

Brillouin scattering in aluminosilicate glasses and melts up to 2550 K. Temperature and composition effects

Pascal Richet, Alain Polian, Dung Vo-Thanh, Yan Bottinga

▶ To cite this version:

Pascal Richet, Alain Polian, Dung Vo-Thanh, Yan Bottinga. Brillouin scattering in aluminosilicate glasses and melts up to 2550 K. Temperature and composition effects. Journal of Non-Crystalline Solids: X, 2022, 14, 10.1016/j.nocx.2022.100086 . insu-03643015

HAL Id: insu-03643015 https://insu.hal.science/insu-03643015

Submitted on 4 Jun2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Contents lists available at ScienceDirect

Journal of Non-Crystalline Solids: X

journal homepage: www.sciencedirect.com/journal/journal-of-non-crystalline-solids-x

Brillouin scattering in aluminosilicate glasses and melts up to 2550 K. Temperature and composition effects

Pascal Richet^a, Alain Polian^{b,*}, Dung Vo-Thanh^a, Yan Bottinga^{a,1}

^a Institut de Physique du Globe de Paris, 1 rue Jussieu, 75005 Paris, France

^b IMPMC, CNRS and Sorbonne Université UMR 7590, B 115, 4 place Jussieu, 75005 Paris, France

ARTICLE INFO	A B S T R A C T
Keywords: Brillouin scattering Aluminosilicate glass High temperature	Hypersonic sound velocities have been measured by Brillouin scattering for glasses and liquids of the system CaO-MgO-Al ₂ O ₃ -SiO ₂ (CMAS). Transverse wave velocities are reported for ten samples from 293 up to temperatures ranging from 1000 to 1600 K, depending on composition, and longitudinal velocities for six samples from 293 to the interval 1890–2360 K. For the 13 CMAS compositions, the temperature dependences of acoustic velocities are constant within three temperature intervals: (i) from 293 K to the standard glass transition temperature T_{g} , (ii) from T_{g} , to the temperature T_{rx} of the onset of structural relaxation at the timescale of Brillouin scattering where transverse waves disappear, (iii) and finally above T_{rx} where only longitudinal waves thus remain observed. The implications of these results for structural relaxation, shear-wave propagation and shear modulus are then discussed.

1. Introduction

The dynamics of particles in a material causes density fluctuations and local variations of the dielectric constant. As a result, part of a beam of light passing through the substance is scattered. Owing to the phase velocity of the acoustic wave, the frequency of the scattered light is Doppler shifted with respect to that of the incident light. The effect is known as Brillouin scattering. Its observation allows one to determine the velocities of both longitudinal (or compressional, V_L) and transverse (or shear, V_T) waves of a material and of its elastic constants too.

For molten silicates, the experimental difficulties opposing Brillouin experiments at the relevant high temperatures were solved in the 1990s, which made measurements of both V_L and V_T possible up to about 1400 K [1–3]. Two distinct temperature intervals were distinguished in which the observed temperature-sound velocity relationships are linear for both velocities. They are separated by clear slope changes at the standard glass transition temperature T_g . Hence, an interesting feature is that V_T can still be measured above T_g although the sample has macroscopically become a liquid. The reason is that Brillouin scattering probes only the solid-like response of the material during light-phonon interactions because configurational changes are much too slow to take place at the 10^{-10} – 10^{-11} s. timescale of the experiments. Since sound velocities

decrease when the density of a material decreases, the breaks in the temperature-velocity relationships for V_L and V_T thus simply signal the enhancement of thermal expansion that takes place at the glass transition [3].

The timescale of structural relaxation characterizes the rate of the configurational rearrangements through which a substance tends to reach internal thermodynamic equilibrium. They are of the order of 1000 s at the standard glass transition, but may decrease with highly increasing temperatures in silicate melts to the point of becoming as short as the timescale of Brillouin scattering. Relaxation effects then manifest themselves through the disappearance of transverse waves and an important decrease of the longitudinal modulus [4,5] and in a further decrease of V_L down to the equilibrium values yielded by ultrasonic measurements, which are performed at MHz frequencies [6,7].

Even though wave velocities represent sensitive probes of the structure and dynamics of melts, Brillouin experiments above 1400 K have remained scarce and the way in which transverse waves disappear upon further heating has apparently not been documented yet for silicates. For V_L , measurements have been extended to 2340 K [6] and then to 2630 K [7] for some alkaline earth aluminosilicates, and to 2300 K for both V_L and V_T of SiO₂ [8]. To complement and extend these results to a wider composition range (Fig. 1), we report new measurements up the

* Corresponding author.

 1 Deceased.

https://doi.org/10.1016/j.nocx.2022.100086

Received 2 December 2021; Received in revised form 16 February 2022; Accepted 21 February 2022 Available online 27 February 2022 2590-1591/© 2022 The Author(s). Published by Elsevier B.V. This is an open

E-mail address: alain.polian@sorbonne-universite.fr (A. Polian).

^{2590-1591/© 2022} The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Fig. 1. Compositions investigated in the system CaO-Al₂O₃-SiO₂.

maximum temperatures at which meaningful signals could be recorded. These deal with V_T for ten compositions as well as with V_L in terms of three more samples and additional data for three others. Again, compositions of the system CaO-MgO-Al₂O₃-SiO₂ (CMAS) have been selected in view of their natural and industrial importance, their stability at very high temperatures, and the wide composition range over which they can be studied.

With the new data, a set of consistent V_L and V_T measurements is now available for pure SiO₂ and 10 different CMAS compositions and V_L data only for three additional ones. Referring to a further paper for a detailed analysis of the elastic data in structural terms, we will focus in the present study on the dynamical picture itself as revealed by a much extended temperature range of the Brillouin experiments.

2. Experimental methods and data treatment

Most of the samples belong to the geochemically relevant part of the CMAS system. They were originally prepared for high-temperature density studies [9–12]. Their chemical compositions are listed in Table 1 where labels directly indicate the SiO₂, Al₂O₃, MgO and CaO contents. For example, the Ca65.09 sample is made up of 65 mol% SiO₂, 9 mol% Al₂O₃ and 26 mol% CaO whereas CaMg44.13/21 denotes 44 mol% SiO₂, 13 mol% Al₂O₃, 21 mol% MgO and 22 mol% CaO.

The high-temperature experiments were made with a heating-wire technique up to maximum temperatures of 2000 and 2700 K with Pt₉₀Rh₁₀ and Ir filaments, respectively [13]. Temperatures were determined from the electrical power delivered to the cell as calibrated from the known melting points of a series of compounds. Owing to Ir volatilization, the resulting errors are larger with Ir than with Pt₉₀Rh₁₀ filaments but they remained to within 2% of the reported temperatures. Even though the sample volume was much smaller than 1 mm³, a recurrent problem was incipient sample crystallization above T_{g} that usually took place after variable extents of supercooling from either the glass transition or the liquidus. Measurements made upon heating or cooling yielded undistinguishable results, as did those obtained in duplicate experiments. From such observations, the combined uncertainties on the reported frequency shifts are estimated to be lower than 1.5 and 3% at the lowest and highest temperatures, respectively. Regarding glass compositions, any initial heterogeneities and changes during the experiments were thus insignificant.

The Brillouin spectra were recorded with a 6-pass Sandercock interferometer [14]. The scattering angle was either 180° or 90° for V_L and 90° for V_T . To perform the measurements with both geometries, the

Table 1

Chemical composition (mol fractions)^a, index of refraction (*n*) and room-temperature density (ρ) of the samples.

	SiO_2	Al_2O_3	CaO	MgO	n	$\rho(g/cm^3)$
Ca65.09 ^b	0.648	0.088	0.264		1.557	2.616
Ca62.01 ^c	0.616	0.006	0.378		1.582	2.756
Ca53.12 ^b	0.525	0.121	0.354		1.589	2.733
Mg51.01 ^d	0.512	0.005	0.003	0.481	1.580	2.745
CaMg51.00/23 ^d	0.506	0.005	0.261	0.228	1.607	2.834
Ca50.00 ^d	0.496	0.005	0.499		1.610	2.895
Ca50.25 ^d	0.496	0.246	0.257		1.574	2.580
Ca44.12 ^{c,e}	0.436	0.124	0.441		1.620	2.837
CaMg44.13:21 ^e	0.438	0.125	0.225	0.212	1.621	2.740
Ca38.26 ^c	0.378	0.265	0.357		1.611	2.760
Ca36.16 ^c	0.363	0.155	0.482		1.628	2.840
Ca12.37 ^f , ^g	0.116	0.371	0.513		1.649	2.875
Ca00.49 ^e	0.001	0.485	0.514		1.643	2.918

^a Courtial and Dingwell [11,12], except for Ca53.12 [10].

^b Newly investigated composition for both V_L and V_T .

^c Newly investigated composition for only V_T .

^d New V_L and V_T measurements complementing previously published V_L data [6].

 e Samples approximating mineral compositions, namely, Mg51.01: enstatite (CaSiO₃); CaMg51.00/23: diopside ([CaMg]Si₂O₆); Ca50.00: wollastonite (CaSiO₃); Ca50.25: anorthite (CaAl₂Si₂O₈); and Ca44.12: grossular (Ca₃Al₂Si₃O₁₂).

^f Composition for which only V_L data are available [7].

^g Newly investigated composition for only V_L .

samples were loaded in two perpendicular holes drilled by spark erosion in the 1 mm in diameter heating wire [6,7], see Fig. 2. The incident light was the 514.5 nm radiation of an Ar^+ laser. The frequency of the diffracted light was about 10 GHz. The acoustic velocities were calculated from the equation:

$$V_{L,T} = \Delta \sigma_{L,T} \, \lambda_i / [2 \, n \, \sin(\vartheta/2)], \tag{1}$$

where $\Delta \sigma_{L,T}$ is the measured frequency shift, λ the wave length of the incident light, *n* the index of refraction of the sample and ϑ the scattering angle, which was either 90 or 180° for the longitudinal waves and 90° for the transverse waves.

The refractive indices are the only unknown parameters in eq. (1). They were approximated as done before [6]. Because their variations with temperature are small the important parameters are the room-temperature values, which are accordingly listed in Table 1. Once sound velocities are known the longitudinal (M_L) and shear (G_s) moduli are evaluated with

$$A_L = \rho V_L^2, \tag{2a}$$

$$G_s = \rho V_T^2, \tag{2b}$$

where ρ is the sample density. Knowing M_L and G_s we finally evaluated the adiabatic bulk modulus, B_S , which is the reciprocal of the adiabatic compressibility, with.

$$B_S = M_L - 4 G_s / 3. \tag{3}$$

Our Brillouin setup is not designed to determine the intensity of the central Rayleigh line so we could not determine the relaxed adiabatic bulk moduli of melts from the so-called Placzek-Landau ratio.

Evaluation of eq. (2) requires to know the density as well as its variation with temperature for the 13 compositions of Table 1. The thermal expansion coefficients used are listed in Table 2. The room-temperature densities are known accurately (Table 1) but not the thermal expansion coefficients (α) of the samples from 300 to the high temperatures reached in our study. Because of the large increase in dilation that takes place at the glass transition, these coefficients must be evaluated for both the glass (α_{gl}) and liquid (α_{liq}) phases.

For liquids, available measurements indicate that α can also be considered constant from the liquidus to temperatures as high as 2100 K

Ι

Fig. 2. High-temperature heating-wire setup.

Table 2
Coefficients of thermal expansion (K^{-1}) used in different temperature intervals ^a .

	293- <i>T</i> g	T_{g} - T_{rx}	$T > T_{rx}$
Ca65.09	$1.55 \ 10^{-5}$	$4.40 \ 10^{-5}$	$5.02 \ 10^{-5}$
Ca62.01	$1.91 \ 10^{-5}$	$11.2 \ 10^{-5}$	$6.19\ 10^{-5}$
Ca53.12	$1.74 \ 10^{-5}$	$5.76 \ 10^{-5}$	$5.63 \ 10^{-5}$
Mg51.01	$1.06 \ 10^{-5}$	$33.0 \ 10^{-5}$	$3.45 \ 10^{-5}$
CaMg51.00/23	$1.80 \ 10^{-5}$	$13.2 \ 10^{-5}$	$5.38 \ 10^{-5}$
Ca50.00	$2.66 \ 10^{-5}$	$9.48 \ 10^{-5}$	$8.63 \ 10^{-5}$
Ca50.25	$1.62 \ 10^{-5}$	$3.49 \ 10^{-5}$	$5.25 \ 10^{-5}$
Ca44.12	$2.84 \ 10^{-5}$	$3.69 \ 10^{-5}$	$9.21 \ 10^{-5}$
CaMg44.13/21	$1.08 \ 10^{-5}$	$7.11 \ 10^{-5}$	$3.51 \ 10^{-5}$
Ca38.26	$1.37 \ 10^{-5}$	$4.24 \ 10^{-5}$	$4.45 \ 10^{-5}$
Ca36.16	$1.82 \ 10^{-5}$	$3.16 \ 10^{-5}$	$5.89 \ 10^{-5}$
Ca12.37	$1.71 \ 10^{-5}$	$3.51 \ 10^{-5}$	$5.54 \ 10^{-5}$
Ca00.49	$0.78 \ 10^{-5}$	$8.05 \ 10^{-5}$	$2.54 \ 10^{-5}$

^a T_g and T_{rx} as listed in Table 5.

(e.g., [10–12,15]). But the situation is more controversial between T_g and the liquidus. Whereas it was stated that α_{liq} is the same as above the liquidus [16], measurements for CaMg51.00/23 and Ca50.25 liquids have indicated that it decreases with increasing temperatures [17,18]. Because of the scarcity of such measurements, however, this effect could

not be considered for most of our samples. Hence, we assumed constant α_{liq} calculated from the densities reported at T_g and at the high temperature T_{rx} at which the derivative dV_L/dT changes rapidly. This rough way of estimating α_{liq} in this interval for instance results in a value of 13.2×10^{-5} for CaMg51.00/23, whereas values ranging from 10.8 10^{-5} to $13.9 \ 10^{-5}$ have been published [17–19]. For Ca50.25 our estimate of α_{liq} is $3.5 \ 10^{-5}$ whereas values of $5.9 \ 10^{-5}$ and $5.2 \ 10^{-5}$ have been reported [18,19]. As a matter of fact, whether α_{liq} is constant or not is inconsequential for our purpose because of the low sensitivity of the derived sound velocities to the values used for this parameter.

As usually made, we have also assumed that α is constant for the glass phases. For the sake of simplicity, we have used the simple approximation $a_{liq}/a_{gl} = 3.25$. The uncertainties introduced in this way are minor because a_{gl} is very small throughout the CMAS system.

3. Results

The temperature intervals of the reported results varied from a sample to another. For samples that are not good glass formers, crystallization of the supercooled liquid abruptly terminated the experiments while the LA and TA acoustic spectra were still well resolved. In other cases, the wave frequency decreased in such a way that it left the free spectral range of our Fabry-Pérot interferometer. In a third case the intensity decrease with increasing temperatures was simply such that Brillouin peaks could no longer be identified in the noise background.

As previously observed [6], the Brillouin peaks remain rather narrow from room temperature to the standard glass transition T_g above which they broaden markedly (Figs. 3, 4) because of the progressively increasing number of atomic configurations that become accessible. This is the main reason why the relative precision of the measurements decreases with increasing temperatures. Whenever possible, glass transition temperatures were determined from the breaks on both V_L and V_T although the latter could not be accurate when very small slope changes were observed.

The hypersonic velocities derived from the observed Brillouin frequency shifts and the indices of refraction of Table 1 are reported in Tables 3 and 4 for the longitudinal and transverse measurements, respectively. For the former, only the observations made at 180° have been listed because they are more numerous and tend to show a higher reproducibility than the 90° data with which they nonetheless generally agree to within the stated experimental uncertainties (Fig. 5). Likewise, good agreement is found with previous V_L measurements made up to about 1400 K on some of the same samples [6,7] and on same compositions (i.e., Ca.50.25, Ca44.12 and CaMg51.00/23) [3,20]. This applies in particular to the temperatures of the breaks in the slopes of the wavevelocity temperature relationships that delineate intervals in which the

Fig. 3. Changes in the line shapes of the Brillouin longitudinal waves of Ca38.27 from room temperature to 2550 K recorded in the backscattering geometry.

Fig. 4. Brillouin spectra showing longitudinal and transverse modes of Ca65.09 in the 90° geometry at various temperatures. Due to the very high temperature of the heating wire, the stray light increases strongly at 2060 K. The spectra are shifted vertically for clarity.

linear fits are made to the data (Table 5). In contrast to previous results, however, our measurements show the clear breaks previously reported for V_T at the glass transition [3,21] for only part of the samples, namely, Mg.51.01, Ca44.12, Ca53.12 and Ca62.01. The reason why they are not seen for Ca65.09, Ca50.25, Ca38.26 and Ca36.16 is unknown. Rather than risking unwarranted explanations drawn from this first series of results at such high temperatures, it is more honest to state that more extensive measurements are required to propose reliable interpretations for such differences.

As expected from the strong attenuation of shear waves in liquids, the maximum temperatures T_{max} at which Brillouin peaks were observed are much lower for the shear than for the longitudinal waves with either the 180 or the 90° geometry. Whereas the latter have been observed up to a record high temperature of 2630 K for Ca36.16 [6], the former were followed up to only 1610 K in the case of Ca38.26. At $T_{max}(V_T)$, the disappearance of the Brillouin peaks for shear waves is sudden with respect to the temperature intervals of about 50 °C separating successive measurements. In other words, a slow vanishing of the shear signal was not observed. In contrast, at $T_{max}(V_L)$ the Brillouin peaks for longitudinal hypersonic waves disappeared because they lost their characteristic shapes when becoming drowned in the background noise whose intensity increased continuously with temperature (Figs. 3, 4).

As an example of the wave velocity-temperature relationships, the results for Ca38.26 have been selected because they extend to the nearly record temperature of 2550 K for longitudinal waves [6] and to the aforementioned highest temperature attained for transverse waves

Та	Ы	le	3
Та	bl	le	3

Longitudinal sound velocities (m/s).

Ca65.09		Ca53.12	2	Mg51.01	CaMg51	CaMg51.00/23	
<i>T</i> (K)	V_L	<i>T</i> (K)	V_L	<i>T</i> (K)	V_L	<i>T</i> (K)	V_L
293	6196	293	6411	293	7163	293	6521
293	6231	293	6391	346	7170	293	6589
293	6211	293	6416	411	7081	293	6514
293	6216	341	6431	458	7108	375	6523
350	6202	416	6375	515	7205	465	6614
407	6203	456	6365	580	7102	537	6540
450	6218	497	6384	643	7069	606	6548
494	6200	542	6384	730	7094	669	6533
528	6181	590	6408	798	7067	728	6444
584	6186	643	6321	866	7076	800	6506
643	6198	702	6347	948	6911	880	6528
706	6175	765	6334	1012	6996	925	6450
768	6193	815	6339	1061	6918	989	6264
827	6167	876	6379	1118	6862	1070	6147
890	6189	926	6360			1105	5973
948	6229	985	6300			1685	4315
997	6249	1024	6286			1783	4018
1039	6128	1068	6253			913	6580
1084	6173	1113	6215			690	6570
1129	6087	1158	6186			293	6583
1179	6057	1191	6074				
1227	6011	1230	6123				
1277	6041	1280	6052				
1336	5996	1317	6017				
1388	6006	1363	6009				
1444	6012	1409	6015				
1498	5991	1450	5936				
1551	5972	1667	5182				
1614	5932	1800	4646				
1700	5832	1895	4616				
1930	5254	1919	4568				
2033	5115	1990	4148				
2077	4995						
2149	4910						
2210	4752						
2270	4550						
2360	4341						

Ca50.00		Ca50.25		Ca12.37	
<i>T</i> (K)	V_L	<i>T</i> (K)	V_L	<i>T</i> (K)	V_L
293	6409	293	6619	293	6486
324	6440	293	6634	293	6486
456	6320	293	6629	361	6465
813	6163	429	6608	421	6453
1850	3799	543	6603	481	6441
2247	3450	780	6603	548	6424
2128	3451	989	6647	618	6426
2087	3492	1083	6640	676	6404
1876	3725	1199	6679	752	6392
1540	4924	1303	6452	821	6366
1033	6282	1379	6476	892	6353
716	6356	1431	6462	969	6313
293	6432	1526	6412	1040	6344
		1946	5262	1097	6211
		1992	5191	1144	6218
		2080	4778	1191	6192
		2186	4559	1241	6138
		2336	4403	1800	4306
				1895	3936

(Fig. 6). For V_T , the picture is simple because a single linear fit accounts for all the data from 293 to 1610 K with a slope $dV_T/dT = -0.367$ m/s. For V_L , four temperature ranges must in contrast be distinguished. The first extends from 293 K to a temperature close to that of the standard glass transition T_g (with $dV_L/dT = -0.17$ m/s); the second ($dV_L/dT =$ -0.45 m/s) ranges from T_g to the temperature T_{Tx} from which structural relaxation begins to take place; the third ($dV_L/dT = -5.123$ m/s) from T_{Tx} to T_{eq} , the temperature at which relaxation is complete; and the fourth ($dV_L/dT = -0.77$ m/s) is that of the relaxed liquid state where the Brillouin velocity join nicely with the MHz ultrasonic observations at lower temperatures.

Although they do not extend to similarly high temperatures, the results for the other compositions generally conform to the same basic pattern for V_L (Fig. 7). Along with Ca38.26, three other compositions clearly achieved complete relaxation as demonstrated by V_L values lower than the ultrasonic data: (i) 3237 m/s at 2086 K [7] vs. 3324 m/s at 2200 K [22] for Ca00.49; (ii) 2969 m/s at 2300 K [6] vs. 3125 m/s at 2200 K [22] for Ca44.12; (iii) and 3141 m/s at 2281 K vs. nearly the same values [22,23] for Ca50.00. Low V_L values have also been observed for the two mixed (Ca,Mg) melts, but ultrasonic data are then lacking for comparison. For Ca53.12, the lowest value of 4148 m/s measured at 1990 K for (Table 3) is in contrast 1170 m/s higher than the ultrasonic value reported at 1623 K [10]. Even for Ca36.16 at 2630 K the value of 3348 m/s is still 10% too high with respect to the ultrasonic range 2978–2952 m/s of V_L between 1623 and 1823 K [10]. As for Ca50.25, it is the sample that remained the farthest from equilibrium since its lowest V_L of 4403 m/s at 2335 K is still 55% higher than the ultrasonic value at 1833 K [22].

For transverse waves, the picture is more diverse (Fig. 8). An important point, however, is that existing breaks in the V_T -T relationships are found at the same temperatures as for the V_L -T relationships although the magnitude of these changes is not necessarily the same for both kinds of waves. The lack of break at T_g observed for Ca38.26 (Fig. 6) is in fact shared only by Ca65.09, Ca50.25 and Ca36.16 whether their dV_T/dT is zero or negative Data are lacking above T_g for Ca62.01, Mg51.01 and Ca50.00, but the V_T decrease is clearly enhanced from T_g for Ca53.12 and CaMg51.00/23 and does likely so for Ca62.01 and Ca44.12.

In spite of marked differences of temperature dependences for example exhibited by SiO₂ [8] and Ca00.49, the velocities of transverse and longitudinal waves depend on sample composition in a similar way. This is shown by minor variations of the ratio V_T/V_L , which varies from 0.54 to 0.57 at 293 K, and from 0.49 to 0.57 at T_g . As a matter of fact, pure SiO₂ exhibits a marked rise of both V_L and V_T with increasing temperatures. Especially for transverse waves, the sound velocity difference between pure SiO₂ and aluminosilicates is impressive (Fig. 5). Already at room temperature, V_T is much greater for SiO₂ than for the other compositions, except Mg51.01, which contrasts with the values of V_L that become larger for SiO₂ than for the aluminosilicates only above 1300 K. Since sound velocities generally decrease with increasing temperature and lower densities, pure SiO₂ is one of the best-known counter example whose anomalous properties have been related to a very low, if not negative, thermal expansion caused by decreases of first Si-Si distances [8].

4. Discussion

4.1. Structural relaxation

In previous studies a single temperature regime was identified for V_L above T_g . Of course, the third T_{rx} - T_{eq} interval required experiments above about 1800 K to be satisfactorily defined, but such measurements have also been most useful to give a broader overview and to help detect the less sharp breaks at T_{rx} . Interestingly, the very same interval T_g - T_{rx} is seen in variations of the Full Width at Half Maximum (FWHM) of the Brillouin peak as illustrated in Fig. 9 for Ca65.09. Not only are the temperatures T_g and T_{rx} identical in V_L and FWHM plots, but there is also a close correspondence between the variations of both parameters in the three temperature intervals identified.

Once the additional break at T_r had been clearly revealed by samples such as Ca65.09, Ca53.12, Ca38.26 or Ca36.16, the intermediate intervals $T_{g}T_{rx}$ could be identified for other supercooled liquids, albeit with a lower precision when the data are more noisy as found for Ca50.25 (Fig. 6). For this purpose, the fact that the lower bounds of these intervals are close to the standard glass transition temperatures was an

Table 4

Transverse sound velocities (m/s).

Ca65.09	Ca62.01		Ca53.12	Ca53.12		Mg51.01		CaMg51.00/23	
<i>T</i> (K)	V_T	<i>T</i> (K)	VT	<i>T</i> (K)	V_T	<i>T</i> (K)	VT	<i>T</i> (K)	V_T
293	3365	293	3525	293	3634	293	3966	293	3554
293	3449	362	3530	293	3558	346	3955	293	3581
345	3438	413	3479	293	3620	411	3883	293	3506
400	3441	471	3495	345	3588	458	3859	373	3545
454	3444	520	3451	399	3509	515	3960	465	3646
512	3447	584	3476	484	3549	580	3916	537	3589
575	3430	637	3513	539	3531	643	3906	606	3524
627	3355	684	3490	605	3521	730	3954	669	3569
679	3394	738	3506	660	3635	798	3868	728	3496
723	3453	786	3489	719	3513	866	3845	800	3521
758	3377	836	3499	782	3538	948	3801	880	3533
808	3366	910	3517	835	3527	1012	3848	925	3500
866	3347	978	3480	926	3456	1061	3802	989	3408
925	3287	1052	3486	979	3606			1070	3305
976	3311	1117	3339	1040	3639			1105	3198
1040	3420			1090	3504				
1093	3359			1146	3495				
1150	3286			1206	3416				
1200	3275			1258	3385				
1250	3263			1307	3297				
1282	3191			293	3654				
1324	3243								
1375	3303								
1420	3276								
1473	3277								
1541	3154								
1591	3214								

Ca50.00	Ca50.25		Ca50.25		Ca44.12			Ca36.16	
<i>T</i> (K)	V _T	<i>T</i> (K)	V_T	<i>T</i> (K)	V_T	<i>T</i> (K)	V_T	<i>T</i> (K)	V_T
293	3599	293	3523	293	3512	293	3732	293	3794
293	3539	293	3488	500	3509	377	3614	293	3721
360	3563	293	3538	964	3437	460	3688	364	3810
420	3587	343	3568	1074	3327	528	3701	426	3719
465	3562	395	3573	1179	3276	585	3607	480	3640
516	3633	441	3633	1353	3074	647	3560	525	3702
575	3541	480	3626	1484	2823	691	3484	575	3596
630	3544	522	3580	1160	3309	746	3493	640	3525
685	3523	569	3632	716	3387	811	3481	705	3568
733	3455	612	3621	293	3483	881	3438	766	3556
790	3451	660	3631			946	3506	817	3429
866	3503	710	3581			1010	3461	866	3424
916	3458	772	3578			1060	3468	919	3507
991	3476	820	3533			1125	3435	979	3381
		867	3606			1186	3357	1046	3407
		939	3561			1257	3404	1107	3345
		977	3586			1306	3354	1163	3369
		1008	3538			1356	3351	1218	3232
		1058	3478			1402	3342	1275	3230
		1096	3572			1448	3236		
		1131	3462			1504	3309		
		1170	3515			1610	3264		
		1194	3522						
		1222	3475						
		1258	3464						
		1299	3445						
		1341	3460						
		1377	3421						
		1423	3452						
		1487	3421						

obvious advantage. For Ca50.00, Mg.50.01 and CaMg51.00/23, however, such determinations were not possible because of a lack of measurements caused by incipient crystallization above T_g (Fig. 7).

These V_L observations are similar to those made at constant frequency in ultrasonic measurements of compressional wave velocities [24] although in this case the transition is shifted to much lower temperatures in view of the 10^5 difference in experimental timescales between the two techniques. At high temperatures, the slight variations of

ultrasonic longitudinal velocities indicate that they refer themselves to structurally relaxed liquids. Hence, a good match to these data [10,22,23] is the simplest criterium for ensuring that structural relaxation has also become complete in Brillouin scattering experiments. For compositions such as Ca36.16, Ca53.12, or Ca62.01, estimating the temperature at which equilibrium values would be obtained could nonetheless be made reliably in view of the narrow extrapolations of the linear $V_L - T$ relationships needed to reach the ultrasonic values.

Fig. 5. Comparison of the longitudinal acoustic velocities measured with the 90 (full squares) and 180° (empty circles) geometries for Ca53.12.

Owing to the intrinsic difficulties of experiments made above 2000 K, however, the way in which our Brillouin results join with ultrasonic data might seem imperfect. That agreement is nonetheless within the combined uncertainties of the measurements is shown by analogous observations made on glycerol between 100 and 450 K [25]. Complete relaxation was demonstrated above 400 K by the agreement between compressional wave velocities measured at 15 MHz and 10 GHz, after a similar sequence of events beginning at the glass transition. Together with ultrasonic observations [26], Brillouin measurements for B_2O_3 glass and liquid show the same pattern between 473 and 1500 K [4,5].

4.2. Shear wave propagation and configurational entropy

The maximum temperature above which hypersonic shear waves do not propagate depends on composition (Table 5), but is always lower than T_{rx} , which thus appears to represent an upper bound. Of course, the V_T variations have important consequences for the shear modulus (Fig. 10). Below T_g , the values are frequency independent and vary with

Fig. 6. Hypersonic longitudinal and transverse wave velocities of Ca38.26 glass and liquid in distinct temperature intervals. For comparison, ultrasonic data are included as empty squares [10]. Linear-fit parameters reported in Table 5.

Table 5

Linear fits to the ve	elocity-temperat	ure relationship	s for longitud	inal and trans	sverse hyperson	ic waves in th	ne different ten	perature interv	als. Data in K	and m/s.
	V(293)	dV/dT	T_g	$V(T_g)$	dV/dT	T _{rx}	$V(T_{rx})$	dV/dT	T_{max}	$V(T_{max})$
Ca65.09										
V_L	6203	-0.030	1015	6185	-0.460	1641	5897	-2.08	2350	4341
V_T	3455	-0.183							1591	3214
Ca62.01										
V_L	6208	-0.024	1010	6191	-1.589	1273	5897	-2.425	2310	3275
V_T	3502	-0,017	1051	3439					1117	3486
Ca53.12										
V_L	6408	-0.130	950	6323	-0.760	1428	5960	-0.760	1990	4448
V_T	3571	-0.031	1068	3547	-0.955				1307	3297
Mg51.01										
V_L	7091	-0.241	1065	6905	-3.208				2209	3421
V_T	3953	-0.171							1061	3802
CaMg51.00/23										
V_L	6575	-0.103	903	6512	-2.459				2340	3174
V_T	3566	-0.059	911	3529	-1.587				1105	3198
Ca50.00										
V_L	6413	-0.306	974	6205	-2.423				2281	3149
V_T	3592	-0.191							991	3476
Ca50.25										
V_L	6631	-0.012	1072	6621	-0.800	1704	6116	-2.840	2336	4403
V_L	3605	-0.120							1487	3421
Ca44.12										
V_L	6454	0.007	1128	6460	-1.778	1584	5650	-3.065	2300	2977
V_L	3507	-0.185	1100	3357					1484	2823
CaMg44.13/21										
V_L	6669	-0.095	983	6603	-1.825	1290	-6043	-2.877	2235	3683
Ca38.26										
V_L	6649	-0.175	935	6536	-0.451	1626	6225	-5.123	2550	2860
V_L	3695	-0.337							1610	3264
Ca36.16										
V_L	6592	-0.285	969	6400	-1.206	1297	6004	-2.797	2630	3348
V_L	3776	-0538							1275	3230
Ca12.37										
V_L	6484	-0.214	1022	6327	-0.882	1244	6131	-3.336	1895	3936
Ca00.49										
V_L	7041	-0.028	1092	7019	-0.442	1661	6567	-8.233	2200	3324

Fig. 7. Examples of difficulties met when measuring longitudinal wave velocities: data scatter for Ca50.25, and wide measurement gaps for Mg51.01 and Ca00.49. Measurements for SiO₂ included for comparison [8]. Data displaced vertically for the sake of clarity by the amounts indicated in parentheses. Linear-fit parameters reported in Table 5.

Fig. 8. Differing temperature dependences of the transverse wave velocities exhibited in some samples. Data for SiO_2 included for comparison [8]. Standard glass transition temperatures are indicated by the arrows. Data are shifted vertically for the sake of clarity by the amounts indicated in parentheses. Linear-fit parameters reported in Table 5.

composition by about 35%. For aluminosilicate liquids, the average value of G_s at T_g is about 35 GPa, i.e., it is 3.5 times greater than the value of 10 GPa that is generally assumed for silicate liquids [27]. The exceptional variation of G_s (SiO₂) was calculated from the V_T measurements [8].

In contrast to glasses, liquids cannot support permanent shear stress but propagation of shear waves has nonetheless long been known in the supercooled state [28]. Shear-wave propagation in liquids below T_{eq} is related to the presence of structured regions with dimensions large enough that, for a short time, shear stress can be stored as potential energy before being dissipated as a result of particle diffusion [29,30]. Molecular dynamics simulations on different liquids have shown that the size of systems needed for complete stress relaxation under strain

Fig. 9. (a) Variation of the Full Width at Half Maximum of the Brillouin peaks of Ca65.09 with increasing temperatures. (b) Determination of the temperatures T_g (1015 K) and T_{rx} (1641 K) of (a) from the positions of the breaks in the V_L plot. Linear-fit parameters reported in Table 5.

decreases with increasing temperature [30]. Hence it is via the temperature dependence of the size of structured units in the liquid that the propagation of transverse waves depends on frequency and becomes eventually impossible as a results of too fast structural relaxation.

Adam and Gibbs [31] postulated the existence of such structured regions and their diminishing size with increasing temperature to explain the observed changes in relaxation times with temperature in real liquids. The relevance of Adam-Gibbs theory to account for structural relaxation in silicate liquids has been discussed in relation to the fact that viscosity, enthalpy, and volume relaxation kinetics are almost the same in the glass transition range [32]. Given that our Brillouin observations were made at 50 K intervals, the T_g values listed in Table 5 are quite close to values determined for viscosity, enthalpy and volume relaxations [32,33]. The explanation for the damping of V_T in silicate liquids would in fact provide a way to evaluate the size and temperature

Fig. 10. Shear modulus at a frequency of about 10 GHz derived from the measured transverse velocities and ancillary density data (lines are guides for the eyes).

dependence of the Adam-Gibbs cooperatively rearranging regions from the infinite frequency shear stress modulus and the viscosity of the melt.

In all cases, the Brillouin peaks are rather narrow below T_g where they begin to broaden as a result of increasing topological disorder induced by increasing temperatures. Sound attenuation also becomes stronger above T_g . Although the theory of sound attenuation in glasses and liquids is not yet well established, thermal vibrations induce ultrasonic and hypersonic sound attenuation [34].

That broadening of Brillouin peaks reflects the increasing number of atomic configurations becoming accessible above the glass transition agrees with the near coincidence between T_g and the onset temperature of peak broadening (Fig. 9). The FWHM should be related to configurational entropy which also increases with rising temperatures above T_g . This hypothesis is supported by the fact that, like log (FWHM), the configurational entropy of Ca50.25and CaMg50.25/23, and silicate liquids in general, depends linearly on reciprocal temperature [33]. The inherent structure dynamics model for liquids also agrees with this implication [35,36]. At a microscopic level, however, the causes of changes in thermodynamic and kinetic properties of liquids above T_g are still being discussed.

4.3. Composition effects: compression mechanisms

Below 1400 K addition of CaAl₂O₄ to a melt or glass causes an increase of V_L . This trend is more or less shown by the data for the samples Ca50.25 and Ca00.49 with R = CaO/Al₂O₃ \sim 1; for Ca38.26 and Ca 12.37 with R \sim 1.4; and for Ca65.09, Ca53.12 and Ca36.16 with R \sim 2.9, (Fig. 11). The same trend is observed below 1400 K for compositions with approximately 50 mol% CaO, namely Ca50.00, Ca36.16, Ca12.37 and Ca00.49 whose V_L values increase with the CaAl₂O₄ content. At temperatures higher than 1400 K, however, replacement of CaAl₂O₄ by SiO₂ leads to higher V_L values. This is shown by SiO₂ whose V_L values are 5953 and 6555 m/s at 293 K and 2000 K [8], whereas they are 7044 and 3973 m/s respectively, for Ca00.49. In absence of Al₂O₃, addition of CaO or MgO to SiO₂ causes an increase of V_L at low temperature (Fig. 11c), an effect that is stronger for MgO than for CaO (Fig. 11).

Evidently, the longitudinal sound velocity in silicate melts depends on melt structure, which is affected by temperature, chemical composition and pressure (which needs not to be considered here). The velocity of longitudinal waves is related to compressibility, see eq. (2) and (3), which depends on the overall rigidity of the internal structure of the melt or glass. Roughly speaking, the backbone of the internal structure is

Fig. 11. Effects of composition of the longitudinal hypersonic sound velocity: (a) effect of $CaAl_2O_4$ or $(Ca,Mg)Al_2O_4$ addition to SiO_2 ; (b) addition of CaO and/or MgO to SiO_2 ; (c) change of the molar CaO/Al_2O_3 ratio. (lines are guides for the eyes).

made up of corner-linked SiO₂, Mg_{0.5}AlO₂ and Ca_{0.5}AlO₂ units. An excess of MgO or CaO with respect to what is needed to ensure charge compensation of Al³⁺ weakens the structure (Fig. 10). Temperature increases also weaken the internal structure, but the extend of this effect depends on composition and temperature. We thus conclude that addition of CaAl₂O₄ and MgAl₂O₄ strengthens the internal structure at low temperature, but weakens it at high temperature. This trend is well illustrated by V_L (SiO₂), which is higher than that of any other silicate melt above 1700 K. Hypersonic velocity data indicate that MgAl₂O₄ is a stronger network former than CaA₂IO₄ at low temperature, but that the opposite holds true at high temperatures. These observations conform to what has been observed by geochemists and petrologists [37].

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

P. Courtial is gratefully thanked for providing us with the samples used in this study. This work is of course dedicated to C.A. Angell whose ideas were so influential over the years. A touching aspect of his warm personality was revealed by a message sent to the first author ending with "à l'avenir" the day before he passed away. Sadly, Y. Bottinga followed him four months later (obituary in English and French at https://www.ipgp.fr/fr/institut/hommage-a-yan-bottinga-1932-2021).

References

- [1] J.A. Xu, M.H. Manghnani, Phys. Rev. B46 (1992) 640-645.
- [2] J.A. Xu, M.H. Manghnani, P. Richet, Phys. Rev. B46 (1992) 9213.
- [3] V. Askarpour, M.H. Manghnani, P. Richet, J. Geophys. Res. 98 (1993) 17683.
- [4] J. Kieffer, J.E. Masnik, B.J. Reardon, J.D. Bass, J. Non-Cryst, Solids 183 (1995) 51.
- [5] J.E. Masnik, J. Kieffer, J.D. Bass, J. Chem. Phys. 103 (1995) 9907.
- [6] D. Vo-Thanh, Y. Bottinga, A. Polian, P. Richet, J. Non-Cryst, Solids 351 (2005) 61.
- [7] D. Vo-Thanh, A. Polian, P. Richet, Geophys. Res. Lett. 23 (1996) 423.
- [8] A. Polian, D. Vo-Thanh, P. Richet, Europhys. Lett. 57 (2002) 375.
- [9] L.N. Sokolov, V.V. Baidov, L.L. Kunin, V.V. Dymov, Sb. Tr. Tsentr. Naucho Issled Inst. Chern. Metall. 75 (1971) 53.
- [10] S. Webb, P. Courtial, Geochim. Cosmochim. Acta 60 (1996) 75.
- [11] P. Courtial, D.B. Dingwell, Amer. Min. 84 (1999) 465.

- [12] P. Courtial, D.B. Dingwell, Geochim. Cosmochim. Acta 59 (1995) 3685.
- [13] P. Richet, P. Gillet, A. Pierre, M.A. Bouhifd, I. Daniel, G. Fiquet, J. Appl. Phys. 74 (1993) 5451.
- [14] J.R. Sandercock, In: Light Scattering in Solids III, Topics in Applied Physics vol. 51, Springer, Berlin, 1982, p. 173.
- [15] R.A. Lange, I.S.E. Carmichael, Geochim. Cosmochim. Acta 51 (1987) 2931.
- [16] R.A. Lange, Contrib. Mineral. Petrol. 130 (1997) 1.
- [17] J. Gottsmann, D.B. Dingwell, Contrib. Mineral. Petrol. 139 (2000) 127.
- [18] M.J. Toplis, P. Richet, Contrib. Mineral. Petrol. 139 (2000) 672.
- [19] R. Knoche, D.B. Dingwell, S.L. Webb, Geochim. Cosmochim. Acta 56 (1992) 689.
 [20] F.R. Schilling, S.V. Sinogeikin, M. Hauser, J.D. Bass, J. Geophys. Res. 108 (2001), https://doi.org/10.1029/2001JB000517.
- [21] A. Hushur, M.H. Manghnani, Q. Williams, D.B. Dingwell, Am. Mineral. 98 (2013) 367.
- [22] L.N. Sokolov, V.V. Baidov, L.L. Kunin, V.V. Dymov, Sb. Tr., Tsentr. Naucho Issled Inst, Chern. Metall. 75 (1971) 53.
- [23] M.L. Rivers, I.S.E. Carmichael, J. Geophys. Res. 92 (1987) 9247.
- [24] A.M. Nikonov, A.V. Bogdanov, D.V. Nemilov, A.A. Shono, V.N. Mikhailov, Fyz. Khim. Stekla 8 (1982) 694.
- [25] L. Comez, D. Fioretto, F. Scarfponi, J. Chem. Phys. 119 (2003) 6032.
- [26] J. Tauke, T.A. Litovitz, P.B. Macedo, J. Amer. Ceram. Soc. 51 (1968) 158.
- [27] D.B. Dingwell, S. Webb, Eur. J. Mineral. 2 (1990) 427.
- [28] G. Harrison, The Dynamic Properties of Supercooled Liquids, Academic Press, New York, 1976.
- [29] R.D. Mountain, J. Chem. Phys. 102 (1995) 5408.
- [30] J. Petravic, J. Chem. Phys. 120 (2004) 10188.
- [31] G. Adam, J.H. Gibbs, J. Chem. Phys. 43 (1965) 139.
- [32] A. Sipp, P. Richet, J. Non-Cryst, Solids 298 (2002) 202.
- [33] A. Sipp, Y. Bottinga, P. Richet, J. Non-Cryst, Solids 288 (2001) 166.
- [34] J. Fabian, P.B. Allen, Phys. Rev. Lett. 82 (1999) 1478.
 - [35] F. Sciortino, W. Kob, P. Taraglia, Phys. Rev. Lett. 83 (1999) 3214.
- [36] S. Mossa, G. Monaco, G. Ruocco, M. Sampoli, F. Sette, J. Chem. Phys. 116 (2002) 1077.
- [37] B.O. Mysen, P. Richet, Silicate Glasses and Melts, Elsevier, Amsterdam, 2018.