of baselines are favoured.

4.2. Choice of the combination schemes

The various schemes studied here provide similar performances
in an ideal situation. When considering more realistic condi-
tions, the benefit of the redundancy clearly appears by improv-
ing the tracking robustness in various observing conditions.
Additionally, among all the schemes, some provide the input
fluxes in real time without the need of dedicated outputs, which
is extremely useful for the state machine. We conclude that the
best compromises between robustness and sensitivity are the
4T3 and 6T3B schemes. Because of their similar performance
and their easier practical implementation, we also consider that
the circular schemes 4T2 and 6T2 are suitable, if monitoring the
photometric fluxes is not required. In the 4T case, these conclu-
sions agree with the results of Houairi et al. (2008) for the dedi-
cated fringe tracker of GRAVITY. The results in the 6T case are
also in agreement with the choices made for CHAMP (Berger
et al. 2006) at the CHARA array with a 6T2 configuration, even
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Table 6. Ability of the combination schemes to provide the input photometries without dedicated outputs.

Scheme 4TO 4T2 4T3 6TO 6T2 6T3A 6T3B 6T4 6T5
Photometries ? no no yes no no no yes yes yes

Notes. The schematic representation of the schemes can be found in Fig. 7.

Fig. 8. Predicted fringe contrast when observing a binary star with equal fluxes and a separation of about 10 mas with the four UTs and a fringe
sensor working in the H-band. The left panel shows the (u, v) tracks overlaid on the fringe contrast from the model. The right panel shows the
fringe contrast versus time for 4 h for each baseline. The figures were made with the aspro public software from JMMC.

though we favour a scheme with more baselines for robustness
purposes.

Although we study only two cases (four and six pupils), it
appears to be the trend that in the context of pairwise combi-
nations with an even number of telescopes, an optimal fringe
sensor should measure either N or 3N/2 baselines (R = 2 or 3
respectively) depending on the need for photometries. With an
odd number of telescopes, circular schemes should be optimal
thanks to their capability to monitor the photometry directly.

5. Estimated performance of the chosen concepts

Now that the optimal fringe sensing concepts have been iden-
tified, we study their on-sky performance within the VLTI in-
frastructure. To this aim, we developed a dedicated software
simulation tool called Sim2GFT (2GFT standing for the “2nd
Generation Fringe Tracker” of the VLTI). This simulator, con-
sisting of a set of IDL routines, aims at performing realistic sim-
ulations of future observations with the 2GFT fringe sensor and
evaluating its performance in terms of residual piston jitter after
closed-loop control. In the remainder of this section, we assume
that single-mode fibers are used to filter the input wavefronts,
following Tatulli et al. (2010).

5.1. The Sim2GFT simulator

Sim2GFT is largely based on the GENIEsim software (Absil
et al. 2006), and therefore follows the same architecture and phi-
losophy. The simulations are taking into account all major con-
tributors to the final performance, from the atmosphere and the
telescopes down to the fringe sensor and delay lines. The signal-
to-noise ratio on the phase measurement in the fringe sensor is
mainly driven by the amount of coherent and incoherent pho-
tons (including the atmospheric and instrumental thermal emis-
sion), and by the way they are distributed on the detector. To es-
timate the amount of coherent and incoherent photons properly,
all VLTI and 2GFT subsystems are described by their influence

on the intensity, piston, and wavefront quality of the light beams
collected by each telescope. The estimated instrumental visibil-
ity within the fringe sensor takes into account the visibility loss
due to piston jitter, atmospheric refraction, intensity mismatch
between the beams due to atmospheric turbulence (scintillation),
and longitudinal dispersion in the delay lines. For the piston jit-
ter, a semi-empirical law based on on-sky FINITO data is used
to include both the effect of atmospheric piston and vibration-
induced piston. Another key element in the simulation is the
coupling of the light beams into single-mode fibers, which we
estimate by separating the contribution of tip-tilt (through the
overlap integral between an offset Airy pattern and the fiber
mode) and higher order aberrations (through the estimated Strehl
ratio – without tip-tilt – that acts as a multiplicative factor).

The operation of 2GFT is closely related to the detector read-
out scheme. Assuming a HAWAII-2RG focal plane array, we
consider that the ABCD outputs of all baselines are spread on
a single detector line, and that the spectral dispersion is per-
formed on five contiguous detector lines. The detector is read
line by line, with a read-out time that depends on the particu-
lar arrangement of the ABCD outputs on the lines (it amounts
to 201 μs for our design). Deriving a reliable estimation of the
phase and group delay requires the five spectral channels to be
used3. However, it must be noted that the phase and group delay
estimations can be updated each time a new detector line is read,
although it will be partly redundant with the previous estima-
tion – this corresponds to the sliding-window estimation already
in use at the Keck fringe tracker (Colavita et al. 2010).

The closed-loop behaviour of the fringe tracker is simulated
by feeding back the fringe sensor phase delay measurements to
the VLTI delay lines, using a simple PID as a controller. Group
delay measurements are not explicitly used in our simulations,
although in practice they will be used to make sure that fringe

3 To perform a phase delay estimation with the ABCD scheme, one
spectral channel is theoretically sufficient. However, for a better robust-
ness of the dispersion effects, we assume that the information from all
five spectral channels is needed and will be used in practice.
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Fig. 9. Fringe sensing noise plotted at percentile 0.9 (i.e., the noise is
actually lower than the plotted curves for 90% of the occurrences) as a
function of the target’s K magnitude (or of the stellar flux in photons
per second at the entrance of 2GFT) in the 4T3-ABCD case, assuming
a K0 III target and using the A0-G1-K0-I1 quadruplet of ATs at the
VLTI. The fringe-tracking loop is operated at its maximum frequency
as long as the fringe sensing noise per baseline remains <100 nm rms for
90% of the measurements on any individual baseline. The closed-loop
repetition frequency is reduced to maintain this level of performance
otherwise (this happens for K > 5 in the present case, as also shown in
Fig. 10), until this level cannot be reached any more (beyond K = 7.5
in the present case). Note that the increase in sensing noise for bright
targets is caused by the resolved stellar photosphere, which reduces the
available coherent flux.

tracking is performed on the appropriate (white-light) fringe.
The closed-loop simulation relies on a frequency-domain de-
scription of the input disturbance (by its power spectral density)
and of the subsystems (by their transfer function). The repeti-
tion frequency of the loop and the controller gain are optimized
as a function of the input photon flux and atmospheric piston to
produce the smallest possible piston residual at the output of the
closed loop. To ensure a stable fringe tracking, we require the
sensing noise to be lower than 100 nm rms for 90% of the mea-
surements on any individual baseline, which would correspond
to an SNR > 4 on the fringes in the K-band for 90% of the mea-
surements.

In the following sections, we describe the estimated per-
formance for fringe sensing and fringe tracking of the 4T3 re-
dundant concept with ABCD encoding on five spectral chan-
nels over the K-band (from 1.9 to 2.4 μm). The estimations are
based on an expected K-band transmission of 3% for the whole
VLTI/2GFT instrument.

5.2. Fringe sensing performance

End-to-end simulations of VLTI/2GFT have been performed us-
ing the 1.8-m Auxiliary Telescopes (ATs) for a K0 III star lo-
cated at various distances ranging from about 10 pc to 2 kpc, in
standard atmospheric conditions: seeing ε = 0.85′′, coherence
time τ0 = 3 ms, outer scale Lout = 25 m, and sky temperature
Tsky = 285 K. The target star is assumed to be located close to
zenith. For each magnitude, the closed-loop repetition frequency
was chosen to be as high as possible within hardware limitations
(<4 kHz), while keeping the average fringe sensing noise lower
than 100 nm rms on all measured baselines.

Figure 9 illustrates the sensing noise per baseline as a
function of stellar magnitude (black diamonds). The respective

contributions of photon noise and detector noise are represented
by dotted and dashed lines. On the bright-side end of the plot,
photon noise dominates the noise budget. The increase in photon
noise from K = 1.5 to K = −2 is because the star is (strongly) re-
solved, which reduces the available coherent flux. Detector noise
becomes higher than photon noise around K = 3, and the fringe
sensing noise reaches its allowed limit (<100 nm rms for 90%
of the measurements) around K = 5. For fainter magnitudes,
Sim2GFT ensures that the fringe sensing noise remains at the
same level by reducing the closed-loop repetition frequency (i.e.,
increasing the integration time on the fringe sensing detector).
This is possible only until magnitude K = 7.5 in the present case,
where a phase sensing noise of 100 nm per baseline cannot be
reached any more for any integration time, because of the strong
fringe blurring that appears at long DITs. The points plotted in
the figure at K > 7.5 do not comply with our requirements any
more, and have been computed for the repetition frequency that
minimizes the fringe sensing noise (∼33 Hz in the considered
cases).

Also represented in Fig. 9 is the fringe sensing noise per tele-
scope, which results from the optimized estimation of individual
telescope pistons from all measured baselines, as explained in
Sect. 4.1. The fringe sensing noise per telescope is significantly
lower than the measurement noise on each individual baseline
because the estimation of the former is based on the information
collected by multiple baselines.

The same kind of performance study was carried out for the
Unit Telescopes, showing a similar general behaviour as for ATs.
The only differences are

– the magnitude where stable closed-loop fringe tracking be-
comes impossible, which is now around K = 9.5;

– the decrease in the coupling efficiency for stars fainter than
V = 10, which is owing to the reduced performance of the
MACAO adaptive optics system.

The latter effect, which is almost nonexistent for ATs (equipped
with STRAP for tip-tilt control), speeds up the drop of closed-
loop performance at faint magnitudes. The maximum loop rep-
etition frequency (∼4 kHz) can actually be maintained until
K 
 8.5 for UTs. The presence of telescope vibrations for UTs
is taken into account in a semi-empirical way in our simulations
through an estimation of the visibility loss caused by vibration-
induced piston jitter, so that the SNR in the fringe sensing process
is estimated in a realistic way. However, let us note that telescope
vibrations are expected to strongly affect the residual piston jit-
ter at the output of the closed loop (an effect not simulated in
Sim2GFT), so that the results presented in right-hand side plot
of Fig. 10 (for ATs) would be significantly degraded for UTs.

5.3. Fringe tracking performance

Figure 10 shows the characteristic times of the closed loop and
the noise residuals at the output of the fringe tracking loop.
The left-hand side plot shows that for magnitudes brighter than
K = 5, the loop can be operated at its maximum repetition fre-
quency (3.6 kHz in this case). For fainter targets, the repetition
time is gradually increased to keep a sufficient SNR on each in-
dividual fringe measurement. The sudden increase in repetition
time around K = 6 is caused by a modification in the loop be-
haviour: for bright stars, only one spectral channel is read for
each repetition time and the information at other wavelengths is
taken from previous repetition times, while for fainter stars all
spectral channels are read during each repetition time (the main

A121, page 11 of 17

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201016222&pdf_id=9


A&A 530, A121 (2011)

Fig. 10. Left: closed-loop repetition time and time delay in the loop as a function of target K magnitude. For stars fainter than K = 6, the loop
repetition time is increased (i.e., its frequency decreased) to ensure a sufficient SNR on the detected fringes in each individual measurement (until
the specified SNR cannot be reached any more whatever the integration time). Right: noise residuals at the output of the closed loop, for the three
main contributors: fringe sensing (FSU), delay line (DL) and atmospheric noises.

goal of this being to keep the time delay4 in the loop reason-
ably short even at low repetition frequencies). The time delay is
longer than the repetition time in the bright target case, because
only one spectral channel is read per repetition time, while the
phase estimation uses the phase information from all five spec-
tral channels.

The left-hand side plot of Fig. 10 can be used to derive a
limiting magnitude for the chosen fringe sensing concept. One
just needs to define a repetition time threshold above which
fringe tracking becomes inefficient. Here, we assume a maxi-
mum allowed repetition time of 10 ms (i.e., minimum frequency
of 100 Hz)5, which gives a limiting magnitude of K = 7.5 on
the ATs. In the case of UTs, the limiting magnitude amounts to
K = 9.5. In both cases, this coincidentally corresponds to the
magnitude where maintaining a phase measurement error below
100 nm is not possible, which indicates that a DIT of 10 ms is
actually a sound choice to define limiting magnitudes in closed-
loop fringe tracking operation. Note that a limiting magnitude of
K = 7.5 in closed-loop fringe tracking with 90% locking ratio
under standard atmospheric conditions corresponds quite well
to what has been demonstrated on-sky with the PRIMA fringe
sensor unit on the ATs (Sahlmann et al. 2009).

The right-hand side of Fig. 10 shows the noise residuals at
the output of the fringe-tracking loop, computed per telescope.
Note that the fringe sensing noise residual at the output of the
loop is much smaller than the actual fringe sensing noise (eval-
uated at the detection level), due to closed-loop filtering. Also
note that the fringe sensing noise is always much lower than
the atmospheric noise under typical atmospheric conditions,

4 The time delay of the loop is defined as the amount of time between
the middle of the overall integration time used for a phase estimation
(i.e., including the contribution of all spectral channels), and the mo-
ment when the detector read-out sequence is completed for the consid-
ered spectral channel.
5 For an integration time of 10 ms on the fringe sensor, the estimated
loss of visibility caused by piston jitter in standard atmospheric condi-
tions is only 5% for ATs, while it amounts to 28% for UTs (an effect
mainly caused by vibrations). Operating at lower frequencies would be-
come impractical in the case of UTs, but could be considered in the case
of ATs (especially in good atmospheric conditions).

a behaviour directly related to the constraint imposed on
the phase sensing noise per baseline in each repetition time
(<100 nm rms for 90% of the measurements). For these reasons,
the fringe sensing noise does not significantly affect the resid-
ual noise level at the output of the fringe tracking loop. The in-
fluence of the fringe sensor on the residual piston noise comes
rather from its intrinsic sensitivity, which determines the maxi-
mum repetition frequency that can be reached for a given coher-
ent flux.

We also performed simulations in various atmospheric con-
ditions, ranging from bad (seeing ε0 = 1.1′′ and coherence time
τ0 = 2 ms) to excellent (ε0 = 0.5′′ and τ0 = 10 ms). The in-
fluence of atmospheric conditions on the fringe tracking perfor-
mance is mainly twofold: on one hand it determines the input at-
mospheric noise that needs to be corrected, and on the other hand
it affects the amount of available coherent photons because it
determines the injection efficiency into single-mode fibres. Our
simulations have shown that the limiting magnitude increases
by about 2 mag between bad and excellent conditions. For in-
stance, if one defines the limiting magnitude at 100 Hz, it varies
between K = 6.2 and K = 8.5 depending on the conditions.
These limiting magnitudes do not mean, however, that fringes
cannot be detected at fainter magnitudes. We estimate that the
ultimate limit for fringe detection (fringes detected for 50% of
the measurements at an SNR of 4, using a DIT of 25 ms) should
be around K = 9.5 for ATs used in good atmospheric conditions.

6. Conclusions and perspectives

We determined the optimal four- and six-telescopes fringe
tracker concepts. We showed that for realistic atmospheric con-
ditions, the measurements of the various phase states (e.g.,
ABCD) that are needed to derive the fringe phase should better
be done simultaneously to limit the influence of external dis-
turbances (piston, scintillation, vibrations, etc.) on the measure-
ment precision. Furthermore, spectrally dispersing the fringes
allows the group delay to be evaluated with one set of contempo-
raneous data, which (like for the phase measurement) minimizes
the influence of disturbances. We also showed that this method
is more robust to longitudinal dispersion effects. Therefore, we
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concluded that the optimal way to measure the fringe position
(phase and group delay) is to perform a static ABCD fringe cod-
ing, dispersed over about five spectral channels.

We also demonstrated that the co-axial pairwise combination
schemes with a moderate redundancy provide the best compro-
mise between sensitivity and robust operations. They are less
sensitive to varying observing conditions, and some schemes
also allow the photometries to be directly extracted from the
fringe signal, which is useful for the state machine. We finally
favored the 4T3 and 6T3B schemes for four- and six-telescope
operations respectively.

Merging these results, we simulated the expected perfor-
mance of the four-telescope concept. For an efficient fringe-
tracking, with fringes locked at least 90% of the time, we ex-
pect limiting magnitudes of 7.5 and 9.5 at K band with ATs and
UTs respectively. These performances are close to those of sin-
gle baseline fringe trackers currently in operation. Another im-
portant result is that the fringe tracker ultimate performances are
not limited by the fringe sensing measurement errors, but rather
by the time delay between the measurement of the piston and its
correction by the delay lines.

Finally, in the coming years, a new generation of infrared
detectors should be available. By providing very high acquisition
frequencies and an extremely low read-out noise at the limit of
photon-counting, multi-axial schemes should be reconsidered as
a possible solution for fringe-tracking, because they would not
be limited by the large amount of pixels needed to encode the
interferometric signal.

Acknowledgements. The authors are grateful to the referee, whose careful and
thorough review of the text and theoretical formalism helped them improve the
papers clarity and quality considerably.
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Appendix A: Phase error: detection and delay noise
expressions

Considering an ABCD fringe coding (Colavita et al. 1999), the
phase is extracted as follows. First we have the four ABCD mea-
surements in quadrature⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A ∝ V cos(φ)
B ∝ V cos(φ + π/2) = −V sin(φ)
C ∝ V cos(φ + π) = −V cos(φ)
D ∝ V cos(φ + 3π/2) = V sin(φ),

(A.1)

where V and φ are the fringe contrast and phase respectively. We
extract the real and imaginary part of the complex fringe signal{

A − C ∝ V cos(φ)
D − B ∝ V sin(φ), (A.2)

and finally we estimate the phase through its cotangent

tan
(
φ̂
)
=

D − B
A −C

· (A.3)

We are interested here in the statistical error on the phase mea-
surement, which depends on three sources of noises: detector
noise, photon noise, and delay noises. Because these noises are
statistically independent, the variance on the phase measure-
ment σ2

φ is simply the quadratic sum of these three noises

σ2
φ = σ

2
det + σ

2
phot + σ

2
del. (A.4)

A.1. Detection noises

The detector and photon noises terms (σ2
det and σ2

phot respec-
tively) are derived from Shao et al. (1988) for the ABCD fringe
coding, and for the sake of simplicity we put them together into
the so-called signal detection noise σ2

sig

σ2
sig = σ

2
det + σ

2
phot (A.5)

σ2
det = 2

4σ2
e

V2 K2
(A.6)

σ2
phot = 2

K
V2 K2

, (A.7)

where K is the number of photo-events collected during the ex-
posure and σ2

e is the detector read-out noise.

A.2. Delay noise

The delay noise is caused by the delay between the various mea-
surements needed to estimate the phase and therefore only con-
cerns a temporal phase estimator. Because of instrumental or at-
mospheric disturbances (e.g. fluctuation of the differential piston
or scintillation), the phase estimation can be highly biased. Since
Fried (1966) has shown that atmospheric piston and scintillation
are uncorrelated, we can study both effects independently

σ2
del = σ

2
pist + σ

2
sci. (A.8)

A.2.1. Piston noise: σpist

We note here φp(t) the piston term introduced by the atmo-
sphere at a moment t and consider that each (A, C) and (B, D)
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Table A.1. Piston noise calculated with different sets of data on VLTI
telescopes in H-band.

ATs
t0 [ms] 2 4 8
E λ/114 λ/72 λ/43
E λ/103 λ/62 λ/36
G λ/90 λ/57 λ/34
G λ/91 λ/60 λ/34
M λ/86 λ/53 λ/31
M λ/81 λ/51 λ/29
B λ/20 λ/13 λ/8
B λ/29 λ/19 λ/12

UTs
t0 [ms] 1 2 4
G λ/32 λ/20 λ/12
M λ/22 λ/13 λ/8
M λ/23 λ/19 λ/10
B λ/20 λ/13 λ/8

Notes. The noise is written with respect to the wavelength for three
different integration times. The values correspond to the worst case
(σ(φ̃) = σ(φp, t0/2)). Atmospheric conditions are: Excellent (E), Good
(G), Medium (M), Bad (B). The corresponding observing conditions
can be found in Table 1.

measurement lasts half the total integration time t0. Taking the
point in the middle of the interval t0 as the reference, the inter-
ferometric signal writes

A −C ∝ V cos
(
φ + φp (t − t0/4)

)
(A.9)

D − B ∝ V sin
(
φ + φp (t + t0/4)

)
. (A.10)

We note δφp = φp(t + t0/4) − φp(t − t0/4) the piston fluctuation
between both measurements

A −C ∝ V cos
(
φ − δφp/2

)
(A.11)

D − B ∝ V sin
(
φ + δφp/2

)
, (A.12)

δφp being unknown, the phase estimator φ̃ is

tan φ̃ =
D − B
A − C

=
sin

(
φ + δφp/2

)
cos

(
φ − δφp/2

) · (A.13)

As soon as δφp is non null, the phase measurement is bi-
ased. If we consider the statistic variations of the piston, this
bias can be considered as an additional noise. We now calcu-
late the standard deviation of this phase measurement linked
to the piston variations between txo exposures separated by a
time t0/2. The standard deviation of the piston for this time will
be noted σ(δφp, t0/2). Assuming that the piston variations are
small (σ(δφp, t0/2) � 1 rad) and using the second-order expan-
sion formula of Papoulis (1984), the measured phase variance
writes as

σ2
(
φ̃
)
=

(
∂φ̃

∂δφp

)∣∣∣∣∣∣
2

〈δφp〉
σ2

(
δφp, t0/2

)
, (A.14)

where 〈δφp〉 is the mean piston variation during t0/2. One shows
then that

∂φ̃

∂δφp
=

1
2

cos(2 φ)

cos2
(
φ − δφp/2

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1 +

⎛⎜⎜⎜⎜⎜⎜⎝ sin
(
φ + δφp/2

)
cos

(
φ − δφp/2

)
⎞⎟⎟⎟⎟⎟⎟⎠

2⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
−1

·

(A.15)

Assuming that 〈δφp〉 = 0, we obtain the scintillation noise

σ2
(
φ̃
)
=

1
4

cos2(2 φ)σ2
(
δφp, t0/2

)
. (A.16)

This result depends on the mean phase position. Assuming that φ
is uniformly distributed over [0, 2π], one finally obtains

σ
(
φ̃
)2
= 0.125σ2

(
δφp, t0/2

)
. (A.17)

This deviation is evaluated here by means of VLTI/FINITO data,
and the results are presented in Table A.1 for typical integration
times from 2 to 8 ms for ATs and from 1 to 4 ms for UTs.

A.2.2. Scintillation noise: σsci

The influence of scintillation (i.e., photometric variations) be-
tween (A, C) and (B, D) measurements is to induce fringe con-
trast fluctuations, which can bias the phase measurement. This
effect will be studied in the same manner as in the previous sec-
tion. Considering an ideal interferogram, the real and imaginary
parts of the coherent signal write

A −C ∝ Vsci (t − t0/4) cosφ (A.18)

D − B ∝ Vsci (t + t0/4) sin φ, (A.19)

where Vsci is the contrast attenuation term due to the photometric
imbalance between the two beams I1 and I2

Vsci =
2
√

I1 I2

I1 + I2
· (A.20)

Noting the flux variation δi = Ii(t + t0/4)− Ii(t − t0/4), the phase
estimator writes

tan φ̃ =
D − B
A −C

= α tanφ, (A.21)

where

α =

√
I1 + δ1/2
I1 − δ1/2

I2 + δ2/2
I2 − δ2/2

× I1 + I2 − δ1/2 − δ2/2
I1 + I2 + δ1/2 + δ2/2

· (A.22)

Simplifying the first and second terms by I1I2 and I1 + I2 respec-
tively

α =

√
(1 + x1/2) (1 + x2/2)
(1 − x1/2) (1 − x2/2)

× 1 − y1/2 − y2/2
1 + y1/2 + y2/2

, (A.23)

with

xi = δi/Ii (A.24)

yi = δi/ (I1 + I2) . (A.25)

If the flux varies between both quadratures, α � 1 and the phase
estimation is biased. If we consider the statistic variations of the
both photometries, this bias can be considered as an additional
noise. We therefore calculate the measured photometric variance
functions of the variance of the relative photometriesσ2(xi, t0/2)
between two exposures distant of t0/2. We assume that the two
pupils are sufficiently distant to be considered as uncorrelated,
which is the case if the baseline is longer than the atmospheric
outer scale (typically 20 m). Because the atmosphere follows
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Table A.2. Photometric noise written with respect to the wavelength in
the H-band, for three different integration times.

ATs
t0 [ms] 2 4 8
G λ/499 λ/369 λ/290
M λ/549 λ/301 λ/163
M λ/298 λ/196 λ/130
M λ/400 λ/277 λ/192
B λ/101 λ/67 λ/37

UTs
t0 [ms] 1 2 4
G λ/162 λ/122 λ/59
M λ/107 λ/76 λ/35
B λ/101 λ/52 λ/21

Notes. The values correspond to the worst case as defined in Eq. (A.39).
Atmospheric conditions are: Exceptionnal (E), Good (G), Medium (M),
Bad (B). The corresponding observing conditions can be found in
Table 1.

the same statistics on both, it implies 〈x1〉 = 〈x2〉 = 〈x〉 and
σ(x1, t0/2) = σ(x2, t0/2) = σ(x, t0/2)

σ2
(
φ̃
)
=

(
∂φ̃

∂x1

)∣∣∣∣∣∣
2

〈x1〉,〈x2〉
σ2 (x1, t0/2) +

(
∂φ̃

∂x2

)∣∣∣∣∣∣
2

〈x1〉,〈x2〉
σ2 (x2, t0/2)

= 2

(
∂φ̃

∂xi

)∣∣∣∣∣∣
2

〈x1〉,〈x2〉
σ2 (x, t0/2) , (A.26)

with(
∂φ̃

∂xi

)∣∣∣∣∣∣〈x1〉,〈x2〉
=
∂ (α tan φ)
∂xi

1

1 + (α tanφ)2
· (A.27)

To obtain an analytical expression of this quantity, we assume
the flux variaitons to be small: δi � Ii. We do a first-order ex-
pansion of α and only conserve the terms of the first order

α ∼ (1 + x1/4)2 (1 + x2/4)2 (1 − y1/2 − y2/2)2 (A.28)

∼ (1 + x1/2) (1 + x2/2) (1 − y1 − y2) (A.29)

∼ (1 + x1/2 + x2/2) (1 − y1 − y2) (A.30)

∼ 1 + x1/2 + x2/2 − y1 − y2. (A.31)

We expand the latter expression to simplify it

α ∼ 1 +
δ1

2I1
+
δ2

2I2
− δ1 + δ2

I1 + I2
(A.32)

∼ 1 +
δ1I2

2 + δ2I2
1 − (δ1 + δ2) I1I2

2 (I1 + I2) I1I2
(A.33)

∼ 1 +
I2 − I1

I2 + I1

δ1I2 − δ2I1

2I1I2
(A.34)

and finally:

α ∼ 1 +
1
2

I2 − I1

I2 + I1
(x1 − x2) . (A.35)

Therefore, considering α ∼ 1 in the second term of the expres-
sion (A.27)(
∂φ̃

∂xi

)∣∣∣∣∣∣〈x1〉,〈x2〉
=

1
2

I2 − I1

I2 + I1
cosφ sin φ. (A.36)

Noting that(
I2 − I1

I2 + I1

)2

= 1 − 4
I1I2

(I1 + I2)2
= 1 − V2

sci, (A.37)

we finally show that the variance of the phase measurement due
to the photometric noise is

σ2
(
φ̃
)
=

1
2

(sin φ cosφ)2
(
1 − V2

sci (〈I1〉 , 〈I2〉)
)
σ2 (x, t0/2) .

(A.38)

Note that the result depends on the mean value of the scintillating
visibility Vsci. Hence, a perfectly balanced system should present
a null photometric noise. This is an unrealistic effect because of
our symetric modelling of the photometric variation with a step.
In practice, the quick variations of photometries (i.e. during the
integration) induce a noise even for a perfectly symetric com-
biner. To obtain a more realistic value, we can consider a (worst)
case with a mean imbalance between fluxes of a factor of 10, so
that Vsci ∼ 0.57 and 1 − V2

sci ∼ 0.67.
If we finally average this result over every realisation of φ

(still assuming its statistics to be uniform between 0 and
2π)

σ2
(
φ̃
)
= 0.04σ2 (x, t0/2) . (A.39)

Similarly to the piston noise, we present in Table A.2 the results
obtained from ESO data on ATs and UTs for different integration
times.

Appendix B: Theoretical dynamic range for the
group delay estimation with dispersed fringes

We analyse here the case of a dispersed estimator for the group
delay, similar to what is implemented on PRIMA, PTI or KI.
We remind that the coherence envelope E(x) corresponds to the
Fourier transform modulus of the coherent signal

E(x) ∝
∣∣∣∣∣
∫ ∞

0
I(λ)V(λ)ei2πxGD/λ e−i2πx/λ dλ

∣∣∣∣∣ , (B.1)

where x is the OPD, xGD the position of the envelope centre,
and I(λ) and V(λ) the source intensity and visibility, both de-
pending on the wavelength λ. We consider a spectral band cen-
tred around λ0 and of width Δλ, so that the coherence length Lc
of the wide-band interferogram is Lc = λ

2
0/Δλ. The fringes are

dispersed over Nλ spectral channels of equal width δλ = Δλ/Nλ.
In terms of wavenumber, the wide- and narrow-band widths
write Δσ = 1/Lc and δσ = Δσ/Nλ.

For sake of simplicity we consider here an ideal case, that
is the all considered quantities are achromatic, in particular the
source flux I and visibility V do not depend on the wavelength.
We assume we dispose of a fringe coding (ABCD for instance)
allowing the complex fringe signal Zk to be computed in each
channel k, this latter being defined as

Zk = IkVkei2πσk xGD = IVei2πσk xGD , (B.2)

where σk = 1/λk is the effective wavenumber on each spectral
channel. The discrete Fourier transform of this coherent signal
is then

F (x) =
Nλ∑
k=1

Zk e−i 2πσk x

=

Nλ∑
k=1

I V e−i 2πσk(x−xGD), (B.3)
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and we finally compute the squared coherence envelope

E2(x) ∝ |F (x)|2 (B.4)

= F (x)F ∗(x) (B.5)

= I2 V2
Nλ∑
k=1

Nλ∑
l=1

e−i 2π(σk−σl)(x−xGD), (B.6)

where F ∗ is the complex conjugate of F . Because each spectral
channel has the same width, σk − σl = δσ (k − l) and we finally
derive

E2(x) ∝ I2 V2
Nλ∑
k=1

Nλ∑
l=1

e−i 2π δσ (x−xGD) (k−l). (B.7)

The group delay is obtained when this quantity is maximum, that
is, when all the phasors in the double summation are in phase.
In the present simple case, it is obvious that this happens when
x = xGD, which leads to

∀(k, l), e−i 2π δσ (x−xGD) = 1. (B.8)

And solving this equation finally gives

x = xGD [1/δσ], (B.9)

where [ ] is the modulo symbol. In other words, by dispersing
the fringes, we find the group delay with an ambiguity equal
to 1/δσ. From the definition of δσ, it finally corresponds to an
ambiguity (or a dynamic range) equal to Nλ λ

2

Δλ .

Appendix C: Noise propagation on pairwise
combination schemes

The study conducted in Sect. 4 aims at comparing various co-
axial pairwise combination schemes looking at the phase and
group delay measurement precision in various configurations.
This study is based on analytical descriptions of measurement
noises. We here describe various points which were necessary
for this study but which are not essential for the comprehension
of the results.

C.1. Reference noise

Thanks to Shao et al. (1988), Tatulli et al. (2010) and our
study (Eqs. (14) and (15)), we know the analytical expression
of the phase and group delay noises in detector- and photon-
noise regimes, and for co-axial pairwise combinations. They ex-
press as

σdet
0 =

A
KV

(C.1)

σ
phot
0 =

B√
KV
, (C.2)

K and V being the number of photo-events and the fringe visibil-
ity. A and B are proportionality factors depending on the fringe
coding, which have no influence in the following. These expres-
sions correspond to the noise for a two-telescope (one base-
line) instrument and are considered as noise references in the
following.

C.2. Individual baseline noise

When we consider an interferometric array with more than two
telescopes, the flux of each telescope is distributed between sev-
eral different baselines, increasing the noise on each baselines.
We consider two cases here: the open and redundant schemes.

C.2.1. Redundant schemes

The most simple cases are the redundant schemes in which the
flux of each pupil is divided between the same number R of
baselines. Compared to a two-telescope instrument, the total
flux K on each baseline is divided by R, so that the measurement
noise is

σdet = A
R

KV

= Rσdet
0 (C.3)

σphot = B

√
R√

KV

=
√

Rσphot
0 . (C.4)

We are therefore able to compare the different schemes on de-
tector and photon noise regimes on the base of a reference noise.

C.2.2. Open schemes

The open schemes use the minimal number of baselines enabling
the array to be cophased, that is, N − 1 baselines. In this case the
array is not symmetric, so that splitting the flux of intermediate
pupils into equal parts (i.e., taking 50% of their flux for each
baseline) implies unequal performances for the different base-
lines. In this study we give the open schemes intrinsically equiv-
alent baselines, that is, with the same SNR on the fringe position
measurements. To do so, we have to consider intrinsically imbal-
anced photometric inputs for each baseline and we evaluate the
optimal fraction of the flux to inject in the different baselines.

Considering two identical telescopes i and j, we combine
their light by taking a fraction δi and δ j of the incoming fluxes on
each telescope respectively. In this case, the total flux available
at the baseline is

K′ = K
(
δi + δ j

)
/2, (C.5)

and the fringe contrast V is possibly reduced because of the pho-
tometric imbalance

V ′ = V
2
√
δiδ j

δi + δ j
· (C.6)

Now considering the noise expressions in Eqs. (C.1) and (C.2),
we can easily write the measurement noises in this case, still as
a function of our reference noises

σdet
i j =

1√
δiδ j

σdet
0 (C.7)

σ
phot
i j =

√
δi + δ j

2δiδ j
σ

phot
0 . (C.8)

The open schemes with four and six telescopes are presented in
Fig. C.1 with the associated nomenclature in term of splitting
ratio δi. We determine in the following their values.
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Fig. C.1. Open schemes considered in the four and six telescopes cases.
The nomenclature for the flux split ratio δi are represented in the figures.

4TO case. For symmetry reasons we consider δ1 = δ4 = 1 and
δ2 = δ3 = δ, and therefore the measurement errors on the three
baselines write

σdet
12 = σ

det
34 =

1√
δ
σdet

0 σ
phot
12 = σ

phot
34 =

√
1 + δ

2δ
σ

phot
0

σdet
23 =

1
1 − δσ

det
0 σ

phot
23 =

1√
1 − δσ

phot
0 .

Our goal is to have equivalent baselines, i.e., we want σi j to be
equal on the three baselines. Solving this system in detector and
photon noise regimes leads to

δdet = 0.38 δphot = 0.42

σdet
i j = 1.62σdet

0 σ
phot
i j = 1.31σphot

0 .

6TO case. For symmetry reasons we have δ1 = δ6 = 1, δ2 = δ5
and δ3 = δ4. The measurement errors on the five baselines write

σdet
12 = σ

det
56 =

1√
δ2
σdet

0

σ
phot
12 = σ

phot
56 =

√
1 + δ2

2δ2
σ

phot
0

σdet
23 = σ

det
45 =

1√
(1 − δ2) (1 − δ3)

σdet
0

σ
phot
23 = σ

phot
45 =

√
2 − δ2 − δ3

2 (1 − δ2) (1 − δ3)
σ

phot
0

σdet
34 =

1
δ3
σdet

0

σ
phot
34 =

1√
δ3
σ

phot
0 .

In the same way as previously, we estimate the optimal value of
the different δi

δdet
2 = 0.31 δ

phot
2 = 0.37

δdet
3 = 0.55 δ

phot
3 = 0.54

σdet
i j = 1.81σdet

0 σ
phot
i j = 1.36σphot

0 .

For the 4TO and 6TO cases we note the different values of δi are
close in detector and photon noise regimes, so that these schemes

are practically possible. In both regimes we consider the same
values: δ = 0.40 in the 4T case; δ2 = 0.34 and δ3 = 0.54 in the
6T case.

C.3. Estimating the individual fringe position and final
measurement noise

We have to estimate N − 1 differential pistons to cophase the in-
terferometric array. In practice we measure B differential pistons
(noted φ̃), with B > N −1 for redundant schemes, and B = N −1
for the open ones. Noting x the vector of the N − 1 optical path
estimators used to drive the delay lines, the equation system link-
ing φ̃ and x is

φ̃ =Mx, (C.9)

where M is the so-called interaction matrix, which is known.
We now need to inverse this system by computing the control
matrix W:

x̂ =Wφ̃. (C.10)

For the redundant schemes, M is rectangular and we compute W
on the base of a singular value decomposition of M. We therefore
solve the system in the sens of a least-squares minimization, i.e.,
we minimize the quantity

χ2 =
∣∣∣φ̃ −Mx̂

∣∣∣2 . (C.11)

However, the measurements φ̃ are noisy and we have to
weight them to minimize the influence of the noisiest baselines.
Considering that the measurements have Gaussian statistics and
are statistically independent, the χ2 writes

χ2 =

∣∣∣∣∣∣ φ̃ −Mx̂
σ

∣∣∣∣∣∣
2

, (C.12)

whereσ is the vector of the error on the measurement φ̃, given by
Eqs. (C.3) and (C.4) depending on the noise regime. We modify
in consequence the differential phase vector φ̃ and the interaction
matrix M as follow

Mi j →Mi j/σi, j ∈ [1,N − 1], i ∈ [1, B] (C.13)

φ̃i → φ̃i/σi. (C.14)

C.4. Statistical error on the estimated differential pistons

To compare the various schemes, we are interested in the error
on the differential piston xi j = xi − x j, which corresponds to the
error on the correction applied to the delay lines

xi =

B∑
k=1

Wikφ̃k. (C.15)

Given the definition of φ̃k (Eq. (C.14)), the statistical error on
these terms is σ(φ̃k) = 1. We finally obtain the quadratic error
σ2

i j on the corrected differential piston

σ2
i j =

B∑
k=1

(
Wik −W jk

)2
. (C.16)
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