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S U M M A R Y
The retrieval of earthquake finite-fault kinematic parameters after the occurrence of an earth-
quake is a crucial task in observational seismology. Routinely used source inversion techniques
are challenged by limited data coverage and computational effort, and are subject to a variety
of assumptions and constraints that restrict the range of possible solutions. Back-projection
(BP) imaging techniques do not need prior knowledge of the rupture extent and propagation,
and can track the high-frequency (HF) radiation emitted during the rupture process. While
classic source inversion methods work at lower frequencies and return an image of the slip
over the fault, the BP method highlights fault areas radiating HF seismic energy. Patterns in
the HF radiation are attributable to the spatial and temporal complexity of the rupture process
(e.g. slip heterogeneities, changes in rupture speed). However, the quantitative link between
the BP image of an earthquake and its rupture kinematics remains unclear. Our work aims
at reducing the gap between the theoretical studies on the generation of HF radiation due
to earthquake complexity and the observation of HF emissions in BP images. To do so, we
proceed in two stages, in each case analysing synthetic rupture scenarios where the rupture
process is fully known. We first investigate the influence that spatial heterogeneities in slip and
rupture velocity have on the rupture process and its radiated wave field using the BP technique.
We simulate two different rupture processes using a 1-D line source model: a homogeneous
process, where the kinematic parameters are constant along the line, and a heterogeneous pro-
cess, where we introduce a central segment along the line that has a step change in kinematics.
For each rupture model, we calculate synthetic seismograms at three teleseismic arrays and
apply the BP technique to reveal how HF emissions are influenced by the three kinematic
parameters controlling the synthetic model: the rise time, final slip and rupture velocity. Our
results show that the HF peaks retrieved from BP analysis are better associated with space–time
heterogeneities of slip acceleration. We then build on these findings by testing whether one
can retrieve the kinematic rupture parameters along the fault using information from the BP
image alone. We apply a machine learning, convolutional neural network (CNN) approach to
the BP images of a large set of simulated 1-D rupture processes to assess the ability of the
network to retrieve, from the progression of HF emissions in space and time, the kinematic pa-
rameters of the rupture. These rupture simulations include along-strike heterogeneities whose
size is variable and within which the parameters of rise-time, final slip and rupture velocity
change from the surrounding rupture. We show that the CNN trained on 40 000 pairs of BP
images and kinematic parameters returns excellent predictions of the rise time and the rupture
velocity along the fault, as well as good predictions of the central location and length of the
heterogeneous segment. Our results also show that the network is insensitive towards the final
slip value, as expected from theoretical results.

1824 C© The Author(s) 2022. Published by Oxford University Press on behalf of The Royal Astronomical Society.
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1 I N T RO D U C T I O N

Characterizing earthquake finite-fault parameters, such as the rup-
ture extent, rupture velocity and the spatio-temporal distribution of
the slip along the fault, are all fundamental to achieving a better
understanding of earthquake dynamics. Earthquake parameters are
often estimated through slip inversion techniques that rely on a pri-
ori assumptions on the fault geometry and the rupture mechanism.
Such techniques have succeeded to image the finite-fault parameters
in a relatively low-frequency range ( f < 2.0–3.0 Hz, e.g. Zeng et al.
1993; Mai et al. 2016). However, if we are interested in uncovering
fine-scale, detailed structure in the rupture process, high-frequency
(HF) waveform data must be taken into account (e.g. Mendoza &
Hartzell 1988; Ide 1999).

The complexity of the source manifests itself in terms of short-
period seismic waves, at frequencies higher than the corner fre-
quency of far field waveform spectra fc (e.g. Madariaga 1977; Spu-
dich & Frazer 1984; Ruiz et al. 2011) which is controlled by the
source duration. At these higher frequencies, the classic inversion
techniques are no longer adequate, both because of computational
limitations and by our lack of knowledge of the Earth’s structure at
those frequencies. Hence, high-resolution imaging techniques, such
as the back-projection (BP, Ishii et al. 2005) method, have become
prominent means to unravel aspects of the rupture complementary
to the ones supplied by classic inversion. When applied to teleseis-
mic body waves, the BP method takes advantage of the coherence
of HF waveforms among ground motion signals recorded at nearby
stations. By time reversing each seismogram by the theoretical trav-
eltimes calculated at each station of a given seismic array, the BP
method reconstructs a proxy to the image of seismic emissions ra-
diated during the rupture process. This technique requires minor a
priori constraints and bypasses the procedure of inverting for Earth
structure (e.g. Kiser & Ishii 2017). Numerous observational studies
in recent years have demonstrated the ability of BP to illuminate the
concentration of HF emission sources excited during earthquake
rupturing (e.g. Walker & Shearer 2009; Xu et al. 2009; Zhang & Ge
2010; Koper et al. 2011; Meng et al. 2011; Lay et al. 2012; Satriano
et al. 2014; Vallée & Satriano 2014; Grandin et al. 2015). From a
theoretical perspective, studies have long attributed the generation
of HF radiation during earthquake faulting to small-scale variations
or roughness in final slip, slip velocity, or rupture velocity—that
is sources of local acceleration and deceleration—over the fault
plane (Madariaga 1977; Andrews 1981; Herrero & Bernard 1994;
Somerville et al. 1999; Ruiz et al. 2011). HF radiation enlightened
by BP images of large earthquakes could, therefore, help constrain
the variability of parameters controlling the rupture process. How-
ever, unanimous consent on how the BP image relates to earthquake
parameters has not yet been achieved. Specifically, Ishii et al. (2005)
suggested that the BP image of the earthquake is related to the radi-
ated seismic energy. Both works from Yao et al. (2012) and Fukahata
et al. (2014) point out that it is ambiguous whether the BP image
is more likely representing the slip velocity or the slip acceleration.
In addition, research from Yin & Denolle (2019) enhances the rela-
tionship between BP images and earthquake kinematics by showing
that the linear formulation of the BP method better correlates with
the true kinematic source properties.

Our work has, therefore, a dual purpose. In the first part of our
study, we aim to investigate the link between coherent images of the
rupture process and the mechanism of HF generation and, therefore,
improve our understanding of what the BP image truly represents.
To accomplish this first objective, we simulate two rupture processes
using a 1-D line source model (Lancieri & Zollo 2009). This choice
allows us to ease the computational effort usually required for a 2-D
source model and describe the complex earthquake rupture process
in a simplified manner that seeks to represent its key elements by
three kinematic parameters: the rise time, the final slip, and the
rupture velocity. The two rupture processes we study are:

(1) A homogeneous rupture model, where the kinematic param-
eters (rise time, final slip and rupture velocity) are constant along
the line.

(2) A heterogeneous rupture model, where a segment of 30 km
length is introduced in the middle of the fault; within this segment,
the rise-time value assumes a different value with respect to the
surrounding rupture, whereas the final slip and the rupture velocity
remain uniform.

We simulate these two ruptures, generate the synthetic ground
motion signals, apply the BP technique, and finally compare the
resulting images with the originating rupture model. Because the
moment rate and slip rate functions are proportional, using a simpli-
fied source enables us to understand the link between the generation
of HF radiation and the complexity of the moment rate function.
Using a 1-D source allows us to represent the BP image of the
rupture conveniently as a 2-D map, where we can easily follow
the HF progression in space and time, drawing the attention to the
mechanism behind the generation of HF radiation from spatial het-
erogeneities in the kinematic rupture parameters. Reconstructing
the rupture process at three complementary arrays also allows us
to better investigate how different arrays can enlighten different
aspects of the same rupture process.

After developing a conceptual understanding of the relation be-
tween the BP image and the variability of the parameters describing
the rupture process, in the second part of our study, we work toward
extracting information on the earthquake kinematic properties from
the HF radiation enhanced by the BP analysis of earthquakes. To
accomplish this second objective, we take a data-driven approach:
we again parametrize the system as a 1-D line source model and
we simulate 40 000 rupture scenarios with different characterizing
traits determined by different choices in the values of the kinematic
parameters. We then adopt a convolutional neural network (CNN)
approach to look for the statistical link between the BP images
and the rupture kinematic parameters, exploring the role of input
and target parameters on the accuracy of the CNN predictions. In
particular, we aim to assess which kinematic characteristics of the
rupture process, as well as the location and the extent of a spatial
heterogeneity—when present—can be reliably determined from the
BP image of the seismic event.
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1826 M. Corradini et al.

2 M E T H O D O L O G Y I : T H E L I N E
S O U RC E A N D I T S S Y N T H E T I C
G RO U N D M O T I O N S I G NA L S

2.1 The line source model

The line source is an intermediate approach between the point source
and the extended source model (Lancieri & Zollo 2009). Its advan-
tage lies in the ability to reproduce the typical 2-D source directivity
effects on the signal while requiring a lower computational effort,
and limiting the degrees of freedom. Use of this model is most
appropriate for earthquakes with aspect ratios (fault length divided
by width) well in excess of one, such as for large strike slip earth-
quakes and great subduction zone earthquakes. Our source model
is built by placing a series of equally spaced point sources along a
line (with total length equal to the fault length). These points are
set at the hypocentral depth of the event and are distributed along
the strike direction of the fault. The point sources begin to slip at
different subsequent activation times, related to the rupture propa-
gation velocity along the line. Once crossed by the rupture front,
each point source slips following a ramp function whose duration is
the rise time. We describe the line source model with the following
parameters:

(i) The hypocentral coordinates of the seismic event.
(ii) The strike direction of the fault.
(iii) The rupture length L.
(iv) The rupture velocity Vr along the line.
(v) The discretization along the line �L.
(vi) The rise time tr, or the duration of the dislocation, for each

point source.
(vii) The final slip value sf, reached by each point source at the

end of the dislocation.

Under our application of the line source approximation, each
point has the same focal mechanism (slip vector and fault orienta-
tion) and the total seismic moment of the full rupture is given by
the sum of the seismic moments of each point source. An estima-
tion of the fault length (L) and width (W) is derived from the event
magnitude using the Wells & Coppersmith (1994) empirical rela-
tionships. To avoid space–time aliasing, the contributions emitted
by each elementary source must overlap in time; i.e. the duration of
each elementary source (the rise time) must be greater than the time
the rupture takes to propagate to the next source (here called τ ),
as discussed in Lancieri & Zollo (2009). To properly set the point
source spacing along the line, different simulations were performed,
leading to our preferred sampling given in Table 1.

In this study, we locate the earthquake in Northwestern China,
and we use the geometry of the Mw = 7.5, 2001 Kunlun earthquake
(Klinger et al. 2005; Vallée et al. 2008). The generated source
models do not aim at reproducing the exact rupture process of the
Kunlun event, but they rather explore different rupture scenarios.
However, our synthetic model does share the same hypocentral coor-
dinates, seismic moment, focal mechanism and rupture propagation
direction of the Mw 7.5, Kunlun earthquake, as summarized in Ta-
ble 1. Hypocentral coordinates and focal mechanism are obtained
from the Global CMT Moment Tensor Solution (Dziewonski et al.
1981). We simulate 40 000 rupture scenarios of the Mw 7.5 strike-
slip event adopting the 1-D line source model. To capture a range
of different scenarios, we vary the kinematic parameters (rise time,
final slip and rupture velocity) for each simulation. Each kinematic
parameter is randomly selected within a range of values shown in
Table 2 according to the empirical relationships proposed by Wells

Table 1. Hypocentral coordinates and focal mechanism of the Mw = 7.8,
2001 Kunlun earthquake, used as a frame for our synthetic study. Rupture
length L and width W derived from Wells and Coppersmith empirical rela-
tions. Space �L and time �t sampling chosen in order to avoid space–time
aliasing, as discussed by Lancieri & Zollo (2009). P- and S-wave velocities
and quality factor used for the Green’s functions.

Hypocentral coordinates (◦) Focal mechanism (◦)
Lon = 90.59, Lat = 35.93 Strike = 78, Dip = 61, Rake = −12
Hypocentral depth (km) Rupture Geometry (km)
Z = 13 L = 100, W = 15
P-wave velocity (km s–1) Space sampling (km)
ɑ = 5.8 �L = 0.4 km
S-wave velocity (km s–1) Time sampling (s)
β = 3.46 �t = 0.02 s
Attenuation
Q = 730

Table 2. Ranges of kinematic parameters for rupture process simulation.
We call tr the rise time, sf the final slip, Vr the rupture velocity, LH the
length of the heterogeneous segment and xc its central position. Kinematic
parameters are uniformly distributed within the range listed below.

tr (s) sf (m) Vr (m s–1) LH (km) xc (km)

1–8 1–10 2500–3460 0.4–40 20–80

& Coppersmith (1994) and Geller (1976). In addition, we introduce
a heterogeneous segment whose length LH ranges from one space
sample, that is 400 m to 40 km. Within the heterogeneous segment,
the rise time, the final slip and the rupture velocity assume a dif-
ferent value from the surrounding length. Although simple in its
setting, the range of models we simulate in the study highlights the
salient features of the rupture process we aim at investigating.

2.1.1 Two case-studies: the homogeneous and the heterogeneous
rupture processes

In the first part of our study, we aim at reproducing two examples of
rupture processes: the homogeneous and the heterogeneous ones.
In the first case, the kinematic parameters of rise time, final slip and
rupture velocity are set constant along the 1-D line, whereas in the
second example a step change in the rise time is set for the points
lying within the central segment. In Fig. 1(a), we show the slip-rate
functions for each point of the line in space and time in the case of
a homogeneous rupture model, where the kinematic parameters are
constant along the line. In the marginal plot along the y-axis we show
the sum of the slip-rate functions in time, whereas in the marginal
plot along the x-axis we show the sum of the slip-rate functions in
space, which returns the moment-rate function. In this simple case,
the marginal plot along the x-axis shows the well-known trapezoid
function described by Haskell. It is worth noting that in the simple
case of a 1-D source model, the moment rate function is proportional
to the slip rate function. In Fig. 1(b), we show the slip-rate functions
of each point of the line for a heterogeneous case. Here, we place a
30-km-long segment in the middle of the line fault and we change
the rise time value for the source points within it. The rupture
propagates with constant rupture velocity (Vr = 3 km s–1) and the
source points reach the same final slip value (sf = 8 m). The rise
time, on the contrary, has an abrupt change from 6 to 3 s, determining
a faster activation of the ‘heterogeneous’ points. Here, the abrupt
change in the rise time value affects the rupture process and makes
the moment rate function more complex. In particular, the effect of
the decrease in the rise time value within the heterogeneous segment
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Figure 1. Slip-rate functions in space and time for a homogeneous (a) and a heterogeneous (b) rupture processes. The along-strike direction is shown on the
y-axis (in orange, the segment that ruptured during the simulation). Time is shown on the x-axis. Each source point dislocates following a ramp function (a
box-car in terms of slip-rate). The marginal plot along the y-axis shows the sum of the slip-rate functions in time, whereas the marginal plot along the x-axis
shows the sum of the slip-rate functions in space.

determines a shorter duration of the box-car and a higher value of
its amplitude. Such a complexity can be seen in the marginal plot
along the x-axis, where the trapezoid function is perturbed by the
presence of the heterogeneity.

2.2 Modelling body waves at teleseismic distance

For each rupture scenario generated in the previous section, we
compute synthetic seismograms at three arrays of existing seis-
mic stations at teleseismic distances (between 50◦ and 90◦): Alaska
(AK), Europe (EU) and Australia (AU). Each array is comparable
to an antenna that tracks in space and time the strongest coher-
ent sources of HF seismic energy. The arrays are located at three
complementary locations with respect to the epicentre of the event,
allowing us to obtain three different viewpoints of the same rupture
process. Each array is composed of 55 stations (black triangles in
Fig. 2). The interest of working at teleseismic distances lies in the
possibility of investigating HF emissions using only the far-field
term of the Green’s function in the representation theorem (Aki &
Richards 2002). This approximation leads to many simplifications
of the calculations and simple physical models of the generation
of HF waves. In the current study, Green’s functions are calculated
in a spherically averaged Earth’s velocity model AK135 (Kennett
et al. 1995). The ground motion associated with the displacement
on the fault plane is computed via the representation integral in the
frequency domain. Teleseismic body waves are computed by taking
into account only the direct P arrival and associated depth phases,
pP and sP. We compute the displacement associated with a tele-
seismic P wave in a geometrical ray solution following the formula
of Okal (1992). However, in our study, we do not model absolute
ground motion amplitudes: we neglect the geometrical spreading
and the response of both the receiving site and the recording in-
strument, and we normalize the individual ground motion signals
with respect to the maximum amplitude amongst all ground motion
signals. To compute the reflection coefficients for pP and sP phases
into the synthetic seismograms, we use the calculations made by Aki

& Richards (2002). Values for P- and S-wave velocity are shown in
Table 1.

2.3 Description of the synthetic data set

We composed our data set of 55 Z-component synthetic displace-
ment traces for each array in Fig. 2. The AK and AU arrays are
located almost in the directive position with respect to the rupture
propagation, whereas the EU array is located almost in the antidi-
rective position. To identify HF pulses, the synthetic displacement
traces are then differentiated in time and bandpass filtered between
0.5 and 4 Hz. The filter is a zero-phase 4-pole Butterworth, to obtain
an acausal filtered signal where the arrival time of the signal’s peak
is respected (Fig. 3).

3 M E T H O D O L O G Y I I : T H E B P
I M A G I N G T E C H N I Q U E

3.1 Back projection

To compute the BP image, we follow the conventional method
for source imaging first proposed by Ishii et al. (2005), where the
body waves arriving at an array of recording stations are projected
back to a reference source grid under the ray theory asymptotic
approximation. The steps to follow when applying the BP method
are described in the following summarizing points:

1. We define the coordinates of the BP gridpoints and assume a
velocity model to calculate theoretical traveltimes. We use a 1-D
grid of potential source locations that is 300 km long, and with a
step size of 1 km (Fig. 2), to represent the line source. All gridpoints
are placed at the hypocentral depth of x km;

2. We define the coordinates of the BP gridpoints and assume a
velocity model to calculate theoretical traveltimes. We use a 1-D
grid of potential source locations placed over the line source. In
particular, the grid is 300 km long with a grid-step of 1 km (Fig. 2)
and all gridpoints are placed at the hypocentral depth. This is a
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1828 M. Corradini et al.

Figure 2. Geographical setting of this study. Focal mechanism and epicentral location of the synthetic test are placed in Northwestern China. Alaskan (AK),
Australian (AU) and European (EU) arrays are composed each of 55 seismic stations (black triangles). The bottom window shows a zoom over the 300-km-long
1-D BP grid that surrounds the line source.

simplification of the standard approach in BP analysis where a 2-D
grid is used;

3. For each gridpoint, theoretical P-wave traveltimes are calcu-
lated at each station of the array in the AK135 velocity model
(Kennett 2005);

4. Filtered seismograms are time shifted according to the values
of traveltimes;

5. Shifted signals are stacked, returning a signal related to the
gridpoint. If the shifted signals sum constructively, the stack is
high, meaning that the gridpoint is a plausible source of coherent
HF radiation (from the array point of view). If the stack is low, in
contrast, the gridpoint likely did not contribute coherent HF energy
during the rupture process.

Several methods exist for aligning and stacking seismic traces,
for instance, the Nth root stacking (Muirhead 1968) and the F-ratio
(Melton & Bailey 1957). In our study, seismic traces are combined
via the shift-and-sum approach, because this linear approach is the
simplest technique for stacking the station traces, it requires the
least a priori assumptions, and it does not deform the amplitude of
the signals. Mathematically, the linear stack si (t) at the ith potential
gridpoint can be expressed as follows:

si (t) =
∑

j

u̇ j

(
t − t P

i j

)
, (1)

where u̇ j is the velocity trace at the jth station and t P
i j is the the-

oretical P-wave traveltime from the ith source to the jth station. In
the calculation of the BP image, we replace the stacked signal by its

square value, the beam power. The beam can be highly noisy espe-
cially for HF filtered signals, where further peaks appear because of
the filter. To further reduce the noise, the beam is smoothed using
a zero-phase Gaussian filter, parametrized by its standard deviation
σ . We tested different values of Gaussian smoothing windows (σ ),
and chose the value of σ = 0.4 s, which allows us to only focus on
the main energy bursts neglecting the smaller peaks coming from
the filtering and stacking procedures (see Fig. A2).

3.2 Space–time resolution of BP images: reducing the
artefacts

The space–time resolution of BP images is quantified by the array
response function (ARF), that is the space–time BP image of an
instantaneous point source (e.g. Xu et al. 2009; Meng et al. 2012).
The ARF is generally a 3-D function, with two spatial dimensions
(the fault grid) and one time dimension. It’s worth noting that in our
case the ARF is a 2-D function, since we use a 1-D spatial grid of
potential source locations. The size and shape of ARF depend on
two factors: the frequency content of the data and the geometry of
the array, respectively. In principle, the higher the frequency we are
looking at, the more detailed the BP image will be (Schweitzer et
al. 2012). Likewise, both the aperture and the position of the array
with respect to the rupture direction control the resolution of the
BP image. Specifically, good resolution in BP images is achieved
when using large-aperture arrays (Xu et al. 2009). Low-frequency
(f < 1 Hz) P-waves are less affected by scattering and smaller-scale
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Figure 3. Example of a teleseismic synthetic signal generated at AU, AK and EU array for a homogeneous (a) and a heterogeneous (b) rupture process. In
each plot, we show the displacement trace on the top, the unfiltered velocity trace in the middle, and the velocity trace bandpass filtered between 0.5 and 4 Hz
at the bottom.

heterogeneity, thus their stack generally returns a high coherency.
However, they do not provide a good degree of detail on BP images.
On the contrary, HF (f > 1 Hz) P waves provide a high resolution
on BP images, but at the same time their waveforms are more easily

distorted by small-scale heterogeneity and scattering (e.g. Frankel
& Clayton 1986, Takemura & Furumura 2013), often leading to a
less coherent stack. In addition, similarity among ground motion
signals breaks down as interstation distance increases (Xu et al.
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2009). The frequency range 0.5–4 Hz is typical in BP analysis at
teleseismic distance, because it offers a good balance between the
resolution of the BP image and the waveform coherence (Xu et al.
2009).

The size and shape of the ARF (which depend on the relative
position between the array and the rupture direction) are at the
origin of the two typical artefacts of BP imaging, namely spatial
‘smearing’ and time ‘walking’ (e.g. Walker & Shearer 2009; Xu
et al. 2009; Meng et al. 2012). The smearing effect makes the beam
power signal of the true HF emission source to be blurred in space,
whereas the walking effect leads to having a false energy radiation
appearing before and after the true emission time.

An additional problem is the presence of HF emissions carried by
depth phases, which can obscure some of the first-order features of
the rupture process (Yagi et al. 2012). Okuwaki et al. (2019) show
that BP has a depth-dependent bias proportional to the amplitude
of the depth phases in the Green’s function. At shallow depths
(e.g. less than 10 km) these artefacts are caused by non-physical
interactions of the back-projected P wave and depth phases. For deep
earthquakes, on the contrary, depth phases are separated enough
from the direct P wave and they can be used to constrain the source
depth (Kiser et al. 2011). However, in this case they might still
complicate the interpretation of the BP image, as further HF peaks
appear in the image, but they are not generated by the complexities
of the source.

A key issue in BP analysis is therefore to remove the ‘smearing’
and ‘walking’ artefacts and the spurious emissions carried by depth
phases to obtain only the true location of the HF radiation sources in
space and time. In Fig. 4, we show by way of example the BP images
of a homogeneous rupture process calculated at the AK, AU and
EU arrays using the conventional approach described in Ishii et al.
(2005). The figure shows that a few pulses of HF emission retrieved
by the BP analysis are found in correspondence with the initiation
and the stopping phases of the rupture. This happens because in a
homogeneous rupture process all kinematic parameters are constant
along the line fault, and only the initiation and the stopping phases
of the rupture generate abrupt changes in the slip-rate function (see
the slip-rate function in the bottom subplot of Fig. 4), that in turn
produce HF seismic waves. Hence, the two bursts of HF radiation
both at the initiation and at the end of the simulation are an effect of
the finite duration of the rise-time. The presence of several pulses of
HF emissions both at the initiation and at the stopping of the rupture
is due to the contamination of depth-phases (see in particular the
BP image obtained at the EU array). In addition, the HF emissions
also show a ‘walking’ effect under the form of a time tilting that
depends on the relative position between the array and the rupture
direction (Fig. 4). Several approaches have been proposed in the
attempt to improve resolution and reduce the artefacts in BP images
(e.g. Lay et al. 2010; Wang et al. 2012; Haney 2014; He et al. 2015;
Nakahara & Haney 2015; Wang & Mori 2016). In the first part
of our study, we use the method described in Wang et al. (2016,
hereinafter W2016).

In the following lines, we describe the general procedure used by
W2016, by detailing the two steps used in their method. We will then
move to describing the procedure we have used, which was inspired
by the W2016 method. In their study, the authors propose a two-
step procedure, first to correct the time tilt of HF emission patches
and second to reduce the smear around the true HF energy peaks.
The first step of the approach proposed by W2016 is performed by
selecting a reference station lying in a central position within the
array. In the conventional BP technique, the signal is shifted by the
theoretical traveltime t P

i j between the gridpoint i and the station j. In

the approach suggested by W2016, the signal recorded at a station
j is shifted by the difference between the traveltime at the station j
and the traveltime at the reference station:

si (t) =
∑

j

u̇ j

(
t − τ P

i j

)
. (2)

and

τ P
i j = t P

i j − t P
i J . (3)

where u̇ j is the velocity trace at the jth station, τ P
i j is the ith source

traveltime difference between the jth station and the reference sta-
tion J. This procedure returns a BP image of the rupture as if it were
seen by the reference station, where the HF emissions are no longer
tilted in time. However, by following the ‘time correction’ of the
approach proposed by W2016, we obtain a BP image where the time
axis is no longer the absolute time at the source, but it rather corre-
sponds to the apparent time at the reference station. It is instructive
to note that, in this new reference system, the directivity effect of
the source appears in the BP images in terms of time stretching or
compression of the HF emissions (see the Appendix).

In their second step, W2016 suggest looking at the BP image of
an earthquake as a convolution between the BP image of the true
HF peaks and the ARF. The ARF can be evaluated in different ways:
theoretically, with synthetic Green’s functions (e.g. Rost & Thomas
2002), or with empirical Green’s functions. The latter is usually
performed by applying the BP analysis to a smaller earthquake that
can be assumed to be a point source. The procedure proposed by
W2016 can also help remove the contamination of depth phases
into the BP images. In their study, W2016 use an aftershock as
an effective point source and a non-negative least squares (NNLS)
algorithm to perform the deconvolution of a BP image of the array
response from the BP image of the true HF peaks. In our study we
use a synthetic point source activating at the hypocentre as array
response and perform an image deconvolution using the Richard-
son and Lucy restoration algorithm (Richardson 1972; Lucy 1974),
hereinafter R&L, available in the scikit-image image processing li-
brary in Python. The R&L algorithm is an iterative procedure for
recovering from a blurred, contaminated image an underlying, orig-
inal image through the deconvolution with a known point spread
function (the array response function, in our case). In Fig. 5, we
show an example of the R&L restoration algorithm applied to the
BP image of a homogeneous rupture process calculated at the EU
array, where we can see the removal of depth phases and a highly
reduced smearing around the true HF peaks. To more easily identify
the position of the HF peaks in a space–time plot, we then search for
the HF peak maxima in space and time in the matrix resulting from
the R&L algorithm. Once the HF maxima have been extracted, we
restore the time axis in the BP images from the apparent time of the
reference station to the absolute time at the source by inversion of
the W2016 time correction equation.

3.3 Relation between BP and fault slip

To better understand the relation between the BP image and the fault
slip, we select two representative cases among the 40 000 rupture
scenarios:

1) A homogeneous rupture model, where the kinematic parame-
ters are constant along the line.

2) A heterogeneous rupture model, where a segment of 30 km
length is introduced in the middle of the fault; within this segment,
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Figure 4. BP images of a homogeneous rupture process (a) and a heterogeneous rupture process (b) calculated at the three arrays. Time is plotted along the
x-axis and the along-strike direction is plotted along the y-axis. In the left-hand subplots we show the square root of the beam power integrated in time (in blue)
and the maximum value of the slip-rate function (in green). In the bottom subplots we show the square root of the beam power integrated in space (in blue), the
slip-rate function (in green) and the absolute values of the slip-acceleration function (in red) and its time derivative (in black). The blurred and tilted patches
correspond to the BP reconstruction of the HF emissions related to the source complexity and the contamination of the depth phases.

Figure 5. Example of the Richardson and Lucy restoration algorithm applied to the BP image of a homogeneous rupture process calculated at the EU array.
(a) Original BP image; (b) point spread function (PSF, also known as array response function) obtained as the BP image of a point source activating at the
hypocentre and (c) restoration result after the R&L algorithm.

the rise-time value assumes a different value with respect to the
surrounding rupture.

3.3.1 Homogeneous rupture model

In a homogeneous rupture model, the kinematic parameters are con-
stant along the line: the rupture propagates along the line fault with
constant velocity and the source points have the same value of rise
time and final slip. Specifically, the case we selected presents the
following values: rupture velocity Vr = 3 km s–1; rise time tr = 6 s;
final slip sf = 8 m. In a 1-D line source model, the moment rate and
slip rate functions are proportional. In addition, in a homogeneous
rupture process, the shape of the slip-rate function is very simple,
and the unique abrupt changes are the slopes associated with the
initiation and stopping of the rupture. An example of teleseismic
synthetic traces generated at the three arrays is shown in Fig. 3(a),
where the signal is characterized by two abrupt changes, corre-
sponding to the initiation and the stopping of the rupture, whereas
the remaining portion of the displacement signal is flat, indicating a
constant rupture process. In Fig. 3(a) we note that the HF bandpass
filter behaves like a time-derivative on the velocity trace as, more
specifically, the pulses on the HF-filtered signal highlight the dis-
continuities of the velocity trace. In particular, the finite duration
rise-time produces a two-pulse HF radiation pattern, both for the
initiation and the stopping of the rupture. The effect of the depth

phases is almost imperceptible on the AK array, because of the ra-
diation pattern. Here, four HF pulses are visible in association with
the discontinuities in the slip-rate function due to the initiation and
the stopping phases of the rupture. In contrast, the waveforms at the
AU and EU arrays are measurably perturbed by the depth phases.
Here, synthetics show at least three pulses for the AU array and four
pulses for the EU array.

In Fig. 6(a), we show the location in space and time of the HF
peaks obtained via the R&L restoration algorithm to eliminate the
contamination of depth phases in the BP images. The main plot in
the background (the diagonal red and blue lines) shows the normal-
ized slip acceleration functions for each point of the line: since we
are describing the dislocation at each point of the source as a ramp
function, the slip velocity function of each point will be a box-car,
and the slip acceleration function will be a two-delta signal (red
and blue spikes) whose distance is the chosen value of rise time.
In this framework, a given place on the fault experiences sudden
onset, constant acceleration, then steady sliding, and then decelera-
tion as the rupture front passes. We normalize the slip-acceleration
functions because we are mainly interested in highlighting the re-
lation between its discontinuities and the HF peaks. At the bottom
of Fig. 6(a) we show the total slip-acceleration function a which is
calculated as the sum over space of the slip acceleration at a given
time. The second plot in the marginal at the bottom shows the time
derivative of the total slip acceleration function in absolute value.
The third plot in the marginal at the bottom shows the square root
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Figure 6. HF peaks (coloured symbols) obtained for a homogeneous (a) and a heterogeneous (b) rupture process retrieved at AK, AU and EU array. HF
peak size is proportional to the value of the beam power. In the main plot we show the normalized slip-acceleration function for each point of the line. The
along-strike direction is on the y-axis (in orange we plot the line source) and the time is on the x-axis. The marginal on the left is the square root of the beam
power signal for the EU array. The marginal on the bottom are: the total slip-acceleration function a; its time derivative in absolute value; the square root of the
beam power signal for the EU array.

of the beam power signal for the EU array. The main plot shows
that the three arrays are in agreement in terms of the location of the
peaks in space and time and their beam power intensity. Four HF
peaks are observed: the first two, generated at the hypocentre, cor-
responding to the rupture initiation; the other two, generated at the
end of the ruptured segment, corresponding to the rupture stopping.
In particular, if we compare the HF peaks with the subplots in the
time axis, we note that the HF peaks appear at the discontinuities
of the slip acceleration function, indicating a strong association be-
tween the R&L deconvolved BP images and the absolute value of
the time derivative of the slip-acceleration function.

3.3.2 Heterogeneous rupture model

In the heterogeneous case, a 30-km-long segment is placed in the
middle of the line fault and we change the rise time value for the
source points within it. The rupture propagates with constant rup-
ture velocity (Vr = 3 km s–1) and the source points reach the same
final slip value (sf = 8 m). The rise time, on the contrary, has an
abrupt change from 6 to 3 s, determining a faster activation of the
‘heterogeneous’ points. An example of teleseismic synthetic traces
for this heterogeneous rupture process generated at the three arrays
is shown in Fig. 3(b), where the signals show a higher complexity
beyond the initiation and the stopping of the rupture. In particular,
the decrease in the rise time value within the heterogeneous segment
produces additional elastic waves, since the moment rate function
experiences a transient acceleration when encountering the hetero-
geneity. Multiple pulses in fact appear on the HF-filtered traces
Fig. 6(b): they mark not only the initiation and the stopping phases,
but also the major discontinuities in the slip-rate function due to the
location of the heterogeneity.

In Fig. 6(b), the three arrays are not always in agreement in terms
of the location of the peaks in space and time, nor do they retrieve
the same number of peaks. As previously seen in the homogeneous
rupture process, HF peaks are again observed at the hypocentre,
corresponding to the rupture initiation, and at the end of the rup-
tured segment, corresponding to the rupture stopping. Additional
HF peaks appear at the edges of the heterogeneous segment in space,
and they match the discontinuities of the slip acceleration function
in time. The result of the peak extraction following the R&L restora-
tion algorithm is not optimal for the AK array, whereas it works well
for the AU and EU arrays. For the EU array in particular, the beam
power closely matches the absolute value of the time derivative of
the slip-acceleration function. Along the strike direction, the local-
ization of the peaks accurately identifies the hypocentre and the
end of the ruptured segment, whereas the localization of the peaks
generated by the presence of the heterogeneous segment is less clear.

4 A C N N A P P ROA C H

The second step of this work is to understand the statistical link
between the raw BP image of an earthquake and the kinematic
parameters controlling the rupture process. CNNs have recently be-
come a successful tool in earthquake seismology, where they have
been used as a powerful alternative to many classical techniques (e.g.
Perol et al. 2018; Rouet-Leduc et al. 2020). Even when complex and
non-linear interactions exist among observed data and model pa-
rameters of interest, CNNs can find useful functional relationships
between the input and outputs, and provide accurate predictions.
CNNs are frequently applied to both time-series and image inputs,
where the input data can have any number of parallel input chan-
nels. The input data are processed through numerous convolutional
layers, which extract relevant features from the data that the later
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portions of the CNN can use to predict the output (Fig. 7). Here
we apply a CNN approach by training on the 40 000 BP images of
the rupture scenarios previously generated and attempting to pre-
dict rupture kinematic parameters of each realization. To take full
advantage of the features contained in the BP image, whether they
be `walking’ and `smearing’ artefacts, or true source emissions, for
each rupture process we calculate the BP image using the conven-
tional approach by Ishii et al. (2005). In the calculation of the BP
image, we replace the stacked signal by its square value, the beam
power. However, in this second part of our study, we want to apply
a minimal pre-processing and allow the CNN to find the best link
between the raw BP image and the kinematic parameters. Because
each array introduces distinct artefacts into the BP image, it may
be possible to pre-process the BP images to mitigate the geomet-
ric effects prior to apply the CNN. However, such pre-processing
procedures are inherently non-unique and risk losing potential valu-
able information from the raw images. Hence, hereafter the beam is
not smoothed with a Gaussian filter and, most importantly, no peak
extraction or other manipulation is made on the raw BP images.

4.2 CNN architecture

The CNN is designed as a regression model that is trained in a
supervised way, to predict a target output, for each given input. In
our study, the input is a 2-D matrix containing the pixels of the BP
images of the simulated rupture processes, and the target is a 1-D
vector containing the kinematic parameters corresponding to those
simulations. Specifically, the target vector d is defined as:

d = [tr, sf , V r , H tr, H sf , H V r , xc, LH] , (4)

where tr is the rise time, sf is the final slip, Vr is the rupture velocity;
Htr, Hsf and HVr are the heterogeneities, respectively, in the rise
time, in the final slip and in the rupture velocity; xc and LH are the
central position and the length of the heterogeneous segment. The
objective of the CNN algorithm is to learn from the training data
a functional mapping between the input matrix and target vector
(LeCun et al. 1998, Goodfellow et al. 2016).

We tested various network architectures in our study. Our pre-
ferred one has the structure sketched in Fig. 7, because it required
a small number of learnable parameters (improving its generaliza-
tion performance) and was computationally efficient in training. In
this architecture, the BP image is first downsampled with a max-
pooling operation, with equal pooling lengths of [3] w × [3] h along
the image dimensions. Once downsampled, the BP image is passed
through two convolutional layers, each with a convolution, a max-
pooling, and an activation function. The convolution is performed
with 5 and 10 filters, in the first and second layers, respectively. The
kernel size for both layers is [5] w × [5] h. The max-pooling oper-
ation is performed with pooling lengths of [4] w × [4] h in the first
layer and of [3] w × [3] h in the second layer of the loop. A rectified
linear unit (ReLu, Ramachandran et al. 2017) is used as an activa-
tion function. Two fully connected layers link these convolutional
layers with the output target (Fig. 7). We refrain from using a large
number of convolution and pooling layers, as is common in CNN
applications, because we want to preserve a substantial portion of
the ‘bright spots’ in BP images, whose shape depends on the relative
position between the source and the array (as discussed in Section
3.2) and thus carry information on the geometry of the problem.
Network weights are updated during the learning to minimize the

loss function, in our case, we use the mean square error (MSE):

MSE = 1

M

M∑
n = 1

(dn − yn)2, (5)

where M is the number of samples in the data set, dn is the normal-
ized target vector containing the true kinematic parameters for the
sample n, and yn is the normalized output vector containing the pre-
diction of the kinematic parameters for the sample n. The kinematic
parameters used in the simulations are uniformly distributed, hence
we adopt a min-max normalization on target data to map them to
the range 0 to 1:

d̃n = dn − min (d)

max (x) − min (x)
, (6)

where d̃n is the normalized target. During the training, the updates
to the model weights are controlled by the learning rate, which
quantifies how fast the model adapts to the problem. Specifically,
the learning rate will constrain the step by which the new weights
differ from the old weights as we try to minimize the loss function.
In our study, we initialize the weights using the Glorot initialization
scheme and set the learning rate equal to 7.5 × 10−5. The Adam
algorithm (Kingma & Ba 2014), applied in the PyTorch framework
(Paszke et al. 2017), is used to train the networks. The original data
set composed of 40 000 simulations of rupture processes is divided
into three subsets: training (70 per cent), validation (20 per cent) and
testing (10 per cent). The network is trained for up to 500 iterations
over the training data set using a batch size of 135. The model’s
parameters for which the MSE reaches its minimum in validation
are selected as the best model’s parameters, which are then used for
testing.

5 S TAT I S T I C A L L I N K B E T W E E N T H E
B P I M A G E A N D T H E TA RG E T
PA R A M E T E R S

5.1 Effect of target on CNN predictions

In Fig. 8, we present the results obtained with the design of the
CNN sketched in Fig. 7 and the target vector defined in eq. (4). We
include outputs of both the stacked version of the method (sum of
the BP images obtained from the three arrays), and the predictions
for using each array separately. The plots show the output of the
CNN versus the target values, which are the predictions of the
CNN versus the true values of kinematic parameters, for the testing
data set. To summarize the prediction accuracies, we calculate the
regression score function, R2, for each of the different components
of the target vector. This score is defined as:

R2 = 1 −
∑n

i = 1 (di − yi )
2

∑n
i = 1

(
di − d̂

)2
, (7)

where d is the target vector, y is the CNN prediction and d̂ is the
mean value of the target. This score captures how well the model is
able to return a prediction close to the target parameter in a linear
regression setting. Its range of possible values is (−1, 1], where
the best possible score is 1.0 and a score of 0.0 implies the model
predictions are no better than a simple guess based on the average
value. A negative value for R2 implies the model predicts worse
than the simple guess. The highest values of R2 are found for the
predictions of the rise time tr (R2 = 0.912) the rupture velocity Vr

(R2 = 0.914) and the central position of the heterogeneous segment
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Figure 7. Sketch illustrating the design of the CNN used in this study. The input is the BP image which undergoes a max pooling operation first. Then, once
downsampled, the BP image is passed through two convolutional layers, each composed of a convolution (conv), pooling and activation (ReLu) operation. The
network ends with two fully connected layers (fc). The output of the network is the vector containing the kinematic parameters of the rupture process.

Figure 8. Predictions of the CNN versus the true values of kinematic parameters, for the testing data set. The regression score function R2 is shown in each
subplot. The input BP image is obtained as the sum of the BP images calculated at the three arrays AK, AU and EU. We adopt a min–max normalization on
target data to map them to the range 0–1.

xc (R2 = 0.885). Accurate predictions are also obtained for the het-
erogeneous values in rise time and rupture velocity, Htr (R2 = 0.576)
and Hvr (R2 = 0.499). However, the length of the heterogeneous seg-
ment LH is not well predicted (R2 = 0.355) and poor predictions are
obtained for the final slip sf (R2 = 0.123) and its heterogeneous val-
ues Hsf (R2 = 0.017). We attribute this shortcoming to the inherent
insensitivity of the BP approach to image the low-frequency aspects
of the rupture process.

Difficult-to-predict parameters in the target vector slow down the
loss function’s convergence towards its minimum. Therefore, we
define a different target vector, where we remove the final slip value
and its heterogeneity and keep the following kinematic parameters:

d = [tr , Vr , Htr , HV r , xc, L H ] . (8)

In Fig. 9, we show the prediction versus the true values of the
reduced target vector in eq. (8). As expected, the performance on the
remaining parameters does not change significantly with a different

choice of target vector, however it does show a modest improvement
and increased training convergence rate.

5.2 Effect of input on CNN predictions

As complementary information, we test whether a different choice
of input parameter could affect the CNN results. In the previous
cases, the input of the CNN was a matrix containing the BP images
of the simulated rupture processes, obtained as the sum of the BP
images calculated at the three arrays AK, AU and EU. Here, we test
whether the combination of the three arrays or the employment of
only one array at a time in the CNN approach could help achieve
better results.

In Fig. 10, we present the comparison between the results of the
CNN approach applied to the sum of the BP images and to the single-
array BP image using the reduced target vector. It is instructive to
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Figure 9. Predictions of the CNN versus the true values of kinematic parameters of the reduced target vector for the testing data set. The input BP image is
obtained as the sum of the BP images calculated at the three arrays AK, AU and EU. Target data have been scaled to 0–1 via min–max normalization.

Figure 10. Regression score function (R2) for the CNN predictions of the
kinematic parameters in the reduced target vector when using the sum of the
three BP images (on the top) or the single-array BP image as input for the
network. The score represents the quality of the model indicating how close
the predictions are to the target parameters in a linear regression setting.

note that not all arrays perform the same. In particular, slightly bet-
ter predictions of the rise time and its heterogeneous value can be
found when using the BP image of the AK array. The comparison
also shows an improvement in the predictions of the length of the
heterogeneous segment when we use an input BP image calculated
at the EU array. On the contrary, when using the AK or the AU
array in isolation, the predictions of the reduced target vector do
not improve in comparison to the initial test where the input is the
sum of the three BP images. In these cases, the smearing or the
walking effect on BP images may hamper the accuracy of the CNN
predictions. In our case, the EU and AU array response functions
are quite focused along the space direction, whereas the AK array
shows higher smearing. The EU array shows the strongest walking
effect, because of its large backazimuth, whereas the HF emissions
on AK and AU BP images are not very tilted in time (see as an
example the Fig. 4). However, only the EU array allows the CNN
to return the best predictions of the length of the heterogeneous
segment, even better than the outputs obtained with the summed
BP image. On the contrary, both AK and AU arrays perform worse
than the summed BP image for the length of the heterogeneous

segment. Even though the smearing effect could encumber the abil-
ity of the network to extract information on the BP images, we
cannot attribute to it the shortcomings of the CNN on AK and
AU arrays.

We question, therefore, whether the different performances of the
CNN on individual arrays could be attributable to the backazimuth
of the array relative to the rupture. In the conventional BP analysis,
the delay-and-sum approach does not carry directivity effects in
the duration of the rupture, nor in the time separations between HF
pulses in the BP image. Hence, the time axis of the BP image is
not affected by the relative position between the rupture direction
and the array position. Nevertheless, different tilt angles for the
smeared HF radiations are seen in the BP images depending on
the backazimuth. Because of the array configuration and position
respect to the rupture direction, coherence among ground motion
signals can vary from one array to another, determining a different
pattern of HF peaks in the BP image among arrays at complementary
azimuths (e.g. Xu et al. 2009). As a further analysis, we investigate
whether the backazimuth and thus the different HF emission pattern
and tilt in the BP image, can favour or restrain the quality of the
CNN predictions. We focus the analysis on the EU array because of
its strong walking effect. We rotate the previously used line source
at nine different azimuths ranging from 0◦, being the azimuth of the
EU array reference station, to 320◦. For each azimuth, we generate
40 000 rupture scenarios and apply the CNN method on them. In
Fig. 11, we show the prediction of the CNN for the parameters in
eq. (6) and compare the quality of the CNN prediction obtained at
nine different azimuths. For each kinematic rupture parameter, we
highlight in orange the variability of R2 as a function of azimuth in
the corresponding regression score colour-bar. From this analysis,
we can note that the central position of the heterogeneous segment
is the best retrieved parameter for all azimuths, whereas the length
of the heterogeneous segment shows the widest range of regression
scores. But even this range is rather modest [0.35–0.50], suggesting
that azimuthal changes have a minimal effect on the quality of the
CNN predictions.
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Figure 11. Azimuthal dependence of CNN predictions for the kinematic parameters in the reduced target vector. The variability of the regression score is
represented with an orange interval. For this test the EU array is used and 0◦ is the backazimuth of the EU array with respect to the line fault strike.

6 D I S C U S S I O N A N D C O N C LU S I O N

The objective of this study was to investigate the link between BP
images and the kinematic parameters of the rupture, and, in par-
ticular, slip motion on the fault (velocity or acceleration). For this
purpose, we studied a large data set of synthetic line rupture pro-
cesses, characterized by a heterogeneous segment (in terms of final
slip, rise time or slip velocity) with variable length and position.
Synthetic traces, filtered between 0.5 and 4 Hz, are back projected
following the approach of Wang et al. (2016) and the HF peaks are
retrieved through deconvolution between the BP image and the ar-
ray response function (ARF) for the given frequency range. For the
particular horizontal line-source configuration chosen here, depth
phases strongly contaminate BP images, introducing, for each HF
peak, two ‘ghost’ peaks associated with pP and sP phases. Deconvo-
lution with an ARF that includes depth phases restores the original
number of peaks with accurate time resolution, but occasionally the
peak is shifted modestly in space. The role played by depth phases
is amplified by the simple horizontal line source geometry chosen
here, where all the fault points lay at the same depth. In a 1-D line
source, the locus of points on the fault from which radiation arrives
at the observation point at the same time, also called the isochrones
(Bernard & Madariaga 1984; Spudich & Frazer 1984), are in fact
just a single point. In this setting, the recording stations ‘see’ at a
given time the energy emitted from just a single point, where depth
phases emerge from the same depth. In a more realistic 2-D fault,
the isochrones on the fault plane are generally incoherent and lay at
different depths. In this case, the recording stations will ‘see’ at a
given time the energy emitted from different points along the fault,
and depth phases emerge from different depths. Moreover, the spa-
tial extension of the ARF introduces a further averaging scale which
should reduce the coherency of depth phases. The resolution of BP
becomes very poor at depth, hence improved BP techniques such
as the hybrid BP proposed by Yagi et al. (2012) could be useful in

mitigating the effect of depth phases on BP images of 2-D synthetic
fault models.

An important question is whether BP images are associated with
slip velocity or acceleration (Fukahata et al. 2014). Here we show
that filtering plays an important role, since the 0.5–4 Hz bandpass
filter, typically used in BP analyses (Xu et al. 2009) behaves like a
time derivative for the seismograms. Comparison between HF peaks
extracted from BP images with the slip rate and slip acceleration
function, shows that the beam power is more directly related to
the absolute value of the time derivative of the slip acceleration
function, when narrow-band filtering is used. In the case of our
simple line source models with ramp acceleration functions, the
deconvolved BP images (Figs 5 and 6) clearly highlight the abrupt
discontinuities in slip acceleration. This results in detecting two HF
peaks from each spatial point, during the onset and termination of
the rupture.

The ability of BP images to retrieve the rupture kinematic pa-
rameters was tested using a CNN approach on BP images. CNN
are data-driven predictive models, whose performance depends on
the specification of input and target parameters, and the richness
of the training data set. We found in our application that the CNN
is able to predict the rise time, the rupture velocity, the heteroge-
neous values in rise time and rupture velocity, the length, and the
central position of the heterogeneous segment. However, the CNN
fails at predicting the final slip. We attribute this shortcoming to
the inherent insensitivity of the BP approach to the low-frequency
aspects of the rupture process. Our study has focused on studying
the impact on BP images of HF radiation due to basic geometric and
kinematic rupture properties, however, future developments could
include training the CNN to infer other source characteristics that
are typically well resolved by the BP method, such as the source
length and orientation, or the earthquake moment.

As additional information, we also tested whether the information
coming from one single array could be thorough for the network
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or, on the contrary, if the combination of the information coming
from the three arrays could provide us with better predictions. We
tested whether the backazimuth of the array relative to the rupture
could influence the quality of the CNN predictions. Our analysis
shows no strong azimuthal dependence in the quality of the CNN
predictions depending on the relative position between the source
and the array. Thus, from a CNN perspective, stacking multiple
arrays may not always provide the best outcome, in contrast to this
being a relatively commonplace practice in teleseismic BP analysis.
It is worth noting that we trained our CNN on a simplistic case of a
line source, with the objective to assess the resolving power of BP in
a controlled test. Generalization of our CNN approach will require
training the CNN on more realistic 2-D source models, for example
using fractal slip distribution (Ruiz et al. 2011), dynamic modelling,
or real earthquakes. In the future, a promising approach would be
to train a CNN that also infers for, or allows, variable input fault
geometry, such that the same network could be applied to a wider
range of earthquake rupture scenarios. Additionally, rather than
predict the small set of descriptive kinematic parameters (eq. 8), the
CNN could directly predict the continuous slip rate function at each
spatial gridpoint. These additional complexities will enable possible
real time monitoring, whereby large earthquakes occur, and a CNN
is applied to rapidly estimate the continuous space–time kinematic
rupture history from the recorded data at teleseismic arrays.

Our study demonstrates the potential upsides of machine learn-
ing approaches in providing reasonably accurate predictions for the
other kinematic parameters of the rupture process. Although not
fully addressing the question of the generalizability of the CNN
method, our analysis does reveal new promise in processing BP im-
ages to obtain relevant information on the rupture process. Further
analysis on the waveform content of synthetic data, as well as a
careful analysis on the similarity between the BP images of real
data and synthetic data in a fixed frequency band, would enrich our
study, potentially making it a suitable approach for real data too,
as long as waveforms are carefully pre-processed. Future work will
address these complexities and more, and we hope to see kinematic
rupture histories imaged with deep learning methods in the future.
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A P P E N D I X

The procedure suggested by W2016 transforms the BP image con-
ventionally calculated in the time at the source into a BP image in
the apparent time of the reference station. In this new reference sys-
tem, the HF emissions no longer suffer from the ‘walking effect’,
however they are stretched or contracted along the time axis because
of the directivity effect. In Fig. A1, we show, by way of example,
the comparison between the BP image of a homogeneous rupture
process calculated at the EU array following the conventional ap-
proach of Ishii et al. (2005) and the BP image of the same rupture
process calculated using the W2016 reference station correction.
We note that, in the reference station system, the HF radiation is
stretched along the time axis. This happens because in this example
the EU array is located in the antidirective position with respect to
the direction of propagation of the rupture.
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Figure A1. HF emissions radiated by a homogeneous rupture process retrieved by BP analysis using the conventional approach (on the top) and the W2016
approach (at the bottom). Time is on the x-axis, the along-strike direction is on the y-axis. The square root of the beam power integrated in time (in blue) and
the maximum value of the slip-rate function (in green) are plotted in the left subplots. The square root of the beam power integrated in space (in blue), the
slip-rate function (in green) and the absolute values of the slip-acceleration function (in red) and its time derivative (in black) are plotted in the bottom subplots.
In the conventional BP analysis (BP image on the top), the HF emissions are tilted along the time axis. In the W2016 approach (BP image at the bottom), the
HF emissions are stretched in time because of the directivity effect.

Figure A2. Comparison of beam and smoothed beam signals when using the three different values of σ chosen in the study (from left- to right-hand panels:
σ = 0.2, σ = 0.3, σ = 0.4) to reduce BP artefacts.
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