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A B S T R A C T 

We describe how to implement the spectral kurtosis method of interference removal (zapping) on a digitized signal of averaged 

po wer v alues. Spectral kurtosis is a hypothesis test, analogous to the t-test, with a null hypothesis that the amplitudes from 

which power is formed belong to a ‘good’ distribution – typically Gaussian with zero mean – where power values are zapped 

if the hypothesis is rejected at a specified confidence level. We derive signal-to-noise ratios (SNRs) as a function of amount 
of zapping for folded radio pulsar observations consisting of a sum of signals from multiple telescopes in independent radio- 
frequency interference environments, comparing four methods to compensate for lost data with coherent (tied-array) and 

incoherent summation. For coherently summed amplitudes, scaling amplitudes from non-zapped telescopes achieves a higher 
SNR than replacing zapped amplitudes with artificial noise. For incoherently summed power values, the highest SNR is given 

by scaling power from non-zapped telescopes to maintain a constant mean. We use spectral kurtosis to clean a tied-array radio 

pulsar observation by the Large European Array for Pulsars: the signal from one telescope is zapped with time and frequency 

resolutions of 6 . 25 ms and 0 . 16 MHz , removing interference, along with 0.27 per cent of ‘good’ data, giving an uncertainty of 
0 . 25 μs in pulse time of arri v al (TOA) for PSR J1022 + 1001. We use a single-telescope observation to demonstrate reco v ery of 
the pulse profile shape, with 0.6 per cent of data zapped and a reduction from 1.22 to 0 . 70 μs in TOA uncertainty. 

Key words: methods: analytical – methods: data analysis – methods: numerical – methods: statistical – techniques: interfero- 
metric – pulsars: general. 
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 I N T RO D U C T I O N  

errestrial sources of radio-frequency interference hamper many 
stronomical radio observations, swamping the signal from outer 
pace with intense and unwanted human-made radiation. Although it 
s usually impossible to subtract interference from useful information 
eceived at the same time and frequency, it is possible to remo v e or
eplace contaminated portions of data entirely, and so prevent them 

rom affecting the integrated signal. 
To remo v e interference, we wish to identify it using a fair and reli-

ble method. One such method, a general signal processing technique 
ermed ‘spectral kurtosis’ (Dwyer 1983 ), was first applied to radio 
stronomy by Nita et al. ( 2007 ), subsequently refined by Nita & Gary
 2010a , b ) and applied again by Gary, Liu & Nita ( 2010 ). It is a sta-
istical method that attempts to separate ‘Gaussian white noise’ from 

verything else, on the assumption that the useful information resem- 
les Gaussian white noise while the interference does not. It uses the
 E-mail: mark.purver@alumni.manchester.ac.uk 
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ignal power to make a binary decision about whether to remo v e
ata, and it can be applied with fine resolution in time and frequency.
e refer to the quantity used to make this decision as ‘the estimator’.
Pulsars are weak and rapidly varying astronomical radio sources 

hat require observations with fine time resolution, so interference 
annot easily be ‘averaged out’ with integration across time, fre- 
uency, or multiple telescopes. Spectral kurtosis has previously 
een used to remo v e interference from single-telescope pulsar 
bservations from the P arkes, Lo v ell, and Green Bank Telescopes
van Straten 2013 ; Dolch et al. 2014 ; Lam 2016 ; Kar et al. 2019 ).

e extend this approach to cover the case of a pulsar observation
onsisting of a sum of signals from an array of telescopes in indepen-
ent interference environments, which results in a variable number 
f telescopes contributing to the observation at different times and 
requencies. Since it is possible to compensate for contaminated data 
t one telescope using uncontaminated data from the rest of the array,
e compare four methods of replacing the data that are lost from an

rray pulsar observation when interference is remo v ed. 
We apply one such method to a timing observation made as a part

f the Large European Array for Pulsars (LEAP) project (first shown
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http://orcid.org/0000-0002-4175-2271
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n section 4.5 Bassa et al. 2016 ). This array comprises five widely
eparated radio telescopes, whose simultaneous pulsar observations
an be summed coherently to produce a tied array of equi v alent
ensitivity to a single telescope of 195 m in diameter. Coherent
ummation is not al w ays possible, so LEAP sometimes acts as
n incoherently summed array equi v alent to a 130-m telescope.
EAP provides pulsar observations of greater sensitivity than any
ther existing steerable radio telescope, enabling precise timing
f dynamical properties, such as a pulsar’s rotational period and
roper motion. The project aims to use high-precision timing to
etect gravitational waves, and interference removal is necessary to
aintain its accuracy. Spectral kurtosis can be applied independently

o each telescope’s data, excising interference while sacrificing as
ittle useful information as possible. 

In Section 2 of this paper, we fully describe the implementation of
he spectral kurtosis method of Nita & Gary ( 2010b ). In Section 3, we
xplain advantages and disadvantages of this method of interference
etection. In Section 4, we explore the effects of general interference
emoval on folded pulse profiles produced using observations from an
rray of telescopes, and look at how adverse effects can be mitigated
hile maximizing signal-to-noise ratio (SNR). In Section 5, we sum-
arize the application of spectral kurtosis to a LEAP observation. In
ection 6, we conclude. 

 SPECTRAL  K U RTO S I S  M E T H O D  O F  

NTERFERENCE  DETECTION  

ach instance of the spectral kurtosis estimator is derived from a
ortion of the radio signal, and its value is a measure of the statistical
roperties of that portion. We use a hypothesis test to classify data as
ither ‘good’ or ‘bad’ based on the value of the estimator, where bad
ata are usually interference and good data are usually not. The null
ypothesis is that data are good, because we know the values expected
rom good data. The classification provides evidence of whether a
ortion is likely to be good or bad in reality, but, since it examines a
nite number of data, it cannot tell us whether the portion is definitely
ood or bad. We therefore remo v e portions that are suspected of
eing bad when the y giv e estimator values that are outside specific
imits, and we call this removal ‘zapping’. We can control our level
f suspicion, because the estimator allows us to define the fraction
f good data that we are willing to zap mistakenly. In general, the
ore good data we are willing to lose, the more interference we will

liminate. If the amount of interference in an observation is small
hen we may zap more good data than bad, but the spoiling effect of
ven a small amount of dominant interference is usually sufficient to
ustify this. 

In the following subsections, we explain how to calculate the
stimator and its limits. We provide some example values for
ariables used in the calculations, as an aid to implementation of
he method. Where numerical integration is required, we refer to
outines within the GNU Scientific Library ( GSL ) for the C and C ++
rogramming languages. All variables used have real values, with
maginary quantities shown explicitly using the imaginary unit i . 

.1 The radio signal 

lthough the estimator is a function of signal power, we begin with
he amplitudes from which power is derived. The digitized signal
nitially consists of an evenly sampled time series of radio amplitudes,
o v ering a fix ed frequenc y bandwidth; we assume that the continuous
ignal has been limited to co v er the same bandwidth before being
ampled, so that its information is captured accurately (Shannon
NRAS 510, 1597–1611 (2022) 
949 ). Each time sample records the amplitude in either one or two
olarization components, and each amplitude may be either real or
omplex (in the case of complex amplitudes, the imaginary part
s simply a phase-shifted version of the real part in which each
inusoidal wave making up the signal has been shifted by π2 radians,
apturing the same information as a real signal of twice the sampling
ate). The amplitudes are drawn from a set containing a fixed number
f discrete values, stored using a corresponding number of ‘sampling
its’, and we assume this set to be large enough to approximate a
ontinuum of values for statistical purposes. Although the number
f values does not change, the values themselves can be calibrated
ynamically during an observation. 
The frequency resolution of the signal can be impro v ed, at the

xpense of time resolution, by performing discrete Fourier transforms
DFTs) on sequences of amplitudes; the more time samples are used
n each DFT, the more the frequency resolution impro v es (pp. 260–
62 Bracewell 2000 ). Although this is often referred to as ‘moving
rom the time domain to the frequency domain’, the values that come
ut of a DFT are still amplitudes, with each amplitude representing
he signal at one time and one frequency. DFTs of consecutive
equences of amplitudes can therefore be used as a time series with
ultiple frequency channels, where each DFT contributes one time

oint to all channels. The process simply exchanges time resolution
or frequency resolution, and it is worth noting that the DFT of a
ingle value gives the value itself, i.e. the time-domain signal can be
hought of as being the frequency-domain signal with one channel.
he channelized amplitudes are generally complex, representing the
agnitude and phase of the signal at each time and frequenc y. Giv en

he same signal and equipment, a complex time series consisting of
 samples and a real time series consisting of 2 T samples produce
lmost the same amplitudes in channels 1 to T − 1 of their respective
FTs (where T is a positive integer), as long as the frequencies in

he signal are within the range of the channels. This similarity allows
mplitudes from telescopes with real and complex sampling to be
dded together in the frequency domain (section 4.1 of Bassa et al.
016 ). There are some differences in the way that continuous signal
requencies are distributed into discrete bins, which can be mitigated
y applying different weights to each bin; the differences are larger in
he lowest- and highest-frequency channels, and these channels are
ften not used because they do not approximate the original signal
ell even if weights are used (pp. 281, 288 Bracewell 2000 ). The
FT amplitudes in channels 0 and T from the real time series are

hemselves al w ays real, so they cannot generally be compared to
he amplitude in channel 0 from the complex time series, and the
omplex time series does not produce a channel T . 

.2 The statistical distribution of the signal 

he identification of interference by the spectral kurtosis method
s based on the probability density function (PDF) of a set of
mplitudes, which gives the probabilities of a single amplitude taking
n y giv en value and which we refer to as the ‘distribution’ of the set.
he number of amplitudes in the set can be chosen at will, and

he time and frequency ranges covered by the set are the time and
requency resolutions of zapping. 

Depending on the origin of the signal, the distribution can have
ifferent general forms (shapes), and other distinguishing character-
stics, such as different mean values. We can use spectral kurtosis
o test whether each measured set of amplitudes is well described
y a particular distribution. In a ‘good’ signal of Gaussian white
oise, the amplitudes (taking the real and imaginary parts as separate
alues if the signal is complex) are uncorrelated and have a Gaussian
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istribution with a mean of 0 when collected o v er the time and
requency resolutions of zapping and across all polarizations; in a 
bad’ signal, the distribution of amplitudes when collected o v er these
anges is non-Gaussian, contains correlated amplitudes and/or does 
ot have a mean of 0. Although the portion of the signal from the
ulsar might have a non-Gaussian distribution, it is typically too weak 
o substantially alter the total signal distribution, so a detectably bad 
ignal is usually caused by interference. If a bad signal is caused by
npolarized interference, the distribution o v er time and frequency 
ithin a single polarization is bad, and two polarizations have the 

ame distribution as one another; if a bad signal is caused by polarized
nterference, two polarization components are differently distributed. 
n all but pathological cases, the real and imaginary parts of a complex 
ignal have the same distribution as one another. 

.3 The estimator 

he estimator is an unbiased estimate of the scaled variance divided 
y the square of the mean for a set of samples of summed power.
t is referred to as ‘spectral’ because it can be calculated separately
or each frequency channel by using Fourier transforms, although it 
an also be calculated across the full bandwidth without leaving the 
ime domain. It is called ‘kurtosis’ because the variance of signal 
ower involves the mathematical fourth power of amplitude values, 
ut each element in the calculation is more generally the square of a
um of squares rather than a simple fourth power. 

Each summed power value, P m , is assembled as a sum of squares
f amplitude values that are either real, A n , or complex, A n + iB n : 

 m 

= 

2 N ∑ 

n = 1 

A 

2 
n (1) 

r 

 m 

= 

N ∑ 

n = 1 

(
A 

2 
n + B 

2 
n 

)
(2) 

n general, a set of po wer v alues has a non-zero mean, referred to
s a ‘baseline’. The baseline is usually subtracted from the values at
ome stage, but subtraction should not be done prior to calculation of
he estimator. Our variable N is equivalent to the product Nd in Nita
 Gary ( 2010b ). N counts real and imaginary numbers and ranges

n time, frequency and polarization without distinction, e.g. N = 2 
ould result from a sum of complex amplitudes at one time, one
requency, and two polarizations or from a sum of real amplitudes 
t two times, two frequencies, and one polarization. 2 N is thus the
otal number of squared values that are summed to form each power
alue. For real amplitudes, 2 N is a positive integer; for complex
mplitudes, N is a positive integer. The time and frequency ranges are
sually contiguous and evenly sampled, while the polarization range 
sually co v ers two orthogonal modes, although statistically these 
onditions are not necessary. When forming each power value, the 
se of one time and one frequency makes the estimator most sensitive
o bad data (Nita & Gary 2010b ), and the use of two polarizations
llows it to be equally sensitive to polarized interference coming from 

ifferent directions. The use of more than one time or frequency may
e made in order to save data storage space or processing time,
nd power values can be added together to accomplish this without 
eeding to know their constituent amplitudes. Spectral kurtosis can 
e extended to cases in which good data have a non-Gaussian 
mplitude distribution, resulting in non-integer values of 2 N and 
 modification of equations (1) and (2), and this generalization has 
een used for two-bit data that do not approximate a continuous signal 
Nita, Keimpema & Paragi 2019 ). Non-integer values of 2 N could
lso be used if the amplitudes making up each summed power sample
ere distributed with different variances (e.g. if two polarization 

hannels had different gain levels) – but we do not make use of
his, preferring calibration to equalize variances prior to interference 
etection (section 4.3 of Bassa et al. 2016 ). 
If formed from Gaussian-distributed amplitudes, the PDF of a 

et of M values of P m is a gamma distribution. This gamma power
istribution has the useful property that its variance and the square
f its mean both scale linearly with the square of the variance of
he Gaussian amplitude distribution, as long as the mean of the
mplitude distribution is 0. We can therefore create a quantity that
s independent of the amplitude variance of good data, which is
he key moti v ation for defining the estimator (as in Nita & Gary
010b ) as 

ˆ 
 = 

( MN + 1) V 

( M − 1) μ2 
= 

MN + 1 

M − 1 

⎛ 

⎜ ⎝ 

M 

∑ M 

m = 1 P 

2 
m (∑ M 

m = 1 P m 

)2 − 1 

⎞ 

⎟ ⎠ 

, (3) 

here μ is the mean of the set of summed power values, V is its
ariance and MN+ 1 

M−1 is a scaling and unbiasing factor (note that factors, 
nvolving M and N can be brought inside the sums in equations (1),
2), and (3) to a v oid the use of e xcessiv ely large or small numbers
uring the calculations). The variance is scaled by the number of
mplitudes contributing to each power value, so the f actor w ould be
 if it were not for the additional need to correct bias in an estimate
f V 

μ2 derived from a finite set. M is the total number of summed

ower samples that contribute to ˆ S , and is therefore an integer; since
ariance is only meaningful for a set containing more than one value,
e have the condition that M ≥ 2. The set of M values usually

o v ers a contiguous block of time and frequency: larger values of M
oarsen the time and/or frequency resolutions of zapping but make 
he estimator more sensitive to bad data o v er the ranges of those
esolutions (Nita & Gary 2010a ), with Nita et al. ( 2007 ) advising that
 ≥ 37 is required to zap monochromatic interference. ˆ S represents 

n individual instance of the estimator, so we use S as the range of
alues that ˆ S can take; since the power values used to calculate ˆ S are
l w ays real, we have the condition that S ≥ 0. 

The underlying probability distribution of S can be revealed by 
aking many measurements of ˆ S . But the distribution for good data

an also be approximated analytically, allowing it to be calculated 
ore efficiently. The distribution depends on M and N , but, for
aussian-distributed amplitudes with a mean of 0, it does not depend
n the variance of those amplitudes. In other words, the estimator
ehaves in the same way for Gaussian amplitudes (good data) of any
loudness’, and can thus be used to distinguish them from most non-
aussian amplitudes (bad data). The estimator shares this property 
ith the t-statistic (Student 1908 ), and in fact a t-test could be used

o classify good and bad data using amplitudes instead of power
alues. We have not undertaken an interference detection comparison 
etween the estimator and the t-statistic, but have employed the 
stimator because it can be used on either averaged po wer v alues or
mplitudes and because it can apply a consistent test to polarized
ignals regardless of the angle between the radio source and the
eceiver plane. 

For good data, S has a mean of 1 for all allowed values of M and
 ; if we are to decide which amplitudes to accept as good without
eriving the distribution of S empirically, we must calculate the 
istribution’s shape as best we can by computing some of its higher
oments as well. 
MNRAS 510, 1597–1611 (2022) 
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.4 The probability distribution of the estimator 

n order to understand what values we expect the estimator to take
hen the null hypothesis is true, we determine the approximate

umulative distribution function (CDF), P ( S ), that is produced by
ood ˆ S v alues. The CDF gi ves the fraction of good ˆ S values that are
xpected to fall at or below any level S , and its shape depends only
n M and N . 
A CDF is the integral of a PDF, p ( S ), defined by 

 ( S) = 

∫ S 

S min 

p( s) d s = 1 −
∫ S max 

S 

p( s) d s, (4) 

here s is simply a variable of integration and where the PDF and
DF are defined in the range S min ≤ S ≤ S max (so P ( S min ) = 0
nd P ( S max ) = 1). Gary et al. ( 2010 ) found that the required CDF
s complicated to calculate, because it is the integral of a skewed
DF. Nita & Gary ( 2010a , b ) showed that the CDF can be well
pproximated in most cases by numerically integrating a PDF called
 Pearson distribution, which is defined by four parameters (given by
quation (9) of Nita & Gary 2010b ) and allows up to the first four of
ts statistical moments to be matched to those of the true PDF. The
rst parameter is the mean or first raw moment, which we set equal

o 1. The second parameter is the variance or second central moment,
nd is given by 

2 = 

2 M 

2 N ( N + 1) 

( M − 1)( MN + 2)( MN + 3) 
. (5) 

epending on the values of M and N , the PDF required may be a
earson distribution of Type I, Type IV, or Type VI (Pearson 1895 ,
901 ). To find out which Type, we use two parameters related to
he third and fourth central moments (and therefore to skewness and
urtosis), 

1 = 

8( M N + 2)( M N + 3)( M N ( N + 4) − 5 N − 2) 2 

( M − 1)( MN + 4) 2 ( MN + 5) 2 N ( N + 1) 
(6) 

nd 

2 = 

3( M N + 2)( M N + 3) 

( M − 1)( MN + 4)( MN + 5)( MN + 6)( MN + 7) 

× ( M 

3 N 

3 ( N + 1) + M 

2 N 

2 (3 N 

2 + 68 N + 125) 

−MN (93 N 

2 + 245 N + 32) + 12(7 N 

2 + 4 N + 2)) 

× 1 

N ( N + 1) 
, (7) 

o define: 

= 

β1 ( β2 + 3) 2 

4(4 β2 − 3 β1 )(2 β2 − 3 β1 − 6) 
(8) 

for any PDF, the quantities μ2 and β1 are non-ne gativ e and β2 ≥ β1 

 1). We use Type I if κ ≤ 0, Type IV if 0 < κ < 1 and Type VI if
> 1 (special cases of Type V if κ = 1 and Type III if κ = ∞ do

ot arise for the allowed values of M and N ). Fig. 1 of Nita & Gary
 2010b ) shows which types correspond to dif ferent v alues of M and
 , demonstrating that Type IV is likely to be used if N ≤ 13.5, Type
I if N ≥ 14 and Type I only if M ≤ 9. When calculating the CDF

or all three Types, we use an additional parameter (which is positive
or the allo wed v alues of M and N ) giving the ratio of the third and
econd central moments: 

1 = 

√ 

μ2 β1 = 

4 M ( M N ( N + 4) − 5 N − 2) 

( M − 1)( MN + 4)( MN + 5) 
. (9) 
NRAS 510, 1597–1611 (2022) 
For each Type, we calculate location-scale transformations of the
DF and the CDF, p 

′ 
( S 

′ 
) and P 

′ 
( S 

′ 
), where 

 

′ ( S ′ ) = 

∫ S ′ 

S ′ 
min 

p 

′ ( s) d s = P ( S) (10) 

hen 

 = aS ′ + λ (11) 

nd where the values of a and λ are calculated differently for each
ype ( a is positive for any PDF). S 

′ 
is used because p 

′ 
( S 

′ 
) is a simpler

orm of a Pearson distribution than p ( S ). The transformation gives
 ( S ) the required moments: for example, the mean of p 

′ 
( S 

′ 
) should

l w ays be found to be 1 −λ
a 

, as this ensures that p ( S ) has a mean of 1. In
he following paragraphs, we explain how to calculate P 

′ 
( S 

′ 
), a , and

for each Type (note that all square roots refer to the non-ne gativ e
alue). 

.4.1 The CDF using Type I 

ype I corresponds to κ ≤ 0, and applies only in some cases for which
 ≤ 9 (as long as N ≥ 0.5, which co v ers all of its allowed values
hen calculating the estimator distribution caused by Gaussian white
oise). Such small values of M give a PDF with a large variance,
aking the estimator so insensitive to interference that it might not

e considered useful (Nita & Gary 2010a ). Additionally, we have
ound that Type I does not provide a good approximation to the true
DF of S as generated using simulated random numbers, even though

t does approximate the first four moments well. The problem is worst
t small S , where the Type I PDF gives a substantial probability of S
 0, despite the fact that ˆ S cannot be ne gativ e. These ne gativ e values

ndicate that a Pearson distribution is inadequate when M is small,
nd that it is necessary to approximate more than four moments or
o derive the PDF empirically in these cases. However, since we do
ot know the scope of applications for which spectral kurtosis will
e employed, we include this part of the method for completeness. 
Following a method equivalent to that of Kendall, Stuart & Ord

 1994 , pp. 217–220), we match the first four moments of the true
DF by using the parameters 

 0 = μ2 (4 β2 − 3 β1 ) , (12) 

 1 = α1 ( β2 + 3) (13) 

nd 

 2 = 6 + 3 β1 − 2 β2 (14) 

o define: 

 = 

√ 

c 2 1 + 4 c 0 c 2 . (15) 

e then use these with the further parameter 

 3 = 15 + 9 β1 − 7 β2 (16) 

o define: 

 1 = 2 + 

c 3 

c 2 

( c 1 

c 
− 1 

)
(17) 

nd 

 2 = 2 − c 3 

c 2 

( c 1 

c 
+ 1 

)
(18) 

of these seven quantities, only c 3 can be ne gativ e for the allowed val-
es of M and N in the Type I case). The transformed CDF can then be
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alculated as 

 

′ ( S ′ ) = 

∫ S ′ 
0 s n 1 −1 (1 − s) n 2 −1 d s ∫ 1 
0 s 

n 1 −1 ( 1 − s ) n 2 −1 d s 
= 

B( S ′ ; n 1 , n 2 ) 
B( n 1 , n 2 ) 

, (19) 

here B( S 
′ 
; n 1 , n 2 ) and B( n 1 , n 2 ) are the incomplete and complete

eta functions, respectively. This can be computed as the normalized 
ncomplete beta function using GSL , or it can be found using
umerical integration (pp. 9, 21 Bateman & Erd ́elyi 1953 ) as 

 

′ ( S ′ ) = 

∫ S ′ 

0 
exp (( n 1 − 1) ln s + ( n 2 − 1) ln (1 − s) 

− ln B( n 1 , n 2 )) d s (20) 

ith 

ln B( n 1 , n 2 ) = 

∫ ∞ 

0 

(
( e −n 1 s + e −n 2 s − e −( n 1 + n 2 ) s − e −s ) 

s(1 − e −s ) 

− e −s 

s 

)
d s, (21) 

oth of which approaches a v oid the use of very large numbers during
he calculation. The transformed CDF is defined in the range 0 ≤ S 

′ 

1. 
The transformation from S 

′ 
to S can be made using equation (11)

ith 

 = 

c 

c 2 
(22) 

nd 

= 1 − 1 

2 c 2 

(
c 1 c 3 

2 c 2 − c 3 
+ c 

)
. (23) 

he transformed PDF is a beta distribution, which has a mean of
1 −λ
a 

= 

n 1 
n 1 + n 2 

as required. Example Type I values are: M = 3, N = 4,
 = 53.67, λ = −1.699. 

.4.2 The CDF using Type IV 

ype IV corresponds to 0 < κ < 1. It applies in all cases for which
 ≥ 240 and N ≤ 13.5, and in some cases for which 14 ≤ M ≤ 239

nd N ≤ 13.5, so it is most commonly used when few amplitudes are
sed to make each po wer v alue. It approximates the true PDF of S
ell for all values of M and N to which it applies, working best when
 � 25. 
Following Nita & Gary ( 2010a ), we match the first four moments

f the true PDF by using the parameter 

 = 

6( β2 − β1 − 1) 

2 β2 − 3 β1 − 6 
(24) 

o define: 

 = 16( r − 1) − β1 ( r − 2) 2 . (25) 

e then use these to define: 

 = r( r − 2) 

√ 

β1 

u 

(26) 

these three quantities are all positive for the allowed values of M and
 in the Type IV case). The transformed CDF can then be calculated
s: 

 

′ ( S ′ ) = 

2 r 
∣∣� 

(
r+ 2 + iw 

2 

)∣∣2 

π�( r + 1) 

∫ S ′ 

−∞ 

exp ( w arctan s) 

( s 2 + 1) 
r+ 2 

2 

d s 

= 

∫ S ′ 

−∞ 

exp 

(
w arctan s − ( r + 2) ln ( s 2 + 1) 

2 

+ r ln 2 + 2 ln 

∣∣∣∣� 

( r + 2 + iw 

2 

)∣∣∣∣
− ln π − ln �( r + 1) 

)
d s, (27) 

here � denotes the gamma function, i.e. �( r + 1) = 

∫ ∞ 

0 s r e −s d s.
he second form of equation (27) a v oids the use of very large
umbers during the calculation. Numerical integration is needed 
unless potentially computationally e xpensiv e hypergeometric series 
re used), but the log-gamma functions can be computed using GSL , or
hey can be found using further numerical integration (p. 21 Bateman
 Erd ́elyi 1953 ) as 

ln �( r + 1) = 

∫ ∞ 

0 

(
e −( r+ 1) s − e −s 

s(1 − e −s ) 
+ 

re −s 

s 

)
d s (28) 

nd 

n 

∣∣∣∣� 

( r + 2 + iw 

2 

)∣∣∣∣ = � 

[
ln � 

( r + 2 + iw 

2 

)]

= 

∫ ∞ 

0 

(
cos 

(
ws 
2 

)
e −

( r+ 2) s 
2 − e −s 

s(1 − e −s ) 
+ 

re −s 

2 s 

)
d s. (29) 

he transformed CDF is defined in the range −∞ ≤ S 
′ ≤ ∞ . 

The transformation from S 
′ 

to S can be made using equation (11)
ith 

 = 

√ 

μ2 u 

4 
(30) 

nd 

= 1 − α1 ( r − 2) 

4 
(31) 

there is a typographical error in the definition of a in equation (57)
f Nita & Gary 2010a , in which 6 should read 16). Example Type IV
alues are: M = 1000, N = 2, a = 0.5008, λ = 0.5593. 

.4.3 The CDF using Type VI 

ype VI corresponds to κ > 1. It applies in all cases for which M
3 and N ≥ 14, and in some cases for which 3 ≤ M ≤ 239 and

 ≤ 13.5, so it is most commonly used when many amplitudes are
sed to make each power value. Like Type I, Type VI cannot identify
nterference fairly when M is small: it gives a substantial probability
f S < 0 in some cases for which M � 12, even though ˆ S cannot
e ne gativ e. In the more useful cases for which M � 25, ho we ver,
imulations with random numbers showed that Type VI provides a 
ood approximation to the true PDF of S . 
Following Nita & Gary ( 2010b ), we match the first three moments

not four, as in the other cases) of the true PDF by using the parameter 

 = 4 + 

√ 

β1 

(
1 

μ2 
+ 4 

)
+ 16 (32) 

o define: 

= 

1 

α1 

(
μ2 

(
h 

(
1 

α1 

(
8 μ2 

α1 
− 1 

)
+ 1 

)
+ 4 

)
+ 1 

)
− 1 (33) 
MNRAS 510, 1597–1611 (2022) 
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nd 

= 3 + 

2 h 

β1 
. (34) 

these three quantities are all greater than 8 for the allowed values
f M and N in the Type VI case). The transformed CDF can then be
alculated as 

 

′ ( S ′ ) = 

∫ S ′ 
0 s α−1 (1 + s) −( α+ β) d s ∫ 1 

0 s 
α−1 (1 − s) β−1 d s 

= 

B 

(
S ′ 

1 + S ′ ; α, β
)

B( α, β) 
, (35) 

here B( S ′ 
1 + S ′ ; α, β) and B( α, β) are the incomplete and complete

eta functions, respectively. This can be computed as the normalized
ncomplete beta function using GSL (in which case the transforma-
ion can later be made directly from 

S ′ 
1 + S ′ to S without explicitly

alculating S 
′ 
), or it can be found using numerical integration as 

 

′ ( S ′ ) = 

∫ S ′ 

0 
exp (( α − 1) ln s − ( α + β) ln (1 + s) − ln B( α, β)) d s 

(36) 

ith equation (21) for ln B( α, β), both of which approaches a v oid the
se of very large numbers during the calculation. The transformed
DF is defined in the range 0 ≤ S 

′ ≤ ∞ . 
The transformation from S 

′ 
to S can be made using equation (11)

ith 

 = 1 (37) 

nd 

= 1 − α

β − 1 
. (38) 

he transformed PDF is a beta-prime distribution, which has a mean
f 1 −λ

a 
= 

α
β−1 as required. Example Type VI values are: M = 600, N

 16, a = 1, and λ = −0.3393. 

.5 The limits of the estimator 

e now decide on the fraction of good data that we are willing to
eject, 2 f , and use the transformed CDF to calculate lower and upper
imits of S such that a fraction f of good ˆ S values are expected to fall
elow the lower limit, S L , and a fraction f are expected to fall above
he upper limit, S U . The range between the limits is a confidence
nterval: we reject any portion of data that produces an estimator
alue outside the range, because we suspect those data of being bad.
e wish to choose the smallest value of f that adequately remo v es

nterference, in order to keep as many good data as possible and
 v oid any substantial change to the overall amplitude distribution of
n observation. 

Since we are using P 

′ 
( S 

′ 
), we calculate transformed limits S ′ L and

 

′ 
U that are related to S L and S U by equation (11). These must satisfy

he condition: 

 

′ ( S ′ L ) = 1 − P 

′ ( S ′ U ) = f , (39) 

here 0 ≤ f ≤ 1. The transformed PDF has a mean of 1 −λ
a 

and a
ariance of μ2 

a 2 
, so initial guesses for S ′ L and S ′ U can be found using

 rough Gaussian approximation for the PDF: 

 

′ 
L ≈ 1 − λ − η

√ 

μ2 

a 
(40) 

nd 

 

′ 
U ≈ 1 − λ + η

√ 

μ2 

a 
, (41) 
NRAS 510, 1597–1611 (2022) 
here η is a positive number such that 

 = 

1 

2 
− 1 √ 

π

∫ η√ 
2 

0 
exp ( −s 2 ) d s = 

1 − erf 
(

η√ 

2 

)
2 

(42) 

nd ‘erf’ denotes the error function. f can be calculated from η using
he error function in GSL or using numerical inte gration; alternativ ely,

can be calculated from f using the inverse cumulative Gaussian
istribution function in GSL . The use of η is not absolutely necessary,
ut it allows us to make reasonable initial guesses and to describe
ur non-Gaussian PDF using the familiar language of Gaussian
istributions: if we choose η = 3, for example, then we can refer
o S L and S U as ‘three-sigma limits’, meaning that they exclude the
ame fraction of good data from our PDF as limits that were three
tandard deviations from the mean would exclude from a Gaussian
istribution (where standard deviation is the square root of variance).
After checking that the initial guess for a transformed limit

alls within the range for which the rele v ant CDF is defined, we
alculate the value of the CDF at that point. Since all CDFs increase
onotonically, we make the guess a lower bound if the CDF falls

elow its target value or as an upper bound if the CDF falls abo v e its
arget value. We then calculate the CDF at intervals in S 

′ 
(moving in

ne direction by, for example, 
√ 

μ2 
a 

at a time) until the CDF crosses
ts target v alue, gi ving us the other bound for the transformed limit.
fter this, we bisect the upper and lower bounds iteratively, and at

ach iteration we make the bisection point a new upper or lower
ound according to the value of the CDF at that point. Once the
pper and lower bounds are sufficiently close together, we take their
isection point as the transformed limit, and finally convert this to a
imit on S using equation (11). We use our limits to zap portions of
ata that give ˆ S < S L or ˆ S > S U . 
For η = 3 ( f = 0.001350), example values corresponding to those

n Sections 2.4.1–2.4.3 are: M = 3, N = 4, S L = −1.492, S U = 7.417
Type I); M = 1000, N = 2, S L = 0.8499, S U = 1.1818 (Type IV); M
 600, N = 16, S L = 0.8321, S U = 1.1901 (Type VI). 

 A DVA N TAG E S  A N D  DI SADVANTAG ES  O F  

H E  ESTI MATOR  

pectral kurtosis is one of many methods designed to distinguish
nterference from useful data. While spectral kurtosis looks for non-
aussianity in the distribution of amplitudes, most techniques flag
utlying po wer v alues. ‘Median absolute de viation’, for example,
istinguishes any portion of data whose power is substantially
ifferent to the portions around it, using a median-based variance
stimate that is robust to outliers (Fridman 2009 ). The pulsar
rocessing software PSRCHIVE can tackle narrowband interference
y automatically zapping data in frequency channels that stand out
rom the median channel power, and can also remo v e impulsiv e
nterference by zapping parts of an average pulse profile that
eviate from the expected shape (van Straten, Demorest & Oslowski
012 ). 
Other approaches to interference mitigation include: eliminating

cyclostationary’ signals that have periodic statistical properties (Ait-
llal et al. 2010 ); characterizing known sources of interference in a

pecific environment (Czech, Mishra & Inggs 2018 ); and removing
ignals that appear simultaneously to both a telescope and an adjacent
eference receiver that is not pointing at the astronomical source
Briggs, Bell & K este ven 2000 ). 

Since no method of interference removal is perfect, we examine
ome of the particular features of the estimator. 
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.1 Advantages of the estimator 

he estimator is statistically unbiased, allowing us to choose fairly 
he fraction of good data that will be rejected. It is also simple
n its assumption that the distributions of interference can usually 
e distinguished from the distribution of useful data: this is an 
nashamedly frequentist approach that requires no prior knowledge 
f the interference distributions. An examination by eye shows 
hat spectral kurtosis is successful in zapping many different kinds 
f interference, with the loss of only a small fraction of good
ata. 
As shown in Section 5, the estimator can be used to zap in-

erference with fine time and frequency resolutions (e.g. 6 . 25 ms
nd 0 . 16 MHz ), salvaging more useful data than other methods
ith coarser resolutions. Zapping can operate in either the time or

requency domain, allowing the time resolution to be improved at 
he expense of frequency resolution or vice versa. The ability of the
stimator to detect interference generally impro v es as more power 
alues are accumulated, since its variance decreases as M increases 
Nita & Gary 2010a ), but the best value of M also depends on the
istribution and time-scale of the interference. 
It is possible to zap different types of interference by using

he estimator with different values of M on the same data, either
ndependently or jointly in a ‘multiscale’ approach (Gary et al. 2010 ),
he latter also allowing transient signals to be detected and classified 
sing data with as few as two sampling bits (Nita 2016 ; Nita & Gary
016 ; Nita et al. 2019 ). It is also possible to make the estimator more
ensitive to randomly changing signals and less sensitive to smoothly 
arying ones by normalizing the power at each frequency and time 
y the total power across the bandwidth at the same time, before
sing the normalized values to produce the estimator (Nita et al. 
007 ). 
The estimator can be ef fecti ve on po wer v alues that have been

veraged together, so it can be used retrospectively after data have 
een compressed in this way, although its performance deteriorates 
s more values are used in each average. 

.2 Disadvantages of the estimator 

he frequentist approach that makes spectral kurtosis simple is 
lso its fundamental limitation. Ideally, we would zap data using 
 Bayesian method in which we had prior knowledge of the amount
nd the distributions of the interference. Without these things, we 
annot give an accurate probability that any particular portion of data 
s bad. But prior knowledge is not generally available to us, since the
nterference environment often changes on time-scales shorter than 
he duration of our radio observations. We therefore choose to use 
pectral kurtosis based on our long-term experience and suspicions 
bout interference, but must acknowledge that the technique will be 
ore successful in some situations than others. 
Inevitably, the estimator will sometimes cause us to zap useful 

ata or fail to zap interference. This can happen in tw o w ays. First,
ata can be mislabelled as good or bad. We can control the fraction
f good data that will be rejected (the type I error rate), but we
annot predetermine the fraction of bad data that will be accepted 
the type II error rate), since it depends on the similarity between the
istributions of estimator values from bad data and the distribution 
rom good data. Correlated Gaussian noise might be labelled as good, 
or example, and Nita et al. ( 2007 ) found that periodic interference
ith a duty cycle of 40–60 per cent can closely mimic a good data
istribution. Secondly, useful data can have a ‘bad’ distribution or 
nterference can have a ‘good’ distribution. The former case could 
ccur if single pulses from a pulsar had an SNR close to or greater
han 1 in a single frequency channel; the latter case could result from
nterference that had uncorrelated Gaussian-distributed amplitudes 
hose variance remained approximately constant o v er the zapping 

ime-scale and bandwidth. Zapping the pulsar, in particular, could 
lter its apparent profile shape (see Section 4.1). To combat these
roblems, we should use frequency channels that are too fine for
ingle pulses to be seen abo v e the observational noise, and we may
eed to employ other methods of interference removal as well as, or
nstead of, spectral kurtosis. 

The statistical nature of spectral kurtosis makes it less suitable for
ata that have been averaged over many power values. As the number
f po wer v alues averaged together ( N ) increases, the estimator
oses its ability to distinguish between different gamma power 
istributions and therefore to detect certain types of interference (Nita 
 Gary 2010b ). The method works best on power values sampled

ear the Nyquist rate, requiring substantial data storage space and 
omputational power when zapping. 

 EFFECTS  O F  I NTERFERENCE  REMOVA L  O N  

ULSE  PROFILES  

egardless of the method used to identify interference, zapping alters 
ur data. We look at situations where this may cause a problem for
ulsar observations, and examine four methods of compensating for 
he lost data in array observations with telescopes in independent 
nterference environments. 

.1 Situations in which zapping may alter profile shape 

hen making simultaneous radio observations using multiple tele- 
copes in order to increase the SNR, the signals from each telescope
ay be summed coherently, using amplitudes with phase infor- 
ation, or incoherently, using power without phase information. 
hen portions of the signal at each telescope are independently 

apped prior to summation, the final signal has a variable number of
ontributing telescopes as a function of time and frequency. This can
ose a problem for pulsar observations in particular, because of the
mportance of profile shape. 

After summation o v er the available telescopes, a pulsar observa-
ion is typically summed as a function of the pulsar’s rotational phase
n a process called ‘folding’. This gives the ‘average pulse’, or profile.
amples are summed incoherently in a number of phase ‘bins’, 
iving a profile with phase and frequency resolution, to which time
esolution is added by repeating the process (pp. 165–166 Lorimer 
 Kramer 2005 ). Profiles give a higher SNR than individual pulses,
hich allows more accurate timing of the pulsar. Timing accuracy 

lso relies on the profile shape remaining highly stable o v er time,
nd so every care is taken to a v oid altering it instrumentally. Profile
hape change could be caused by portions of a strong pulsar signal
eing zapped as interference, but, even when zapping is unrelated to
ulsar emission, we must still understand its effect on the profile. 
To quantify the profile change caused by zapping, we begin with

he amplitude signal at a single telescope with no interference (the
ignal may be real or complex and in the time or frequency domain).
e neglect variation between individual pulse measurement, which is 

aused by phenomena such as pulse jitter and interstellar scintillation 
see e.g. Lorimer & Kramer 2005 , fig. 1.1 and pp. 8, 92, 202), and
ssume that all pulses are identical monochromatic waves whose 
agnitude can be described as a function of rotational phase only.
he signal power consists of a source (pulsar) contribution and 
 gamma-distributed random noise contribution, where the noise 
MNRAS 510, 1597–1611 (2022) 
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omes from Gaussian-distributed random amplitudes. In a single time
ample within a single frequency and polarization channel, before
ummation o v er N or 2 N v alues (see Section 2.3), the source po wer
lone would have a mean of h ( θ ) and a variance of 0 at a single phase
alue, θ , while the random noise power alone would have a mean
f g and a variance of g 2 (where h ( θ ) and g are both non-ne gativ e).
ecause the source and noise have already been added together as
mplitudes, within which the two contributions were independent,
he summed power has a mean of N ( h ( θ ) + g ) and a variance of
 (2 h ( θ ) g + g 2 ). When many samples of summed power are added

ogether in folding, the central limit theorem dictates that the folded
o wer follo ws an approximately Gaussian distribution. Assuming
hat g does not change with time, the variance is approximately
onstant if h ( θ ) 	 g , which is usually the case since h ( θ ) and g come
rom indi vidual po wer samples and pulsar radiation at the Earth is
eak. Ho we ver, we can see that there is some phase-dependence to

he variance, which could cause measured profile shape to deviate
rom the true profile shape given by the function h ( θ ) if the noise
s non-Gaussian. Furthermore, zapping would cause variations in
he po wer le vel that might manifest as additional phase-dependent
oise or as an inconstant power baseline, where the baseline without
apping has a constant value of Ng . 

.2 Equalizing zapped data in array obser v ations with 

ndependent zapping at each telescope 

fter summing a signal coherently o v er multiple telescopes, we may
ish to return the resulting amplitudes to the time domain via an

nv erse F ourier transform. We can a v oid artefacts from the process
y minimizing the noise level changes that can be produced by
apping, which also produces a more constant power baseline in both
oherently and incoherently summed signals. This minimization is
chieved by equalizing the amplitude or power variances of summed
amples that have different amounts of zapping, either by scaling up
amples that have fewer contributing telescopes or by adding artificial
oise to them. If we are not returning the signal to the time domain,
e can instead equalize the power mean by subtracting different
aseline values from summed samples that have different amounts
f zapping. Below, we compare the typical SNR of the summed
ignal after using these three processes and after no equalization. 

If we assume that a fraction, q , of samples are zapped
ndependently at each of L telescopes, then the number of
elescopes contributing to each summed sample is drawn from a
inomial probability distribution. When many samples are zapped
ndependently and added together in folding, and q is not very close
o either 0 or 1, the central limit theorem again shows that the folded
ignal po wer follo ws an approximately Gaussian distribution. The
apping introduces a characteristic mean, μ( x ), and variance, σ 2 ( x ),
iven by: 

( x) = 

1 

L 

x 

L ∑ 

l= 1 

l x b l (43) 

nd 

2 ( x) = μ(2 x) − μ( x) 2 , (44) 

here 

 l = 

L ! q L −l (1 − q) l 

l!( L − l)! 
(45) 

nd where 0 ≤ q ≤ 1 and x is a positive number. Since b l is the
robability of l telescopes contributing to a sample, where l is an
 p  

NRAS 510, 1597–1611 (2022) 
nteger in the range 0 ≤ l ≤ L , we find that 
∑ L 

l= 0 b l = 1. The
haracteristic mean and variance are normalized by L so that 0 ≤
( x ) ≤ 1 and 0 ≤ σ 2 ( x ) ≤ 0.25 (if no zapping occurs, we have
 = 0, μ( x ) = 1 and σ 2 ( x ) = 0). The value of x depends on the
ethod of variance equalization used and whether the summation of

elescopes is coherent or incoherent: where l telescopes contribute to
 summed sample, the mean source contribution after equalization
s proportional to l x . Four useful identities are: 

(1) = 1 − q, (46) 

2 (1) = 

q(1 − q) 

L 

, (47) 

2 (2) = 

4 q(1 − q) 3 

L 

+ 

(10 q − 4) q(1 − q) 2 

L 

2 

+ 

q(1 − q) − 6 q 2 (1 − q) 2 

L 

3 
(48) 

nd 

(3) = (1 − q ) 3 + 

3 q (1 − q) 2 

L 

+ 

(3 q − 2)(1 − q) + 2(1 − q) 3 

L 

2 
, 

(49) 

ith μ(2) and μ(4) found by placing these identities into
quation (44). 

In the following paragraphs, we pro vide e xpressions for the
ean and variance of the zapped, equalized, and folded signal

sing multiple telescopes, employing these relations for the mean
expectation), E, and variance, Var, of a set of values, { X } : 

 { X} = 

L ∑ 

l= 0 

E { X l } b l (50) 

nd 

ar { X} = 

L ∑ 

l= 0 

E 

{
X 

2 
l 

}
b l − (E { X} ) 2 

= 

L ∑ 

l= 0 

( Var { X l } + (E { X l } ) 2 ) b l − (E { X} ) 2 , (51) 

here { X } is the union of L subsets of values, { X l } , and where the
umbers of members in the subsets follow a binomial probability
istribution. Here, { X } represents a set of signal values after summa-
ion across multiple telescopes. The values may be the magnitudes of
mplitudes, or they may be power values. { X l } represents the subset
f these values that are produced using l telescopes. The validity
f the expressions has been verified using simulations of Gaussian-
istributed random numbers representing signal amplitudes. We look
t coherent and incoherent summation, and at four methods of dealing
ith zapping: variance equalization by scaling, variance equalization
y addition of artificial noise, mean equalization, and no equalization
t all. Mean values represent the pulse profile, and additive terms in
heir equations that do not depend on h ( θ ) are baselines that can be
ubtracted after folding. Variance values represent profile noise, and
e give precedence to the terms that are largest in a typical pulsar
bservation, with the sum of all terms below the first line of each
ariance equation becoming equal to 0 if there is no zapping. The
rofile SNR, a measure of the quality of an observation, is given by: 

NR = 

μ′ ( θ ) 

σ ( θ ) 
, (52) 

here μ
′ 
( θ ) is the baseline-subtracted mean of the folded pulse

rofile and σ ( θ ) is the positive square root of its variance. Both of
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hese are functions of the pulsar’s rotational phase, but the latter 
s only weakly dependent when h ( θ ) 	 g . We assume that all
nterference has been zapped, that the pulsar signal itself is too weak
o cause zapping, that the time series at all telescopes are perfectly
ligned and that the signals have been scaled so that all telescopes
ecord equal power variance. We also assume that the same fraction 
f samples are zapped at each telescope and that all telescopes 
ecord the same mean power. If these last two assumptions were not
orrect, the forms of the equations would still be valid, but μ( x ) and
2 ( x ) would have to change into sums of all possible combinations
f telescopes, L 

x would have to change into weighted sums of
ontributing telescopes and h ( θ ) and g would have to change into
eighted average values for the source and noise contributions in a 

ingle power sample at a single telescope. 

.2.1 Equalization of coherent observations 

ith coherent summation, { X l } represents a set of magnitudes of
mplitudes summed o v er l telescopes. Po wer v alues are the squared
agnitudes of these summed amplitudes. The set of power values has 
 measurable mean, E { X 

2 
l } , which is ( l 2 h + lg) if the amplitudes are

omplex or ( l 2 h + lg) / 2 if they are real, where h is the time-average
f h ( θ ) o v er all phase values. This quantity should be measured
sing a sufficient number of samples to make a stable estimate. 
ach summed amplitude is associated with its own value of l after
apping, and we need to measure E { X 

2 
l } using all combinations of

elescopes if h makes any substantial contribution, since the h and 
 terms vary with different powers of l and we cannot measure the
wo independently. If g dominates, ho we ver, then we can calculate
 { X 

2 
l } using a separate measurement from each telescope. Ideally,

t should be measured and used separately in each frequency and 
olarization channel, but an average can be used if it is similar in
ach channel. We assume that h remains constant, as does h ( θ ) at
ach phase value, but any measurable variation in these parameters 
ould be included in g , which would then acquire phase dependence,
nd the following equations for coherent and incoherent observations 
ould remain valid. In principle, we could also replace h with h ( θ )

n these equations if we were able to measure the time average of
 ( θ ) separately at each phase value, but this would require longer,
olded variance measurements. 

To equalize variances by scaling, we multiply each summed 
mplitude by 

√ 

( L 

2 h + Lg) / ( l 2 h + lg) , except when l = 0. We 
eplace any sample that has been zapped at all telescopes with a
andom complex number in which the real and imaginary parts are 
rawn independently from a Gaussian distribution of mean 0 and 
ariance ( L 

2 h + Lg) / 2 if the amplitudes are complex, or with a
andom real number drawn from the same distribution if the ampli- 
udes are real. Summed power is then formed from the equalized 
mplitudes (as in equation (1) or (2)), and W consecutive power 
amples are summed into each profile phase bin. The summation 
ontinues o v er F pulses, yielding a folded profile with a phase-
ependent mean, μC , S ( θ ), baseline-subtracted mean, μ′ 

C,S ( θ ), and 
ariance, σ 2 

C,S ( θ ), given by using X 

2 in place of X in equations
50) and (51): 

C,S ( θ ) = F W N ( L 

2 h + Lg) 
L ∑ 

l= 0 

( lh ( θ ) + g) b l 
l h + g 

, (53) 

′ 
C,S ( θ ) = F W N ( L 

2 h + Lg) 
L ∑ 

l= 0 

lh ( θ ) b l 
l h + g 

, (54) 
nd 

2 
C,S ( θ ) = F W N ( Lg + L 

2 h ) 2 
L ∑ 

l= 0 

( g 2 + 2 lh ( θ ) g) b l 
( g + l h ) 2 

+ F 

z W 

y N 

2 ( Lg + L 

2 h ) 2 
L ∑ 

l= 0 

( g + lh ( θ )) 2 b l 
( g + l h ) 2 

−F 

z W 

y N 

2 ( Lg + L 

2 h ) 2 
( 

L ∑ 

l= 0 

( g + lh ( θ )) b l 
g + l h 

) 2 

, (55) 

here subscripts C and S indicate coherent summation and equaliza- 
ion by scaling, respectively, and where 1 ≤ y ≤ 2 and 1 ≤ z ≤ 2. If
 h < g, as is usually the case, Taylor series allow the profile mean,
aseline-subtracted mean and, variance to be expressed as 

C,S ( θ ) = F W NL 

2 (( μ(1) + T 0 ) h ( θ ) + (1 − μ(1) − T 0 ) h ) 

+ F W NLg, (56) 

′ 
C,S ( θ ) = F W NL 

2 ( μ(1) + T 0 ) h ( θ ) (57) 

nd 

2 
C,S ( θ ) = F W N ( L 

2 g 2 + 2 L 

3 μ(1) h ( θ ) g + 2 L 

3 (1 − μ(1)) h g) 

+ 2 F W NL 

4 (2 μ(1) − 2 μ(2) − T 1 ) h h ( θ ) 

+ F W NL 

4 (1 + 3 μ(2) − 4 μ(1) + T 2 ) h 

2 

+ F 

z W 

y N 

2 L 

4 σ 2 (1)( h ( θ ) − h ) 2 

+ 2 F 

z W 

y N 

2 L 

4 ( μ(1) − μ(2))( h h ( θ ) − h 

2 
) 

− 2 F 

z W 

y N 

2 L 

4 ( μ(1) T 0 + T 2 0 )( h ( θ ) − h ) 2 

+ F 

z W 

y N 

2 L 

4 (2 T 1 − T 2 ) h ( θ ) 2 

− 2 F 

z W 

y N 

2 L 

4 ( T 0 + T 1 ) h h ( θ ) 

+ F 

z W 

y N 

2 L 

4 (2 T 0 + T 2 ) h 

2 

− 2 F 

z W 

y N 

2 L 

3 T 0 ( h ( θ ) − h ) g, (58) 

here 

 0 = 

∞ ∑ 

k= 1 

L 

k ( −h ) k 

g k 
( μ( k + 1) − μ( k)) , (59) 

 1 = 

∞ ∑ 

k= 1 

L 

k ( −h ) k 

g k 
( k μ( k ) − 2( k + 1) μ( k + 1) 

+ ( k + 2) μ( k + 2)) (60) 

nd 

 2 = 

∞ ∑ 

k= 1 

L 

k ( −h ) k 

g k 
(( k + 1) μ( k) − 2( k + 2) μ( k + 1) 

+ ( k + 3) μ( k + 2)) , (61) 

nd the terms in the sums become smaller as k increases. 
Since groups of M summed power samples are zapped together, the 

alues of y and z depend on whether groups of samples being folded
nto each profile bin are zapped independently, and their ranges are
 ≤ y ≤ 2 and 1 ≤ z ≤ 2. If M 
 W , then y � 2 (most consecutive
amples entering a bin are zapped together). The value of y decreases
hen M decreases towards W , but with the ‘resonances’ at which y
 2 if zapping and binning are synchronized (e.g. if M = W and the
 samples that are considered for zapping are the same set as the W

amples that are summed into a bin). When M decreases below W ,
 decreases until y � 1 when M 	 W (many consecutive groups of
amples entering a bin are zapped independently), although this limit 
s reached very slowly unless M is small. A baseband observation
MNRAS 510, 1597–1611 (2022) 
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f a pulsar with a period of 10 ms using 0.16-MHz-wide frequency
hannels and 1024 bins across the profile, with N = 2 and M = 1000,
ould give y � 2, but a similar observation of a pulsar with a period
f 10 s would give y a lower value (though not close to 1 unless M
ere made smaller). If M ≤ WD , then z = 1, where D is the number
f bins across the pulse profile and so WD is the number of summed
ower samples across a single pulse (all groups of samples entering
 bin from different pulses are zapped independently). If M > WD
ut M 	 FWD , then z � 1, where FWD is the number of samples
cross an entire profile (many groups of samples entering a bin from
ifferent pulses are zapped independently). When M increases abo v e
D and towards FWD , z increases until z � 2 when M 
 FWD (most

roups of samples entering a bin from different pulses are zapped
ogether). This last situation is undesirable as entire profiles would
e zapped together, and z � 1 is typical for a pulsar observation. 
To equalize variances by adding artificial noise instead of scaling,

e add a random number to each summed amplitude. If the ampli-
udes are complex, the random number is complex and has real and
maginary parts drawn independently from a Gaussian distribution
f mean 0 and variance (( L 

2 − l 2 ) h + ( L − l) g) / 2; if the amplitudes
re real, the random number is real and is drawn from the same
istribution. A folded profile, formed from summed power as in the
revious paragraph, then has a mean, μC , A ( θ ), baseline-subtracted
ean, μ′ 

C,A ( θ ), and variance, σ 2 
C,A ( θ ), given by 

C,A ( θ ) = F W N ( L 

2 μ(2) h ( θ ) + L 

2 (1 − μ(2)) h + Lg) , (62) 

′ 
C,A ( θ ) = F W NL 

2 μ(2) h ( θ ) (63) 

nd 

2 
C,A ( θ ) = F W N ( L 

2 g 2 + 2 L 

3 μ(2) h ( θ ) g + 2 L 

3 (1 − μ(2)) h g) 

+ 2 F W NL 

4 ( μ(2) − μ(4)) h h ( θ ) 

+ F W NL 

4 (1 + μ(4) − 2 μ(2)) h 

2 

+ F 

z W 

y N 

2 L 

4 σ 2 (2)( h ( θ ) − h ) 2 , (64) 

here subscript A indicates equalization by addition of artificial
oise. 
If we do not wish to return our data to the time domain as

oherently summed amplitudes, we may choose not to apply any
ariance equalization but still to apply mean equalization to the
ummed power samples in order to obtain a higher SNR. In this case,
e add N (( L 

2 − l 2 ) h + ( L − l) g) to each summed power sample, as
his quantity involves the measurable mean of a set of summed power
amples using l telescopes. A folded profile, formed from summed
ower as in the previous paragraphs, then has a mean, μC , M 

( θ ),
aseline-subtracted mean, μ′ 

C,M 

( θ ), and variance, σ 2 
C,M 

( θ ), given by

C,M 

( θ ) = F W N ( L 

2 μ(2) h ( θ ) + L 

2 (1 − μ(2)) h + Lg) , (65) 

′ 
C,M 

( θ ) = F W NL 

2 μ(2) h ( θ ) (66) 

nd 

2 
C,M 

( θ ) = F W N ( L 

2 μ(2) g 2 + 2 L 

3 μ(3) h ( θ ) g) 

+ F 

z W 

y N 

2 L 

4 σ 2 (2)( h ( θ ) − h ) 2 , (67) 

here subscript M indicates mean equalization. 
If there has been very little zapping, we may choose not to use

ny equalization to mitigate its effects, at the cost of a slightly
ower SNR. A folded profile, formed from summed power as in the
revious paragraphs, then has a mean, μC ( θ ), baseline-subtracted
ean, μ′ 

C ( θ ), and variance, σ 2 
C ( θ ), given by 
NRAS 510, 1597–1611 (2022) 
C ( θ ) = F W N ( L 

2 μ(2) h ( θ ) + Lμ(1) g) , (68) 

′ 
C ( θ ) = F W NL 

2 μ(2) h ( θ ) (69) 

nd 

2 
C ( θ ) = F W N ( L 

2 μ(2) g 2 + 2 L 

3 μ(3) h ( θ ) g) 

+ F 

z W 

y N 

2 L 

2 σ 2 (1) g 2 

+ 2 F 

z W 

y N 

2 L 

3 ( μ(3) − μ(1) μ(2)) h ( θ ) g 

+ F 

z W 

y N 

2 L 

4 σ 2 (2) h ( θ ) 2 . (70) 

.2.2 Equalization of incoherent observations 

ncoherent summation generally produces a lower profile SNR than
oherent summation, but may be necessary if amplitudes cannot be
tored or if the alignment of time series between telescopes cannot
e made accurate enough to guarantee coherence. With incoherent
ummation, { X l } represents a set of po wer v alues summed o v er
 telescopes. This set has a measurable mean, E { X l } , of Nl( h +
) and a measurable variance, Var { X l } , of Nl(2 h g + g 2 ). These
uantities should be measured using a sufficient number of samples
o make stable estimates. Each summed power value is associated
ith its o wn v alue of l after zapping, and we can calculate the means

nd variances of the summed power values for all combinations of
elescopes using separate measurements from each telescope, since
ach quantity varies with a single power of l . 

To equalize variances by scaling, we add N ( L − l)( h + g) to
ach summed power sample and then multiply the result by 

√ 

L/l ,
xcept when l = 0. We replace any sample that has been zapped
t all telescopes with a random real number drawn from a gamma
istribution of mean NL ( h + g) (shifted from NL 

√ 

2 h g + g 2 ) and
ariance NL (2 h g + g 2 ). A folded profile, formed as in Section 4.2.1,
hen has a mean, μI , S ( θ ), baseline-subtracted mean, μ′ 

I ,S ( θ ), and
ariance, σ 2 

I ,S ( θ ), given by using equations (50) and (51): 

I ,S ( θ ) = F W NL 

(
μ

(
1 

2 

)
h ( θ ) + 

(
1 − μ

(
1 

2 

))
h + g 

)
, (71) 

′ 
I ,S ( θ ) = F W NLμ

(
1 

2 

)
h ( θ ) (72) 

nd 

2 
I ,S ( θ ) = F W NL ( g 2 + 2(1 − q L ) h ( θ ) g + 2 q L h g) 

+ F 

z W 

y N 

2 L 

2 σ 2 

(
1 

2 

)
( h ( θ ) − h ) 2 , (73) 

here subscript I indicates incoherent summation. 
To equalize variances by adding artificial noise instead of scal-

ng, we add a random real number to each summed power sam-
le. This number is drawn from a gamma distribution of mean
( L − l)( h + g) (shifted from N ( L − l) 

√ 

2 h g + g 2 ) and variance
( L − l)(2 h g + g 2 ). A folded profile, formed as in Section 4.2.1,

hen has a mean, μI , A ( θ ), baseline-subtracted mean, μ′ 
I ,A ( θ ), and

ariance, σ 2 
I ,A ( θ ), given by 

I ,A ( θ ) = F W NL ( μ(1) h ( θ ) + (1 − μ(1)) h + g) , (74) 

′ 
I ,A ( θ ) = F W NLμ(1) h ( θ ) (75) 

nd 

2 
I ,A ( θ ) = F W N L ( g 2 + 2 μ(1) h ( θ ) g + 2(1 − μ(1)) h g) 

+ F 

z W 

y N 

2 L 

2 σ 2 (1)( h ( θ ) − h ) 2 . (76) 
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Figure 1. Profile SNR as a function of the fraction of summed power 
samples zapped due to interference, using coherent (top) and incoherent 
(bottom) summation of signals from two identical telescopes in independent 
interference environments, with four different methods of equalization (see 
text for other parameter values). 
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We cannot return our incoherently summed power samples to 
eaningful amplitudes, and so we may choose not to apply any 

ariance equalization but still to apply mean equalization in order to 
btain a higher SNR. In this case, we add N ( L − l)( h + g) to each
ummed power sample. A folded profile, formed as in Section 4.2.1, 
hen has a mean, μI , M 

( θ ), baseline-subtracted mean, μ′ 
I ,M 

( θ ), and 
ariance, σ 2 

I ,M 

( θ ), given by 

I ,M 

( θ ) = F W NL ( μ(1) h ( θ ) + (1 − μ(1)) h + g) , (77) 

′ 
I ,M 

( θ ) = F W NLμ(1) h ( θ ) (78) 

nd 

2 
I ,M 

( θ ) = F W N Lμ(1)( g 2 + 2 h ( θ ) g) 

+ F 

z W 

y N 

2 L 

2 σ 2 (1)( h ( θ ) − h ) 2 . (79) 

If there has been very little zapping, we may choose not to use
ny equalization to mitigate its effects, at the cost of a slightly lower
NR. A folded profile, formed as in Section 4.2.1, then has a mean,
I ( θ ), baseline-subtracted mean, μ′ 

I ( θ ), and variance, σ 2 
I ( θ ), given 

y 

I ( θ ) = F W NLμ(1)( h ( θ ) + g) , (80) 

′ 
I ( θ ) = F W NLμ(1) h ( θ ) (81) 

nd 
2 
I ( θ) = F W NLμ(1)( g 2 + 2 h ( θ) g) + F 

z W 

y N 

2 L 

2 σ 2 (1)( g + h ( θ)) 2 . 

(82) 

.3 Comparison of equalization methods for zapped data 

he choice of equalization method may depend on the fraction 
f data that are zapped, which can vary with time, frequency, and
elescope environment, and the choice may also depend on whether 
ata are summed coherently or incoherently. In most cases, mean 
qualization and variance equalization by scaling produce a higher 
rofile SNR than variance equalization by addition of artificial 
oise and no equalization. This is because artificial noise introduces 
dditional variance without increasing the mean, as does a failure to 
qualize the power baseline. 

We focus on the regime of h 	 h ( θ ) 	 g, which is typical of pul-
ar observations at phase values where the pulse is visible. The first
nequality comes about because a normal pulsar gives no emission 
or the majority of its period, so the pulse itself is usually well abo v e
he average emission strength. The second inequality occurs because 
hese are quantities in a single sample at a single telescope, in which
oise usually dominates o v er source contribution (where noise does 
ot dominate, coherent summation loses its SNR advantage o v er 
ncoherent summation even if there is no zapping). Figs 1 –3 use h =
.01, h = 0 . 0001, g = 1, N = 2, W = 2, y = 2, F = 1000, and z = 1
representing an observation of a pulsar with a period of 10 ms ) and
how the relationships between profile SNR ( μ

′ 
( θ )/ σ ( θ )) and fraction

f summed power samples zapped at each telescope ( q ) for 2, 5, and
00 identical telescopes in independent interference environments 
this example also applies to identical groups of telescopes in which 
ach group is zapped together and each group is in an independent
nterference environment; see Taylor et al. 2019 and Nita & Hellbourg 
020 for calculations of the estimator using multiple receivers in the 
ame environment). Coherent and incoherent summation are shown, 
ith all four methods of equalization. 
Mean equalization usually gives the highest SNR, although the 

ifference between mean equalization and variance equalization by 
caling decreases as more telescopes are added, and the second 
ethod is very slightly better for coherent summation of 100 

elescopes with a small or moderate amount of zapping. The scaling
ethod may be preferred for coherent summation in particular, 

ecause it a v oids artefacts when returning amplitudes to the time
omain (see Section 4.2), and the penalty in SNR is small unless there
s a large amount of zapping. Mean equalization can fall behind if
 or N increase sufficiently to cause the signal to make a substantial

ontribution to variance. 
Variance equalization by addition of artificial noise lags some 

ay behind the other active methods (except in the case of a
ingle telescope, for which it is identical to variance equalization 
y scaling), but it gives a better SNR than the passive method of no
qualization when summing two telescopes with a small amount of 
apping, as well as preventing artefacts when returning coherently 
ummed amplitudes to the time domain. With a larger number 
f telescopes, it only retains this SNR advantage for incoherent 
ummation. It can be applied at each telescope without reference to
he others, so it is computationally simpler than the scaling method
nd may be preferred if equalization needs to be done before the
ndividual signals are combined – for example, interference-free 
ignals from widely spaced telescopes may be needed in order to
ynchronize their summation, after which the artificial noise could 
e replaced by a different equalization method. 
The method of no equalization gives a relatively poor SNR for

ncoherent summation, but its performance for coherent summation 
mpro v es as the number of telescopes increases. It is the simplest
ethod, because it does not require replacement values to be 

omputed, and may be preferred when there is very little zapping, or
MNRAS 510, 1597–1611 (2022) 
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Figure 2. Profile SNR as a function of the fraction of summed power 
samples zapped due to interference, using coherent (top) and incoherent 
(bottom) summation of signals from five identical telescopes in independent 
interference environments, with four different methods of equalization (see 
text for other parameter values). 
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Figure 3. Profile SNR as a function of the fraction of summed power 
samples zapped due to interference, using coherent (top) and incoherent 
(bottom) summation of signals from 100 identical telescopes in independent 
interference environments, with four different methods of equalization (see 
text for other parameter values). 

Figure 4. The pulse profile of PSR J1022 + 1001, with brightness repre- 
senting power, during 6 min of a LEAP observation with a bandwidth of 
128 MHz , both without (top) and with (bottom) interference removal using 
spectral kurtosis. The observation is a coherent summation of signals from 

the Jodrell Bank, Effelsberg, Nan c ¸ay, and Westerbork radio telescopes, with 
spectral kurtosis applied to Nan c ¸ay using M = 1000, N = 2, and η = 3, 
and rejected data replaced by artificial Gaussian noise. This high-resolution 
zapping makes the observation usable while sacrificing only a small fraction 
of data. Reproduced from Bassa et al. ( 2016 , fig. 6). 
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n the coherent summation of a large number of telescopes. Ho we ver,
ts unequal power baseline can cause its SNR to decrease below
hat of all other methods when W or N increases, particularly for
ncoherent summation (e.g. when W = 2000 and y = 1.5, representing
n observation of a pulsar with a period of 10 s). 

All four methods of equalization produce profile means that are
inear functions of h ( θ ), so they do not make systematic changes to
rofile shape as long as the distribution of all profile noise is close
o Gaussian. Even Gaussian profile noise with a phase-dependent
ariance produces Gaussian noise of constant variance in each
omplex-valued bin of a profile’s DFT, which means that the standard
ethod of frequency-domain pulsar timing should not produce

nwanted correlations between timing residuals (often called ‘red
oise’) when using equalized signals (Taylor 1992 ). The main danger
o profile shape, other than zapping of the pulsar contribution itself,
s non-Gaussian noise. We rely on the accumulation of data into each
rofile phase bin to make the noise approximately Gaussian, in line
ith the central limit theorem (even though the equations for profile
ean and variance abo v e do not depend on the noise distribution).
ubstantial non-Gaussianity could arise if q were very close to 1, or if
 were very close to 0 when h � g . It could also occur if the duration
nd bandwidth of a typical burst of interference were not much less
han the duration and bandwidth o v er which the profile was folded,
s there would then be few independent instances of zapping within
ach profile, and so the binomial distribution of zapping might not
esemble a Gaussian shape. Similarly, it could happen if the time
nd frequency resolutions of zapping were not much less than the
olding duration and bandwidth. As a rough guide, fewer than 100
ndependent instances of zapping within a profile may be too few
NRAS 510, 1597–1611 (2022) 
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Figure 5. The pulse profile of PSR J1022 + 1001, folded o v er 30 min of a 
LEAP observation with a bandwidth of 96 MHz , both without (top) and with 
(bottom) interference removal using spectral kurtosis. The top panel shows 
the contribution from the Nan c ¸ay radio telescope only, while the bottom panel 
shows the coherent summation of signals from the Jodrell Bank, Effelsberg, 
Nan c ¸ay, and Westerbork radio telescopes, with spectral kurtosis applied to 
Nan c ¸ay using M = 1000, N = 2, and η = 3, and rejected data replaced by 
artificial Gaussian noise. Zapping restores the profile shape and flattens the 
po wer baseline, allo wing the pulse arri v al time to be measured with a high 
estimated accuracy of 0 . 25 μs . This compares to 1 . 35 μs for Nan c ¸ay alone 
and without zapping. 
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Figure 6. The dynamic spectrum of the Nan c ¸ay observation shown in Fig. 5 , 
with brightness representing power, before interference removal. Spectral 
kurtosis is applied before the pulsar observation is folded, and can zap the 
persistent broadband interference seen here. 
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hen q = 0.1. With or without zapping, it is worth noting that profile
oise may be substantially skewed and non-Gaussian if few (less 
han about 50) amplitude samples contribute to the power in each 
rofile bin. 

 INTERFERENCE  REMOVA L  F RO M  PULSAR  

BSERVATIONS  

pectral kurtosis has been employed successfully by the LEAP 

roject, which makes astronomical observations of pulsars using up 
o five radio telescopes simultaneously (Bassa et al. 2016 ; Smits
t al. 2017 ). The aim of the project is to measure the times of
rri v al of pulses with sufficient accuracy to detect variation that
s characteristic of the influence of gravitational waves, thereby 
easuring the strength of a background of low-frequency waves that 

s believed to permeate the Solar System from distant sources such 
s binary supermassive black holes (Hellings & Downs 1983 ). The 
ignal from each telescope is converted to the baseband frequency 
ange and sampled at the Nyquist rate to enable coherent summation
pp. 117–120 Lorimer & Kramer 2005 ), allowing spectral kurtosis 
o be used ef fecti vely alongside a simpler method that zaps portions
f the signal whose power deviates greatly from an expected value
r from the power of neighbouring portions (section 4.5 of Bassa
t al. 2016 ). Each telescope’s signal is recorded digitally using eight
ampling bits, calibrated for polarization accuracy and then zapped if 
ecessary, before the stored signals are summed with their amplitudes 
alibrated to maximize the SNR of the observation. Pulse profiles, 
howing the average radio emission from a pulsar as it rotates, can
hen be produced and timed. 

Fig. 4 , reproduced from Bassa et al. ( 2016 ), shows the impro v e-
ent in the pulse profile of PSR J1022 + 1001 achieved by zapping
 signal from the Nan c ¸ay radio telescope using spectral kurtosis
nd replacing the rejected data with artificial Gaussian noise. The 
-min segment of this LEAP observation used four telescopes and 
o v ered a frequenc y range of 1332–1460 MHz . Each measurement
f the estimator used 1000 po wer v alues av eraged o v er two comple x
olarization channels ( M = 1000 and N = 2), giving zapping
esolutions of 6 . 25 ms and 0 . 16 MHz . The estimator thresholds were
et using η = 3, meaning that 0.27 per cent of good data from Nan c ¸ay
ere zapped. Through the application of spectral kurtosis, little 
ata were lost and an observation that was riddled with interference
ecame suitable for high-precision pulsar timing. 
Fig. 5 shows the impro v ement in the pulse profile shape of

SR J1022 + 1001 achieved by zapping a signal from the Nan c ¸ay
adio telescope using the same parameters and resolutions as those 
bo v e, while Fig. 6 reveals the persistent broadband interference
hat was remo v ed. This 30-min LEAP observation took place on
013 July 27, used four telescopes and co v ered a frequency range of
364–1460 MHz . Following the application of spectral kurtosis, the 
SRCHIVE tool PAT was used to align the LEAP profile with a template
rofile of high S/N using the Fourier phase gradient between them
Taylor 1992 ). This gave an estimated uncertainty of only 0 . 25 μs in
he pulse arri v al time associated with the zapped tied-array profile,
ompared to 1 . 35 μs for the non-zapped Nan c ¸ay profile alone. 

A further LEAP observation of PSR J1022 + 1001 demonstrates 
hat spectral kurtosis reco v ers the unique profile shape that is critical
MNRAS 510, 1597–1611 (2022) 
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Figure 7. The pulse profile of PSR J1022 + 1001, folded o v er 60 min of 
a LEAP observation with a bandwidth of 128 MHz , both without (top) 
and with (bottom) interference removal using spectral kurtosis. Both panels 
show the contribution from the Nan c ¸ay radio telescope only, with spectral 
kurtosis applied using M = 1000, N = 2, and η = 3, and rejected data 
replaced by artificial Gaussian noise. While zapping of the folded observation 
is inef fecti v e at remo ving this interference, spectral kurtosis impro v es the 
estimated accuracy of the pulse arri v al time measured at Nan c ¸ay from 1.22 
to 0 . 70 μs . 
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Figure 8. The dynamic spectrum of the Nan c ¸ay observation shown in 
Fig. 7 , with brightness representing power, before interference removal. 
The persistent broadband interference seen here cannot be separated from 

the pulsar signal using a folded observation, but can be zapped by spectral 
kurtosis using fine time and frequency resolutions simultaneously. 
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o high-precision pulsar timing. Fig. 7 shows the profile of PSR
1022 + 1001 produced from a 60-min observation made on 2021

ay 15 by the Nan c ¸ay radio telescope o v er a frequenc y range of
332–1460 MHz , before and after zapping using the same parameters
nd resolutions as those abo v e. Fig. 8 shows that the interference in
he observation was persistent and broadband, and zapping of the
olded observation using the PSRCHIVE tool PAZ had little effect.
pectral kurtosis zapped around 0.6 per cent of the data, and reduced

he estimated timing uncertainty of the Nan c ¸ay profile from 1.22
o 0 . 70 μs according to the PAT tool. Fig. 9 shows the residual
rofile produced by subtracting this Nan c ¸ay observation from the
our-telescope LEAP observation shown in Fig. 5 , again using PAT ,
ith the lack of residual structure indicating that spectral kurtosis
id not alter the shape of the pulse profile. 

 C O N C L U S I O N S  

his paper provides a recipe for the implementation of the spectral
urtosis method from start to finish, allowing signal interference
NRAS 510, 1597–1611 (2022) 
o be zapped from real or complex time series data stored as
ither amplitudes or power (Section 2). The frequentist nature of
pectral kurtosis makes it ef fecti ve without prior knowledge of the
nterference that will be encountered, so it is widely applicable
ather than being ideal in specific situations (Section 3). We have
hown its success in enabling an accurate radio-frequency array
bservation of a pulsar in the presence of interference local to one
elescope, allowing signals from multiple widely spaced telescopes
o be combined with only a very small loss of usable information
nd without any apparent detriment to the shape of the pulse profile
Section 5). The preservation of the unique profile signature of each
ulsar is crucial for precise timing of its rotation, and the timing
nformation from the cleaned observations is being used in a long-
erm project to detect gravitational waves. 

When zapping data that contain a rapidly varying signal such as
ulsar emission, it is important that the estimator does not recognize
he signal amplitudes as non-Gaussian, as the spectral kurtosis
rocedure would then remo v e the information of interest. Observers
hould therefore ensure that the time and frequency resolutions of
n observation are too fine to allow single pulses to be detected
Section 3). In order to maintain a Gaussian noise distribution, the
ime and frequency resolutions of zapping should be much less than
he duration and bandwidth of an observation or folded pulse profile,
o that there are many independent opportunities for zapping within
he observation (Section 4). 

The quality of an observation made using an array of telescopes in
ndependent interference environments is impro v ed by compensating
or zapped data, regardless of the zapping technique used, and
he methods of compensation are applicable to any widely spaced
rray (Section 4). The highest SNR is usually obtained by mean
qualization: equalizing the mean of the summed power so that
ts baseline level remains constant over time. Mean equalization
s the most appropriate method for an incoherently summed signal.
o we ver, if the signal is coherently summed and its amplitudes are

tored so that its time and frequency resolutions can be adjusted
ater, it is better to apply variance equalization by scaling: equalizing
he variance of the summed amplitudes o v er time, which also
esults in a constant power baseline and a v oids unwanted artefacts
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igure 9. The pulse profile of PSR J1022 + 1001, with a residual profile
top) showing the difference between the four-telescope LEAP observation 
rom Fig. 5 (middle) and the Nan c ¸ay observation from Fig. 7 (bottom) after
nterference removal using spectral kurtosis. The Nan c ¸ay observation has 
een reduced to the same frequency range as the earlier LEAP observation,
nd its profile has been scaled and shifted when producing the residual
rofile. Interference removal from the Nan c ¸ay telescope does not appear 
o have changed the pulse profile shape, judging by the lack of structure in
he residuals between these two observations that were made 8-yr apart. 

f the amplitudes are transformed to different time and frequency 
esolutions. The SNR after variance equalization by scaling is usually 
lightly less than the SNR after mean equalization, but the difference 
s small when there is either a small-to-moderate amount of zapping 
r a large number of telescopes. Variance equalization by scaling 
s the most appropriate method when the signal may be summed 
oherently or incoherently in different parts of an observation. The 
lternative method of variance equalization by addition of artificial 
oise may be needed to allow signals from multiple telescopes to 
e synchronized, and can then be replaced with another method to 
mpro v e SNR. 
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