Observed variations of the exospheric hydrogen density with the exospheric temperature
Jean-Loup Bertaux

To cite this version:

HAL Id: insu-03636198
https://insu.hal.science/insu-03636198
Submitted on 10 Apr 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

Copyright
Observed Variations of the Exospheric Hydrogen Density With the Exospheric Temperature

J. L. BERTAUX

Service d'Astronomie du Centre National de la Recherche Scientifique
Vertières le Buisson, France

Measurements of exospheric hydrogen densities at a distance of 3 R_e (earth radii) are presented as a function of exospheric temperature. They imply that the density n_e at the exobase level decreases with exospheric temperature T_e, but not enough to keep the Jeans escape flux F_{J_e} constant. The increase of F_{J_e} with exospheric temperature may be compensated for by the decrease of F_e, which measures the loss of hydrogen by charge exchange in the plasmasphere. The two fluxes would be equal to 6.6×10^5 atoms cm$^{-2}$ s$^{-1}$ at a temperature $T_e = 1070^\circ K$, giving a total escape flux in agreement with measurements of hydrogen compounds in the region from 30 to 50 km and theoretical mesospheric calculations.

The Lyman α intensity distribution of the geocorona was mapped in 1968 and 1969 from Ogo-5 with a resolution of 40 minutes of arc in a circular field-of-view of 30$^\circ$ around the earth-satellite line [Bertaux and Blamont, 1970]. A detailed analysis of these measurements, yielding exospheric H density and temperature determinations, was presented elsewhere [Bertaux, 1974].

In this paper we present an analysis of the variations of H density as a function of exospheric temperature and some implications concerning the H escape flux from the earth.

During the year extending from March 1968 to March 1969 the eccentric orbit of Ogo-5 (period of 2.5 days) changed little in celestial orientation, whereas a wide range of the sun-earth-satellite angle θ at apogee was covered (from 35$^\circ$ to 143$^\circ$). Along each orbit a wide portion of the geocorona, often including both polar zones, was observed between 1.1 and 7 R_e (earth radii).

In order to derive H density determinations from Lyman α intensity measurements, several problems had to be overcome:

- The first problem was substraction of the extrageocoronal Lyman α background (typically $\approx 6\%$ of total Lyman α intensity for a line of sight located at 3 R_e from the center of the earth).

- The second problem was multiple scattering in the geocorona (with a numerical method proposed by Bertaux [1974] and based upon radiative transfer calculations similar to Thomas' [1963]). This method takes care of the geometric conditions of observations.

- The third problem was anisotropy of Lyman α resonance scattering [Brandt and Chamberlain, 1959]. Though this effect is weak, it shows up readily in the data if it is not taken into account, as a 6-month-period spurious modulation.

- The fourth problem was fluctuations of the solar Lyman α intensity F_{α} at the center of the line. When Oso-5 measurements [Vidal-Madjar et al., 1974] were not available for the date of Ogo-5 measurements, a statistical relationship between F_{α} and R_e (the Zurich sunspot number), valid for Oso-5 measurements, was assumed to hold.

Owing to the fact that the calibrations at Lyman α of Ogo-5 and Oso-5 instruments have been found consistent within 10%, we estimate at $\pm 20\%$ the absolute accuracy of [H] determinations and at $\pm 10\%$ the relative accuracy along 1 year of data.

The exospheric [H] distribution should be clearly related to the exospheric temperature. In order to study such a relationship we used the Jacchia [1971] exospheric temperature corrected for the geomagnetic effect. We present a correlation analysis for the density at R_e, where it was shown that the number of orbiting atoms (satellite particles) is negligible [Bertaux, 1974]. Each one of the 137 points of Figure 1 is representative of one orbit of data from Ogo-5.

For each orbit all the density measurements at 3 R_e were averaged together, a global estimate of the density over a period of 2.5 days thus being derived. The ordinate of each point of Figure 1 represents this density relative to a reference model, which contains 532 atoms cm$^{-3}$ at 3 R_e.

The abscissa is the temperature T_{max} of the point at the exobase at which the temperature is maximum, according to Jacchia's procedure, for the time of the apogee of the orbit. At first glance the density at 3 R_e does not seem to depend strongly on the exospheric temperature. The statistical dependence indicated by a first-degree least squares fit (straight line of Figure 1) shows that a 10% variation of the exospheric temperature would statistically induce a variation of the density at 3 R_e less than $\pm 4\%$, with a 0.95 degree of confidence.

We now compare these data with different hypothesis and theoretical models of the exosphere.

Spherical Model of Chamberlain

The simplest model is Chamberlain's [1963] model; the H density is only a function of the radial distance r when the density n_r and temperature T_r, uniform over the exobase, are selected (no satellite particles are considered). We identify T_e with the mean exospheric temperature according to Jacchia:

$$T_e = \frac{1}{2} (T_{\text{min}} + T_{\text{max}}) \approx \frac{1.15}{1.3} T_{\text{max}}$$

If the density n_e at the exobase level is constant when T_e (and T_{max}) varies, the density at 3 R_e increases as a function of T_{max} according to the curve marked CC on Figure 1. This curve passes through the center of gravity (open circle) of the cloud of data points for $n_e = 7.5 \times 10^4$ atoms cm$^{-3}$.

In such a case the Jeans escape flux $F_{J_e}' = n_e V_e (T_e)$, where V_e is the effusion velocity at the exobase level, would increase rapidly with T_e (and T_{max}).

If the density n_e is adjusted to T_e in order to keep F_{J_e}' constant, at 3 R_e the density will decrease according to the curve
marked FC on Figure 1. Neither of these two assumptions (constant density or constant flux) is validated by the data; indeed the density at the exobase decreases with T_{max} but not enough to keep the flux F_j constant. The Jeans escape flux F_j' increases with the exospheric temperature.

The density n_c that would keep constant the density at $3\,R_E$ (on the least squares fit to the data points) is indicated in Table 1 as a function of T_{max} or T_e. Then the Jeans escape flux can be evaluated with $F_j' = n_c V_e(T_e)$ and is indicated in Table 1, as well as on the upper solid curve of Figure 2.

ASPHERICAL EXOSPHERE

We have also used a model with an axial symmetry in which the density and temperature at the exobase level vary sinusoidally between the points $(T_{\text{max}}, n_{\text{min}})$ and $(T_{\text{min}}, n_{\text{max}})$. In addition, we assume that the ratio $n_{\text{max}}/n_{\text{min}}$ adjusts itself to the zero net ballistic flux condition at the exobase, in which case it satisfies the relationship [Quessette, 1972]

$$
\frac{n_{\text{max}}}{n_{\text{min}}} = 0.15 + 0.67 \times 10^4 \frac{\Delta T}{T_e^2}
$$

The density n_{max} is taken from Oso-5 measurements; n_c is the density (in a spherical model) that gives a constant density at $3\,R_E$; the charge exchange mechanism results in a flux F_c, proportional to n_c and the scale height H_c; F_j is the corrected flux for Jeans escape.

<table>
<thead>
<tr>
<th>T_{max} (°K)</th>
<th>T_{max} (°K)</th>
<th>T_{max} (°K)</th>
<th>T_{max} (°K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_e, °K</td>
<td>884</td>
<td>1061</td>
<td>1150</td>
</tr>
<tr>
<td>n_{min}, atoms cm$^{-3}$</td>
<td>8.7 \times 104</td>
<td>5.1 \times 104</td>
<td>4.0 \times 104</td>
</tr>
<tr>
<td>$n_{\text{max}}/n_{\text{min}}$</td>
<td>2.12</td>
<td>1.79</td>
<td>1.66</td>
</tr>
<tr>
<td>n_c, atoms cm$^{-3}$</td>
<td>1.41 \times 106</td>
<td>7.15 \times 104</td>
<td>5.5 \times 104</td>
</tr>
<tr>
<td>n_{H}, atoms cm$^{-2}$</td>
<td>1.25 \times 108</td>
<td>7.6 \times 108</td>
<td>6.38 \times 108</td>
</tr>
<tr>
<td>$F_0 = 2 kn_c H_c$, atoms cm$^{-2}$ s$^{-1}$</td>
<td>1.07 \times 105</td>
<td>6.5 \times 105</td>
<td>5.5 \times 105</td>
</tr>
<tr>
<td>$F_j = \frac{F_0}{0.73}$, atoms cm$^{-2}$ s$^{-1}$</td>
<td>4 \times 107</td>
<td>5.1 \times 107</td>
<td>6.7 \times 107</td>
</tr>
<tr>
<td>$F_0 + F_j$, atoms cm$^{-2}$ s$^{-1}$</td>
<td>1.47 \times 108</td>
<td>1.3 \times 108</td>
<td>1.32 \times 108</td>
</tr>
</tbody>
</table>

The density n_{min} is taken from Oso-5 measurements; n_c is the density (in a spherical model) that gives a constant density at $3\,R_E$; the charge exchange mechanism results in a flux F_c, proportional to n_c and the scale height H_c; F_j is the corrected flux for Jeans escape.
increases with exospheric temperature. The flux \(\text{Fe} \), due to charge exchange with protons, is assumed to be proportional to \(n_c H_c \) (dotted line). The total flux \(F_e + F_j \) (squares) is nearly constant in the explored temperature range.

Fig. 2. The Jeans escape flux \(F_e \), estimated either with a spherical model (open circles) or with a model with axial symmetry (triangles), increases with exospheric temperature. The flux \(F_e \), due to charge exchange with protons, is assumed to be proportional to \(n_c H_c \) (dotted line). The total flux \(F_e + F_j \) (squares) is nearly constant in the explored temperature range.

\[
\text{Fe} = 2kn_c H_c
\]

This idea was already suggested independently by Tinsley [1974], Liu and Donahue [1974], and Bertaux [1974]. The most efficient escape mechanisms are: (1) charge exchange of \(\text{H}^+ \) in ballistic orbits with \(\text{H}^+ \) in the plasmasphere, the velocity of the new neutral being, most of the time, higher than the local escape velocity [Cole, 1966; Tinsley, 1973, 1974] and (2) polar wind in high magnetic latitude regions [Banks and Holzer, 1968].

A rough estimate of the fluxes at 500 km averaged over the whole exobase induced by mechanisms 1 and 2, respectively, is \(2 \times 10^7 \) and \(10^6 \) atoms \(\text{cm}^{-2} \text{s}^{-1} \). It is clear that they may well be as important as Jeans escape, if not more important.

The dependence of these mechanisms on the exospheric temperature has been investigated by Liu and Donahue [1974]. A rough estimate of the amount of neutral \(\text{H} \) available for charge exchange is given by the quantity \(2n_c H_c \), where \(H_c \) is the scale height of \(\text{H} \) as a function of \(T_e \) at the exobase level, and is indicated in Table 1 with the values of \(n_c \) determined from the Ogo-5 data at 3 \(R_E \) (the factor of 2 in the expression \(2n_c H_c \) allows approximately for the nonexponential behavior of the \(\text{H} \) distribution). This quantity decreases with exospheric temperature; then there is a possible compensation between Jeans escape and charge exchange.

If we assume that the escape flux \(F_e \) corresponding to the charge exchange is only proportional to the quantity \(2n_c H_c \),

we can compute from the data of Table 1 a value of \(k \) that would give the same flux \(F_e + F_j \) for \(T_{\text{max}} = 10^8 \) and \(1400^\circ \text{K} \). It is \(k = 4.3 \times 10^{-6} \text{ s}^{-1} \).

The physical meaning of \(k \) is that the quantity \(2n_c H_c \) would decrease to \(1/e \) of the original value in the time \(k^{-1} = 2.3 \times 10^5 \text{ s} \) if charge exchange was the only loss process.

Then the flux \(F_e \) can be computed between \(10^9 \) and \(1400^\circ \text{K} \), as well as the sum \(F_e + F_j \), indicated in Table 1 and Figure 2.

The absolute value of \(F_e + F_j \) is in very good agreement with the flux \(F_{100} = 1.5 \times 10^8 \text{ atoms cm}^{-2} \text{s}^{-1} \) derived from mesospheric calculations and \(\text{H} \) compound measurements between 30 and 50 km [Hunten and Strobel, 1974].

With these measurements and the Ogo-5 data we arrive at the very simple following picture concerning the total escape flux of \(\text{H} \) averaged over the surface of the earth:

1. The sum of Jeans escape flux and charge exchange flux is equal to the flux of the element \(\text{H} \) in atomic and molecular form [Tinsley, 1969] at 100 km and is constant with exospheric temperature (at least in the range \(1000 \rightarrow 1400^\circ \text{K} \) for \(T_{\text{max}} \)).

2. When the exospheric temperature increases from \(T_e = 880 \rightarrow 1240^\circ \text{K} \), the Jeans escape flux increases from \(4 \times 10^7 \) to \(10 \times 10^7 \) atoms \(\text{cm}^{-2} \text{s}^{-1} \), whereas the charge exchange flux, proportional to the quantity \(n_c H_c \), decreases from \(1.1 \times 10^6 \) to \(4.7 \times 10^7 \) atoms \(\text{cm}^{-2} \text{s}^{-1} \). The two fluxes are equal for \(T_e \approx 1070^\circ \text{K} \).

A further refinement of this picture would include the polar wind; however, in this range of temperature its contribution (averaged over the whole exobase) is small and only slightly varying with temperature [Liu and Donahue, 1974]. The slight departure of \(F_e + F_j \) from a constant value at both ends of the explored temperature range could also be due to the assumption that charge exchange is only proportional to the quantity \(2n_c H_c \); large exospheric temperature changes are likely to be associated with solar activity changes, which can influence greatly the ion temperature and concentration in the plasmasphere and subsequently the efficiency of charge exchange.
Acknowledgments. This work was supported by CNES grant 71 201. I am indebted to D. M. Hunten, T. M. Donahue, and B. A. Tinsley for stimulating discussions. I am also very grateful to J. E. Blamont for his encouragement to publish the present data.

The Editor thanks G. E. Thomas and B. A. Tinsley for their assistance in evaluating this paper.

References

(Received July 2, 1974; accepted October 4, 1975.)