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A B S T R A C T   

The rise of novel materials such as graphene compounds or carbon nanotubes recently revived the interest on the 
role of symmetries upon electrical properties. Among possible solids, symmetrical polytopes, widely realized in 
natural and artificial matter, deserve particular attention. When equal resistors are attached between neigh-
bouring nodes of Perfect (Platonic) solids (PS) along the edges, the two-point resistance between any pair of 
nodes was established in the 1990s by van Steenwijk using an elegant and efficient method. Using van Steen-
wijk’s method, Moddy and Aravind subsequently derived the resistance values for two Archimedean and two 
Catalan solids. Here, with the same method, we derive the exact expression for the two-point resistance between 
any two nodes for resistor networks made of equal resistors placed along the edges of the thirteen Archimedean 
solids (AS). While the calculation remains elementary for the simplest AS, a dedicated method using computer 
assistance was developed for the Snub Cube, the Snub Dodecahedron and the three AS with three different 
rotation symmetries (the Great Rhombicuboctahedron, the Small Rhombicosidodecahedron and the Great 
Rhombicosidodecahedron). The largest resistance value (191/90) is obtained between the two opposite nodes of 
the Truncated Dodecahedron, and the second largest (42815/21114) is obtained between the two opposite nodes 
of the Great Rhombicosidodecahedron. The smallest resistance value (14137/38016) is obtained between some 
of the neighbouring nodes of the Snub Cube, whereas the resistance between neighbouring nodes of the Icosa-
hedron (11/30) is slightly smaller. Some general symmetry relations between two-point resistances in AS net-
works are also derived, as well as some relations with two-point resistances in PS networks. The complete set of 
exact two-point resistance values for PS and AS networks can be used to check numerical codes or to evaluate the 
capacity of regular solids to provide appropriate models for given experimental situations.   

Introduction 

Resistor networks have raised the interest of physicists since the 
early days of electromagnetic theory, and the rules of current conser-
vation and electric potential closure along a loop were established by 
Kirchhoff by the middle of the 19th century [1]. Before the end of the 
19th century, Kennelly’s theorem (star-triangle or Y-Δ transform) [2], 
which allowed complex resistor networks to be approached elegantly, 
also provided the basic algorithm in computer codes for the calculation 
of resistance by node elimination. 

The interest in basic resistor network, however, was revived 
considerably at the end of the 20th century and the beginning of the 21st 
century with the development of novel conductive materials such as 
fullerenes [3,4], graphene [5,6] and carbon nanotubes [7]. During the 
same period, van Steenwijk proposed a simple method to obtain, in 

networks with extensive symmetries, all values of the resistance be-
tween two nodes (two-point resistances) from the calculation of a 
minimum number of basic current configurations; as an example of 
application, he gave exact expressions for all two-point resistance values 
in networks based on Platonic (Perfect) solids (PS), with all edges car-
rying equal resistors [8]. Using van Steenwijk’s method (VSM), the two- 
point resistance values were derived by Moody and Aravind for two 
Archimedean solids (AS), i.e. the Cuboctahedron and the Icosidodeca-
hedron, and two Catalan solids, i.e. the Rhombic Dodecahedron and the 
Rhombic Triacontahedron [9]. However, most of the research inspired 
by the development of material science [3–7] focused on two- 
dimensional and three-dimensional resistor networks [8–9]. New theo-
retical methods were developed, using Green functions [10–12] or 
Laplacian matrix, reformulated recently as a now widely used recursion- 
transform [13–15]. 
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Recently, the general consequences of basic symmetries of resistor 
networks received attention, and relations between various resistance 
values around grid corners [16] or nodes with rotation invariance [17] 
were derived using elementary methods, combining Kennelly’s theorem 
and VSM. Similarly, recurrence relations could be obtained for networks 
with threefold axial symmetry and repeated patterns along the axis [18], 
or as a function of the order of rotation in a network with an axis of 
symmetry [19]. 

AS, which already had raised the interest of Johannes Kepler in the 
17th century [20], deserve some further attention [21–24]. Fullerene 
compounds [3,25], which show some forms as an AS solid, first syn-
thetized in the laboratory, were subsequently found in space [4]. Fau-
jasite, a tectosilicate zeolite crystal discovered in minerals as early as the 
19th century, also has a basic AS cell [26]. Therefore, in this paper, we 
return to basic symmetrical AS compounds and provide exact expres-
sions for the two-point resistance between any two nodes for the com-
plete set of the thirteen AS networks. These networks are obtained when 
equal resistors are placed on all edges of the considered AS. First, we 
recall the basic properties of AS and we introduce the VSM, illustrated 
with the simple case of the Cuboctahedron [9]. For most AS, the VSM 
method can be handled without difficulty, and we illustrate two such 
examples: the Truncated Tetrahedron (TT) and the Truncated Cube 
(TC). For the AS with larger numbers of nodes, the calculations become 
heavy, and, rather, we apply the VSM method using computer assis-
tance, a process illustrated with the cases of the Snub Cube (SC) and the 
Snub Dodecahedron (SD). Exact expressions of all two-point resistances 
for all AS networks are given and discussed in details. Finally, we show 
how relations between two-point resistances in AS networks and re-
lations between selected two-point resistances in AS and PS networks 
can be derived from Kennelly’s transforms and corner theorems [16]. 

Archimedean networks and van Steenwijk’s method 

The PS are the five regular convex polyhedrons made of identical 
polygonal faces. They are defined (Table 1) by their number of nodes (or 
vertices) V, the number of edges E and the number of faces F, satisfying 
Euler’s relation V− E+F=2. The AS are the thirteen regular uniform 
polyhedrons composed of regular polygons having identical nodes [27]. 
Here, the Pseudorhombicuboctahedron, the prisms and antiprisms are 
not included among the AS [28]. Their parameters and their names, as 
used thereinafter, are given in Table 2, and they also satisfy Euler’s 
relation, like any polygonal covering of the sphere. 

AS networks (Figs. 1 and 2) are constructed by placing an identical 
resistor, taken as a unity resistor without loss of generality, on all edges. 
Here, the term AS network refers to spherical networks based on the AS 
solids, and does not include the Archimedean connectivity pattern 
referred to in two-dimensional networks [10]. The number of resistors is 

comparatively large for most of these networks. Only the TT and the CO 
(Fig. 1), with 18 and 24 resistors, respectively, have less resistors than 
the PS networks, which have a maximum of 30 resistors in the I and D 
networks. The largest number of resistors (180) is found in GRCD 
network (Fig. 2). The nodes are labelled from 0 to V− 1 according to the 
convention shown in Figs. 1 and 2. The equivalent resistance between 
nodes i and j (two-point resistance) is noted Rij or Ri,j when a confusion is 
possible with the digits of i and j. Since all nodes are equivalent in the 
considered networks, we only need to calculate R0i, with 0≤i≤V− 1. 

Following Moody and Aravind [9], to compute the resistances R0i, we 
use VSM [8]. In this method, to find the equivalent resistance between 
any pair of nodes, we first solve the current distribution for only a 
reduced number of configurations, one for each type of nodes. In our 
case, a single configuration is sufficient, as all nodes are equivalent. This 
configuration, referred to, in the following, as the base configuration, is 
obtained when a unity current is injected at node 0 and equal currents of 
1/(V− 1) value are recuperated at all of the V− 1 other nodes. To find the 
current distribution for injection from node 0 to node i, it is sufficient to 
subtract, from the base configuration, the same current configuration 
but rotated to represent injection at node i. Summing these two con-
figurations, the ingoing or outgoing current is zero at all nodes, except at 
the injection node 0 and at the extraction node i, where it is 1+1/(V− 1). 
The equivalent resistance is then the sum of the obtained potential dif-
ferences divided by the total current V/(V− 1). Since the nodes are here 
equivalent, the sum of the total potential drop is simply twice the total 
potential drop from 0 to i in the base configuration. Let us illustrate this 
process with the particularly simple case of the CO [9]. 

The base configuration for the CO network (Fig. 3) is obtained when 
a unity current is injected at node 0 and 1/11 is extracted from all other 
nodes (V=12). In the CO, there are two perpendicular planes of sym-
metry crossing at every node. Thus, the currents flowing in the four legs 
from node 0 are equal to 1/4. Also, because of the same planar sym-
metry, nodes 1 and 5, 6 and 10, 4 and 3, and 7 and 8 are equipotential. 
Current conservation alone is not sufficient to give the values of other 
currents, and one unknown current α from node 1 to node 2 is intro-
duced (Fig. 3), equal to the current from node 3 to node 2 by symmetry. 
Now, current conservation gives the current from node 1 to node 6, 
namely 1/4− α− 1/11, and from node 2 to node 6, namely α− 1/22. 
Incidentally, the current from node 6 to node 11 is now 1/44, and, 
summing the four legs going to node 11, we indeed get a total current 1/ 
11 flowing out of node 11. As all currents in loop 1-2-6 are now 
expressed, we get, from Kirchhoff’s law (total potential drop along a 
closed loop is zero), the constraint: 

α +

(

α −
1
22

)

−

(
1
4
− α −

1
11

)

= 0, (1)  

giving α=3/44, and we infer the equivalent resistances: 

Table 1 
Summary of two-point resistances in Platonic (Perfect or PS) networks with edges carrying equal unity resistors. The number of faces (F), edges (E) and nodes (V) are 
given. NR is the number of different values for the two-point resistance, Rmin the smallest value, Rmax the largest and Ra the average value. The two-point resistances are 
ordered according to the number of resistors between the considered nodes.  

PS network F E V NR Rmin Rmax Two-point resistances Ra 

Tetrahedron (T) 4 6 4 1  1
2 
= 0.5  

1
2 
= 0.5 

1
2 

0.5 

Octahedron (O) 8 12 6 2  5
12 

≅ 0.417  1
2 
= 0.5 

5
12

,
1
2 

0.433 ± 0.009 

Cube (C) 6 12 8 3  7
12 

≅ 0.583  
5
6 
≅ 0.833 7

12
,
3
4
, 
5
6 

0.690 ± 0.019 

Icosahedron (I) 20 30 12 3  11
30 

≅ 0.367  
1
2 
= 0.5 

11
30

, 
7
15

, 
1
2 

0.424 ± 0.007 

Dodecahedron (D) 12 30 20 5  19
30 

≅ 0.633  
7
6 
≅ 1.167 19

30
, 

9
10

, 
16
15

, 
17
15

, 
7
6 

0.961 ± 0.012  
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Table 2 
Summary of two-point resistances in Archimedean (AS) networks with edges carrying equal unity resistors. The number of faces (F), edges (E) and nodes (V) are given. 
NR is the number of different values for the two-point resistance, Rmin the smallest value, Rmax the largest and Ra the average value.  

AS network F E V NR Rmin Rmax Ra 

Truncated Tetrahedron (TT) 8 18 12 5  17
30 

≅ 0.566  
11
10 

≅ 1.1 0.912 ± 0.024 

Truncated Octahedron (TO) 14 36 24 12  625
1008 

≅ 0.620  
9
7 
≅ 1.286 1.055 ± 0.012 

Truncated Icosahedron (TI) 32 90 60 23  16273
25080 

≅ 0.649  
17
11 

≅ 1.545 1.296 ± 0.005 

Truncated Cube (TC) 14 36 24 11  7
12 

≅ 0.583  47
30 

≅ 1.567 1.254 ± 0.017 

Truncated Dodecahedron (TD) 32 90 60 23  89
150 

≅ 0.593  
191
90 

≅ 2.122 1.736 ± 0.009 

Small Rhombicuboctahedron (SRCO or RCO) 26 48 24 11  767
1680 

≅ 0.457  
57
70 

≅ 0.814 0.682 ± 0.007 

Cuboctahedron (CO) 14 24 12 4  11
24 

≅ 0.458  
2
3 
≅ 0.667 0.561 ± 0.010 

Icosidodecahedron (ID) 32 60 30 8  29
60 

≅ 0.483  
8
9 
≅ 0.889 0.745 ± 0.006 

Snub Cube (SC) 38 60 24 16  14137
38016 

≅ 0.372  
1937
3168 

≅ 0.611 0.518 ± 0.005 

Snub Dodecahedron (SD) 92 150 60 37  8984731
23905400 

≅ 0.376  
4614181
5976350 

≅ 0.772 0.656 ± 0.003 

Great Rhombicuboctahedron (GRCO) 26 72 48 33  63859
102960 

≅ 0.620  
1583
990 

≅ 1.599 1.322 ± 0.008 

Small Rhombicosidodecahedron (SRCD or RCD) 62 120 60 23  52543
114840 

≅ 0.457  
651
638 

≅ 1.020 0.863 ± 0.003 

Great Rhombicosidodecahedron (GRCD) 62 180 120 75  41543021
66878595 

≅ 0.621  
42815
21114 

≅ 2.028 1.705 ± 0.004  

Fig. 1. First set of Archimedean networks: Truncated Tetrahedron (TT), Truncated Octahedron (TO), Truncated Icosahedron (TI), Truncated Cube (TC), Truncated 
Dodecahedron (TD), Small Rhombicuboctahedron (SRCO or RCO) and Cuboctahedron (CO). The numbers indicate the node labelling. 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R01 = R03 = R04 = R05 =
11
12

2
1
4
=

11
24

R02 = R09 =
11
12

2
(

1
4
+ α

)

=
7
12

R06 = R07 = R08 = R010 =
11
12

2
(

1
4
+ 2α −

1
22

)

=
5
8

R011 = R09 =
11
12

2
(

1
4
+ 2α −

1
22

+
1
44

)

=
2
3

. (2) 

For the AS networks, the calculations can get heavier, but the prin-
ciple remains the same. First, we show two moderately complicated 
cases, where calculations remain feasible without considerable efforts. 

Two-point resistances in the simplest Archimedean networks 

The case of the TT network, which has 12 nodes like the CO network, 
remains relatively easy (Fig. 4). In this case, there is only one plane of 
symmetry at each node, which corresponds to a bisecting plane of the 
network carried by nodes 0 and 3. Thus, in the base configuration, nodes 
1 and 2, 6 and 7, 9 and 10 are equipotential. One unknown current α 

needs to be introduced from node 0 to node 1, equal by symmetry to the 
current from node 0 to node 2, and the current from node 0 to node 3 
consequently is 1–2α. From current conservation, the currents from 
node 3 to node 6, from node 6 to node 11 and from node 2 to node 5 
(Fig. 4) are 1/2− α− 1/22, 1/2− α− 3/22 and α− 1/11, respectively. To 
continue the determination of currents, we proceed using current con-
servation and introduce new unknowns only when current conservation 
is not sufficient. Here, therefore, we introduce an unknown current β 
from node 5 to node 10, which gives a current β− 1/11 from node 10 to 
node 11 (Fig. 4). Using the closed loop 5-10-11, the current from node 5 
to node 11 also follows, equal to 2β− 1/11. Current conservation at node 
5 imposes: 

α −
1
11

= β +

(

2β −
1
11

)

+
1
11

, (3)  

while the closed loop 0-2-5-11-6-3 gives: 

α+
(

α− 1
11

)

+

(

2β −
1
11

)

−

(
1
2
− α− 3

22

)

−

(
1
2
− α− 1

22

)

− (1− 2α)=0, (4)  

and we obtain: 

Fig. 2. Second set of Archimedean networks: Icosidodecahedron (ID), Snub Cube (SC), Snub Dodecahedron (SD), Great Rhombicuboctahedron (GRCO), Small 
Rhombicosidodecahedron (SRCD or RCD) and Great Rhombicosidodecahedron (GRCD). 
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⎧
⎨

⎩

α − 3β =
1
11

3α + β = 1
, (5)  

hence α=17/55 and β=4/55. Having solved the base configuration, we 
obtain the equivalent resistances: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R01 = R02 =
11
12

2α =
17
30

R03 =
11
12

2(1 − 2α) = 7
10

R04 = R05 =
11
12

2
(

2α −
1

11

)

=
29
30

R06 = R07 =
11
12

2
(

3
2
− 3α −

1
22

)

=
29
30

= R04 = R05

R08 = R011 =
11
12

2
(

2α −
1
11

+ 2β −
1

11

)

=
16
15

R010 = R09 =
11
12

2
(

2α −
1
11

+ β
)

=
11
10

. (6) 

The equality between R06 and R05, which emerged in Eqs. (6), results 
from the rotational symmetry of order 3 around a central axis of the TT 
passing through the centre of each triangular face (Fig. 4). Other 
equalities result from the central planar symmetries of the TT. 

The case of the TC network, while slightly more difficult, is handled 
in the same manner, but now V=24 (Table 2) and more variables need to 
be introduced (Fig. 5). In this case also, there is only one plane of 
symmetry at each node; it corresponds to a bisecting plane of the 
network. For example, in the base configuration, it corresponds to the 
plane containing nodes 0, 1, 22 and 23 (Fig. 5). In this case, nodes in the 
pairs 7-8, 2-9, 14-21 and 15-16 are equipotential. As above for the TT, 
one unknown current α is introduced from node 0 to node 1, giving two 
currents 1/2− α equal by symmetry from node 0 to node 7 and from node 
0 to node 8. From current conservation, the currents from node 1 to node 
2, from node 2 to node 3 and from node 7 to node 6 (Fig. 5) are α/2–1/ 
46, α/2–3/46 and 1/2– α/2–1/23, respectively. 

To be able to proceed, we introduce an unknown current β from node 
6 to node 5 and an unknown current γ from node 3 to node 4, which give 
a current 1/2− α/2− β− 2/23 from node 6 to node 11 and a current 
α/2− γ− 5/46 from node 3 to node 10 (Fig. 5). From closed loop 6-5-11, 
we obtain a current 1/2− α/2–2β− 2/23 from node 5 to node 11, which 
leads, using current conservation at node 5, to a current − 1/2+α/ 
2+3β+1/23 from node 5 to node 4 and, using current conservation at 
node 4, to a current − 1/2+α/2+3β+γ from node 4 to node 10 and, with 
current conservation at node 10, to a current − 1/2+α+3β− 7/46 from 
node 10 to node 14. Similarly, with current conservation at node 11, we 
obtain a current 1− α− 3β− 5/23 from node 11 to node 15. We then get a 
current − 1/2+α+3β− 9/46 from node 14 to node 22 and a current 
1− α− 3β− 6/23 from node 15 to node 23, leading to 2–2α− 6β− 13/23 
from node 23 to node 22. At node 22, we can check that current con-
servation gives: 
(

2 − 2α − 6β −
13
23

)

+ 2
(

−
1
2
+ α + 3β −

9
46

)

= 1 −
22
23

=
1
23

, (7)  

as required. 

After all the currents are thus expressed in the TC base configuration 
(Fig. 5), we write the three constraints that have not yet been used. The 
closed loop 3-4-10 gives: 

γ +
(

−
1
2
+

1
2

α + 3β + γ
)

−

(
1
2

α − γ −
5
46

)

= 0, (8)  

while the octagonal closed loops 0-1-2-3-4-5-6-7 and 4-10-14-22-23-15- 
11-5 give, respectively: 

α +

(
1
2

α −
1
46

)

+

(
1
2

α −
3
46

)

+ γ −
(

−
1
2
+

1
2

α + 3β +
1
23

)

−

β −

(
1
2
−

1
2

α −
1
23

)

−

(
1
2
−

1
2

α
)

= 0,
(9)  

and: 
(

−
1
2
+

1
2

α + 3β + γ
)

+

(

−
1
2
+ α + 3β −

7
46

)

+

(

−
1
2
+ α + 3β −

9
46

)

−

(

2 − 2α − 6β −
13
23

)

−

(

1 − α − 3β −
6

23

)

−

(

1 − α − 3β −
5
23

)

−

(
1
2
−

1
2

α − 2β −
2

23

)

+

(

−
1
2
+

1
2

α + 3β +
1
23

)

= 0.

(10) 

Hence we obtain the system: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

β + γ =
3
23

5α − 8β + 2γ =
27
23

15α + 52β + 2γ =
261
23

, (11)  

giving α=9/23, β=12/115 and γ=3/115. The two-point resistances in 
the TC follow: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R01 =
23
24

2α =
3
4

R07 = R08 =
23
24

2
(

1
2
−

1
2

α
)

=
7
12

R02 = R09 =
23
24

2
(

3
2

α −
1
46

)

=
13
12

R06 = R012 =
23
24

2
(

1 − α −
1
23

)

=
13
12

= R02 = R09

R05 = R018 =
23
24

2
(

1 − α + β −
1
23

)

=
77
60

R03 = R013 =
23
24

2
(

2α −
2
23

)

=
4
3

R04 = R019 =
23
24

2
(

2α + γ −
2
23

)

=
83
60

, (12)  

and: 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R010 = R020 =
23
24

2
(

5
2

α − γ −
9

46

)

=
29
20

R011 = R017 =
23
24

2
(

3
2
−

3
2

α − β −
3
23

)

=
13
10

R014 = R021 =
23
24

2
(

−
1
2
+

7
2

α + 3β − γ −
8
23

)

=
31
20

R015 = R016 =
23
24

2
(

5
2
−

5
2

α − 4β −
8

23

)

=
29
20

= R010 = R020

R022 =
23
24

2
(

− 1 +
9
2

α + 6β − γ −
25
46

)

=
47
30

R023 =
23
24

2
(

7
2
−

7
2

α − 7β −
14
23

)

=
91
60

. (13) 

The non-trivial equalities R06=R02 and R015=R010 in Eqs. (12–13) 
result from the four-fold rotational invariance of the TC around each axis 
passing through the centre of the octagonal faces. The other equalities 
result from the central planar symmetries. 

Other AS networks, i.e. TO, TI, TD, SRCO (Fig. 1) and ID (Fig. 2), can 
be treated in the same manner without much difficulty, even in the case 
of TD which is the not the most complicated in this category, but re-
quires 7 unknown variables. The obtained results for the two-point re-
sistances are given in Table 3. For the remaining AS networks, i.e. the 
chiral networks (SC and SD) and the three AS with three different types 
of faces (GRCO, SRCD and GRCD), however, the calculations become 
difficult to perform within a reasonable amount of time and computer 
assistance offers a more appropriate approach. 

Two-point resistances in the more complicated Archimedean 
networks 

The method is first illustrated with the Snub Cube (Fig. 6). The number of 
nodes in the SC is V=24 (Table 2); therefore, in van Steenwijk’s base 
configuration, a current of 1/23 is extracted from all nodes from 1 to V− 1. In 
the SC, each node has multiplicity 5 and, in the base configuration (Fig. 6), 
four unknown currents (α, β, γ and δ) need to be introduced from node 0. 

Then, as shown in the previous cases, the currents are expressed using 
Kirchhoff’s laws, and new variables are introduced when current conser-
vation of triangle loop closure is not sufficient. After three additional un-
knowns are introduced (ε, μ and ν), all currents can be expressed in terms of 
the unknowns. 

To obtain these expressions of all currents, however, computer 
assistance is used and coded in the form of a simple symbolic calcula-
tion. Each current is a natural integer array of dimension 9. The first 
component is the constant term, the second component is the term in 1/ 
23, and the seven other components are the coefficients of the seven 
unknown variables. In terms of these arrays, the application of Kirchh-
off’s laws is a simple operation. The fact that this decomposition is not 
strictly speaking a mathematical base of a vector space, as the constant 
term and the 1/23 are not linearly independent, is of no consequence 
here. In contrast, it helps to follow the calculation to keep these two 
terms separated, as it was done in Fig. 5 for the case of the TC. 

After all currents are expressed, the constraints are expressed in 
terms of the currents using the remaining closed loops, and the following 
linear system in terms of the seven unknowns is obtained: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

535α − 3860β+5573γ − 1268δ − 1618ε − 1006μ − 650υ=11+
1212
23

26α − 78β+172γ − 110ε+15μ − 15υ=13+
62
23

110α − 807β+1146γ − 272δ − 298ε − 220μ − 146υ=237
23

68α − 386β+214γ − 146δ+169ε − 217μ+19υ=− 32 −
104
23

266α − 1410β+1792γ − 402δ − 527ε − 321μ − 93υ=− 2+
290
23

− 220α+1352β − 1580γ+392δ+172ε+532μ+116υ=10 −
150
23

− 158α+1213β − 1320γ+408δ − 116ε+633μ+165υ=27 −
55
23

, (14)  

a system that is solved exactly with a linear solver (WIMS2.24 by Gang 
Xiao, available online at wims.univ-cotedazur.fr, last accessed August 
2019). 

We obtain α=15137/(23×3168), β=1193/(23×264), δ=γ=14137/ 
(23×3168), ε=2429/(23×1584), μ=− 37/(23×1584) and ν=163/ 
(23×264). From these values and the expressions of currents, we 
establish the expression of the two-resistances given in Table 4. The 
result δ=γ, which must be a consequence of the symmetries of the SC, 
was not obvious beforehand. 

The two-point resistances are found in the same manner for the GRCO, 
which requires also seven unknowns, and for the SRCD, which is simpler 
and requires only five unknowns (Table 5). The cases of the SD and GRCD 
are the most complicated, both requiring eleven unknowns, and the case 
of the SD network is therefore explained to illustrate this type of solution. 

The number of nodes in the SD is V=60; therefore, in van Steenwijk’s 
base configuration (Fig. 7), a current of 1/59 is extracted from all nodes 
from 1 to V− 1. In the SD, as in the case of the SC, each node has mul-
tiplicity 5 and, in the base configuration (Fig. 7), four unknown currents 
(α, β, γ and δ) need to be introduced from node 0. After seven additional 
unknowns are introduced (ε, μ, ν, η, ρ, ω and ξ), as shown in Fig. 7, all 
currents can be expressed in terms of the eleven unknowns using the 
same symbolic calculus as used for the SC. This time, each current is a 
13-component array, with the first component being the constant term, 
the second component the term in 1/59, and the eleven other compo-
nents the coefficients of the eleven unknown variables. 

In this case, using the obtained expressions of the currents, and 

Fig. 3. Base van Steenwijk’s current configuration in the Cuboctahedron (CO). 
One unknown current α is introduced. The currents are counted positive in the 
direction of the arrows. 
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writing the remaining constraints from the closed loops not already 
used, the following linear system is obtained in terms of the eleven 
unknowns:  

The system Eq. (15) still can be solved exactly with the same linear 
solver, and we obtain α=5964797/(59×4781008), β=γ=26954193/ 
(59×2390540), δ=6871376/(59×597635), ε=5580547/(59×11952 
70), μ=− 210391/(59×1195270), ν=0, η=2098867/(59×1195270), 
ρ=− 25677/(59×597635), ω=− 84789/(59×1195270) and χ=960683/ 
(59×1195270). From these values and the coded expressions of cur-
rents, we establish the expressions of the two-resistances given in 

Table 4. The results β=γ and ν=0, which must be consequences of the 
symmetries of the SD, as in the case of the SC above, were not obvious to 
anticipate. 

The case of the GRCD is handled in the same manner, which com-
pletes Table 5. The obtained results will now be summarized and dis-
cussed. All these exact results, expressed as rational fractions, have been 
checked using a standard numerical code based on node elimination by 
Kennelly’s theorem to better than fourteen significant digits (double 
precision). 

Results and discussion 

The exact expressions of all two-point resistances in AS networks are 
collected in Tables 3-5 and summarized in Table 2, where the number of 
different resistance values NR, the smallest value Rmin, the largest value 
Rmax and the average value Ra of all two-point resistances in the network 
are given. These parameters are also given in Table 1 for the PS net-
works. The two-point resistances are summarized graphically in Fig. 8. 
For a given network, the two-point resistance values are shown in 
increasing order as a function of their occurrence fraction, which is the 
rank of the given node pair divided by the total number of pairs V/ 
(V− 1)/2. For example, in the TT network (Table 3), the value 7/10 
appears 6 times among the 66 possible node pairs, hence in a fraction 1/ 
11≅ 9% of times, while the value 29/30 appears for 24 different node 
pairs, hence in a fraction 24/66≅ 36% of times. 

Resistance values can now be examined for the AS networks and 
compared with values in the PS networks. For the AS networks, the 
largest number of different resistance values (75) is obtained for the 

GRCD network, while the smallest number (4) is obtained for the CO 
network. The largest resistance value (191/90≅ 2.122) is obtained be-
tween the two opposite nodes of the TD network, and the second largest 
(42815/21114≅ 2.028) is obtained between the two opposite nodes of 
the GRCD network. The smallest value (14137/38016≅ 0.372) is ob-
tained between some of the neighbouring nodes of the SC network, but 
the resistance between neighbouring nodes of the PS I network (11/ 
30≅ 0.367) is smaller. In the TD network, 420 node pairs (out of 1770) 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 26958α + 18222β + 1444γ + 1255δ + 42954ε + 53414μ + 15572υ − 5182η − 6618ρ − 2240ω + 398χ = 1625 −
13220

59

33903α + 15423β + 15214γ + 13372δ + 50406ε − 33370μ − 52624υ + 125686η − 41400ρ − 398ω + 3332χ = 15228 +
48701

59

174003α + 77793β + 75076γ + 60538δ + 290748ε − 188272μ − 304234υ − 732292η − 264468ρ − 3332ω + 16778χ = 75077 −
290782

59

− 1332α + 3258β + 1018γ + 1207δ + 6894ε + 4628μ − 94υ − 5164η − 1893ρ − 209ω + 209χ = 1151 +
133
59

− 1968α − 3078β + 30γ + 690δ + 13854ε − 5730μ − 54594υ − 20892η + 19212ρ − 8334ω − 3870χ = − 588 +
9366
59

168771α + 70821β + 79782γ + 73170δ + 307266ε − 186054μ − 457560υ − 713577η − 13791ρ − 32046ω + 4926χ = 77855 +
277961

59

40338α − 7008β + 8274γ + 7566δ − 9966ε − 56490μ − 36810υ − 53274η − 10932ρ + 1254ω + 1254χ = 7524 +
31854

59

220518α − 85506β + 15958γ + 11329δ − 159288ε − 383485μ − 197668υ − 220246η − 52737ρ + 11707ω + 3059χ = 14545 +
180024

59

477132α − 45624β + 101558γ + 85532δ + 85920ε − 719405μ − 690260υ − 1032932η − 252600ρ − 7462ω + 12412χ = 97748 +
534909

59

112422α − 32145β + 13489γ + 9853δ − 66741ε − 174952μ − 61957υ − 118006η − 47520ρ + 11065ω + 5375χ = 12488 +
86251

59

247953α + 105615β + 101814γ + 79326δ + 391158ε − 276288μ − 387264υ − 1025451η − 403524ρ + 3954ω + 26130χ = 102437 +
412817

59

. (15)   

Fig. 4. Base van Steenwijk’s current configuration in the Truncated Tetrahe-
dron (TT). Two unknown current α and β are introduced. Currents are sym-
metric with respect to the bisecting plane carrying nodes 0 and 3. Currents 
given by symmetry through this plane are not drawn. 
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have a resistance larger than 2, with 7 different values (Fig. 8). In the 
GRCD, 600 node pairs (out of 7140) have a resistance larger than 2, 
with, similarly, 8 different values (Fig. 8). The smallest value in the TD 
network (89/150≅ 0.593) is also smaller than the smallest value 
(41543021/66878595≅ 0.621) in the GRCD network. 

When considering the average values Ra (Table 2), the largest are 
again found in the TD and GRCD networks, with values of 1.736 and 
1.705, respectively, but the smallest Ra value (0.518) is found in the SC 
network. By comparison, the average values in the PS networks 
(Table 1) vary from 0.433 (O) to 0.961 (D). When the dipole–dipole 
energy is calculated instead of the two-point resistance, the minimum 
interaction energy is found for the TI [29]. The symmetry of the solid, 
thus, has different effects depending on the considered physical 

property. 
The relative range (RR) of resistance values, defined as the ratio 

Rmax/Rmin, shows a large dispersion as a function of the number of re-
sistors (Fig. 9). While RR varies over a limited interval for PS networks 
(from 1 for the T network to ≅1.842 for the D network), it varies from 
≅1.455 for the CO network to ≅3.577 for the TD network. The next 
largest values of RR, namely ≅ 3.264, ≅2.686 and ≅2.578, are obtained 
for the GRCD, TC and GRCO networks, respectively. For similar numbers 
of resistors, from 60 to 90, the values of RR vary considerably (Fig. 9), 
from ≅0.518 for the SC network, to the maximum RR value (3.577) of 
the TD network. This fact emphasizes the large changes of two-point 
resistances produced by apparently minor changes in the connectivity 
pattern of a network. 

Table 3 
Complete two-point resistances in the first set, displayed in Fig. 1, of Archimedean (AS) networks with edges carrying equal unity resistors. The given values correspond 
to the resistance between node 0 and node i, with increasing i from 1 to V− 1 (see Table 2), with the convention for the numbering nodes shown in Figs. 1 and 2.  

AS Network Two-point resistance values 

Truncated Tetrahedron 17
30

, 
17
30

, 
7
10

, 
29
30

, 
29
30

, 
29
30

, 
29
30

, 
16
15

, 
11
10

, 
11
10

, 
16
15 

Truncated Octahedron 625
1008

, 
45
56

, 
625
1008

, 
109
112

, 
341
504

, 
109
112

, 
137
126

, 
19
16

, 
1153
1008

, 
1081
1008

, 
109
112

, 
109
112

, 
1081
1008

, 
1153
1008

, 
19
16

, 
629
504

, 
19
16

, 
137
126

, 
19
16

, 
1273
1008

, 
9
7

, 
1273
1008

, 
69
56 

Truncated Icosahedron 16273
25080

, 
11617
12540

, 
11617
12540

, 
16273
25080

, 
24749
25080

, 
8389
12540

, 
24749
25080

, 
2669
2280

, 
2669
2280

, 
1312
1045

, 
3733
3135

, 
13637
12540

, 
24749
25080

, 
24749
25080

, 
13637
12540

, 
3733
3135

, 
1312
1045

, 
32519
25080

,  

32519
25080

, 
34843
25080

, 
6881
5016

, 
32519
25080

, 
1312
1045

, 
2669
2280

, 
2669
2280

, 
1312
1045

, 
32519
25080

, 
6881
5016

, 
34843
25080

, 
36769
25080

, 
36769
25080

, 
1502
1045

, 
35369
25080

, 
6767
5016

, 
33133
25080

, 
33133
25080

,  

6767
5016

, 
35369
25080

, 
1502
1045

, 
18767
12540

, 
37859
25080

, 
37859
25080

, 
18767
12540

, 
4588
3135

, 
1502
1045

, 
35369
25080

, 
35369
25080

, 
1502
1045

, 
4588
3135

, 
37859
25080

, 
19219
12540

, 
37859
25080

, 
36769
25080

, 
36769
25080

,  

38503
25080

, 
19027
12540

, 
19027
12540

, 
38503
25080

, 
17
11 

Truncated Cube 3
4

, 
13
12

, 
4
3

, 
83
60

, 
77
60

, 
13
12

, 
7
12

, 
7
12

, 
13
12

, 
29
20

, 
13
10

, 
77
60

, 
4
3

, 
31
20

, 
29
20

, 
29
20

, 
13
10

, 
77
60

, 
83
60

, 
29
20

, 
31
20

, 
47
30

, 
91
60 

Truncated Dodecahedron 89
150

, 
173
150

, 
127
90

, 
731
450

, 
151
90

, 
731
450

, 
112
75

, 
173
150

, 
39
50

, 
89
150

, 
64
45

, 
394
225

, 
751
450

, 
173
150

, 
112
75

, 
173
150

, 
751
450

, 
863
450

, 
167
90

, 
863
450

, 
751
450

, 
731
450

, 
127
90

, 
64
45

, 
394
225

, 
9
5

, 
89
45

, 
448
225

,  

438
225

, 
863
450

, 
167
90

, 
151
90

, 
731
450

, 
751
450

, 
394
225

, 
438
225

, 
448
225

, 
92
45

, 
61
30

, 
438
225

, 
394
225

, 
9
5

, 
907
450

, 
467
225

, 
476
225

, 
61
30

, 
863
450

, 
438
225

, 
467
225

, 
476
225

, 
467
225

, 
92
45

, 
448
225

, 
89
45

, 
448
225

,  

907
450

, 
467
225

, 
473
225

, 
191
90 

Small Rhombicuboctahedron 843
1680

, 
51
80

, 
843
1680

, 
257
420

, 
767
1680

, 
767
1680

, 
257
420

, 
1133
1680

, 
1229
1680

, 
1229
1680

, 
1133
1680

, 
323
420

, 
1229
1680

, 
1133
1680

, 
1133
1680

, 
1229
1680

, 
323
420

, 
1343
1680

, 
1343
1680

, 
63
80

, 
421
560

, 
63
80

, 
57
70 

Cuboctahedron 11
24

, 
7
12

, 
11
24

, 
11
24

, 
11
24

, 
5
8

, 
5
8

, 
7
12

, 
5
8

, 
2
3 

Icosidodecahedron 29
60

, 
61
90

, 
61
90

, 
29
60

, 
29
60

, 
29
60

, 
127
180

, 
7
9

, 
127
180

, 
7
9

, 
127
180

, 
61
90

, 
61
90

, 
127
180

, 
7
9

, 
49
60

, 
38
45

, 
38
45

, 
49
60

, 
157
180

, 
49
60

, 
7
9

, 
49
60

, 
157
180

, 
157
180

, 
38
45

, 
38
45

, 
157
180

, 
8
9  

Fig. 5. Base van Steenwijk’s current configuration in the Truncated Cube (TC). Three unknown currents α, β and γ are introduced. Only currents above the plane 
carried by nodes 0, 1, 22 and 23, located towards the reader, are drawn. The currents below this plane are given by reflection in the plane. 
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Corner theorem in Archimedean networks 

Particular two-point resistances in AS networks are not related 
through the symmetries specific to the AS, but result from general the-
orems. This is the case of two-point resistances around a node with three 
legs (Fig. 10a), where one leg, from node 0 to node s, is in a plane of 
symmetry Π of the network, and the two other legs, from node 0 to nodes 
k and p, are symmetrical. One general theorem can be demonstrated (i.e. 
two + one legs corner theorem) [18], but, in the present case, the three 
legs are unity resistors and the simplified form can be used. This corner 
theorem states (Fig. 10a) that the base resistances Rsk=Rsp and Rkp are 
related to the leg resistances R0k=R0p and R0s by [16]: 
{

Rsk = Rsp = R0k + 2R0s − 1
Rkp = 4R0k − R0s − 1 . (16) 

In the AS (Fig. 1), nodes with multiplicity 3 carrying a plane of 
symmetry are found only in the truncated PS networks (TT, TO, TI, TC 
and TD). Nodes with multiplicity 3 in the GRCO and the GRCD networks 
(Fig. 2) do not carry any plane of symmetry. 

When applying the corner theorem Eq. (16) to the TO (Fig. 10b), 
following the node numbering convention of Fig. 1, we have s=5, p=1 
and k=3, and we get: 
⎧
⎪⎪⎨

⎪⎪⎩

Rsk = Rsp = R51 = R01 + 2R05 − 1 =
625
1008

+ 2
341
504

− 1 =
109
112

Rkp = R13 = 4R01 − R05 − 1 = 4
625
1008

−
341
504

− 1 =
45
56

, (17)  

using the expressions of Table 3 for R01 and R05. The results of Eq. (17) 
from the corner theorem indeed coincide with the expressions of Table 3 
for R51=R06 and R13=R02. 

Similarly, for the TI (Fig. 1), we have s=6, p=1 and k=4, and we get: 
⎧
⎪⎪⎨

⎪⎪⎩

Rsk = Rsp = R61 = R01 + 2R06 − 1 =
16273
25080

+ 2
8389
12540

− 1 =
24749
25080

Rkp = R14 = 4R01 − R06 − 1 = 4
16273
25080

−
8389
12540

− 1 =
11617
12540

,

(18)  

using the expressions of Table 3 for R01 and R06. The results of Eq. (18) 
from the corner theorem again coincide with the expressions of Table 3 
for R61=R07 and R14=R03. While it is not surprising that a general the-
orem is satisfied, it definitely provides a non-trivial check of the cor-
rectness of the obtained fractional expressions. 

In the case of the truncated AS networks with a triangular face (TT, 

TC and TD), there is the additional property that Rkp=R0k, and the corner 
theorem takes the form: 
⎧
⎪⎪⎨

⎪⎪⎩

Rsk = Rsp = R0k + 2R0s − 1 =
7R0s − 2

3

Rkp = R0k =
R0s + 1

3

. (19) 

Thus, in the case of the TD network (Fig. 10c), we have s=9, k=1 and 
p=10, which leads to: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Rsk = R19 =
7R09 − 2

3
=

1
3

(

7
39
50

− 2
)

=
173
150

Rkp = R1,10 =
R09 + 1

3
=

1
3

(
39
50

+ 1
)

=
89
150

, (20)  

using the result of Table 3 for R09. Again, we obtain from the corner 
theorem the results of Table 3 for R19=R02 and R1,10=R01. Similarly, for 
the TT, with the node numbering of Fig. 1, we have s=3, k=1 and p=2, 
and we obtain: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Rsk = R13 =
7R03 − 2

3
=

1
3

(

7
7
10

− 2
)

=
29
30

= R04

Rkp = R01 =
R03 + 1

3
=

1
3

(
7

10
+ 1

)

=
17
30

, (21)  

and for the TC, we have s=1, k=7 and p=8 (Fig. 1), and we obtain: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Rsk = R17 =
7R01 − 2

3
=

1
3

(

7
3
4
− 2

)

=
13
12

= R02

Rkp = R78 =
R01 + 1

3
=

1
3

(
3
4
+ 1

)

=
7

12

. (22)  

Relations between some two-point resistances in Archimedean 
and Platonic networks 

Selected two-point resistances in AS networks can be related to re-
sistances in PS networks. To establish a first set of relations, first, we 
prove a useful lemma. Consider one resistor a linking two nodes A and B 
in any resistor network (Fig. 11a), with an equivalent resistance RAB. We 
are interested to express the resistance Rx between any two nodes be-
tween A and B along resistor a linked by a fraction x of a, hence the 
resistance between node A and a node X linked by the fraction x of the 
total resistor a (Fig. 11a). Let r be the equivalent resistance between A 
and B except for resistor a (Fig. 11b). We have RAB=ar/(a+r), hence 
r=aRAB/(a− RAB). The resistance Rx corresponds to a resistor ax in par-
allel with a(1− x) in series with r (Fig. 11b), giving: 

Rx = ax
a(1 − x) + r

a + r
= ax(1 − x) + x2RAB. (23) 

Now consider an AS network with triangles of resistors, such as the 
TT network (Fig. 11c). The triangle of resistors, a Δ configuration, can be 
replaced, using Kennelly’s theorem (triangle-star or Δ-Y equivalence), 
by a Y configuration, namely adding a central node with three radial 
resistors from this central node, each having in this case a resistance of 
1/3 [18]. After the addition of nodes (Fig. 11d), the TT network becomes 
a T network with equal resistors of value a=1/3+1+1/3=5/3. In the T 
network with edge unity, we have RT=1/2 (Table 1). The resistance R03 
in the TT network can be interpreted, using the lemma Eq. (23), as the 
resistance corresponding to a fraction x=3/5 of the closest neighbour 
resistance in the corresponding T network, which has RAB=RT×a=1/ 
2×a, hence: 

R03 = Rx =
5
3

3
5

(

1 −
3
5

)

+

(
3
5

)2

RT
3
5
=

2 + 3RT

5
=

7
10

, (24)  

in agreement with the result in Table 3. 

Fig. 6. Base van Steenwijk’s current configuration in the Snub Cube (SC). 
Seven unknown currents α, β, γ, δ, ε, μ and ν are introduced. Equal currents of 
1/23 are extracted from each node from 1 to 23 (not shown). 
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Table 5 
Complete two-point resistances in the Archimedean (AS) networks with three types of faces (Fig. 2) with edges carrying equal unity resistors. The given values 
correspond to the resistance between node 0 and node i, with increasing i from 1 to V− 1 (see Table 2), with the convention for the numbering of nodes shown in Fig. 2.  

Network Two-point resistance values 

GRCO  
5059
7920

, 
36241
34320

, 
11729
9360

, 
3039
2288

, 
130927
102960

, 
36241
34320

, 
18001
25740

, 
2641
2640

, 
63859
102960

, 
1756
2145

, 
127093
102960

, 
45763
34320

, 
11233
7920

, 
3667
2640

, 
29737
25740

, 
22751
20592

, 
2641
2640

, 
29737
25740

, 
1323
1040

, 
30293
20592

, 
51343
34320

, 

147793
102960

, 
978
715

, 
30293
20592

, 
1323
1040

, 
127093
102960

, 
45763
34320

, 
3565
2574

, 
17643
11440

, 
1121
720

, 
12937
8580

, 
51343
34320

, 
147793
102960

, 
3667
2640

, 
11233
7920

, 
12937
8580

, 
1121
720

, 
54601
34320

, 
1843
1170

, 
279
176

, 
158539
102960

, 
51361
34320

, 
151627
102960

, 

3411
2640

, 
158539
102960

, 
13549
8580

, 
1583
990 

SRCD  
60383
114840

, 
83903
114840

, 
83903
114840

, 
60383
114840

, 
18137
28710

, 
52543
114840

, 
52543
114840

, 
18137
28710

, 
81253
114840

, 
18437
22968

, 
31771
114840

, 
31771
114840

, 
18437
22968

, 
81253
114840

, 
24017
28710

, 
18437
22968

, 
81253
114840

, 
81253
114840

, 
18437
22968

, 

24017
28710

, 
104443
114840

, 
35341
38280

, 
35341
38280

, 
104443
114840

, 
35341
38280

, 
31771
114840

, 
31771
114840

, 
35341
38280

, 
22159
22968

, 
36571
38280

, 
33661
38280

, 
635
792

, 
33661
38280

, 
36571
38280

, 
113653
114840

, 
113653
114840

, 
22181
22968

, 
13606
14355

, 
103003
114840

, 

33661
38280

, 
33661
38280

, 
103003
114840

, 
13606
14355

, 
22181
22968

, 
14401
14355

, 
116623
114840

, 
116623
114840

, 
14401
14355

, 
113653
114840

, 
22181
22968

, 
36571
38280

, 
36571
38280

, 
22181
22968

, 
113653
114840

, 
115823
114840

, 
113423
114840

, 
113423
114840

, 
115823
114840

, 
651
638 

GRCD  
8687557
13375719

, 
49184957
44585730

, 
90492779
66878595

, 
2251558
1486191

, 
104481812
66878595

, 
2251558
1486191

, 
92387543
66878595

, 
49184957
44585730

, 
190646963
267514380

, 
45395429
44585730

, 
41543021
66878595

, 
14779007
17834292

, 
345148397
267514380

, 
18145933
12738780

, 

431484383
267514380

,  

146254097
89171460

, 
423905327
267514380

, 
134600587
89171460

, 
160336759
133757190

, 
4431451
3934035

, 
45395429
44585730

, 
160336759
133757190

, 
244867
184620

, 
431615693
267514380

, 
3303347
1981588

, 
462416669
267514380

, 
21817867
12738780

, 
59070173
38216340

, 
2889479
1981588

, 

244867
184620

,  

345148397
267514380

, 
18145933
12738780

, 
394156361
267514380

, 
38614339
22292865

, 
235148443
133757190

, 
40487828
22292865

, 
17276609
9554085

, 
73688939
44585730

, 
431615693
267514380

, 
21817867
12738780

, 
59070173
38216340

, 
134600587
89171460

, 
423905327
267514380

, 

73688939
44585730

, 
17276609
9554085

,  

41425681
22292865

, 
253470757
133757190

, 
8379124
4458573

, 
4146395
2326212

, 
4507462
2476985

, 
238017343
133757190

, 
2133583
1311345

, 
43031393
26751438

, 
37285877
22292865

, 
228744541
133757190

, 
165850193
89171460

, 
101077363
53502876

, 
171858391
89171460

, 
513097181
267514380

, 

253470757
133757190

,  

41425681
22292865

, 
462416669
267514380

, 
3303347
1981588

, 
431484383
267514380

, 
146254097
89171460

, 
235148443
133757190

, 
40487828
22292865

, 
255591121
133757190

, 
8582281
4458573

, 
522228251
267514380

, 
172170119
89171460

, 
125772251
66878595

, 
11396771
6369390

, 

228744541
133757190

, 
37285877
22292865

,  

45643859
26751438

, 
1876253
1049076

, 
71294471
38216340

, 
24621101
12738780

, 
75728819
38216340

, 
177238049
89171460

, 
75004829
38216340

, 
173631457
89171460

, 
246541609
133757190

, 
4507462
2476985

, 
238017343
133757190

, 
11396771
6369390

, 
125772251
66878595

, 

169773601
89171460

, 
266677
136836

,  

89514893
44585730

, 
134588464
66878595

, 
44436509
22292865

, 
75728819
38216340

, 
169773601
89171460

, 
101077363
53502876

, 
165850193
89171460

, 
71294471
38216340

, 
24621101
12738780

, 
44436509
22292865

, 
134588464
66878595

, 
90299929
44585730

, 
108024043
53502876

, 

177238049
89171460

, 
75004829
38216340

,  

171858391
89171460

, 
513097181
267514380

, 
172170119
89171460

, 
522228251
267514380

, 
88112117
44585730

, 
133887083
66878595

, 
180091871
89171460

, 
42815
21114

, 
18028813
8917146

, 
133887083
66878595

, 
88267981
44585730

, 
52378295
26751438

, 
86951203
44585730

, 
52378295
26751438  

Table 4 
Complete two-point resistances in the chiral Archimedean (AS) networks (Fig. 2) with edges carrying equal unity resistors. The given values correspond to the 
resistance between node 0 and node i, with increasing i from 1 to V− 1 (see Table 2), with the convention in the numbering of nodes shown in Fig. 2.  

AS Network Two-point resistance values 

Snub Cube  
15137
38016

, 
1733
3456

, 
15137
38016

, 
14137
38016

, 
20069
38016

, 
20143
38016

, 
1193
3168

, 
14137
38016

, 
401
792

, 
21661
38016

, 
18995
38016

, 
20143
38016

, 
20069
38016

, 
18995
38016

, 
21661
38016

,  

613
1056

, 
23171
38016

, 
22691
38016

, 
613
1056

, 
1937
3168

, 
2009
3456

, 
21803
38016

, 
2093
3456 

Snub Dodecahedron  
5964797
14343240

, 
803629
1406200

, 
803629
1406200

, 
5964797
14343240

, 
8984731
23905400

, 
3435688
8964525

, 
13627457
23905400

, 
45182813
71716200

, 
40564297
71716200

, 
4778227
8964525

,   

8984731
23905400

, 
37376431
71716200

, 
45660607
71719200

, 
15326227
23905400

, 
1892391
2988175

, 
37376431
71716200

, 
13627457
23905400

, 
48175213
71716200

, 
49914079
71716200

, 
16952199
23905400

,   

15326227
23905400

, 
40564297
71716200

, 
1892391
2988175

, 
16895673
23905400

, 
10521677
14343240

, 
16895673
23905400

, 
45660607
71719200

, 
45182813
71716200

, 
49914079
71716200

, 
51341449
71716200

,   

17517793
23905400

, 
49240567
71716200

, 
1774333
2868648

, 
46559183
71716200

, 
4163693
5976350

, 
17752967
23905400

, 
17586429
23905400

, 
16319497
23905400

, 
46559183
71716200

, 
16319497
23905400

,   

52281493
71716200

, 
3190471
4218600

, 
25868
35155

, 
49240567
71716200

, 
51341449
71716200

, 
17752967
23905400

, 
3668607
4781080

, 
2726909
3585810

, 
52281493
71716200

, 
17517793
23905400

,   

17586429
23905400

, 
2726909
3585810

, 
2213989
2868648

, 
3190471
4218600

, 
18008827
23905400

, 
10697273
14343240

, 
54360689
71716200

, 
4614181
5976350

, 
18394207
23905400  
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The same reasoning can be applied to the resistance RTX between 
triangles of any truncated AS network with triangles (TT, TC and TD) 
and related to the closest neighbour resistance RX in the corresponding 
PS network, giving: 

RTX =
2 + 3RX

5
. (25) 

Applying Eq. (25) to the TC (Fig. 1), we obtain, using RC from 
Table 1: 

RTC = R01 =
2 + 3RC

5
=

1
5

(

2 + 3
7
12

)

=
3
4
, (26)  

and for the TD: 

RTD = R09 =
2 + 3RD

5
=

1
5

(

2 + 3
19
30

)

=
39
50

, (27)  

in agreement with the values in Table 3. 
Finally, the Δ-Y transform can be applied to the triangles in the ID 

network (Fig. 11e). The obtained network becomes a D network with 
resistance 2/3. However, in this case, the referenced nodes are located in 
the middle of the resistors of the D network (Fig. 11f). Thus, we can state 
that the two-point resistances between the middle points of a D network 
with unity resistors (Fig. 11f) are the two-point resistances of the ID 
network with resistor 3/2. 

Similarly, the two-point resistances between the middle points of the 
I network with unity resistors are the two-point resistances of the ID 
network with resistor 3/2, and the two-point resistances of the middle 
points of the C network are the two-point resistances of the CO network 
with resistor 3/2. As for the two-point resistances between the middle 
points of the T network, they are the two-point resistances of the O 
network with resistor 3/2. Thus, AS and PS networks are related and 
some AS networks emerge as the solution of particular problems con-
cerning the PS networks. 

Conclusions 

In this paper, using VSM, we have established exact expressions for 
all two-point resistances in the complete set of the thirteen AS networks. 
These expressions are useful to check the accuracy of particular nu-
merical or theoretical models based on other methods, such as Laplacian 
matrix [15] or Green functions [10–12]. The obtained values of the two- 
point resistances in AS networks cover a large range of values and they 
are widely different for the various AS networks, even for similar 
numbers of resistors in the network. For example, the maximum resis-
tance in the TD network is 37% larger than the maximum resistance in 
the TI network, while both networks have 90 resistors. 

These two-point resistances in AS networks, where consequences of 
symmetries can also be illustrated, provide a useful base knowledge 
when evaluating the capacity of AS networks to represent experimental 
situations. This is particularly true for current solid-state physics 
research when approaching novel compounds. New materials, for 
example fullerene [3–4] or faujacite mineral assemblies in zeolites 
[21–23], are found in nature or are completely artificial, such as syn-
thetic graphene and other carbon nanocomposites [5–7]. In general, the 
properties of three-dimensional networks, which can be investigated 
using numerical codes, benefit greatly from theoretical approaches 
where the various symmetries of the considered networks are considered 
from the beginning. When elaborating a model to account for experi-
mental data, it is also important to be aware of existing relations be-
tween two-point resistances in a given network or between different 
networks. 

Fig. 9. Relative range Rmax/Rmin as a function of the number of resistors in PS 
and AS networks. 

Fig. 7. Base van Steenwijk’s current configuration in the Snub Dodecahedron 
(SD). Eleven unknown currents α, β, γ, δ, ε, μ, ν, η, ρ, ω and χ are introduced. 
Equal currents of 1/59 are extracted from each node from 1 to 59 (not shown). 

Fig. 8. Summary of two-point resistances between nodes of Perfect Solid (PS) 
and Archimedean Solid (AS) networks (Tables 3 to 5). For each network, as 
labelled using the conventions of Tables 1 and 2, the values of two-point re-
sistances are arranged in increasing order, and presented as a function of their 
occurrence fraction, defined as the rank, with identical values repeated, divided 
by the total number of pairs in this network (see text). 
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Fig. 10. a) Node configuration for the two + one legs corner theorem [18]. b) Application of the two + one legs corner theorem in the TO network. c) Application of 
the two + one legs corner theorem in the TD network. 

Fig. 11. a) Resistance along a fraction × of a resistor a in any network; b) Equivalent diagram to calculate the resistance across a fraction × of resistor a; c) 
Application of Kennelly’s Δ to Y transform to the triangles of the TT network; d) Result of the application of Kennelly’s Δ to Y transform to the triangles of the TT 
network; e) Application of Kennelly’s Δ to Y transform to the triangles of the ID network. For clarity, the transform is illustrated only with selected triangles. f) ID 
network of the middle points in the D network. 
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Resistor networks still remain fascinating objects of investigations, 
and even complex three-dimensional networks can be analysed using 
fundamental theorems or elementary general methods. Establishing 
two-point resistances reveals properties that can be translated to 
numerous other applications of the considered network. AS networks, in 
particular, offer numerous possibilities, as generic three-dimensional 
symmetrical networks, for example to develop novel decision pro-
cesses based on neural networks [30]. Indeed, the particular connec-
tivity pattern of AS networks can provide interesting topological 
structures for decision algorithms. In general, AS networks open per-
spectives in network design and expand further the capacity of networks 
to represent adequate and efficient models of complexity in all fields of 
science [31,32]. 
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