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1. Introduction
The Neoproterozoic glaciations were geologically profound events in that they not only changed the chemical 
and redox conditions of the ancient oceans, but they were also followed by a rapid postglacial diversification of 
complex eukaryotes eventually culminating in the Cambrian “explosion” of animal life (Erwin et al., 2011; Hoff-
man et al., 2017). Two Neoproterozoic glaciations have been reported in the Cryogenian Period (ca. 717–635 Ma 
[Nelson et  al., 2020]): the earlier Sturtian and the later Marinoan glaciations (Condon et  al.,  2005; Hoffman 
et al., 1998; Zhou et al., 2019). Cryogenian glaciogenic diamictites often interrupt carbonate sequences (Hoffman 
et al., 1998; Zhou et al., 2019) and occur at low paleolatitudes, providing a lithologic and paleomagnetic basis for 
the snowball Earth hypothesis (Kirschvink, 1992). Such Cryogenian occurrences are now known worldwide and 
have been established as synchronous (Nelson et al., 2020; Zhou et al., 2019).

The snowball Earth hypothesis assumes that a runaway ice-albedo feedback induced Earth's surface temperatures 
to plummet and prompted polar ice sheets to quickly conceal the tropical oceans (Hoffman & Schrag, 2002). 
During a snowball, however, tectonics and magmatic outgassing would have continued and eventually accumu-
lated a large amount of atmospheric CO2, creating an intense greenhouse condition to counteract the ice-albedo 
effect (Kirschvink, 1992; Tamburello et al., 2018). A series of model simulations and geochemical proxy calcu-
lations suggest that despite CO2 sinks by means of seafloor weathering, a threshold CO2 level can still be reached 
for CO2 radiative forcing to have initiated deglaciation (H. Bao et al., 2009; Le Hir, Ramstein, et al., 2008; Pierre-
humbert et al., 2011). Once started, deglaciation would drive ice lines to rapidly retreat and end up in the ice-free 

Abstract The Cryogenian Period (717–635 Ma) experienced two low-latitude “snowball Earth” glaciations, 
the Sturtian and the Marinoan of contrasting 57 and <16 Myr durations, respectively. A lack of reliable 
age controls on extensional tectonics and associated magmatic rocks during the Marinoan has hampered an 
understanding of the deglaciation. Furthermore, although deglaciation is generally assumed to have occurred 
once ongoing magmatism accumulated enough atmospheric CO2, as suggested by cap carbonates, specific 
geologic evidence linking volcanic events with deglaciation are lacking. Here, we present high-precision zircon 
geochronology with chemical abrasion-isotope-dilution isotope ratio mass spectrometry that indicates an 
extensive and thick sequence of rift-related magmatic rocks in South Qinling, Central China, erupted 2–6 Myr 
before the termination of the Marinoan. Climate modeling proposes a scenario explaining why the Marinoan 
was the shorter snowball and how volcanism may have driven the deglaciation.

Plain Language Summary Volcanic CO2 and dust emissions have been regarded as the major 
driver for Marinoan deglaciation. Most of CO2 outgassing is associated with seafloor spreading and subduction 
(arc magmatism), which are ongoing processes on geological timescales. To drastically increase CO2 emissions, 
there must have been many active rift zones during Marinoan glaciation. We provide age constraints on a 
previously little-known major Marinoan rift-related volcanic suite in South Qinling, which reveals volcanic 
activity lasting 4 Myr and ending 2 Myr before the termination of the Marinoan snowball Earth. Climate 
modeling provides constraints for the ice-age duration deduced from the geological setting.
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state, where such fast glacial retreat and rapidly warming surface temperatures allowed for the precipitation of the 
diagnostic “cap” carbonates sitting on top of Cryogenian glacial deposits in <1 Myr (Zhou et al., 2019). Insofar 
as the magmatism-related outgassing mechanism for deglaciation is generally accepted, it remains elusive to 
explain why the Sturtian and Marinoan glaciations have such different durations. The former has a duration of 
57 Myr (716–659 Ma), whereas the latter has a duration of <16 Myr (<651–635 Ma; Nelson et al., 2020; Zhou 
et al., 2019). Given the potential for dirty snow and the accumulation of dust on ice (de Vrese et al., 2021; Pierre-
humbert, 2005), the snowball termination could have resulted from a combination of decreasing surface albedo 
and build-up of CO2, both related to massive volcanic events.

While the final stage of the Marinoan deglaciation is well-constrained at ca. 635  Ma based on radiometric 
dates from volcanic ash layers bracketing postglacial cap carbonates, this age alone is not adequate to quantify 
the amount of time it took to accumulate abnormally high atmospheric CO2 concentrations, which likely took 
several million years (Hoffman et al., 1998, 2017). Geological and geochronological evidence has increasingly 
demonstrated the occurrence of ca. 650–635  Ma rift-related magmatism in the South Qinling terrane of the 
South China Craton, as well as in the Tarim, Siberia, and Congo cratons (Deng et al., 2016; Prave et al., 2016; 
Vernikovsky et al., 1999; M. X. Wang, Wang, & Zhao, 2013; Xue et al., 2011; Yarmolyuk et al., 2005; Zhu 
et al., 2008, 2014, 2015). However, with the exception of one study (Prave et al., 2016), most of these radiometric 
dates are imprecise. Nonetheless, the ages are within analytical uncertainty of each other, with the oldest ages 
centering around 640 Ma, and possibly suggest an initial period of pronounced magmatism during the Marinoan 
glaciation.

In this work, we document ca. 640 Ma rift-related magmatic rocks from South Qinling, Central China, occurring 
stratigraphically below the cap carbonates. This critical discovery provides a direct link between evidence of 
rift-related magmatism and the termination of the Marinoan glaciation. The consequences of the South Qinling 
rift system are explored using climate modeling with the purpose to quantify the foreshortening of the Marinoan 
glaciation compared to its Sturtian counterpart.

2. Geological Setting and Sampling
The South China Craton are formed by the merging of the Yangtze and Cathaysia blocks (Figure S1 in Supporting 
Information S1; Li et al., 2002). Subsequent rifting is recorded in the Nanhua basin containing well-preserved 
Neoproterozoic (850–541 Ma) volcano-sedimentary strata (J. Wang & Li, 2003). The suite of interbedded sedi-
mentary and volcanic rocks are well exposed in the Hunan-Guizhou-Guangxi regions and hosts information 
related to the evolution of supercontinent Rodinia and the snowball Earth glaciations (Lan et al., 2014, 2015). 
The slope-basinal facies are well exposed with a maximum thickness in the southeast of the South China Craton 
and the platform facies to the northwest are poorly exposed (Zhou et al., 2019). In the northern margin of the 
Yangtze block, Cryogenian successions are incomplete, where the Nantuo Formation is unconformably underlain 
by the Liantuo Formation. The Liantuo Formation is Tonian (ca. 780–720 Ma) and correlates with the middle-late 
Tonian successions in the Hunan-Guizhou-Guangxi area (Lan, Li, Zhang, & Li, 2015; Lan, Li, Zhu, et al., 2015), 
whereas the Nantuo Formation ranges from ca. 650–635 Ma and thus correlates with the Marinoan glaciation (X. 
Bao et al., 2018; Condon et al., 2005; Zhou et al., 2019).

The South Qinling terrane was originally connected to the northern Yangtze block during the Neoproterozoic 
(Figure S1 in Supporting Information S1; Dong et al., 2016; R. Zhang et al., 2016). Volcanic and volcanoclastic 
rocks of more than 2 km in thickness are a typical lithological assemblage within the South Qinling terrane that 
are represented by the Wudang and Yaolinghe groups and are overlain by the Ediacaran Doushantuo Forma-
tion. Such abundant volcanism occurred in a continental rift basin associated with the subsequent separation of 
South Qinling from the Yangtze block (Ling et al., 2010; Zhu et al., 2008, 2014). Recent zircon U-Pb geochro-
nology constrains the depositional ages of the Wudang and Yaolinghe groups in the range of 780–720 Ma and 
ca. 650–636 Ma, respectively (Cai et  al.,  2007; Deng et  al.,  2016; Ling et  al.,  2008; M. X. Wang, Wang, & 
Zhao, 2013; Zhu et al., 2014, 2015). Synchronous, cogenetic mafic-ultramafic intrusions in the Wudang-Suizhou-
Zaoyang areas represent the exposed plumbing system of the alkali volcanism in the Wudang area (L. J. Wang, 
Griffin, et al., 2013; M. Wang, Wang, & Sun, 2013; M. X. Wang, Wang, & Zhao, 2013; Wang et al., 2016; Xue 
et al., 2011; Zhu et al., 2015). On the basis of these age constraints, the Wudang and Yaolinghe groups are coeval 
with the Liantuo and Nantuo formations, respectively (Figure 1). Both the Yaolinghe Group and the Nantuo 

Methodology: Magdalena H. Huyskens, 
Guillaume Le Hir, Qing-Zhu Yin
Project Administration: Zhongwu Lan, 
Qing-Zhu Yin, Xian-Hua Li
Resources: Gangyang Zhang
Software: Magdalena H. Huyskens, 
Guillaume Le Hir, Qing-Zhu Yin
Supervision: Zhongwu Lan, Qing-Zhu 
Yin, Xian-Hua Li
Validation: Zhongwu Lan, Magdalena 
H. Huyskens, Guillaume Le Hir, Ross N. 
Mitchell, Xian-Hua Li
Visualization: Zhongwu Lan, Magdalena 
H. Huyskens, Guillaume Le Hir, Ross N. 
Mitchell
Writing – original draft: Zhongwu Lan, 
Magdalena H. Huyskens, Guillaume Le 
Hir, Ross N. Mitchell, Qing-Zhu Yin, 
Gangyang Zhang
Writing – review & editing: Zhongwu 
Lan, Magdalena H. Huyskens, Guillaume 
Le Hir, Ross N. Mitchell, Qing-Zhu Yin, 
Gangyang Zhang



Geophysical Research Letters

LAN ET AL.

10.1029/2021GL097156

3 of 11

Formation underlie the Doushantuo Formation (L. J. Wang, Griffin, et al., 2013; M. Wang, Wang, & Sun, 2013; 
M. X. Wang, Wang, & Zhao, 2013), suggesting the synchronous deposition of the Neoproterozoic successions 
within the South Qinling terrane and the northern margin of the Yangtze block. In this study, a total of 22 volcanic 
rocks/tuffs were collected from the Yaolinghe Group for geochronological and geochemical studies. Details about 
the field outcrops and petrography of the samples are provided in the Supporting Information.

3. Results
Zircon CA-ID-IRMS U-Pb dating was conducted using a Triton Plus TIMS and a Neptune Plus. Whole-rock 
major and trace element geochemical analyses were conducted using an X-ray fluorescence spectrometer 
(ME-XRF26d) and an Agilent 7500a ICP-MS. Whole rock Nd isotopic analysis was conducted using a Triton 
Plus multi-collector TIMS. Climate modeling was conducted using a climate-geochemical model (GEOCLIM; 
Donnadieu et al., 2006). Detailed analytical methods are described in the Supporting Information.

Figure 1. Lithostratigraphy of the Guihua and Gaomiao sections and sampling horizons. The Wudang and Yaolinghe groups 
in the South Qinling terrane correlate with the Liantuo and Nantuo formations, respectively, from the northern margin of the 
Yangtze block. Early Cryogenian and interglacial (720–650 Ma) sedimentary successions are absent due to uplift and erosion 
(e.g., Mitchell et al., 2019). Blue hexagons mark the sampling horizons, with sample names and zircon dates. Fm–formation. 
Gp–group.
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3.1. CA-ID-IRMS U-Pb Geochronology

Results for zircon CA-ID-IRMS U-Pb geochronology are presented in Table S1. Those samples include GH01 
(basal tuffaceous breccias) and QY01 and QY02 (basal and top rhyolites, respectively) of the South Qinling 
volcano-stratigraphic sequence (Figure 1). Overall, zircons from the three samples are very similar in appearance 
in plain light photomicrographs (Figure S12 in Supporting Information S1). Most of the grains are short pris-
matic and exhibit oscillatory zoning, although some elongated prismatic grains are present. They have lengths 
of 50–300 μm and widths of 25–200 μm, with aspect ratios of 1.5–3. GH01 yields a weighted mean age of 
641.69 ± 0.17/0.26/1.37 Ma (MSWD = 1.6, n = 3, 2σ analytical uncertainty/analytical and tracer calibration 
uncertainty/analytical and tracer calibration uncertainty including decay constant uncertainty (Villa et al., 2016; 
Figure 2). The rhyolite samples QY01 and QY02 have  206Pb/ 238U zircon ages between ∼641 and ∼637 Ma, with 
the youngest grain of QY01 at 636.87 ± 0.41 Ma, which is interpreted as the closest approximation of the erup-
tion age of the rhyolite. The presence of zircons spanning ∼4 Myr indicates prolonged magmatic activity.

Figure 2. Zircon chemical abrasion-isotope-dilution isotope ratio mass spectrometry U-Pb ages. (a) U-Pb ages from tuffaceous breccia sample GH01, also shown as a 
Concordia diagram in (b). After rejecting two dates from one split grain due to Pb loss (dotted outline) and one date due to inheritance (dotted outline), an average of ca. 
641 Ma is interpreted as the depositional age of basal Yaolinghe tuffaceous breccias. (c) U-Pb ages from rhyolite samples QY01 and QY02, also shown as a Concordia 
diagram in (d). After rejecting one date due to Pb loss (dotted outline), an average of ca. 637 Ma is interpreted as the eruption age of Yaolinghe bimodal volcanic rocks, 
while the older dates are interpreted to be antecrysts from earlier magmatic cycles. Sample QY02 was collected from near the top of the rhyolite succession, while 
QY01 comes from near the bottom (Figure 1). Cap carbonates in South China are precisely dated with U-Pb ages on intercalating ash layers (Condon et al., 2005; Zhou 
et al., 2019). Note that Yaolinghe volcanism directly precedes the deglacial cap carbonates.
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Our new CA-ID-IRMS ages of 637–641 Ma from the Yaolinghe Group represent the timing of major phases 
of volcanic activity around the Wudang rift zone. Previously, the Yaolinghe volcanic rocks were repeatedly 
dated using SIMS/LA-ICP-MS and produced controversial ages ranging from 685 ± 5 Ma to 636 ± 6 Ma (Deng 
et al., 2016; Ling et al., 2008; Zhu et al., 2015). Considering inheritance of zircon grains in mafic rocks and large 
analytical uncertainties, these previous SIMS/LA-ICP-MS radiometric ages are not accurate. Magmatism from ca. 
643–635 Ma also occurred in the Tarim, Siberia, and Congo cratons (Prave et al., 2016; Vernikovsky et al., 1999; 
Yarmolyuk et al., 2005; Zhu et al., 2008). Within uncertainties, these magmatic events are all synchronous with 
end-Marinoan magmatism in South Qinling and the northern margin of the Yangtze block (L. J. Wang, Griffin, 
et al., 2013; M. Wang, Wang, & Sun, 2013; M. X. Wang, Wang, & Zhao, 2013).

3.2. Modeling Atmospheric CO2 Evolution and Snowball Duration

The consequences of the South Qinling rift system have been explored using climate-ice-sheet-carbon modeling. 
We simulated the pCO2 evolution by including two major constraints: (a) the duration of snowball Earth, which is 
57 Myr for the Sturtian (Condon et al., 2005; Hoffman et al., 1998; Zhou et al., 2019) in comparison to <16 Myr 
for the Marinoan (Nelson et al., 2020) and (b) the continental ice sheet response to orbital forcing as a function 
of CO2 levels (Benn et al., 2015) to compute the weathering efficiency and the coverage of land ice (Supporting 
Information). Our simulations reveal that, despite the presence of a massive ice sheet (170 millions of km 3; Figure 
S10 in Supporting Information S1), the meltwater flux remains too limited to counteract the sluggish hydrologi-
cal cycle (Abbot et al., 2012). As a consequence, weathering fluxes range from 4 to 2 orders of magnitude below 
their modern values (Figure S13 in Supporting Information S1) as silicate weathering appears to be insensitive to 
the load of atmospheric CO2 due to cold surficial conditions. This strong feature of the snowball Earth motivated 
us to apply a broad range of degassing rates and the changing of the carbon source and processes associated with 
volcanism to be considered as the most likely assumption to elucidate the ice-age duration.

Before quantifying South Qinling magmatism, we first consider a case where degassing is solely driven by a 
tectonic setting. As there is no direct proxy for the degassing rate of the solid Earth, aerial degassing rates are 
derived from subduction zones (Mills et al., 2017) by considering a large range of possibilities from the modern 
value to the weakest case (38% of the modern value, “deg0.38”; Supporting Information). Our simulations reveal 
expected deglaciation thresholds associated with a long-lived snowball Earth (>57 Myr) that is supposed to 
represent the Sturtian glaciation. According to our simulations, a snowball Earth lasting more than 57 Myr seems 
to be incompatible with a degassing rate as intense as today (Figure 3a). By assuming weaker degassing rates, 
deglaciation thresholds (pCO2(57 Myr)) range from 0.09 bar (deg0.38) to 0.26 bar (deg0.8) and exhibit a nonlin-
ear function with the degassing rate (Figure 3a). The logarithmic accumulation rate of CO2 is a direct response 
to seawater acidification that enhances seafloor weathering (Le Hir et al., 2008a), whereas the nonlinearity is 
ascribed to the ratio between carbon consumption via seafloor weathering and carbon emission via magmatic 
degassing. For present-day conditions, seafloor weathering shows a small flux (1.8 × 10 12 molC/yr or ∼0.08 Gt 
CO2/yr) compared to modern degassing (6.8 × 10 12 molC/yr or ∼0.3 Gt CO2/yr), with a ratio reaching 3.8. With 
respect to the background degassing assumption for the Cryogenian, this ratio varies from 1.4 to 3 prior to acid-
ification. As such, a moderate amplification of carbon consumption by seafloor weathering related to a more 
acidic snowball ocean, is sufficient for balancing the inorganic carbon cycle. Seafloor weathering can be ignored 
by assuming zero air-sea gas exchange. In this specific scenario, snowball length can be drastically shortened, 
which would prompt all the emitted CO2 (∼0.24 Gt CO2/yr for deg0.8) to be stored in the atmosphere instead of 
the ocean.

To address the issue of foreshortening the Marinoan glaciation, we consider fluctuations of the carbon source 
assuming that the CO2 deglacial Sturtian limit can be also applied to the Marinoan. To test this hypothesis, we 
re-conducted simulations by adding a continental rift system and the concurrent emplacement of an igneous 
province in Central China (Figure  3). Our study shows that volcanism in South Qinling started from 641 to 
637 Ma, whereas volcanism along the northern margin of South China Block occurred from 637 to 635 Ma 
(Condon et al., 2005). This means that the emplacement of an igneous province in Central China lasted for 6 Myr 
(641–635 Ma). Because the amount of CO2 released from a magmatic event in an extensional tectonic setting 
fluctuates as a function of its size and duration (Tamburello et al., 2018), we considered CO2 emissions varying 
from 63,600 to 494,400 Gt over 6 Myr (Supporting Information). According to these constraints, whatever rate 
of solid Earth degassing is considered (deg0.38 or more), volcanism-related CO2 emission in the South Qinling 
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rift pales in comparison to the mass of carbon already stored in the atmosphere. As illustrated by the deg0.38 case 
(Figure 3a), even with 494,400 Gt/6 Myr, the rise of pCO2 falls short (<0.07 bar) of the CO2 limit required for 
the onset of the Sturtian deglaciation (∼0.09 bar CO2). Consequently, except for considering a drastic change in 
the tectonic regime that increased the degassing rate by a significant amount, a lower glacial melting threshold 
can be expected for the Marinoan.

We estimated CO2 thresholds that triggered the Marinoan deglaciation by shifting the ice-age duration from 57 to 
16 Myr (Figure 3a). Based on the same set of simulations, deglaciation thresholds (pCO2 (16 Myr)) change signif-
icantly, but remain fully encompassed within melting thresholds estimated by climate models (Figure 3a). With 
the lowest degassing rate (deg0.38), the melting threshold for the Marinoan (∼0.05 bar) should be twice compared 
to that of the Sturtian (0.09 bar). The discrepancy between the Sturtian/Marinoan thresholds increases with the 
enhancement of degassing, with the most significant rise falling between deg0.6 (ΔpCO2∼0.07) and deg0.7 
(ΔpCO2∼0.13) due to the nonlinear rate of accumulation. By considering the South Qinling rift system and other 
volcanic provinces, we observe that only a very massive carbon release may shorten the ice age (Figure 3a), 
regardless of pulsed or continuous degassing (see Supporting Information).

4. Discussion and Conclusions
Herein, we highlight that elevated CO2 emissions induced by magmatism related to rifting and other volcanic 
provinces do not directly trigger the meltback, even if abnormally high atmospheric CO2 concentrations amassed 
by magmatism during glaciation have facilitated the Earth system to begin its escape from the pan-glacial state. 
Nonetheless, an indirect deglacial scenario can be ascribed to volcanism-induced dust emission and its effect on 
planetary albedo.

4.1. Snowball Earth Deglaciation Threshold

During the snowball state, volcanism would reduce the surface albedo by emitting volcanic dust. Rhyolites and 
tuffaceous breccias of the Yaolinghe Group (Figure S1 in Supporting Information S1) represent major volcanic 
activity from 641 to 637 Ma (4 Myr) before the termination of the Marinoan ice age when PCO2 was already 
high (>0.4 bar) based on simulations. The interplay between the hydrological cycle and high pCO2 caused slow 
warming, which would reduce snow albedo (de Vrese et  al.,  2021) and the accumulation of dusty ice in the 

Figure 3. pCO2 simulated by a biogeochemical model (GEOCLIM) forced by a climate model coupled with an ice-sheet model (Benn et al., 2015) (a) Temporal 
pCO2 evolution with different background degassing rates in the context of a hard snowball Earth. Dashed lines represent the amount of carbon between short and 
long snowball events. Melting thresholds for short and long snowball events are based on their duration (16 and 57 Myr, respectively), all being encompassed within 
thresholds estimated by climate models from 0.29 (Pierrehumbert, 2004) to 0.05 bars (Benn et al., 2015) assuming a white surface (snow and ice). Melting thresholds 
for a mudball earth (Abbot & Pierrehumbert, 2010) can be estimated to be at least 1/3 of a clean snowball earth (i.e., 0.1 instead of 0.29 bar) while de Vrese et al. (2021) 
suggests lower pCO2 for initiating melting. Ice-sheet behavior is based on climate-ice-sheet model simulations (Benn et al., 2015). (b) Influence of the Yaolinghe rift 
system and other volcanic provinces on the snowball Earth duration for deg038 experiment (aerial volcanic flux ∼0.38 modern conditions). The emplacement has been 
integrated over 6 Myr to cover all volcanic provinces. Our simulations show how a speed-up in degassing would have foreshortened the Marinoan snowball Earth by 
2–5 Myr (i.e., 11–14 Myr duration instead of 16 Myr) under various volcanic emission intensities (gray band).
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equatorial zone (Pierrehumbert et  al.,  2011). As the South Qinling rift system and other volcanic provinces 
predate the termination of the Marinoan by a few million years, they would have led to a major reduction in 
albedo by volcanic dust accumulation (Abbot & Pierrehumbert, 2010). This transformation is one of the main 
consequences that lowered the pCO2 threshold for deglaciation by 50% or more (Abbot & Pierrehumbert, 2010; 
de Vrese et al., 2021). In this context, elevated CO2 in the atmosphere induced by magmatism, if not the sole cause 
of meltback, must have prompted the planet to escape from its pan-glacial state.

These results thus support a very clean, high-albedo snowball for the Sturtian ice age. Under a regime of an 
ice-covered white Earth, an intense radiative forcing is required to overcome the cooling effect induced by the 
highly reflective surface, which means a high pCO2 threshold. A long-lived snowball event (57 Myr) implies a 
high pCO2 threshold, which contrasts with those inferred from climate simulations incorporating dust-snow/ice 
interplay. By assuming a weak background degassing through the Cryogenian, CO2 and volcanic dust emissions 
would be less intense, thus allowing glaciers to develop while the darkening induced by dust should be balanced 
with cleaning from surface meltwater draining accumulated dust through moulins (Goodman & Strom, 2013). 
Such a condition may facilitate the existence of a long-lived global ice age where the foreshortening of the 
Marinoan can be seen as the direct result of the South Qinling rift and its long-lasting volcanic activity. In this 
context, such additional CO2 emissions may shorten the Marinoan snowball by 2–5 Myr (Figure 3b).

Despite less intense CO2 and volcanic dust emissions, such a scenario is supported by geological evidence. 
Higher than 0.05 bar pCO2 points to a smaller extent of land ice cover (Figure S10 in Supporting Information S1). 
Whatever the degassing rate (0.38–0.8), after 57 Myr, the continental ice sheet has already started to melt and 
potentially vanished completely (Benn et al., 2015). As a result, retreat of equatorial sea ice sheets marking the 
termination of hard snowball conditions would not be associated with an intense freshwater flux coming from 
the melting of continental ice sheets. Finally, clumped oxygen isotope analyses of Marinoan cap carbonates 
also suggest low pCO2 (<0.08 bar) even if this estimation does not necessarily represent the maximum pCO2 
level (H. Bao et al., 2009). Nevertheless, according to our simulations highlighting highly reduced continental 
weathering (Figure S13 in Supporting Information S1), the syn-sedimentary dolomite precipitation remains a 
conundrum (Hood et al., 2021). If the alkalinity is carried by the dissolution of deep sea carbonates (Le Hir, 
Goddris, et al., 2008), a major part of the ocean should be undersaturated and characterized by a low Mg/Ca ratio 
(assuming that calcite is the dominant dissolved carbonate), a process inhibiting dolomite formation.

4.2. Comparison of Yaolinghe and Other Magmatic Emissions Through the Cryogenian

“Fire and ice” causal relationships have been suggested previously for Cryogenian climate fluctuations. The 
initiation of the Sturtian is suggested to have been induced by weathering of basalts and/or the injection of 
sulfate aerosols into the stratosphere during the low-latitude eruption of a large igneous province related to 
Rodinia breakup (Cox et al., 2016; Goddéris et al., 2003; Macdonald & Wordsworth, 2017). Termination of the 
Sturtian may have been induced by volcanic CO2 emissions (Hoffman et al., 2017; Zhou et al., 2019). Likewise, 
magmatism-related termination of the Marinoan glaciation is also suggested in the current work. In particular, the 
Yaolinghe rift-related magmatism likely played a pivotal role due to its long-lasting volcanic activity.

In addition to the Yaolinghe magmatism, the end of the Marinoan also experienced active rift-related volcanism 
in the Australia, Tarim, Siberia, and Congo cratons with an age range of ca. 643–635 Ma (Calver et al., 2013; 
Condon et al., 2005; Prave et al., 2016; Vernikovsky et al., 1999; Yarmolyuk et al., 2005; Zhu et al., 2008). Within 
uncertainties, these magmatic events were all synchronous with end-Marinoan magmatism in South Qinling and 
the northern margin of the Yangtze block (L. J. Wang, Griffin, et al., 2013; M. Wang, Wang, & Sun, 2013; M. X. 
Wang, Wang, & Zhao, 2013). Of these, successive emplacement of volcanic provinces approaching deglaciation 
occurred in South Australia (636.4 ± 0.45 Ma; Calver et al., 2013), then South China (635.2 ± 0.57 Ma; Condon 
et al., 2005), and Namibia (635.2 ± 0.59 Ma; Prave et al., 2016), where these coordinated rift-related volcanic 
provinces are associated with final stages of the breakup of supercontinent Rodinia (Gernon et al., 2016; Mitchell 
et al., 2019). Considering uncertainties for CO2 and dust emissions, multiple volcanic sources may be considered 
as a likely scenario with a dominant source coming from the South Qinling region. The apparent discrepancy 
between the end of glaciation (635 Ma) and the prolonged magmatic activity (641–637 Ma) highlights the impor-
tance of cumulative effect of CO2 and dust emissions.
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No thick volcanic sequences have been found near the terminal Sturtian interval, even though finding such an 
occurrence—if one existed—would be a much sought-after geochronological constraint on the timing of deglaci-
ation. Unlike the Marinoan glaciation, the purported terminal Sturtian glaciation tuffs do not appear to be asso-
ciated with any thick volcanic sequences and their occurrences are restricted to South China and South Australia 
(Cox et al., 2018; Fanning & Link, 2008; Liu et al., 2015; S. Zhang et al., 2008; Zhou et al., 2004, 2019). In 
South China, two zircon SIMS U-Pb ages on tuffs of 654.5 ± 3.8 Ma and 654.2 ± 2.7 Ma were reported from 
interglacial successions (Liu et al., 2015; S. Zhang et al., 2008), and one zircon SIMS U-Pb age on a tuff of 
662.9 ± 4.3 Ma was documented from within a Sturtian cap carbonate (Zhou et al., 2004). The latter age was 
refined to 658.8 ± 0.5 Ma using high-precision TIMS U-Pb dating (Zhou et al., 2019). In South Australia, a 
zircon SIMS U-Pb age of 659.7 ± 5.3 Ma and a zircon TIMS U-Pb age of 663.03 ± 0.11 Ma were reported from 
tuffs from the top of the Sturtian glaciogenic diamictite (Cox et al., 2018; Fanning & Link, 2008). None of these 
tuffs are associated, however, with known synchronous volcanism.

In contrast, both tuffs and synchronous large piles of volcanic rocks with ages spanning several pulses from 700 
to 670 Ma are reported not close to deglaciation, but during the Sturtian glaciation (Balgord et al., 2013; Fanning 
& Link, 2008; Ferri et al., 1999; Goodge et al., 2002; Lan, Li, Zhang, & Li, 2015; Lan, Li, Zhu, et al., 2015; 
Lund et  al.,  2003, 2010). Specifically, volcaniclastic rocks are reported from the middle Sturtian glaciogenic 
diamictite in northern Utah, along the North American Cordilleran margin that yields a SIMS U-Pb age of 
703  ±  6  Ma (Balgord et  al.,  2013). A thick sequence of volcanic rocks with indistinguishable zircon SIMS 
U-Pb ages of 685 ± 7 Ma and 684 ± 4 Ma occurs in the middle of the Sturtian glaciogenic diamictite in Central 
Idado, USA (Lund et al., 2003, 2010). Synchronous volcanic tuffs are also reported from the middle Sturtian 
glaciogenic diamictites in Idaho (Fanning & Link, 2008) as well as in South China (Lan, Li, Zhang, & Li, 2015; 
Lan, Li, Zhu, et al., 2015), with zircon SIMS U-Pb ages of 686 ± 4 Ma and 691 ± 12 Ma, respectively. Volcanic 
rocks are reported from a purported Sturtian glaciogenic diamictite in Yukon, Canada (Ferri et al., 1999) and 
Antarctica (Goodge et al., 2002) with zircon TIMS U-Pb ages of 688.6 + 9.5/−6.2 Ma and 667.8 ± 0.6 Ma, 
respectively. Synchronous volcanic tuffs from the top Sturtian glaciogenic diamictite in Idaho, Western USA 
gave a zircon SIMS U-Pb age of 667 ± 2 Ma (Fanning & Link, 2008), whereas synchronous volcaniclastic rocks 
from the middle Sturtian glaciogenic diamictite in northern Utah give a SIMS U-Pb age of 667 ± 5 Ma (Balgord 
et al., 2013). Overall, these volcanic activities are temporally spread out and predate the termination of the Stur-
tian by 10–30 Myr. Thus, the Marinoan glaciation was foreshortened by a major and temporally focused pulse 
of volcanism that the Sturtian glaciation did not experience and therefore took longer to accumulate the requisite 
CO2 levels for deglaciation. That is, the lack of volcanism near the end of the Sturtian is the main reason for its 
longer duration compared to the Marinoan.

Data Availability Statement
All data from this study are available in the online content of this paper and from the Open Science Framework 
(https://osf.io/qcdtw/?view_only=73f869b59b2b4660a6b5af6f320c3d23).
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