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[1] Electrical impedance tomography aims to recover the electrical conductivity
underground from surface and/or borehole apparent resistivity measurements. This is a
highly nonlinear inverse problem, and linearized inverse methods are likely to produce
solutions corresponding to local minima of the misfit function to minimize. In the
present paper, electrical impedance tomography is addressed through a nonlinear
approach, namely, simulated annealing, in order to escape from local minima and to
produce conductivity distributions independent of the starting models. Simulated
annealing belongs to the Monte Carlo family which needs numerous forward modelings,
and particular attention is paid both to the forward numerical solution of the Poisson
equation and to the parameterization of the inverse problem, i.e., the way the conductivity
distribution is mathematically represented. The 2.5-dimensional forward problem is
solved through a multigrid approach which iteratively solves the Poisson equation from
large to small scales. In the same spirit, the conductivity model is parameterized in a
multiscale way by representing the conductivity distribution with a superimposition of
block whose sizes (in suitable units) are integer powers of 2. The multiscale inversion is
implemented in a sequential way by first inverting for the conductivity of the coarser
blocks and by progressively incorporating finer blocks in the conductivity model. A
decision stage based on a sensitivity analysis is performed before incorporating finer
blocks in order to optimize the parameterization by not adding unnecessary details into the
conductivity model. Both a synthetic example and a field experiment are used to explain
the method, and comparisons with a linearized inversion technique are done. INDEX
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1. Introduction

[2] Electrical resistivity methods are among the favorite
geophysical techniques used in shallow-depth geophysics
and considerable work has been done to improve their
efficiency. Modern multielectrode data collection systems
provide measurements with dense coverage [Asch and
Morrison, 1989], and electrical impedance tomography is
now currently used in hydrology [Bevc and Morrison, 1991;
Daily et al., 1992; Park, 1998; Hagrey and Michaelsen,
1999; Nowroozi et al., 1999], environmental remediation
[Van et al., 1991; Spies and Ellis, 1995; Daily and Ramirez,
2000], and spill monitoring [Ramirez et al., 1993]. Electrical
impedance tomography is generally formulated as an
inverse problem which aims at reconstructing the (possibly
complex) electrical conductivity (or resistivity) distribution
underground from electrical potential measurements made
at the boundaries of the region to be imaged (see, for
instance, Ward [1990] for a review). Both the inverse
problem and the dual direct problem, which gives the

electrical response for a known conductivity distribution,
benefitted from recent numerous breakthroughs [e.g., Berry-
man and Kohn, 1990; Ellis and Oldenburg, 1994a, 1994b;
Li and Oldenburg, 1994; Zhang et al., 1995; Borcea et al.,
1999; Li and Oldenburg, 2000; Torres-Verdin et al., 2000].
However, the inverse problem remains a notoriously diffi-
cult one because of both its highly nonlinear nature and its
ill-posedness [Allers and Santosa, 1991; Molyneux and
Witten, 1994; Cherkaeva and Tripp, 1996]. An important
cause of the ill-posedness of the electrical tomography
problem is the ill-conditioning implicit in the nonlinear
system of equations to be solved. The ill-conditioning is
due to the weak coupling among some equations of the
system to be solved, and the transfer of information from
the data to the parameters to determine is partly suppressed.
In practice, the ill-conditioning implies that several param-
eters are unresolved, i.e., their values cannot be obtained
from the data. If, when varied in reasonable limits, a given
parameter does not produce changes in the data above the
noise level, this parameter will not be determined properly,
and it should be suppressed from the model. In this paper,
we address the practical issues concerning the reduction of
ill-conditioning by seeking for an optimal parameterization

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. B1, 2054, doi:10.1029/2001JB000233, 2003

Copyright 2003 by the American Geophysical Union.
0148-0227/03/2001JB000233$09.00

EPM 6  - 1



with respect to the information content of the data. This is
done by means of a multiscale sampling of the conductivity
distribution to be recovered. This approach increases the
nonlinear nature of the inverse problem since, in practice,
we are faced with an inverse problem whose number of
parameters increases as the iterative inversion proceeds.
However, the computational power now available with
desktop computers enables the use of a fully nonlinear
approach, namely simulated annealing [Kirkpatrick et al.,
1983; Van Laarhoven and Aarts, 1987]. This Monte Carlo
method is well-suited to tackle the nonlinear nature of the
inverse problem by providing possibilities to escape from
local minima of the misfit function corresponding to non-
optimal solutions. Also, simulated annealing allows a free
choice of the misfit function to be minimized, hence
preserving the possibility to easily incorporate a priori
geological constrains concerning the conductivity distribu-
tion to reconstruct.
[3] Section 2 presents the multigrid method used to solve

the 2.5-dimensional (2.5-D) forward problem. The efficiency
of this method reveals why a multiscale inversion should also
be natural. The following section presents the multiscale
inversion strategy and its implementation through simulated
annealing. The last section contains a field example.

2. Multigrid Forward Modeling

2.1. The 2.5-D Formalism

[4] The 2.5-D approximation needed to invert the data of
the field example discussed below is now presented to
ensure both the self-consistency of the paper and to illus-
trate the multiscale solution of the forward problem through
the multigrid algorithm. The fundamental equation describ-
ing the stationary current flow in the conducting Earth is the
Poisson equation [e.g., Zhdanov and Keller, 1994],

r � srfð Þ ¼ �I ; ð1Þ

where f is the electrical potential, s is the conductivity
distribution, and I is the current source term. In the 2.5-D
approximation the conductivity distribution is assumed
invariant along the horizontal y axis and the source term I
restricted to the y = 0 vertical plane. The resulting 3-D
potential f is thus an even function with respect to y. In this
case, equation (1) becomes

r � s x; zð Þrf x; y; zð Þ½ � ¼ �I x; zð Þd yð Þ: ð2Þ

By Fourier transforming this equation in the y direction
[Madden, 1971; Pelton et al., 1978; Tripp et al., 1984] we
obtain a 2-D Poisson equation:

rxz � s x; zð Þrxz
~f x; u; zð Þ

� �
¼ �I x; zð Þ þ ð2puÞ2s x; zð Þ~f x; u; zð Þ

ð3Þ

where rxz represents the 2-D gradient operator with respect
to the x and z variables, u is the dual spatial frequency
corresponding to y, and ~f is the Fourier transform of the
potential f:

~f x; u; zð Þ ¼
Z

f x; y; zð Þexp �2ipuyð Þdy: ð4Þ

For a given frequency u, the additional source term in
equation (3) depends on both the frequency and the potential,
and is distributed in the whole y = 0 plane. This source term
corresponds to leaking conductances whose physical sense is
to allow the electrical current to flow in the y direction [Dines
and Lytle, 1981]. The 3-D potential f (x, y, z) is obtained by
solving the 2-D equation (3) and then inverse Fourier
transforming ~f (x, u, z):

f x; y; zð Þ ¼
Z

~f x; u; zð Þexp þ2ipuyð Þdu: ð5Þ

Since the potential electrodes are assumed localized in the y =
0 plane, it is sufficient to know the electrical potential in this
plane and equation (5) simplifies into

f x; 0; zð Þ ¼
Z

~f x; u; zð Þdu: ð6Þ

In practice, equation (3) is solved for several discrete
frequencies u, and the integral equation (6) is approximated
by

f x; 0; zð Þ ¼
X
u

~f x; u; zð Þ; ð7Þ

where the sum symbol represents a numerical integration
over the variable u which can be done with standard
algorithms [Press et al., 1992]. Hopefully, the integration
can be accurately performed with a small number of positive
discrete spatial frequencies since the Fourier transform ~f is a
decreasing exponential-like even function centered on the
zero frequency.

2.2. Multigrid Numerical Solution

[5] We use a multigrid algorithm to solve equation (3), a
method known to be extremely efficient for numerically

Figure 1. Resistivity model used to construct the potential
shown on Figure 3. The three blocks have a side size of 64,
32, and 16 grid meshes and an electrical resistivity of 1.5,
100.0, and 0.7 � m, respectively. The background resistivity
equals 1.0 � m.
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solving elliptic partial differential equations [Press et al.,
1992]. The general principle of multigrid methods is to
sequentially construct the solution from coarse grids to finer
ones. An approximate low-resolution solution, computed on
a coarse grid with a coarse conductivity distribution obtained
by both low-pass filtering (moving average) and undersam-
pling the finest conductivity grid is used as a starting solution
for the next finer grid. By this way, the algorithm over-
comes the well-known slow convergence of classical relax-
ation methods since the long wavelengths of the potential
are first relaxed on the coarsest grids through which the
information is more quickly transferred between the grid
nodes. As the algorithm proceeds with finer grids, more
details of the conductivity distribution are taken into
account and small-wavelength features are progressively
incorporated into the potential. This is illustrated with a
resistivity model (Figure 1) which contains three blocks with
different sizes (64, 32, and 16 grid meshes in size and
resistivities of 1.5, 100.0, and 0.7 � m, respectively)
embedded in a uniform background resistivity of 1.0 � m.
The sequential construction of the potential with the multi-
grid algorithm is best seen through the secondary potential
defined as the difference between the total potential and the
potential corresponding to a medium with a constant con-
ductivity (Figure 2). The secondary potentials computed for
the successive grid levels are shown in Figure 3, and one can
observe that more small-scale details are incorporated into

the solution as the algorithm proceeds from the coarsest 8 

8 grid (Figure 3a) to the finest 256 
 256 grid (Figure 3f ).

3. Multiscale Inversion With Simulated
Annealing

3.1. Adaptive Multiscale Parameterization

[6] We now address the recovery of the conductivity
distribution from potential measurements. This is a non-
linear inverse problem whose ill-posedness arises from both
underdetermination (i.e., less data than model parameters)
and incomplete data coverage [e.g., Kohn and Vogelius,
1984; Breckon and Pidcock, 1987; Li and Oldenburg,
1992]. The latter point is best seen by recasting Poisson
equation (1) as an integral equation [e.g., Snyder, 1976].
The potential f induced by a current point source located at
point ri and measured at point rm is then given by

f rmjrið Þ ¼ I rið Þ
2psðriÞjri � rmj

þ
Z
V

r ln s rð Þ � rf rjrið Þ
2pjr � rmj

dv; ð8Þ

where I is the current injected at point ri and V is the lower
half-space including the whole conducting ground. The first
right-hand term of equation (8) is the primary potential
of the injection electrode which provides no information
about the conductivity distribution s excepted at point ri.
Indeed, the primary potential is the one obtained for a
uniform medium with a conductivity s (ri) (Figure 2).

Figure 2. Primary potential obtained for a uniform background with a resistivity of 1.0 � m and the
same injection electrodes as those in Figure 1.
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Information concerning the conductivity distribution is
brought by the integral in equation (8) which represents the
secondary potential created by the volumetric charge density,

Q rjrið Þ ¼ 2eor ln s rð Þ � rf rjrið Þ; ð9Þ

which depends on the potential f whose characteristics are
controlled by both the conductivity distribution s and the
point ri, where the current is injected. A high charge density
Q exists at sharp conductivity gradients on the edges of the
conducting bodies provided that a significant component of
the electrical current is parallel to the conductivity gradient.
This can be observed in Figure 3 where the secondary
potential has extrema only where the current vectors are
almost orthogonal to the edges of the blocks (Figure 4).
Hence multiple current sources must be used to correctly
image a block in order to guarantee that current vectors cross
all boundaries [Li and Oldenburg, 1992]. The integral
formulation of the direct problem given in equation (8)
shows that the fundamental quantity to be inverted is ln s.
This makes the inversion invariant (except for the sign) with
respect to a model parameterization in term of either
conductivity or resistivity.
[7] The underdetermination of the inverse problem may

be partly controlled by the particular parameterization used
to represent the unknown conductivity distribution. In the
present study we adopt a compact paving with blocks Vk

such that the half-space

V ¼
[
k

Vk ð10Þ

with

Vi

\
Vj 6¼i ¼ ;; ð11Þ

and equation (8) may be rewritten as

f rmjrið Þ ¼ I rið Þ
2ps rið Þjri � rmj

þ
X
k

Z
Vk

r ln s rð Þ � rf rjrið Þ
2pjr � rmj

dv;

ð12Þ

Blocks where either no sharp conductivity gradient exists or
no well-oriented electrical current flows correspond to
almost vanishing integrals in equation (12), and under-
determined quantities appear in the nonlinear system of
equations to be solved. An optimal representation of the
conductivity distribution should be such that every block Vk

has a significant integral with respect to the data. This
regularizes the inverse problem by reducing both its
condition number and the number of unknown parameters
[e.g., Yorkey, 1990] but also makes the inverse problem
more complicated because the optimal block decomposition
depends on the conductivity distribution determined during
the inversion.

[8] In the present paper, the distribution ln s is repre-
sented by irregular cells of constant conductivity obtained
by clustering adjacent meshes of the finest grid used to
describe the conductivity distribution in the multigrid for-
ward problem. This allows an optimal fitting to oblique
multiscale structures like the one shown on Figure 5, and
this multiscale approach is able to describe complex con-
ductivity distributions with a small number of parameters
since small-size cells are placed only where small-scale
variations in the conductivity exist [e.g., Mehrabi and
Sahimi, 1997].

3.2. Sensitivity Analysis and Grid Refinement

[9] In practice, the multiscale block decomposition of the
conductivity model is constructed while the inversion pro-
gresses by first searching for a coarse block decomposition
of the conductivity and progressively includes finer blocks
in the model (Figure 6). Let us suppose that the inversion
presently deals with a given block decomposition for which
the optimal conductivity has been obtained, i.e., the mini-
mum of the misfit function (defined as either the L1 or L2
norm in the present study) has been reached. The next step
is to decide if a refinement of the block model is desirable to
eventually further reduce the misfit. Addressing this prob-
lem by comparing the decrease of the misfit against the
price paid by adding parameters in the model is time
consuming since this needs to solve the refined model to
apply the decision criteria. In order to save computer time
we instead performed a prior sensitivity analysis [McGilli-
vary and Oldenburg, 1990] to determine whether or not a
given block refinement is significant.
[10] Let the current conductivity model with K blocks

issued from the last step of the inversion process be

ml ¼ b1; � � � bk ; � � � bK js1; � � � sk ; � � � sKf g; ð13Þ

where the bk represent the blocks and sk represent their
conductivities. In practice, each block is identified by a
particular flag k attributed to a set of meshes belonging to
the finest conductivity grid used in the multigrid forward
problem. All meshes sharing a common flag have the same
conductivity and constitute a single block in the model. Our
strategy for model refinement is to sequentially consider
each block bk as a candidate for refinement by subdividing
it into four {bk,1, bk,2, bk,3, bk,4} subblocks whose
conductivities {sk,1, sk,2, sk,3, sk,4} are to be determined
in the subsequent inversion steps. Once the splitting of
block bk has been realized, a sensitivity analysis is
performed by successively assigning a conductivity sk,i =
sk + ds to each subblock while the other three blocks are
held constant. The solutions of the forward problems
corresponding to these new conductivity models give an
insight of their influence on the data, and if a significant
influence is found for at least one new subblock, the

Figure 3. (opposite) Graphs of the secondary electrical potential solutions obtained at successive grid levels for the
multigrid forward problem corresponding to the conductivity model shown in Figure 1. The grid sizes are 82, 162, 322, 642,
1282, and 2562 for Figures 3a to 3f, respectively. The secondary potential is defined as the total potential minus the potential
corresponding to a uniform model with the background resistivity (1.0 � m). As the grid mesh becomes finer (i.e., the grid
size increases), more and more small-scale details appear in the potential (negative and positive values are in black and
white, respectively).
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Figure 4. (top) Flow lines of the electrical current crossing the resistivity structure shown in Figure 1.
(bottom) Secondary potential (zoomed from Figure 3f ) with extrema located where the electrical current
flows almost perpendicularly to an edge, and where the charge accumulation is maximum.
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subdivision of block bk is kept and the conductivities of the
newly created four subblocks are a priori determined
through a linearized inversion. The refinement procedure
replaces the current conductivity model by one with more
small blocks and induces changes in the conductivities of
adjacent nonrefined blocks. In practice we observed that in

many situations the conductivities are correctly re-estimated
only when a full nonlinear inversion method is used. We
chose a simulated annealing approach for the inversion
which we found efficient in previous studies [Gibert and
Virieux, 1991; Gibert et al., 1994; Courboulex et al., 1996].

3.3. Simulated Annealing

[11] Simulated annealing is a stochastic nonlinear algo-
rithm well adapted to solve the present inverse problem
whose misfit function may possess local minima. Also,
simulated annealing is a flexible method which allows a
free choice of the misfit function and an easy account of a
priori information concerning the conductivity distribution
to reconstruct [Kirkpatrick et al., 1983; Cerny, 1985; Van
Laarhoven and Aarts, 1987; Tarantola, 1987]. The basic
principle of simulated annealing is to iteratively modify the
model until it converges toward the minimum of the misfit
function to be minimized. In order to keep a memory in
the sequence of models generated during the iterations, the
model created at iteration l is obtained by perturbing the
previous model in the sequence

ml ¼ ml�1 þ dml; ð14Þ

where the random perturbation dml must be such that an
importance sampling of the a priori distribution of the
models is guaranteed. Once model ml is created, its
posterior probability p(ml) is computed in order to decide
whether or not ml is to be kept in the sequence of models.
The acceptance probability of the transition from model
ml�1 to model ml is given by

pT ml�1 ! mlð Þ ¼ min 1;
p mlð Þ
p ml�1ð Þ

� �1=T
" #

; ð15Þ

where T is a positive parameter called the temperature
[Kirkpatrick et al., 1983]. When the probability of the new
model is worse than the previous one the transition is not
systematically rejected. Conversely the new model is
systematically accepted if its probability is higher than for
the previous one. Iterating over a sequence of models ml at a
constant temperature constitutes the Metropolis algorithm
[Metropolis et al., 1953]. It can be shown that, for an
infinite number of iterations, the model distribution
resulting from this algorithm is distributed according to
the probability density [Moosegaard and Tarantola, 1995],

pT mlð Þ ¼ 1

C
p mlð Þ1=T ; ð16Þ

Figure 5. Optimal multiscale paving of a faulted structure.
The resampling adds finer and finer blocks to the
conductivity distribution in order to better and better
describes the geometry of the actual structure. Each
resampling step is a dyadic operation which consists in
dividing some blocks into four equal-sized subblocks (see
also Figure 6).

Figure 6. Principle of a priori conductivity estimation at the beginning of each resampling step. (left) A
given grid mesh Vk is divided into four blocks whose conductivities are initially set to (middle) sk. (right)
Then a sensitivity analysis and a linear approximation are used to refine the conductivity of each block
individually.
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where C is a normalization constant. At T = 1, pT=1 (ml) =
p(ml), and the Metropolis algorithm then performs an
importance sampling in the sense that the sampling density
of the models into the a priori space equals the a posteriori
probability density of the models. Simulated annealing
loops over the Metropolis algorithm while the temperature
decreases in order to guide the sampling toward the region
where the posterior probability is maximum. Assuming that
the starting temperature may be considered infinite, the
probability equation (16) is uniform and any model
belonging to the a priori space is accepted. As the
temperature decreases, the probability equation (16) be-
comes irregular with maxima and minima, and the accepted
models concentrate near the maxima. Finally, when T # 0,
the probability is reduced to a Dirac d function located at the
best model:

pT#0 mlð Þ ¼ d ml � mbestð Þ: ð17Þ

[12] An important aspect of simulated annealing is to
properly design the cooling schedule which controls the
efficiency of the guidance toward the maxima of the a
posteriori probability. A common guideline is to decrease
the temperature sufficiently slowly so that the importance
sampling gently diffuses and concentrates around the max-
imum of the posterior probability [Van Laarhoven and
Aarts, 1987]. Another important issue of simulated anneal-
ing is to define the model-generation process equation (14)
in order to properly sample the a priori space of models. In
the present study, the only a priori constraints we applied
are hard bounds on the conductivity values.

3.4. Synthetic Example

[13] We now illustrate the whole inversion procedure
with a simple synthetic example where the conductivity
distribution to recover is shown in Figure 7. It can be seen
that this structure is multiscale and possesses both large
homogeneous areas and small-scale heterogeneities. The
synthetic data have been generated with the multigrid
forward problem discussed above. Five pairs of injection
electrodes are placed on both lateral sides and on the top
side of the model, and all other electrodes are potential
electrodes. The data set then consists of 15 
 94 = 1410
potential values. In order to assess for the capability of our
resampling algorithm to correctly adjust to the structure to
be recovered, no noise was added to the synthetic data. The
particular choice of a posterior probability distribution for
the data residuals is therefore meaningless and, in the
present example, we use a normal Gaussian distribution
with unit variance (i.e., an L2 misfit function). The inversion
begins with a single-block model whose conductivity is
determined through a quick annealing sequence. Figure 7
shows the best models obtained during a four-step resam-
pling sequence where the smallest allowed block size varies
from 1/2 to 1/16 unit length. The final first level solution
(Figure 7a), issued from the zero level (with a single block),
counts 4 blocks with differing conductivities. As can be
seen, this coarse model already reproduces the large-scale
structure of the synthetic model. The second level solution
(Figure 7b) has been partly resampled and the upper right
block of the first level model has been preserved. Interest-
ingly, we observe that the resampling has been automati-

cally restricted in an area containing the small scale
heterogeneities of the synthetic model. As a consequence,
the second level solution only counts 13 blocks instead of
16 if a full resampling of the first level solution had been
performed. The next third and fourth levels further refine

Figure 7. Resistivity model used to produce the synthetic
data of the synthetic example. The resistivity distribution
possesses both large-scale and small-scale features. (a–d)
Solutions obtained at the end of each inversion of a four-
step resampling sequence applied to the synthetic data
corresponding to the synthetic model shown at the top of the
figure. At the beginning of each step of the resampling
sequence, a sensitivity analysis is performed to identify the
blocks which have to be divided into four equal-sized
subblocks. A simulated annealing inversion follows to
obtain the conductivity distribution corresponding to this
new parameterization. It can be seen that the resampling
automatically restricts itself to areas where the actual
conductivity model possesses small-scale features.
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the solution around the small scale features while remaining
coarse scaled elsewhere. This results in solutions with a
reduced number of parameters (i.e., blocks) since the final
fourth level solution only counts 67 blocks instead of the
256 blocks of the fully resampled grid.
[14] Figure 8 shows the evolution of the misfit (here the

sum of squared residuals) during the inversion process
which consists in four successive simulated annealing
sequences. The misfit for the first level solution with four
blocks (Figure 8) indicates a global decrease as the anneal-
ing temperature decreases from 5 to 0.01. The step-like
nature of the misfit curve reveals the existence of several
critical temperatures and is observed when a hierarchical
order exists among the parameters of the inverted model
[e.g., Gibert and Virieux, 1991]. In the present instance, the
hierarchy comes from the fact that the synthetic data are
very sensitive to the shallowest blocks of the model.
Consequently, the simulated annealing inversion first
adjusts the conductivity of these blocks, producing the first
step-like decrease of the misfit near T = 4 and then refines
the solution by adjusting the conductivity of the entire
model, producing the second main step in the misfit curve
near T = 1. No further significant improvement is observed
at lower temperatures, and the process could have been
stopped at T = 0.1. The other three inversions also start at
T = 5 because the sequence of models generated at high
temperature performs a global sampling of the model space
and allows it to escape from possible local minima of the
misfit function. Observe that each resampling allows a
further decrease of the misfit with respect to the final value
obtained at the end of the preceding inversion. For compar-
ison, downhill simplex inversions with the same 67 blocks

model always produced solutions with a much larger misfit
than obtained with annealing.

4. Inversion of the Pont-Péan Data

4.1. Geological Context and Field Operations

[15] The Pont-Péan mining site corresponds to a dioritic
mineralized dike which has been intensively prospected and
exploited during the 18th and 19th centuries until a massive
flood invaded the galleries in April 1904 and definitely
halted mining. The dike is approximately 15 m thick, 4 km
long, and almost north-south oriented with a 80� eastward
inclination. The dike, which has been dug down to 600 m
in-depth, is located in a fault plane separating Precambrian
schist on the western side from Tertiary sediments on the
eastern side. The thickness of the Tertiary sediments is
about 80 m at the locus of the electrical profile.
[16] The electrical resistivity survey was performed with

a 64-electrode pole-dipole array (315 m in length and
electrode spacing of 5 m). For practical reasons, the pole-
dipole survey was not symmetrical and all measurements
were acquired with the remote current electrode located
1000 m westward. For most data, the relative signal-to-noise
ratio is greater than 99% with smaller values for only a
limited number of measurements corresponding to poor
electrode contacts. The pole-dipole pseudo-resistivity section
constructed with 360 measurements is shown in Figure 9d
and displays low apparent resistivities on the eastern side in
rough accordance with the known geological structure of
the site. The fact that all data were acquired with the remote
electrode kept on the western side of the profile produces a
bias of the apparent resistivities toward the true resistivity of

Figure 8. Cooling series of the four-step resampling sequence corresponding to the solutions shown in
Figure 7. The misfit displayed corresponds to the best model presents in the simplex at a given
temperature. For each step corresponding to a given parameterization of the conductivity model, the
misfit displays a sharp decrease corresponding to the convergence toward an optimal solution before the
misfit remains constant when the temperature continues to decrease. A further decrease of the misfit is
obtained after each resampling step which allows the conductivity distribution to possess finer and finer
details.
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the western part of the profile [Ward, 1990]. However, the
apparent-resistivity section is typical of the one expected for
a two-block structure with a nearly vertical fault plane
located at x = �30 m.

4.2. Inversion

[17] The inversion of the Pont-Péan data follows the same
steps as those performed for the synthetic example. How-
ever, in order to account for eventual outliers in the data set,
a Cauchy distribution (i.e., a L1 norm) is retained for the
probability distribution of the data residuals. Also, in order
to reduce the number of forward modelings the data
corresponding to the shallowest penetration depths have
not been used. The inversion starts with a coarse 4 
 2
blocks model (Figure 9a) which already displays a con-
ductivity distribution corresponding to the expected geo-

logical structure with a more resistive part on the west side.
The L1 misfit (Figure 10) decreases by more than one order
of magnitude during this first step of the inversion. During
the next step of the inversion, the coarse 4 
 2 model is
fully re-sampled into the 8 
 4 blocks model shown in
Figure 9b. This latter model further refines the conductivity
distribution determined during the first step of the inversion,
particularly in the middle of the profile near the fault
location and reduces the misfit by one more order of
magnitude. The sharp increase of the misfit observed at
the very beginning of this stage of the inversion indicates
that a reannealing operates and incorporates high-misfit
models into the simplex which, for this step, counts 33
models. This permits a global rearrangement of the con-
ductivity distribution to escape from the local misfit mini-
mum reached during the previous step of the inversion. The

Figure 9. Resistivity models obtained at the end of each stage of the inversion of the pole-dipole data
for the (a) 4 
 2 coarse final model, (b) 8 
 4 resampled final model, and (c) final 80-block model
obtained from a partial resampling of the top part of the 8 
 4 model. This allowed a refinement of the
conductivity distribution in the shallowest part of the model and was accompanied by an additional slight
decrease of the misfit function (see Figure 10). The geological information available is shown: the fault
location coincides with a low-resistivity dipping zone and the thickness of the low-resistivity zone located
immediately westward of the fault agrees with the weathered schists found in two boreholes (B1 and B2).
(d) Data obtained for the pole-dipole array and arranged in a pseudo-section of the logarithm of the
apparent resistivity. The remote electrode is 1000 m westward, i.e., on the right of the profile. The dike is
approximately located at x = �30 m. Since the remote electrode is on the resistive right part of the profile,
the apparent resistivities are biased toward the high values. (e) Resistivity model obtained by inverting
the data with the RES2DINV software by Loke and Barker [1996]. (f ) Smoothed version of the
resistivity section shown in Figure 9c.
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last step of the inversion is done with a resampling restricted
to the upper half part of the previous 8 
 4 block model
leading to a total of 80 blocks. This allows a refinement of
the conductivity distribution in the shallowest part of the
structure (Figure 9c) accompanied by slight changes in the
lower part of the conductivity distribution. This last step of
the inversion process produces only a decrease of the misfit
by a factor of 2.

4.3. Discussion

[18] Although the present paper is not devoted to the
geological interpretation of the Pont-Péan mining area, the
results obtained from the inversion discussed above deserve
several comments since geological information is available
to assess for the inversion results. In particular, the position
of the dike is known, and two boreholes performed in 1958,
400 m southward from the resistivity survey, and located
40 m and 100 m westward of the fault indicate highly
weathered schist over thicknesses of 35 m and 25 m,
respectively. Figure 9f shows the final resistivity model
which appears in very good agreement with the geological
information available. Historical data indicate that both the
dioritic dike and the schist just beneath are very fractured
with an important water circulation (the mining industry
suddenly ceased on 4 April 1904, after the galleries were
invaded by a huge deep water flood), and may constitute an
hydrological sink draining the water and explaining the
cone-like geometry of the weathered schist layer. At this
stage of the discussion, it must be said that our inversions
were performed in a blind manner, i.e., without knowing
both the exact location of the fault and the existence of the
two boreholes. The reviewers asked us to compare our
inversion with other popular algorithms, and we inverted
our data (R. Ruault, personal communication, 2001) with
the RES2DINV linearized software using the same L1 norm

as for our inversion [Loke and Barker, 1996]. The resulting
resistivity model (Figure 9e) spans a smaller depth range
than for our inversion and is only comparable to the upper
part of our model (Figure 9f ). Both models are globally
coherent with higher conductivities in the eastern half of the
models. However, the conductivity distribution recovered
with the linearized inversion fails at producing a model in
accordance with the geological constraints available in the
fault zone. In particular, the conductive area corresponding
to the weathered schist observed in the boreholes is not well
recovered. This discrepancy may be due to a trapping of the
linearized solution in a local minimum of the misfit func-
tion. Conversely, it seems that the nonlinear inversion is
able to escape from local minima and converges toward a
more realistic model.

5. Conclusion

[19] The multiscale formulation of the conductivity
inverse problem presented in this paper has been designed
to account for both the multiscale nature of the geological
structures and the ill-posedness of the inverse problem. This
is done through a sequence of inversions where small-scale
details are progressively incorporated into the conductivity
model. The adaptative multiscaling is controlled by a prior
sensitivity analysis which identifies the regions where a
resampling is necessary. The sequential multiscale inversion
must be treated in a fully nonlinear way in order to enable
the rescaled models to escape from local maxima of the a
posteriori probability distribution. Simulated annealing
appears efficient in this respect and other related nonlinear
methods like genetic algorithms may equivalently be used.
A synthetic example shows that the multiscale formulation
is able to automatically adapt itself to the multiscale
geometry of the structure to be recovered although the
decision test used in the present study consists in a simple

Figure 10. Evolution of the misfit of the models accepted by the Metropolis test during the simulated
annealing inversion. Each resampling is associated with a sudden increase of the misfit indicating a
reannealing which allows convergence at a lower misfit than the best one obtained with the previous
coarser model.
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threshold criteria. More sophisticated criteria should prob-
ably be designed in more complex situations. An applica-
tion to real data obtained over the faulted structure of a
mining area allows for an assessment of the method. On the
overall, the multiscale nonlinear approach presented in this
paper, although deserving further improvements and tests,
already appears useful to produce optimally designed mod-
els according to the data available. This constitutes a way to
give a practical insight to the resolution achieved which, for
the problem of electrical resistivity tomography, appears
highly nonstationary.
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operations. René Ruault performed the inversion with the RES2DINV
software. One anonymous Associate Editor and a referee made very
constructive comments that greatly improved the manuscript. This work
is financially supported by the CNRS and ANDRA through the GdR
FORPRO (Research action 99.II) and is GdR FORPRO contribution 2000/
33A. This study is a part of the Electrical Tomography Project of the CNRS
ACI Eau et Environnement.

References
Allers, A., and F. Santosa, Stability and resolution analysis of a linearized
problem in electrical impedance tomography, Inverse Probl., 7, 515–533,
1991.

Asch, T., and H. F. Morrison, Mapping and monitoring electrical resistivity
with surface and subsurface electrode arrays, Geophysics, 54, 235–244,
1989.

Berryman, J. G., and R. V. Kohn, Variational constraints for electrical-
impedance tomography, Phys. Rev. Lett., 65, 325–328, 1990.

Bevc, D., and H. F. Morrison, Borehole-to-surface electrical resistivity
monitoring of a salt water injection experiment, Geophysics, 56, 769–
777, 1991.

Borcea, L., J. G. Berryman, and G. C. Papanicolaou, Matching pursuit
for imaging high-contrast conductivity, Inverse Probl., 15, 811–849,
1999.

Breckon, W. R., and M. K. Pidcock, Mathematical aspects of impedance
imaging, Clin. Phys. Physiol. Meas., 8, 77–84, 1987.

Cerny, V., A thermodynamic approach to the travelling salesman problem,
J. Optim. Theory Appl., 45, 41–51, 1985.

Cherkaeva, E., and A. Tripp, Inverse conductivity problem for noisy mea-
surements, Inverse Probl., 12, 869–883, 1996.

Courboulex, F., J. Virieux, and D. Gibert, On the use of simulated annealing
method and cross-validation theory for deconvolution of seismograms,
Bull. Seismol. Soc. Am., 86, 1187–1193, 1996.

Daily, W., and A. Ramirez, Electrical imaging of engineered hydraulic
barriers, Geophysics, 65, 83–94, 2000.

Daily, W., A. Ramirez, D. LaBrecque, and J. Nitao, Electrical resistivity
tomography of vadose water movement, Water Resour. Res., 28, 1429–
1442, 1992.

Dines, K., and R. Lytle, Analysis of electrical conductivity imaging, Geo-
physics, 46, 1025–1036, 1981.

Ellis, R. G., and D. W. Oldenburg, Applied geophysical inversion, Geo-
phys. J. Int., 116, 5–11, 1994a.

Ellis, R. G., and D. W. Oldenburg, The pole-pole 3-D DC-resistivity inverse
problem: A conjugate gradient approach, Geophys. J. Int., 119, 187–194,
1994b.

Gibert, D., and J. Virieux, Electromagnetic imaging and simulated anneal-
ing, J. Geophys. Res., 96, 8057–8067, 1991.

Gibert, D., B. Tournerie, and J. Virieux, Superresolution electromagnetic
imaging of the conductive Earth’s interior, Inverse Probl., 10, 341–351,
1994.

Hagrey, S. A., and J. Michaelsen, Resistivity and percolation study of
preferential flow in vadose zone at Bokhorst, Germany, Geophysics,
64, 746–753, 1999.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi, Optimization by simulated
annealing, Science, 220, 671–680, 1983.

Kohn, R. V., and M. Vogelius, Determining the conductivity by boundary
measurements, Commun. Pure Appl. Math, 37, 289–298, 1984.

Li, Y., and D. W. Oldenburg, Approximate inverse mapping in DC resis-
tivity problems, Geophys. J. Int., 109, 343–362, 1992.

Li, Y., and D. W. Oldenburg, Inversion of 3-D DC resistivity data using an
approximate inverse mapping, Geophys. J. Int., 116, 527–537, 1994.

Li, Y., and D. W. Oldenburg, 3-D inversion of induced polarisation data,
Geophysics, 65, 1931–1945, 2000.

Loke, M. H., and R. D. Barker, Rapid least squares inversion of apparent
resistivity pseudosections using a quasi-Newton method, Geophys. Pro-
spect., 44, 131–152, 1996.

Madden, T., The resolving power of geoelectric measurements for delineat-
ing resistive zones within the crust, The Structure and Physical Proper-
ties of the Earth’s Crust, Geophys. Monogr. Ser., vol. 14, edited by J. G.
Heacock, pp. 95–105, AGU, Washington, D.C., 1971.

McGillivary, P. R., and D. W. Oldenburg, Methods for calculating Fréchet
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