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We analyze shallow water wind waves in Currituck Sound, North Carolina and experimentally confirm,
for the first time, the presence of soliton turbulence in ocean waves. Soliton turbulence is an exotic form of
nonlinear wave motion where low frequency energy may also be viewed as a dense soliton gas, described
theoretically by the soliton limit of the Korteweg–deVries equation, a completely integrable soliton system:
Hence the phrase “soliton turbulence” is synonymous with “integrable soliton turbulence.” For periodic-
quasiperiodic boundary conditions the ergodic solutions of Korteweg–deVries are exactly solvable by finite
gap theory (FGT), the basis of our data analysis. We find that large amplitude measured wave trains near the
energetic peak of a storm have low frequency power spectra that behave as ∼ω−1. We use the linear Fourier
transform to estimate this power law from the power spectrum and to filter densely packed soliton wave
trains from the data. We apply FGT to determine the soliton spectrum and find that the low frequency ∼ω−1

region is soliton dominated. The solitons have random FGT phases, a soliton random phase approximation,
which supports our interpretation of the data as soliton turbulence. From the probability density of the
solitons we are able to demonstrate that the solitons are dense in time and highly non-Gaussian.
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The physical basis of weak wave turbulence was
developed by Zakharov and Filonenko [1]. They inves-
tigated the theoretical power spectrum for ocean surface
waves and demonstrated that in deep water the direct
cascade of energy—from the spectral peak to higher
frequencies in the spectral tail—should be of the form
EðωÞ ∼ ω−4. This theoretical result was confirmed in
subsequent work [2,3] in which the power law was found
to be an exact solution of the kinetic equation for the waves.
The expansion used in this computation is only up to the
third order in wave steepness and thus the theory is referred
to as “weak turbulence.” Both numerical and experimental
confirmations have been found [4–10]. Zakharov [2,3]
also found the Kolmogorov spectrum for shallow water
weak wave turbulence. The inverse cascade of wave action
to large scale or small frequency is a power law:
Iω ∼Q1=3ω−1, where Q is the flux of action.
The theory of integrable soliton turbulence, as used here

to analyze ocean wave data, is based on the discovery of
complete integrability for the Korteweg–deVries (KdV)
equation:

ηt þ c0ηx þ αηηx þ βηxxx ¼ 0 ð1Þ
(co ¼

ffiffiffiffiffi

gh
p

, α ¼ 3co=2h, β ¼ coh2=6, for h the water
depth, g the gravitational acceleration), valid for small

but finite amplitude, long waves in shallow water. KdV is
integrated by the inverse scattering transform (IST) on the
infinite line [11]. Zakharov has studied this shallow water
case [12,13] for integrable turbulence for a rarified soliton
gas. He derived a soliton-gas kinetic equation for the KdV
equation using the IST. More recently, the kinetic equation
for a dense soliton gas for integrable nonlinear wave
equations has been found by El and Kamchatnov [14]
by taking the thermodynamic limit of the Whitham
equations to obtain a nonlinear integrodifferential equation
for the spectral measure. This result generalizes Zakharov’s
case for a rarified soliton gas.
The other equation we refer to herein is the nonlinear

Schrödinger (NLS) equation which describes nonlinear
wave packet dynamics

iðψ t þ CgψxÞ þ μψxx þ νjψ j2ψ ¼ 0 ð2Þ

(Cg, μ, and ν are depth dependent constants [15]). The NLS
equation is approximately valid in a narrow band about the
spectral peak. We use NLS here mainly to ensure the
separation of long wave (KdV) and short wave (NLS)
scales as discussed below in the data analysis.
Herein we test to ensure that the measured time series

are stationary and ergodic, a standard procedure for the
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analysis of ocean waves. The fast Fourier transform (FFT, a
periodic algorithm) is the most often used method for data
analysis. Likewise finite gap theory [16] (nonlinear Fourier
analysis for KdV which is also periodic) is used to analyze
and interpret the measured Currituck Sound data using the
methods of [17]. This means that we are able to deal, from a
theoretical and data analysis point of view, with the densely
packed solitons found in the data. Herein, our use of the
term soliton turbulence is synonymous with integrable
soliton turbulence as discussed in the theoretical literature
[12–14]. The ω−1 theoretical power law of Zakharov [2,3]
for shallow water weak wave turbulence is not applicable
to high density soliton interactions with strongly non-
Gaussian behavior as addressed experimentally herein.

A confirmation of the theoretical behavior of soliton
dynamics of integrable soliton gases came from numerical
simulations using FGT [18]. The method was applied to
construct realizations of KdV random processes with a
power law spectrum k−γ and uniformly distributed FGT
phases. These highly nonlinear cases consisted of ener-
getic, densely packed solitons in low-level radiation.
Direct experimental verification of soliton turbulence in

the ocean has remained unconfirmed for over four decades.
One obstacle has been the impossibility of distinguishing
by eye solitons from the large radiative (wind) waves in
experimental data. This difficulty was overcome in [19]
using a nonlinear filtering technique—based on FGT for
KdV—to extract solitons from surface wave data obtained
in the Adriatic Sea.

FIG. 1 (color online). Measured surface wave time series of 8192 points (27.96 min, sampling interval 0.2048 s, black curve) from
Currituck Sound beginning at 21:00 h on 4 February 2002. The significant wave height was 0.52 m in a depth of 2.63 m. The red curve is
the low frequency soliton signal obtained by low pass filtering the (black) measured time series.
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FIG. 2 (color online). Power spectrum of the measured time
series in Fig. 1. Validity intervals for KdV (f < 0.22 Hz) and
NLS (0.34 Hz < f < 0.56 Hz) are shown. Exact power laws (red
lines) are shown in the low-frequency soliton turbulent region
(∼f−1) and high-frequency cascade region (∼f−4).
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FIG. 3 (color online). Least squares fit spectral power laws of
the experimentally determined solitonic wave trains at different
hours during a Currituck Sound storm on 04/02/2002. The power
spectra have been vertically shifted for clarity.

PRL 113, 108501 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

5 SEPTEMBER 2014

108501-2



In the present Letter we analyze data measured by Long
and Resio in Currituck Sound, North Carolina [5]. Figure 1
shows a measured amplitude time series, whose power
spectrum is given in Fig. 2. An important characteristic of
the Currituck Sound data is the small depth (h ¼ 2.63 m) in
which the probes were positioned. This particular water
depth allowed the simultaneous measurement of the spec-
trally well-separated dynamics of both KdV (shallow water
wave dynamics) and NLS (variable depth dynamics cen-
tered about a narrow spectral peak) in the same data set,
resulting in a power spectrum which divides high frequency
and low frequency behaviors by a low energy spectral
minimum parametrically characterized by the depth h.
The mean of the frequencies at the minima in the measured
spectra, in all data sets analyzed is fmin ≃ 0.22 Hz,
corresponding to a value of kh≃ 0.80, where ω2 ¼

gk tanhðkhÞ is the linear dispersion relation, f ¼ ω=2π
(see Fig. 2). Thus, the experimental setup is quite unique,
with well-separated KdV and NLS behaviors. This con-
trasts to [19] where no NLS regime occurred.
The high-frequency cascade range of the wind-wave

spectrum, f > 0.7 Hz, was found to have a power law
∼f−4 (Fig. 2), in agreement with [4,5,7,8]. The low-
frequency spectra were also found to be approximated
by a power law ∼f−γ during the full 34 hours of the storm,
Fig. 2. Figure 3 shows the least squares fits of many of these
low frequency power law spectra found during the peak of
the storm. In Fig. 4 we graph the significant wave heightHs
and the low-frequency slope γ as a function of time over the
period of the storm. Near the peak of the stormHs averaged
0.496� 0.060 m and γ averaged 1.043� 0.074.
Several well-defined, large amplitude solitons were

found in the present study. In Fig. 5 we show three
turbulent soliton trains in the absence of the background
radiation and in Fig. 6 we show several soliton trains
beneath the measured surface waves. The tendency for the
largest solitons to occur beneath large wave packets is clear.
Thus, our data set vastly extends on previous results from
[19] where this effect was first seen.
In order to characterize the measured soliton wave trains

we have (i) extracted the long wave, low frequency part of
the spectrum from the measured data to see the soliton
turbulence in the absence of the radiation modes (Figs. 1, 5,
and 6). (ii) Computed the power spectrum in order to obtain
the spectral slope γ (Figs. 3 and 4). (iii) Determined that
these low frequency Fourier power spectral components
are solitons using FGT (Figs. 5 and 6). (iv) Computed the
soliton spectrum (FGT) and the probability density of
solitons (Fig. 7). In the first method (i) we low pass filtered
the measured time series using the fast Fourier transform
and FGT. Because of the well-separated scales in the
spectral domain, these results are comparable and support

FIG. 4 (color online). Significant wave height Hs during the
Currituck Sound storm (green diamonds) and slope of power law
power spectra γ (red circles) versus time during the Currituck
Sound storm. The fitting errors on the slopes are ∼� 0.07.
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FIG. 5 (color online). Turbulent soliton wave trains computed by low-pass filtering the measured wave data as discussed in the text.
The results were obtained during the storm of 4 February 2002 (a), (b), and (c). We have verified with FGT that the peaks in these time
series are solitons and are governed by a low frequency power law as shown in Figs. 2 and 3.
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the soliton interpretation of the data. In the second method
(ii) we use the Fourier transform to obtain the power
spectrum to estimate the slope of the power law γ (Fig. 3).
In the third and forth methods (iii),(iv) we apply FGT to
compute the nonlinear spectrum to determine whether the
power law spectrum computed from the linear Fourier
transform arises strictly from solitons: For each elliptic
modulus near 1 we have a soliton component. FGT
demonstrates that the soliton modes saturate the low-
frequency part of the power spectrum, spanning the region
of the ∼f−1 power law.
The nonlinear physics corresponds to a dense soliton gas

as seen in the nonlinear spectrum and probability density
function (Fig. 7). For each of the 14 time series near the
storm peak there are about 120 solitons that appear in
the region of the low frequency power spectra characterized
by a power law γ ∼ 1.043� 0.074. The average full width
at half maximum of each soliton is about 10.5 s
(1258 s=120 solitons): roughly half of the solitons are

smaller (and broader) than the average soliton (6.3 cm
height) and are therefore more densely packed than the
average, while the remaining half of the solitons are larger
(and more narrow) than the average and are thus less dense
and easily seen as the largest solitons in Figs. 1, 4, and 5.
We also find that the FGT phases of the solitons are random
numbers on (0, 2π), thus connecting integrable FGTwith a
statistical description of the data, the solitonic random
phase approximation of FGT [18]: Our data are described
by soliton FGT modes with random phases, which is
soliton turbulence, the random soliton limit of KdV.
Reasons why the Currituck Sound experiment has been

able to successfully measure soliton turbulence include
the following: (i) The shallow water depth allows for the
generation of long wave solitonic components. (ii) The
particular depth of 2.6 m divides the low frequency KdV
region of the spectrum from the high frequency NLS
region. (iii) Large wave conditions occurred at the peak
of the storm on 5/2/2002, thus providing a large range of
nonlinear frequency scale interactions in the spectrum.
(iv) Use of FGT allows us to determine the presence of
soliton turbulence in the spectrum of the data.
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FIG. 6 (color online). Two measured wave trains (black) together with the underlying soliton trains obtained by low pass filtering of
the data (red). The results show how large solitons tend to occur under large packets.

FIG. 7 (color online). FGT Soliton spectrum of the measured
wave train in Fig. 1(a). Histogram of soliton amplitudes from
Fig. 5(b). The highly non-Gaussian nature of the solitons is clear.

PRL 113, 108501 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

5 SEPTEMBER 2014

108501-4

http://dx.doi.org/10.1007/BF00915178
http://dx.doi.org/10.1007/BF00915178
http://dx.doi.org/10.1007/BF00913182


[3] V. E. Zakharov, Eur. J. Mech. B, Fluids 18, 327 (1999).
[4] D. T. Resio and W. Perrie, J. Fluid Mech. 223, 603 (1991).
[5] C. E. Long and D. T. Resio, J. Geophys. Res. 112, C05001

(2007).
[6] A. Pushkarev, D. Resio, and V. E. Zakharov, Nonlinear Proc.

Geophys. 11, 329 (2004).
[7] Y. Toba, J. Oceanogr. Soc. Jpn. 28, 109 (1972).
[8] Y. Toba, J. Oceanogr. Soc. Jpn. 29, 209 (1973).
[9] A. R. Dyachenko, V. E. Zakharov, A. N. Pushkarev, V. F.

Shvets, and V. V. Yan’kov, Sov. Phys. JETP 69, 1144
(1989).

[10] D. Dutykh and E. Pelinovsky, arXiv:1312.1651v2.
[11] C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M.

Miura, Phys. Rev. Lett. 19, 1095 (1967).

[12] V. E. Zakharov, Sov. Phys. JETP 33, 538 (1971).
[13] V. E. Zakharov, Stud. Appl. Math. 122, 219 (2009).
[14] G. A. El and A. M. Kamchatnov, Phys. Rev. Lett. 95,

204101 (2005).
[15] C. C. Mei, The Applied Dynamics of Ocean Surface Waves

(Wiley-Interscience, New York, 1983).
[16] E. D. Belokolos et al., Algebro-Geometric Approach

to Nonlinear Integrable Equations (Springer, Berlin,
1994).

[17] A. R. Osborne, Nonlinear Ocean Waves and the Inverse
Scattering Transform (Academic Press, Boston, 2010).

[18] A. R. Osborne, Phys. Rev. Lett. 71, 3115 (1993).
[19] A. R. Osborne, E. Segre, G. Boffetta, and L. Cavaleri, Phys.

Rev. Lett. 67, 592 (1991).

PRL 113, 108501 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

5 SEPTEMBER 2014

108501-5

http://dx.doi.org/10.1016/S0997-7546(99)80031-4
http://dx.doi.org/10.1017/S002211209100157X
http://dx.doi.org/10.1029/2006JC003835
http://dx.doi.org/10.1029/2006JC003835
http://dx.doi.org/10.5194/npg-11-329-2004
http://dx.doi.org/10.5194/npg-11-329-2004
http://dx.doi.org/10.1007/BF02109772
http://dx.doi.org/10.1007/BF02108528
http://arXiv.org/abs/1312.1651v2
http://dx.doi.org/10.1103/PhysRevLett.19.1095
http://dx.doi.org/10.1111/j.1467-9590.2009.00430.x
http://dx.doi.org/10.1103/PhysRevLett.95.204101
http://dx.doi.org/10.1103/PhysRevLett.95.204101
http://dx.doi.org/10.1103/PhysRevLett.71.3115
http://dx.doi.org/10.1103/PhysRevLett.67.592
http://dx.doi.org/10.1103/PhysRevLett.67.592

