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ABSTRACT

Aims. We present the first near-IR milli-arcsecond-scale image of a post-AGB binary that is surrounded by hot circumbinary dust.
Methods. A very rich interferometric data set in six spectral channels was acquired of IRAS 08544-4431 with the new RAPID camera
on the PIONIER beam combiner at the Very Large Telescope Interferometer (VLTI). A broadband image in the H-band was recon-
structed by combining the data of all spectral channels using the SPARCO method.
Results. We spatially separate all the building blocks of the IRAS 08544-4431 system in our milliarcsecond-resolution image. Our
dissection reveals a dust sublimation front that is strikingly similar to that expected in early-stage protoplanetary disks, as well as an
unexpected flux signal of ∼4% from the secondary star. The energy output from this companion indicates the presence of a compact
circum-companion accretion disk, which is likely the origin of the fast outflow detected in Hα.
Conclusions. Our image provides the most detailed view into the heart of a dusty circumstellar disk to date. Our results demonstrate
that binary evolution processes and circumstellar disk evolution can be studied in detail in space and over time.

Key words. stars: AGB and post-AGB – binaries: spectroscopic – techniques: high angular resolution – infrared: stars –
techniques: interferometric – circumstellar matter

1. Introduction

Binary interactions play a fundamental role in many poorly un-
derstood stellar phenomena. One peculiar class of objects con-
cerns the post-asymptotic giant branch (post-AGB) stars in SB1
binary systems, which have hot as well as cold circumstellar dust
and gas (van Winckel 2003). The presence of a near-IR excess
in the spectral energy distribution (SED) of a post-AGB star cor-
relates well with the central star being part of a ∼1−2 au-wide
binary system (e.g. van Winckel et al. 2009). Such evolved bi-
naries are common in the Galaxy (de Ruyter et al. 2006) and
recent studies show that about 30% of all optically bright post-
AGB stars have this typical SED (Kamath et al. 2015). The com-
panions are not detected and are assumed to be unevolved, and
of low luminosity compared to the post-AGB star.

The specific SED of these objects indicates the presence of a
stable, circumbinary dust reservoir starting at the dust sublima-
tion radius. The single-dish CO line survey of Bujarrabal et al.
(2013a) also shows their gas structures to be in Keplerian rota-
tion, based on the narrow emission profiles of the CO rotation-
ally excited lines. The orbiting gas in the outer disk has also been
spatially resolved in two objects (Bujarrabal et al. 2015, 2013b).

The gas and dust rich disk is passively heated, and therefore
vertically puffed-up, by the energy it intercepts from the lumi-
nous but low-mass post-AGB star. The mid-IR dust emission
features and the mm slopes in the SEDs reveal a high degree

? Based on observations made with ESO Telescopes at the La Silla
Paranal Observatory under program ID 094.D-0865.

of grain processing and growth (up to mm sizes, Hillen et al.
2015; Gielen et al. 2011). To probe the physical and chemical
characteristics of this circumstellar material, which is at astro-
nomical unit scales in these distant (∼kpc) objects, observations
are required with the angular resolution of a long-baseline in-
terferometer. Several objects have been resolved in the near- or
mid-IR in this way, confirming their disk nature (Hillen et al.
2015; Deroo et al. 2007). In contrast to the protoplanetary disks
around young stars (Benisty et al. 2011), no post-AGB inner disk
rim has yet been imaged. The target of this study, IRAS 08544-
4431, was resolved with a limited baseline coverage (Deroo et al.
2007) on the Very Large Telescope Interferometer (VLTI). Here
we present the first near-IR milliarcsecond-scale image that fully
dissects the inner object into its constituent components.

2. Image reconstruction strategy

Interferometric image reconstruction is an ill-posed inverse
problem aimed at determining image pixel values. It is typi-
cally solved with a Bayesian approach: a global cost function
ζ = ζdata + µζrgl is minimized, with ζdata the likelihood term (the
χ2), ζrgl a regularization term, and µ the regularization weight.
The regularization helps to fill the gaps in the UV-coverage by
interpolating the Fourier plane in a specific way, and is crucial
when converging to the most likely estimate of the true source
brightness distribution.

Here we produce images with a chromatic reconstruction
algorithm, named SPARCO (Kluska et al. 2014). This method
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decomposes the source brightness distribution in two: a fraction
of the flux is included in the form of a parametric model, while a
model-independent reconstruction is done of the remaining flux
(i.e., the environment). The total complex visibility is then a lin-
ear combination of the visibility of each component, weighted
by the flux ratio that bears the chromatic information:

Vtot,λ(u, v) =

∑
i

fiΛi,λVi,λ(u, v)

 + fenvΛenv,λVenv,λ(u, v)∑
i

fiΛi,λ

 + fenvΛenv,λ

· (1)

The chromaticity is parameterized by the coefficients f and Λ
(
∑

i fi+ fenv = 1, ∀i : Λi,1.65 = 1 and Λenv,1.65 = 1). The chromatic
and model parameters can be fixed from prior information, or be
fitted with the image of the environment.

SPARCO uses existing (monochromatic) reconstruction al-
gorithms, in this case MiRA (Thiébaut 2008). Our image con-
tains 512 × 512 pixels, with a pixel size of 0.15 mas/pixel.
We apply the quadratic smoothness regularization (Renard et al.
2011). The regularization weight µ is re-determined for each re-
construction with the L-curve method (Renard et al. 2011), tak-
ing a grid of 100 values between 105 and 1014. The uncertainties
on the input data are translated into a measure of the significance
of each pixel value with a bootstrap method (Efron & Tibshirani
1994). We generate 500 new data sets, of equal size to the orig-
inal, by randomly picking squared-visibility and closure-phase
measurements. An image is reconstructed for each virtual data
set. From this image cube we compute the average and standard
deviation image and significance contours at 5, 3, and 1σ.

In this paper, we first reconstruct an image with the paramet-
ric component equal to a single star, the primary (Sect. 4). Then,
we fit a model to quantify the detected structures (Sect. 5), and
we feed some of the resulting information into another recon-
struction in which two stellar components are subtracted.

3. Observations

Interferometric data were obtained with the PIONIER instru-
ment (Le Bouquin et al. 2011), combining the 1.8 m Auxiliary
Telescopes of the VLTI. PIONIER was upgraded with a rev-
olutionary fast and low-noise infrared camera (RAPID, Guieu
et al. 2014). Table 1 summarizes the log of the observations.
Unfortunately, one VLTI delay line suffered from technical
problems during our last run. To calibrate the fringe visibil-
ities and closure phases, we interleaved science observations
with those of KIII reference stars that were found with the
SearchCal1 software. Data were reduced and calibrated with
the pndrs package (Le Bouquin et al. 2011). The five consecu-
tive measurements in each observing block (OB) were averaged
together into a single observation, each containing six visibili-
ties and four closure phases dispersed over six spectral channels
across the H-band. The resulting calibrated observations and uv-
coverage are shown in Fig. 1, and in Figs. A.1 and A.2.

4. Single-star-subtracted reconstruction

The visibility of the primary is represented with a uniform disk
model (angular diameter θ? = 0.5 mas) that is fixed to the

1 http://www.jmmc.fr/searchcal_page

Table 1. Log of the PIONIER observations.

Night Conf. used # OBs # V2 # CP

2015-01-21a,b,c,d D0-G1-H0-I1 9 324 162
2015-01-24a,b,c,d,e A1-G1-K0-I1 10 360 180
2015-02-23 a,b,d,e B2-C1-D0 8 144 48

Notes. Calibrators: (a) HD 76160 (KIII, 0.47 ± 0.1 mas); (b) HD 73075
(KIII, 0.47±0.1 mas); (c) HD 77140 (Am, 0.46±0.1 mas); (d) HD 76111
(KIII, 0.41 ± 0.08 mas); (e) HD 75104 (KIII, 0.57 ± 0.12 mas).

Fig. 1. PIONIER squared visibility data with the best-fit parametric
model (upper panel), and normalized residuals (lower panel), as a func-
tion of radial spatial frequency. The color and symbol indicate the wave-
length in µm (blue pentagon: 1.53, cyan star: 1.58, green triangle: 1.63,
yellow circle: 1.68, orange diamond: 1.73, red square: 1.77). The cross
symbols in the upper panel represent model values.

origin of the coordinate system. The chromaticity of the stel-
lar and environment fluxes is well represented by power laws:
Λpri,λ =

(
λ

1.65 µm

)−4
and Λenv,λ =

(
λ

1.65 µm

)denv
, fenv = (1 − fpri)

with denv the spectral index of the environment.
We make a 20×20 grid on the chromatic parameters in which

fpri ranges from 0.5 to 0.65 and denv from −3 to 2. The posterior
probability distribution strongly peaks at fpri = 0.61 and denv =

0.42. For the regularization weight, we use µ = 1012.
The upper panel in Fig. 2 shows the inner 256 × 256 pixels

of the reconstructed image, which has a beam size of ∼1.3 mas
(defined as twice the Gaussian FWHM fitted to the interfero-
metric point spread function). Various features can be identified:
An inclined but almost circular ring, centered around the pri-
mary, is well resolved with a detection threshold better than 5σ.
The ring is not uniform in intensity, is ∼15 mas in diameter, and
appears to be clumpy. The ring contains two opposite intensity
maxima, of which the brightest one is in the northeast direction.
Two flux minima (close to flux nulls) appear in the northwest and
southeast parts of the ring. Additionally, there is an unresolved
(point-like) emission component at 5σ that is offset by ∼1 mas
from the center in the southwest direction, and which extends to
the northeast in a faint emission stream (at 3σ). Finally, the faint
emission on scales larger than the ring is well detected when spa-
tially integrated, but its morphology is unconstrained (at ∼1σ).
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Fig. 2. Reconstructed images. Upper panel: single-star-subtracted re-
construction of the original data. Middle panel: single-star-subtracted
construction of the synthetic data set made with the best-fit parametric
model. Lower panel: binary-subtracted reconstruction of the original
data. The horizontal and vertical axes contain right ascension and dec-
lination coordinates in units of milli-arcseconds, respectively (the north
and east directions are indicated in the lower right corner). The blue
ellipse shows the beamsize. The full, dashed and dotted lines delineate
pixels that have fluxes above 5, 3 and 1σ, respectively. For clarity only
the 5σ contours are shown in the lower panels. The blue and green star
symbols indicate the positions of the two stars as determined from the
best-fit parametric model (the actual flux of the primary is subtracted
from the image). The color indicates normalized flux, scaled to the high-
est pixel value in the image.

5. Parametric modeling

In this section, we quantify the morphologies and wavelength-
dependent flux contributions of the different components, by ap-
plying increasingly complex parametric models.

We perform the model-fitting in multiple steps, subsequently
adding components to the system. The primary star is repre-
sented in the same way as in the first image reconstruction. We

add: 1) an inclined ring with a radial profile that is described by
a Gaussian function and which can vary in brightness as a func-
tion of azimuthal angle with an m = 1 and m = 2 modulation
(Model 1 in Table A.1); 2) a uniform background flux that fills
the whole field-of-view (Model 2 in Table A.1); and 3) an unre-
solved point source (interpreted as the companion star), slightly
offset from the primary (Best model in Table 2). The ring is math-
ematically described in Kluska et al. (2012). We attach the ori-
gin of the coordinate system to the center of the ring. The back-
ground flux is completely resolved, irrespective of the baseline.
The positions of the two stars are defined by the projected sep-
aration vector’s length and position angle, because we anchor
the center of mass of the binary system to the center of the ring.
For this we assume co-planarity between the orbital plane and
the disk midplane. Then we use the binary mass ratio – from
the spectroscopic mass function (Maas et al. 2003) and a typ-
ical post-AGB mass of ∼0.6 M� for the primary – to compute
the position of the center of mass along the projected separation
vector.

For the ring, background, and secondary star components,
we define functions Λi,λ as normalized black bodies with tem-
peratures Tr, Tback and Tsec, respectively. The Λpri,λ function is
represented with a Kurucz atmosphere model (Teff = 7250 K,
log g = 1.0, [Fe/H]= –0.5, Maas et al. 2003) that is convolved to
the spectral resolution of PIONIER.

We use a Markov chain Monte Carlo (MCMC) method in
a Bayesian statistics framework to estimate the posterior prob-
abilities of the 16 parameters in our model. We define uniform
priors, the ranges of which are determined on the basis of the re-
constructed image (e.g., the ring diameter and inclination), phys-
ically acceptable ranges (e.g., the binary separation), and previ-
ous knowledge of the system (e.g., the primary and secondary’s
fluxes). The likelihood is implemented as exp(−χ2/2), with χ2

the standard goodness-of-fit parameter. We apply the ensem-
ble sampler with affine-invariance in the emcee python package
(Foreman-Mackey et al. 2013). We experiment with the num-
ber of chains and the number of steps per chain, and find repro-
ducible results with 400 chains and 1000 steps. The best-fit pa-
rameter values and their uncertainties are computed as the 16th,
50th, and 84th percentiles of the samples in the marginalized
distributions, but we quote the average of the upper and lower
bounds as a single uncertainty. The assumption of Gaussian un-
correlated noise is probably not entirely justified. Thanks to our
dedicated observing strategy, the dominant source of correlated
noise is likely to stem from the simultaneity of the measurements
in the six spectral channels. We take this into account by multi-
plying the data uncertainties by a factor

√
6 in the MCMC.

The squared visibilities and closure phases of the best-fit
model are included in Figs. 1 and A.1, along with the original
data and the residuals. Most model parameters are well con-
strained (Tables 2, and A.1 and Fig. A.3). With each geometric
component that is added, the total reduced chi-square decreases
by a factor of two, with the final model having χ2

rmr ∼ 2.3.
The residuals are dominated by certain closure phase measure-
ments at low and intermediate spatial frequencies, which have
very small uncertainties. Our fairly simple parameterization of
the ring and background flux may not fully capture the asymme-
try probed by these precise data.

Most of the flux at 1.65 µm is emitted by the primary star
(59.7 ± 0.6%), followed by the ring (20.9 ± 0.5%), the over-
resolved background (15.5 ± 0.5%), and the companion star
(3.9 ± 0.7%). Their best-fit temperatures are 7250 K (fixed),
1120 ± 50 K, 2400 ± 300 K, and 4000 ± 2000 K, respectively.
The angular separation between the two stellar components
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Table 2. Summary of the parametric modeling.

Parameter Prior Best model

Primary θpri (mas) 0.5 0.5
fpri 0.3–0.8 0.597 ± 0.006

Stellar positions ρbin (mas) 0.0–5.0 0.81 ± 0.05
PAbin (◦) 0–360 56 ± 3

Ring Θ (mas) 2–20 14.15 ± 0.10
δΘ/Θ 0.0–1.0 0.457 ± 0.015
c1 –1.0–1.0 0.35 ± 0.04
s1 –1.0–1.0 –0.25 ± 0.07
c2 –1.0–1.0 –0.05 ± 0.06
s2 –1.0–1.0 –0.27 ± 0.03
PA (◦) 0–360 6 ± 6
i (◦) 5–50 19 ± 2
fr 0.2–0.7 0.209 ± 0.009
Tr (K) 500–3000 1120 ± 50

Background fback 0.0–0.5 0.155 ± 0.005
Tback (K) 500–8000 2400 ± 300

Secondary θsec (mas) 0.0 0.0
fsec 0.0–0.2 0.039 ± 0.007
Tsec (K) 1500–8000 4000 ± 2000

Chi-square χ2
r [V2] – 1.8
χ2

r [CP] – 3.3
χ2

r [all] – 2.3

Notes. Only the best-fit model is included. The results of intermediate
modeling steps are shown in Table A.1.

is ρ = 0.81 ± 0.05 mas. The diameter of the ring is Θ =
14.15±0.10 mas, about 18 times the binary separation, and has a
Gaussian width of FWHM = 3.2 ± 0.1 mas. The ring is inclined
with respect to the plane of the sky by i = 19 ± 2◦. A model
image of the ring is included in Fig. A.4.

As a consistency check, we reconstruct an image from a syn-
thetic data set of the best-fit model, using the same image pa-
rameters (number of pixels, pixel sizes) and regularization (both
type and weight) as before. The reconstruction of the model
bears strong resemblance to the reconstruction of the real data
(see Fig. 2). The similarity in the background flux distribution
shows its shaping is a direct consequence of the UV-coverage.
The secondary is present as well, but there is residual flux at
the location of the primary. As this residual flux should not be
present, we do another reconstruction of the real data in which
the binary system is subtracted instead of only the primary. The
sum within square brackets in Eq. (1) is replaced by the best-fit
binary parameters listed in Table 2. The result is shown in the
lower panel of Fig. 2. The lack of residual emission in the center
of this image validates our parametric model results and shows
that there are artifacts that are due to the reconstruction process
in the single-star-subtracted images (e.g., the northeast emission
stream inside the ring). The disk also emerges more prominently
as a ring with reduced intensity asymmetries.

6. Discussion

Our results provide the first direct view into the central region of
an evolved binary surrounded by a circumbinary disk.

The ring can be readily associated with the inner dust sub-
limation rim of the circumbinary disk, which is resolved at an

unprecedented relative scale (>5 physical resolution elements).
Its temperature of ∼1150 K is consistent with the typical subli-
mation temperature of silicate grains (Kama et al. 2009).

IRAS 08544-4431 is the first post-AGB binary system in
which direct emission from the secondary is detected, and even
spatially separated from the primary. There are two hypotheses
to explain the high companion flux at 1.65 µm: thermal emission
from the surface of a 1.5−2.0 M� red giant or emission from
a compact accretion disk around a 1.5−2.0 M� main-sequence
star. We consider the second case more likely because obser-
vations of similar post-AGB systems indicate that circumcom-
panion accretion disks may be common (Gorlova et al. 2015,
2012). The main evidence comes from the detection (in Hα and
for more inclined systems) of fast outflows that originate from
the companion. The Hα line of IRAS 08544-4431 has a P Cygni-
like profile (Maas et al. 2003), which is consistent with this in-
terpretation, given that we find the system to be viewed close to
face-on.

Our observations demonstrate that the inner dynamics in
these evolved systems can now be spatially resolved in real-time.
By doing so over time, a new route is open to study and constrain
the complex physical processes that govern disk evolution and
dispersal around evolved binaries.
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Appendix A: Additional material

Table A.1. Summary of the intermediate steps in the parametric modeling.

Parameter Prior Model1 Model2

Primary θpri (mas) 0.5 0.5 0.5
fpri 0.3–0.8 0.625 ± 0.001 0.628 ± 0.001

Stellar positions ρbin (mas) 0.0–5.0 0.0 0.0
PAbin (◦) 0–360 – –

Ring Θ (mas) 2–20 14.13 ± 0.15 14.25 ± 0.16
δΘ/Θ 0.0–1.0 0.99 ± 0.01 0.48 ± 0.02
c1 –1.0–1.0 0.25 ± 0.02 0.18 ± 0.02
s1 –1.0–1.0 0.18 ± 0.04 –0.20 ± 0.04
c2 –1.0–1.0 0.20 ± 0.08 –0.20 ± 0.04
s2 –1.0–1.0 –0.25 ± 0.07 –0.09 ± 0.05
PA (◦) 0–360 13 ± 7 345 ± 5
i (◦) 5–50 27 ± 3 25 ± 2
fr 0.2–0.7 0.375 ± 0.001 0.208 ± 0.005
Tr (K) 500–3000 1450 ± 20 1230 ± 60

Background fback 0.0–0.5 – 0.164 ± 0.005
Tback (K) 500–8000 – 2000 ± 200

Secondary θsec (mas) 0.0 – –
fsec 0.0–0.2 – –
Tsec (K) 1500–8000 – –

Chi-square χ2
r [V2] – 9.0 3.0
χ2

r [CP] – 6.9 6.7
χ2

r [all] – 8.2 4.4

Fig. A.1. PIONIER closure phase data as a function of the maximum
radial spatial frequency in the given baseline triangle, with the best-fit
parametric model (upper panel) and residuals (lower panel). The color
and symbol indicate the wavelength in µm (blue pentagon: 1.53, cyan
star: 1.58, green triangle: 1.63, yellow circle: 1.68, orange diamond:
1.73, red square: 1.77).

Fig. A.2. Graphical representation of the uv-coverage. Data taken dur-
ing the first, second, and third run are indicated with tripod, triangle, and
plus symbols, respectively. The wavelength of an observation is indi-
cated by the color of the symbol, going from 1.53 µm (blue) to 1.77 µm
(red).
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Fig. A.3. MCMC “corner plot” of our best-fit parametric model (Model3). It shows the one- and two-dimensional projections of the posterior
probability distributions of all the parameters. The histograms on the diagonal also include the positions of the 16th, 50th, and 84th percentiles.

Fig. A.4. Theoretical brightness distribution of our best-fit parametric
model. The color bar shows normalized flux, scaled to the highest pixel
value in the image. The position of the primary and secondary star are
indicated with a blue and green star symbol, respectively.
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