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We present the redshift-space generalization of the equal-time angular-averaged consistency relations
between (lþ n)- and n-point polyspectra (i.e., the Fourier counterparts of correlation functions) of the
cosmological matter density field. Focusing on the case of the l ¼ 1 large-scale mode and n small-scale
modes, we use an approximate symmetry of the gravitational dynamics to derive explicit expressions that
hold beyond the perturbative regime, including both the large-scale Kaiser effect and the small-scale
fingers-of-god effects. We explicitly check these relations, both perturbatively, for the lowest-order version
that applies to the bispectrum, and nonperturbatively, for all orders but for the one-dimensional dynamics.
Using a large ensemble of N-body simulations, we find that our relation on the bispectrum in the squeezed
limit (i.e., the limit where one wave number is much smaller than the other two) is valid to better than 20%
up to 1 hMpc−1, for both the monopole and quadrupole at z ¼ 0.35, in a ΛCDM cosmology. Additional
simulations done for the Einstein–de Sitter background suggest that these discrepancies mainly come from
the breakdown of the approximate symmetry of the gravitational dynamics. For practical applications, we
introduce a simple ansatz to estimate the new derivative terms in the relation using only observables.
Although the relation holds worse after using this ansatz, we can still recover it within 20% up to
1 hMpc−1, at z ¼ 0.35 for the monopole. On larger scales, k ¼ 0.2 hMpc−1, it still holds within the
statistical accuracy of idealized simulations of volume ∼8 h−3Gpc3 without shot-noise error.

DOI: 10.1103/PhysRevD.92.123510 PACS numbers: 98.80.-k

I. INTRODUCTION

An accurate understanding of the nonlinear gravitational
dynamics is a key for observational projects that measure
the statistical properties of the cosmic structures on large
scales. The typical scales of interest in these projects range
from the weakly to the strongly nonlinear regimes [1,2].
While perturbation theory is expected to be applicable as
long as the nonlinear corrections are subdominant [3,4], a
fully nonlinear description would be helpful to extract
cosmological information out of the measured statistics
over a wider dynamic range. The analytical description also
becomes more complicated when one models higher-order
statistics. Although an increasing number of analytical
techniques to calculate the power spectrum or the two-point
correlation function have been proposed, based for instance
on resummations of perturbative series expansion or
effective approaches [5–16], few of them have been applied
to the bispectrum or even higher orders.
Consistency relations n-point correlation functions (or

polyspectra in Fourier space) are then very useful to have an
accurate description of the higher-order statistics once one
has a reliable model for the lowest-order one, the power

spectrum. Alternatively, they can be used to test analytical
models, numerical simulations, or the underlying cosmo-
logical scenario (e.g., the impact of modified gravity or
complex dark energy models). Based on the assumption of
Gaussian initial conditions and gravitational dynamics
governed by general relativity, these relations hold at the
nonperturbative level and provide a rare insight into the
nonlinear regime of gravitational clustering.
The most generic consistency relations are “kinematic

consistency relations” that relate the (lþ n)-density corre-
lation, with l large-scale wave numbers and n small-scale
wave numbers, to the n-point small-scale density correla-
tion,withl prefactors that involve the linear power spectrum
at the large-scale wave numbers [17–25]. These relations,
obtained at the leading order over the large-scale wave
numbers k0j, arise from the equivalence principle, which
ensures that small-scale structures respond to a large-scale
perturbation (which at leading order corresponds to a
constant gravitational force over the extent of the small-
size object) by a uniform displacement. Therefore, these
relations express a kinematic effect, due to the displacement
of small-scale structures between different times. This also
means that (at this order) they vanish for equal-time
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statistics, as a uniform displacement has no impact on the
statistical properties of the density field observed at a given
time. Because they derive from the equivalence principle,
these relations arevery general and also apply to baryons and
galaxies. However, in a standard cosmology, they provide no
information at equal times (apart from constraining possible
deviations from Gaussian initial conditions and general
relativity).
To obtain nonvanishing results for equal-time statistics,

one must go beyond this kinematic effect. This implies
studying the response of small-scale structures to nonuni-
form gravitational forces, which at leading order and after
averaging over angles correspond to a large-scale gravita-
tional curvature. As proposed in Refs. [26] and [27], this is
possible by using an approximate symmetry of the gravi-
tational dynamics (associated with the common approxi-
mation Ωm=f2 ≃ 1, where Ωm is the matter density
cosmological parameter and f ¼ d lnDþ=d ln a is the
linear growth rate), which allows one to absorb the change
of cosmological parameters (hence of the background
curvature) by a change of variable. These relations again
connect the (lþ n)-point polyspectra, with l large-scale
modes and n small-scale modes, to the n-point polyspec-
trum, when an angular averaging operation is taken over the
l large-scale modes, which also removes the kinematic
effect. These consistency relations no longer vanish at
equal times, but they are less general than the previous
relations. Indeed, galaxy formation processes (cooling, star
formation, etc.) introduce new characteristic scales that
would explicitly break this symmetry. The lowest-order
relation, which applies to the matter bispectrum, has been
explicitly tested in Ref. [28] using a large ensemble of
cosmological N-body simulations; see also Refs. [29–31]
for related discussions and comparisons with simulations or
halo models.
The aim of this paper is to generalize this analysis,

presented in Refs. [26] and [28] in real space, to redshift
space, where actual observations take place. This is only a
first step toward a comparison with measures from galaxy
surveys, because we do not consider the important issue of
galaxy bias in this paper (i.e., to translate our results in
terms of the galaxy distribution, one would need to add a
model that relates the galaxy and matter density fields).
However, this remains a useful task as redshift-space
statistics are well known to be difficult to model because
small-scale nonperturbative effects have a non-negligible
impact up to rather large scales [4,32,33], for instance,
through the fingers-of-god effect [34]. Therefore, it is even
more important than for real-space statistics to build tools
that hold beyond the perturbative regime.
This paper is organized as follows. First, in Sec. II, we

introduce the statistics of the redshift-space density field
and its response to the initial conditions. Then, in Sec. III,
we describe the dynamical equations of the system that we
consider here and show their symmetry that is valid under

the approximation Ωm=f2 ≃ 1. Using these results, we
finally derive the angular-averaged consistency relations in
Sec. IV. We focus on the lowest-order version of these
relations, i.e., the bispectrum, in Sec. V, where we present
our results in terms of the multipole moments of the
spectra. We also introduce a simple ansatz to estimate
new derivative terms in the relation from observables, to
simplify its form and facilitate the connection with practical
situations. In Sec. VI, the consistency relations are checked
both perturbatively and nonperturbatively using analytical
calculations. We then exploit numerical simulations to give
a further test of the relations in Sec. VII. We finally
summarize our findings in Sec. VIII.

II. MATTER DENSITY CORRELATIONS

In this paper, we assume that the nonlinear matter density
contrast, δðx; tÞ ¼ ½ρðx; tÞ − ρ̄�=ρ̄, is fully defined at any
time by the initial linear density contrast δL0 (i.e., decaying
modes have had time to vanish) and that the latter is
Gaussian and fully described by the linear power spectrum
PL0ðkÞ,

h~δL0ðk1Þ~δL0ðk2Þi ¼ PL0ðk1ÞδDðk1 þ k2Þ; ð1Þ

where we denote with a tilde Fourier-space fields. The
matter density contrast can also be written in terms of the
particle trajectories, xðq; tÞ, where q is the Lagrangian
coordinate of the particles, as

k ≠ 0 ∶ ~δðk; tÞ ¼
Z

dx
ð2πÞ3 e

−ik·xδðx; tÞ ð2Þ

¼
Z

dq
ð2πÞ3 e

−ik·xðq;tÞ; ð3Þ

where we discarded a Dirac term that does not contribute
for k ≠ 0. This expression follows from the conservation of
matter, ρdx ¼ ρ̄dq, which yields ½1þ δðxÞ�dx ¼ dq.
Using the Gaussianity of the linear density field δL0,

integrations by parts allow us to write the correlation
between l linear fields and n nonlinear fields in terms
of the response of the latter to changes of the initial
conditions [23,26]

h~δL0ðk01Þ…~δL0ðk0lÞ~δðk1; t1Þ…~δðkn; tnÞi

¼ PL0ðk01Þ…PL0ðk0lÞ
�

Dl½~δðk1; t1Þ…~δðkn; tnÞ�
D~δL0ð−k01Þ…D~δL0ð−k0lÞ

�
: ð4Þ

This exact relation, which only relies on the Gaussianity of
the initial condition ~δL0, holds for any nonlinear field ~δ,
which is not necessarily identified with the nonlinear
density contrast. It is also the basis of the consistency
relations between (lþ n)- and n-point polyspectra, in the
limit k0j → 0, when one can write the right-hand side in
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terms of h~δðk1; t1Þ…~δðkn; tnÞi multiplied by some deter-
ministic prefactors or operators [17–23,26,27].
In this paper, we extend the analysis presented inRef. [26]

for the real-space density field to the redshift-space density
field. Because of the Doppler effect associated with the
peculiar velocities, the radial position of cosmological
objects (e.g., galaxies) is not exactly given by their redshift,
interpreted as a distance within the uniform background
cosmology. For instance, receding objects appear to have a
slightly higher redshift than the one associated with their
actual location, and one is led to introduce the redshift-space
coordinate s defined as [33,35,36]

s ¼ xþ vr
_a
er; ð5Þ

where er is the radial unit vector along the line of sight (we
use a plane-parallel approximation throughout this article),
vr is the line-of-sight component of the peculiar velocity v,
and _a ¼ da=dt is the time derivative of the scale factor aðtÞ.
Then, the redshift-space density contrast δs can bewritten in
terms of the Lagrangian coordinate q of the particles as
[33,36,37]

k ≠ 0∶ ~δsðk; tÞ ¼
Z

dq
ð2πÞ3 e

−ik·sðq;tÞ; ð6Þ

where we again discarded a Dirac term that does not
contribute for k ≠ 0. This is the same expression as
Eq. (3) for the real-space density contrast ~δðkÞ, except that
xðq; tÞ in the exponential is replaced by sðq; tÞ, and it again
follows from the conservation ofmatter, ½1þ δsðsÞ�ds ¼ dq.
Then, the redshift-space generalization of Eq. (4) reads as

h~δL0ðk01Þ…~δL0ðk0lÞ~δsðk1; t1Þ…~δsðkn; tnÞi

¼ PL0ðk01Þ…PL0ðk0lÞ
�
Dl½~δsðk1; t1Þ…~δsðkn; tnÞ�
D~δL0ð−k01Þ…D~δL0ð−k0lÞ

�
: ð7Þ

As in Refs. [26,28], we focus on the relations obtained
for l ¼ 1 by performing a spherical average over the angles
of the large-scalewave number k0. This removes the leading-
order contribution, associated with a uniform displacement
of small-scale structures by larger-scale modes, that van-
ishes for equal-time statistics (t1 ¼ … ¼ tn) [17–23]. One is
left with the next-order contribution, which does not vanish
at equal times [26–28] and is associated with the change to
the growth of small-scale structures in a perturbed mean
density background, modulated by the larger-scale modes.
In configuration space, this means that we consider angular-
averaged quantities of the form [26,28]

Cn
W ¼

Z
dx0Wðx0ÞhδL0ðx0Þδsðs1; t1Þ…δsðsn; tnÞi; ð8Þ

which read in Fourier space as

~Cn
W ¼ð2πÞ3

Z
dk0 ~Wðk0Þh~δL0ðk0Þ~δsðk1;t1Þ…δsðkn;tnÞi; ð9Þ

where Wðx0Þ [and its Fourier transform ~Wðk0Þ] is a large-
scale spherical window function. Using Eq. (7), we obtain

Cn
W ¼ d

dε0

����
ε0¼0

hδsðs1; t1Þ…δsðsn; tnÞiε0 ð10Þ

and a similar relation for ~Cn
W, where h…iε0 is the statistical

average with respect to the Gaussian initial conditions δL0,
when the linear density field is modified as

δLðxÞ → δLðxÞ þ ε0DþðtÞ
Z

dx0Wðx0ÞCL0ðx; x0Þ; ð11Þ

where CL0 is the linear density contrast real-space correla-
tion function. In the large-scale limit for the window
function W, which corresponds to the limit k0 → 0, the
integral over x0 is independent of the position x in the small-
scale region, at leading order in the ratio of scales, and the
initial linear density contrast is merely shifted by a uniform
amount,

k0 → 0∶ ΔδL0 ¼ ε0

Z
dx0Wðx0ÞCL0ðx0Þ: ð12Þ

This corresponds to a change of the background mean
density ρ̄, which means that we must obtain the impact of a
small change of ρ̄, and hence of cosmological parameters, on
the small-scale correlation hδsðs1; t1Þ…δsðsn; tnÞi.

III. APPROXIMATE SYMMETRY OF THE
COSMOLOGICAL GRAVITATIONAL DYNAMICS

On scales much smaller than the horizon, where the
Newtonian approximation is valid, the equations of motion
read as [38]

∂δ
∂t þ

1

a
∇ · ½ð1þ δÞv� ¼ 0; ð13Þ

∂v
∂t þHvþ 1

a
ðv ·∇Þv ¼ −

1

a
∇ϕ; ð14Þ

∇2ϕ ¼ 4πGρ̄a2δ: ð15Þ

Here, we use the single-stream approximation to simplify
the presentation, but our results remain valid beyond shell
crossing. Linearizing these equations over fδ; vg, one
obtains the linear growth rates D�ðtÞ, which are the
independent solutions of [4,38]

D̈þ 2H _D − 4πGρ̄D ¼ 0: ð16Þ
Then, it is convenient to make the change of variables
[5,26,39,40]
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η ¼ lnDþ; v ¼ _afu; ϕ ¼ ð _afÞ2φ; ð17Þ

with

f ¼ d lnDþ
d ln a

¼ a _Dþ
_aDþ

; ð18Þ

and the equations of motion read as

∂δ
∂ηþ∇ · ½ð1þ δÞu� ¼ 0; ð19Þ

∂u
∂η þ

�
3Ωm

2f2
− 1

�
uþ ðu ·∇Þu ¼ −∇φ; ð20Þ

∇2φ ¼ 3Ωm

2f2
δ: ð21Þ

Here, ΩmðtÞ is the matter density cosmological parameter
as a function of time, which obeys 4πGρ̄ ¼ ð3=2ÞΩmH2. As
pointed out in Ref. [26], within the approximation
Ωm=f2 ≃ 1 (which is used by most perturbative approaches
[4]), all explicit dependence on cosmology disappears from
the equations of motion (19)–(21). This means that the
dependence of the density and velocity fields on cosmology
is fully absorbed by the change of variable (17). Then, a
change of the background density, as in Eq. (12), can be
absorbed through a change of the time-dependent functions
faðtÞ; DþðtÞ; fðtÞg, which enter the change of variables
(17) [26].
Here, we used the single-stream approximation to

simplify the presentation, but the results remain valid
beyond shell crossing, as the dynamics of particle trajec-
tories, xðq; tÞ, follow the equation

∂2x
∂η2 þ

�
3Ωm

2f2
− 1

� ∂x
∂η ¼ −∇φ; ð22Þ

where φ is the rescaled gravitational potential (21). This
explicitly shows that they satisfy the same approximate
symmetry. Therefore, our results are not restricted to the
perturbative regime and also apply to small nonlinear scales
governed by shell-crossing effects, as long as the approxi-
mation Ωm=f2 ≃ 1 is sufficiently accurate (but this also
means that we are restricted to scales dominated by gravity).

IV. ANGULAR-AVERAGED CONSISTENCY
RELATIONS

As described in Ref. [26], the impact of a small uniform
change of the matter density background can be obtained by
considering two universeswith nearby backgrounddensities
and scale factors, fρ̄ðtÞ; aðtÞg and fρ̄0ðtÞ; a0ðtÞg, with

ρ̄a3 ¼ ρ̄0a03 ¼ ρ̄0; a0 ¼ a½1 − ϵðtÞ�;
ρ̄0 ¼ ρ̄½1þ 3ϵðtÞ�: ð23Þ

Here and in the following, we only keep terms up to linear
order over ϵ. Then, writing the Friedmann equations for the
two scale factors aðtÞ and a0ðtÞ and linearizing over ϵ, we
find that ϵðtÞmust satisfy the same equation (16) as the linear
growing mode [38]. Thus, we can write

ϵðtÞ ¼ DþðtÞϵ0: ð24Þ

For our purposes, the universe fρ̄ðtÞ; aðtÞg is the actual
universe, with the zero-mean initial condition δL0, to which
is added the uniform density perturbation (12). To recover
zero-mean density fluctuations, we must shift the back-
ground by the same amount. Thus, this new background
fρ̄0ðtÞ; a0ðtÞg is given by

ϵ0 ¼
1

3
ΔδL0 ¼

ε0
3

Z
dx0Wðx0ÞCL0ðx0Þ; ð25Þ

where we used the last relation (23), which gives, at linear
order over δ and ϵ, δL ¼ δ0L þ 3ϵ.
Because both frames refer to the same physical system,

we have r0¼r¼a0x0¼ax, ρ̄0ð1þδ0Þ¼ ρ̄ð1þδÞ, where r¼r0
is the physical coordinate. Thus, we have the relations

x0 ¼ ð1þ ϵÞx; δ0 ¼ δ − 3ϵð1þ δÞ; v0 ¼ vþ _ϵax;

ð26Þ

wherewe used Eq. (23) and only kept terms up to linear order
over ϵ. In particular,we can check that, if the fields fδ0; v0;ϕ0g
satisfy the equations of motion (13)–(15) in the primed
frame, the fields fδ; v;ϕg satisfy the equations of motion
(13)–(15) in the unprimed frame, with the gravitational
potential transforming as ϕ0 ¼ ϕ − a2ð̈ϵþ 2H_ϵÞx2=2.
This remains valid beyond the shell crossing; if the trajecto-
ries x0ðq; tÞ satisfy the equation of motion in the primed
frame, the trajectories xðq; tÞ ¼ ð1 − ϵÞx0ðq; tÞ satisfy the
equation of motion in the unprimed frame.
From the definition (5) and Eq. (26), we obtain the

relation between the redshift-space coordinates,

s0 ¼ ð1þ ϵÞsþ _ϵ

H
srer; ð27Þ

using a0 ¼ ð1 − ϵÞa and H0 ¼ H − _ϵ. Then, using, for
instance, the expressions (3) and (6), the real-space and
the redshift-space density contrasts in the actual unprimed
frame, with the uniform overdensity ΔδL0 ¼ 3ϵ0, can be
written as [26]

k ≠ 0∶ ~δϵ0ðk; tÞ ¼ ~δ½ð1 − ϵÞk; Dþϵ0 � ð28Þ

and

~δsϵ0ðk; tÞ ¼ ~δs
�
ð1 − ϵÞk − _ϵ

H
krer; Dþϵ0 ; fϵ0

�
; ð29Þ
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where we disregarded a Dirac factor δDðkÞ that does not
contribute for k ≠ 0. In Eqs. (28) and (29), the subscript ϵ0
recalls that we consider the formation of large-scale
structures in the actual universe to which is added the
small uniform overdensity ΔδL0 ¼ 3ϵ0.
The physical meaning of the expression (28) directly

follows from the mapping (26) and the independence on
cosmology of the equations of motion (19)–(21), within the
approximation Ωm=f2 ≃ 1. It means that in the primed
universe, with the slightly higher background density ρ̄0 ¼
ð1þ 3ϵÞρ̄ (focusing, for instance, on the case ϵ > 0),
comoving distances x0 show the small isotropic dilatation
(26) [because the higher background density yields a higher
gravitational force and a smaller scale factor a0ðtÞ], whence
an isotropic contraction of wave numbers k0, while the linear
growth factor DþðtÞ is also modified. Moreover, the
approximate symmetry discussed in Sec. III implies that
all time and cosmological dependence can be absorbed
through the time coordinateDþ, if weworkwith the rescaled
field fδ;u;φg of Eq. (17). This is denoted by the rescaled
time coordinate Dþϵ0 in the right-hand side of Eq. (28),
where the subscript ϵ0 recalls that we must take into account
the impact of the modified background onto the linear
growth factor.
For the redshift-space density contrast (29), two new

effects arise, as compared with the real-space density
contrast (28). First, the mapping s↔s0 is no longer isotropic
because of the peculiar velocity component along the line
of sight, see Eq. (27), which also leads to an anisotropic
relationship k↔k0. Second, in addition to the time coor-
dinate Dþ, the redshift-space density contrast involves the
new quantity fðtÞ. This follows from the definition (5),
which can be written in terms of the rescaled velocity field
u of Eq. (17) as

s ¼ xþ vr
_a
er ¼ xþ furer: ð30Þ

This shows that, in addition to the rescaled term ur, which
only depends on time and cosmology through the time
coordinate Dþ, within the approximate symmetry of
Sec. III, the line-of-sight component explicitly involves a
time- and cosmology-dependent factor fðtÞ, which must be
taken into account in Eq. (29).
Then, to derive the angular-averaged consistency rela-

tions through Eq. (10), we simply need to use Eq. (29) to
obtain the derivative of the redshift-space density contrast
with respect to ϵ0 and next to use Eq. (25). This yields

∂ ~δsðkÞ
∂ϵ0 ¼ ∂Dþϵ0

∂ϵ0
∂ ~δs
∂Dþ

þ ∂fϵ0
∂ϵ0

∂ ~δs
∂f

−DþðtÞk ·
∂ ~δs
∂k − fDþkr

∂ ~δs
∂kr ; ð31Þ

where we disregarded a Dirac factor that does not con-
tribute for wave numbers k ≠ 0.
As found in Refs. [26,41], the derivative of the linear

growth factor reads as

∂Dþϵ0

∂ϵ0
����
ϵ0¼0

¼ 13

7
DþðtÞ2: ð32Þ

This corresponds toD0þ ¼ Dþ þ ð13=7ÞD2þϵ0 for the linear
growing mode in the primed frame, while a0 ¼ a −Dþaϵ0
and H0 ¼ H − _Dþϵ0. From the definition (18), we obtain
f0 ¼ f þ fð13=7Dþ þ _Dþ=HÞϵ0, whence

∂fϵ0
∂ϵ0

����
ϵ0¼0

¼ fDþ

�
13

7
þ f

�
: ð33Þ

Therefore, Eq. (31) gives

∂ ~δsðkÞ
∂ϵ0 ¼ 13

7
DþðtÞ2

∂ ~δs
∂Dþ

þ fDþ

�
13

7
þ f

� ∂ ~δs
∂f

−DþðtÞk ·
∂ ~δs
∂k − fDþkr

∂ ~δs
∂kr : ð34Þ

Of course, when we set f to zero, we recover the expression
of the derivative with respect to ϵ0 of the real-space density
contrast ~δ [26]. In configuration space, this reads as

∂δsðsÞ
∂ϵ0 ¼ Dþ

�
13

7

∂
∂ lnDþ

þ
�
13

7
þ f

�
f
∂
∂f

þ 3þ f þ s ·
∂
∂sþ fsr

∂
∂sr

�
δsðsÞ: ð35Þ

Next, from Eqs. (10) and (25), we obtain as for the real-
space correlations [26]

Cn
W ¼

Z
dx0Wðx0ÞCL0ðx0Þ

Xn
i¼1

Dþi

3

�
3þ fi þ

13

7

∂
∂ lnDþi

þ
�
13

7
þ fi

�
fi

∂
∂fi þ

�
si −

1

n

Xn
j¼1

sj

�
·
∂
∂si

þ fi

�
sri −

1

n

Xn
j¼1

srj

� ∂
∂sri

�
hδsðs1; t1Þ…δðsn; tnÞi:

ð36Þ

The counterterms of the form −1=n
P

jsj ensure that all
expressions are invariant with respect to uniform trans-
lations [by explicitly setting the small-scale region at the
center of the large-scale perturbation (11)]. They are
irrelevant for equal-time statistics, t1 ¼ … ¼ tn, where
factors of the form

P
isi ·

∂
∂si h~δ

s
1…~δsni are already invariant

with respect to uniform translations.
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The comparison with Eq. (8) gives, after writing the correlations in terms of Fourier-space polyspectra,Z
dΩk0

4π
h~δL0ðk0Þ~δsðk1; t1Þ…~δsðkn; tnÞi0k0→0

¼ PL0ðk0Þ
Xn
i¼1

Dþi

�
1

n
þ fi
3n

þ 13

21

∂
∂ lnDþi

þ
�
13

7
þ fi

�
fi
3

∂
∂fi

−
Xn
j¼1

�
δKi;j −

1

n

�
ki
3
·
∂
∂kj − fi

Xn
j¼1

�
δKi;j −

1

n

�
kri
3

∂
∂krj

�
h~δsðk1; t1Þ…~δsðkn; tnÞi0;

ð37Þ

whereΩk0 is the unit vector along the direction of k0 and δKi;j
is the Kronecker symbol. The subscript k0 → 0 recalls that
this relation only gives the leading-order term in the large-
scale limit k0 → 0, whereas the wave numbers fk1;…; kng
are fixed and may be within the nonlinear regime. Here, we
denoted with a prime the reduced polyspectra, defined as

h~δsðk1Þ…~δsðknÞi ¼ h~δsðk1Þ…~δsðknÞi0δDðk1 þ…þ knÞ;
ð38Þ

where we explicitly factor out the Dirac factor associated
with statistical homogeneity. In particular, this means that

h~δsðk1Þ…~δsðknÞi0 can be written as a function of the n − 1
wave numbers fk1;…; kn−1g only.
On large scales, we recover the linear theory [4,35],

with ~δðk0;t0Þ≃Dþðt0Þ~δL0ðk0Þ and ~δsðk0;t0Þ≃Dþðt0Þ~δL0ðk0Þ×
ð1þf0μ02Þ, where μ0 is the cosine of the wave number k0
with the line of sight, as in

μ ¼ k · er
k

: ð39Þ

Therefore, Eq. (37) also gives

Z
dΩk0

4π

�
~δsðk0; t0Þ
1þf0μ02

~δsðk1; t1Þ…~δsðkn; tnÞ
�0

k0→0

¼PLðk0; t0Þ
Xn
i¼1

Dþi

D0þ

�
1

n
þ fi
3n

þ13

21

∂
∂ lnDþi

þ
�
13

7
þfi

�
fi
3

∂
∂fi

−
Xn
j¼1

�
δKi;j−

1

n

�
ki
3
·
∂
∂kj−fi

Xn
j¼1

�
δKi;j−

1

n

�
kri
3

∂
∂krj

�
h~δsðk1; t1Þ…~δsðkn; tnÞi0:

ð40Þ

When all times are equal, t0 ¼ t1 ¼ … ¼ tn ≡ t, this simplifies as

Z
dΩk0

4π

�
~δsðk0Þ

1þ fμ02
~δsðk1Þ…~δsðknÞ

�0

k0→0

¼ PLðk0Þ
�
1þ f

3
þ 13

21

∂
∂ lnDþ

þ
�
13

7
þ f

�
f
3

∂
∂f

−
Xn
i¼1

ki
3

∂
∂ki − f

Xn
i¼1

kri
3

∂
∂kri

�
h~δsðk1Þ…~δsðknÞi0: ð41Þ

V. BISPECTRUM

A. Relation in fk; μ2g space

The lowest-order equal-time consistency relation
obtained from Eq. (41) corresponds to n ¼ 2, that is, the
bispectrum built from the correlation between two small-
scale modes and one large-scale mode. We define the
bispectrum as in Eq. (38),

h~δsðk1Þ~δsðk1Þ~δsðk1Þi ¼ Bsðk1; k2; k3ÞδDðk1 þ k2 þ k3Þ:
ð42Þ

In contrast with the real-space bispectrum, Bðk1; k2; k3Þ,
which only depends on the lengths of the three wave

numbers fk1; k2; k3g thanks to statistical isotropy, the
redshift-space bispectrum also depends on angles because
the velocity component along the line of sight breaks the
isotropy. Then, Eq. (41) yields

Z
dΩk0

4π

Bsðk0; k − k0=2;−k − k0=2Þk0→0

1þ fμ02

¼ PLðk0Þ
�
1þ f

3
þ 13

21

∂
∂ lnDþ

þ
�
13

7
þ f

�
f
3

∂
∂f

−
1þ fμ2

3

∂
∂ ln k −

f
3
2μ2ð1 − μ2Þ ∂

∂μ2
�
Psðk; μ2Þ:

ð43Þ
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Here, we used the symmetries of the redshift-space power
spectrum to write PsðkÞ as a function of k and μ2. In
Eq. (43), the power spectrum is written as a function of time
through the functions Dþ and f, that is,

Psðk; tÞ ¼ Psðk; μ2;Dþ; fÞ: ð44Þ

In particular, in the linear regime, we have the well-known
expression

Ps
Lðk; tÞ ¼ D2þPL0ðkÞð1þ fμ2Þ2; ð45Þ

where PL0 is the linear real-space power spectrum today.
When f ¼ 0, the relation (43) recovers the real-space
consistency relation, as it should.

B. Multipole expansion

The consistency relation (43) is written for a given
value of k and μ. In practice, rather than considering the
redshift-space power spectrum over a grid of μ, one
often expands the dependence on μ over Legendre
polynomials. Thus, we write the nonlinear redshift-space
power spectrum as

PsðkÞ ¼ Psðk; μ2Þ ¼
X∞
l¼0

Ps
2lðkÞL2lðμÞ; ð46Þ

where LlðμÞ is the Legendre polynomial of order l.
Only even orders contribute to this expansion because
Ps is an even function of μ. Substituting into Eq. (43),
we obtain

4lþ 1

2

Z
1

−1
dμL2lðμÞ

Z
dΩk0

4π

Bsðk0; k − k0
2
;−k − k0

2
Þk0→0

1þ fμ02

¼ PLðk0Þ
	�

1þ f
3
þ 13

21

∂
∂ lnDþ

þ
�
13

7
þ f

�
f
3

∂
∂f −

1

3

∂
∂ ln k

�
Ps
2lðkÞ −

f
3

∂
∂ ln k

� ð2l − 1Þ2l
ð4l − 3Þð4l − 1ÞP

s
2l−2

þ ð8l2 þ 4l − 1Þ
ð4l − 1Þð4lþ 3ÞP

s
2l þ

ð2lþ 1Þð2lþ 2Þ
ð4lþ 3Þð4lþ 5ÞP

s
2lþ2

�
−
f
3

�
−
ð2l − 2Þð2l − 1Þ2l
ð4l − 3Þð4l − 1Þ Ps

2l−2 þ
ð2lð2lþ 1Þ

ð4l − 1Þð4lþ 3ÞP
s
2l

þ ð2lþ 1Þð2lþ 2Þð2lþ 3Þ
ð4lþ 3Þð4lþ 5Þ Ps

2lþ2

�

: ð47Þ

For the first two multipoles, 2l ¼ 0 and 2l ¼ 2, this yields

Z
1

−1

dμ
2

Z
dΩk0

4π

Bs
k0→0

1þ fμ02
¼ PLðk0Þ

	�
1þ f

3
þ 13

21

∂
∂ lnDþ

þ
�
13

7
þ f

�
f
3

∂
∂f −

1

3

∂
∂ ln k

�
Ps
0ðkÞ −

2f
15

Ps
2ðkÞ

−
f
3

∂
∂ ln k

�
1

3
Ps
0ðkÞ þ

2

15
Ps
2ðkÞ

�

ð48Þ

and

5

2

Z
1

−1
dμL2ðμÞ

Z
dΩk0

4π

Bs
k0→0

1þ fμ02
¼ PLðk0Þ

	�
1þ f

3
þ 13

21

∂
∂ lnDþ

þ
�
13

7
þ f

�
f
3

∂
∂f −

1

3

∂
∂ ln k

�
Ps
2ðkÞ

−
f
3

∂
∂ ln k

�
2

3
Ps
0ðkÞ þ

11

21
Ps
2ðkÞ þ

4

21
Ps
4ðkÞ

�
−
f
3

�
2

7
Ps
2ðkÞ þ

20

21
Ps
4ðkÞ

�

: ð49Þ

C. f derivative

1. Relations in fk; μ2g space

In practice, we cannot directly measure the derivative
with respect to f of the redshift-space power spectrum
because the time derivative combines the derivatives with
respect to Dþ and f. Therefore, the expression (43) can
only be applied to analytical models, where the depend-
ences on Dþ and f are explicitly known. To obtain an

expression that can be applied to numerical or observed
power spectra, we must write the derivative with respect to
f in terms of observed time or space coordinates. Since the
redshift-space power spectrum must coincide with the real-
space power spectrum when either f or μ2 vanishes, each
factor f (respectively, μ2) must appear in combination with
a power of μ2 (respectively, f). Here, we make the ansatz
that the dependence on f and μ2 only appears through the
combination fμ2, which is exact at the linear order (45) (but
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at higher-order terms of the form fμ4; fμ6; ..., might
appear). This gives

Psðk; tÞ ¼ Psðk; fμ2;DþÞ implies f
∂Ps

∂f ¼ μ2
∂Ps

∂μ2 :
ð50Þ

This allows us to write Eq. (43) as

Z
dΩk0

4π

Bsðk0; k − k0=2;−k − k0=2Þ
1þ fμ02

¼ PLðk0Þ
�
1þ f

3
þ 13

21

∂
∂ lnDþ

−
1þ fμ2

3

∂
∂ ln k

þ
�
13

7
− f þ 2fμ2

�
μ2

3

∂
∂μ2

�
Psðk; fμ2;DþÞ: ð51Þ

In practice, we only measure the dependence of the
power spectrum with respect to time t, or scale factor
aðtÞ, and wave number coordinates fk; μg. Then, writing
∂=∂t ¼ _Dþ∂=∂Dþ þ _f∂=∂f and using Eq. (50), we
obtain

∂Ps

∂ lnDþ
¼ 1

f

� ∂Ps

∂ ln a −
a _f
_af

μ2
∂Ps

∂μ2
�
; ð52Þ

which gives

Z
dΩk0

4π

Bsðk0; k − k0=2;−k − k0=2Þ
1þ fμ02

¼ PLðk0Þ
�
1þ f

3
þ 13

21f
∂

∂ ln a −
1þ fμ2

3

∂
∂ ln k

þ
�
13

7
− f þ 2fμ2 −

13a _f
7_af2

�
μ2

3

∂
∂μ2

�
Psðk; μ2; aÞ:

ð53Þ
Using the approximation Ωm=f2 ≃ 1, we might simplify

Eq. (53) by writing _f ≃ _Dþ
Dþ

½−2þ f=2þ 3f2=2�. However,
this introduces an additional source of error, and at redshift
z ¼ 0.35, this gives a 15% error on _f. We checked numeri-
cally that this can lead to violations of the consistency
relations by factors as large as 3 or as small as 0.5. Therefore,
we keep the expression (53) in the following. [The impact of
the approximationΩm=f2 ≃ 1 is greater on the explicit factor
_f in Eq. (53) than on the consistency relation itself, which
also relied on this approximation, because the factor _f is
evaluated at the observed redshift, whereas the consistency
relation involves the behavior of the growing modes over all
previous redshifts, following the growth of density fluctua-
tions, which damps the impact of late-time behaviors.]

2. Multipole expansions

We can again write the relations (51) and (53) in terms of
the multipole expansion (46). For the first two multipoles,
Eq. (51) leads to

Z
1

−1

dμ
2

Z
dΩk0

4π

Bs
k0→0

1þ fμ02
¼ PLðk0Þ

	�
1þ f

3
þ 13

21

∂
∂ lnDþ

−
1

3

∂
∂ ln k

�
Ps
0ðkÞ −

f
3

∂
∂ ln k

�
1

3
Ps
0ðkÞ þ

2

15
Ps
2ðkÞ

�

þ 65þ 7f
210

Ps
2ðkÞ þ

13þ 7f
42

X∞
l¼2

Ps
2lðkÞ



ð54Þ

and

5

2

Z
1

−1
dμL2ðμÞ

Z
dΩk0

4π

Bs
k0→0

1þ fμ02
¼ PLðk0Þ

	�
1þ f

3
þ13

21

∂
∂ lnDþ

−
1

3

∂
∂ lnk

�
Ps
2ðkÞ−

f
3

∂
∂ lnk

�
2

3
Ps
0ðkÞ þ

11

21
Ps
2ðkÞ þ

4

21
Ps
4ðkÞ

�

þ 13þ 5f
21

Ps
2ðkÞ þ

195þ 65f
126

Ps
4ðkÞ þ

65þ 35f
42

X∞
l¼3

Ps
2lðkÞ



; ð55Þ

while Eq. (53) leads to

Z
1

−1

dμ
2

Z
dΩk0

4π

Bs
k0→0

1þ fμ02
¼ PLðk0Þ

	�
1þ f

3
þ 13

21f
∂

∂ ln a−
1

3

∂
∂ ln k

�
Ps
0ðkÞ −

f
3

∂
∂ ln k

�
1

3
Ps
0ðkÞ þ

2

15
Ps
2ðkÞ

�

þ
�
13

42
þ f
30

−
13a _f
42_af2

�
Ps
2ðkÞ þ

�
13

42
þ f

6
−

13a _f
42_af2

�X∞
l¼2

Ps
2lðkÞ



ð56Þ

and
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5

2

Z
1

−1
dμL2ðμÞ

Z
dΩk0

4π

Bs
k0→0

1þ fμ02
¼ PLðk0Þ

	�
1þ f

3
þ 13

21f
∂

∂ ln a −
1

3

∂
∂ ln k

�
Ps
2ðkÞ

−
f
3

∂
∂ ln k

�
2

3
Ps
0ðkÞ þ

11

21
Ps
2ðkÞ þ

4

21
Ps
4ðkÞ

�

þ
�
13

21
þ 5f

21
−

13a _f
21_af2

�
Ps
2ðkÞ þ

�
65

42
þ 65f

126
−

65a _f
42_af2

�
Ps
4ðkÞ

þ
�
65

42
þ 5f

6
−

65a _f
42_af2

�X∞
l¼3

Ps
2lðkÞ



: ð57Þ

As compared with Eqs. (48) and (49), these relations
involve all multipoles Ps

2l in the right-hand sides because
the substitution (50) gives rise to factors μ2∂=∂μ2 rather
than the factor ð1 − μ2Þ∂=∂μ2 that appeared in Eq. (43). In
practice, it is not possible to measure or compute all
multipoles, and one must truncate these multipole series
at some order lmax. This implies an additional approxima-
tion onto these relations (54)–(57).

VI. EXPLICIT CHECKS

The angular-averaged consistency relations (37)–(41) are
valid at all orders of perturbation theory and also beyond
the perturbative regime, including shell-crossing effects,
within the accuracy of the approximation Ωm=f2 ≃ 1 (and
as long as gravity is the dominant process).
We now provide two explicit checks of the angular-

averaged consistency relations (37)–(41). First, we check
these relations for the lowest-order case n ¼ 2, that is,
for the bispectrum, at the lowest order of perturbation
theory. Second, we present a fully nonlinear and non-
perturbative check, for arbitrary n-point polyspectra, in
the one-dimensional case.

A. Perturbative check

Here, we briefly check the consistency relations for the
lowest-order case, n ¼ 2, given by Eq. (43) at equal times,
at the lowest order of perturbation theory. At this order, the
equal-time redshift-space matter density bispectrum reads
as [4]

Bsðk1; k2; k3Þ ¼ 2D4þPL0ðk1ÞPL0ðk2ÞZ1ðk1ÞZ1ðk2Þ
× Z2ðk1; k2Þ þ 2 perm; ð58Þ

where “2 perm.” stands for two other terms that are
obtained from permutations over the indices f1; 2; 3g
and the kernels Z1 and Z2 are given by

Z1ðkÞ ¼ 1þ fμ2 ð59Þ

and

Z2ðk1; k2Þ ¼
5þ 3fμ2

7
þ 1þ fμ2

2

�
k1
k2

þ k2
k1

�
k1 · k2
k1k2

þ 2þ 4fμ2

7

�
k1 · k2
k1k2

�
2

þ fkμ
2

�
μ1
k1

ð1þ fμ22Þ þ
μ2
k2

ð1þ fμ21Þ
�
; ð60Þ

where k ¼ k1 þ k2. In the small-k0 limit, we obtain

Bs
k0→0

¼ 2D4þPL0ðk0ÞPL0ðk1ÞZ1ðk0ÞZ1ðk1ÞZ2ðk0; k1Þ
þ ðk1↔k2Þ; ð61Þ

with k1 ¼ k − k0=2 and k2 ¼ −k − k0=2. Here, we used the
fact that Z2ðk1; k2Þ vanishes as jk1þk2j2 for jk1 þ k2j → 0,
whereas PL0ðkÞ ∼ kns with ns ≲ 1. [If this is not the case,
that is, there is very little initial power on large scales, we
must go back to the consistency relation in the form of
Eq. (37) rather than Eq. (40). However, this is not necessary
in realistic models.] Expanding the various terms over k0, as

PL0ðk1Þ ¼ PL0ðkÞ −
k · k0

2k
dPL0

dk
ðkÞ þ � � � ; ð62Þ

Z1ðk1Þ ¼ 1þ fμ2 − f
k0

k
μμ0 þ fμ2

k · k0

k2
þ � � � ; ð63Þ

Z2ðk0; k1Þ ¼
13þ 19fμ2

28
þ 4þ fμ2

14

�
k · k0

kk0

�
2

þ ð1þ fμ2Þ

×

�
fμ02

4
þ fμμ0

2

k · k0

kk0
þ k · k0

2k02
þ fμμ0

2

k
k0

�

þ � � � ; ð64Þ

substituting into Eq. (61); and integrating over the angles of
k0, we obtain
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Z
dΩk0

4π

Bs
k0→0

1þ fμ02
¼ PLðk0ÞPLðkÞð1þ fμ2Þ

�
47

21
þ f

3

þ 73fμ2

21
−
f2μ2

3
þ 4f2μ4

3

�

− PLðk0Þ
dPLðkÞ
d ln k

ð1þ fμ2Þ3
3

: ð65Þ

On the other hand, the right-hand side of Eq. (43) reads
at the same order over PL as

Z
dΩk0

4π

Bs
k0→0

1þ fμ02
¼ PLðk0Þ

�
1þ f

3
þ 13

21

∂
∂ lnDþ

þ
�
13

7
þ f

�
f
3

∂
∂f −

1þ fμ2

3

∂
∂ ln k

−
2fμ2

3
ð1 − μ2Þ ∂

∂μ2
�

×D2þPL0ðkÞð1þ fμ2Þ2: ð66Þ

Collecting the various terms, we can check that we
recover Eq. (65).
Therefore, we have checked the angular-averaged red-

shift-space consistency relation (41) for the bispectrum, at
the leading order of perturbation theory, within the approxi-
mate symmetry Ωm=f2 ≃ 1 discussed in Sec. III. In this
explicit check, the use of this approximate symmetry
appears at the level of the expression (58) of the bispec-
trum, which only involves the linear growing modeDþ and
the factor f as functions of time and cosmology. An exact
calculation would give factors that show new but weak
dependencies on time and cosmology [and that are unity for
the Einstein–de Sitter (EdS) case] [4]. These deviations
from Eq. (58) are usually neglected [for instance, when the
cosmological constant is zero, they were shown to be well
approximated by factors like ðΩ−2=63

m − 1Þ that are very
small over the range of interest [42]].
For future use in Sec. VII B 1 below, in terms of the

angular monopole and quadrupole, Eq. (65) gives at the
lowest order of perturbation theory

Z
1

−1

dμ
2

Z
dΩk0

4π

Bs
k0→0

1þ fμ02
¼ PLðk0Þ

	
ð235þ 235f þ 101f2þ13f3ÞPLðkÞ

105
−
35þ 35f þ 21f2 þ 5f3

105

dPLðkÞ
d ln k



ð67Þ

and

5

2

Z
1

−1
dμL2ðμÞ

Z
dΩk0

4π

Bs
k0→0

1þ fμ02
¼ PLðk0Þ

	
4f
441

ð420þ 303fþ49f2ÞPLðkÞ −
2f
63

ð21þ 18f þ 5f2Þ dPLðkÞ
d ln k



: ð68Þ

B. One-dimensional nonlinear check

The explicit check presented in Sec. VI A only applies up
to the lowest order of perturbation theory. Because the goal
of the consistency relations is precisely to go beyond low-
order perturbation theory, it is useful to obtain a fully
nonlinear check. This is possible in one dimension, where
the Zel’dovich solution [43] becomes exact (before shell
crossing) and all quantities can be explicitly computed.
Because of the change of dimensionality, we also need to
rederive the one-dimensional (1D) form of the consistency
relations. We present the details of our computations in
Appendix A and only give the main steps in this section.
In the 1D case, the redshift-space coordinate (5) now

reads as

s ¼ xþ v
_a
¼ xþ fu; ð69Þ

where u is the rescaled peculiar velocity defined in
Eq. (A4), in a fashion similar to Eq. (17), and the
redshift-space density contrast (6) is now written as

k ≠ 0∶ ~δsðk; tÞ ¼
Z

dq
2π

e−iksðq;tÞ; ð70Þ

where we again discarded a Dirac term that does not
contribute for k ≠ 0 and q is the Lagrangian coordinate of
the particles.
As in the 3D case, to derive the 1D consistency relations,

we consider two universes with close cosmological param-
eters and expansion rates, a0ðtÞ ¼ ½1 − ϵðtÞ�aðtÞ. Again,
from the “1D Friedmann equations,” we find that
ϵðtÞ ¼ ϵ0DþðtÞ. Next, a uniform overdensity ΔL0 can be
absorbed by a change of frame, with ϵ0 ¼ ΔδL0. Then, to
obtain the consistency relations, we need the impact of the
large-scale overdensity ΔL0 on small-scale structures,
which at lowest order is given by the dependence of the
small-scale density contrast ~δsðkÞ on ϵ0. As shown in
Appendix A 2, this reads as

∂ ~δsðk; tÞ
∂ϵ0 ¼ D2þ

∂ ~δs
∂Dþ

þ fDþð1þ fÞ ∂ ~δ
s

∂f
− ð1þ fÞDþk

∂ ~δs
∂k : ð71Þ

As expected, this takes the same form as the 3D result (34),
up to some changes of numerical coefficients. This leads to
the equal-time redshift-space consistency relations (see
Appendix A 3)
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�
~δsðk0Þ
1þ f

~δsðk1Þ…~δsðknÞ
�0

k0→0

¼ PLðk0Þ
�
1þ f þ ∂

∂ lnDþ
þ ð1þ fÞf ∂

∂f − ð1þ fÞ
Xn
i¼1

ki
∂
∂ki

�
h~δsðk1Þ…~δsðknÞi0: ð72Þ

Here, we no longer need to average over the directions of
the large-scale wave number k0 because at equal times the
leading-order contribution associated with the uniform
displacement of small-scale structures by large-scale modes
vanishes [17–23]. Indeed, because of statistical homo-
geneity and isotropy, equal-time polyspectra are invariant
through uniform translations and cannot probe uniform
displacements. Therefore, 1D equal-time statistics directly
probe the next-to-leading order contribution (72), which
truly measures the impact of large-scale modes on the
growth of small-scale structures.
In the 1D case, the Zel’dovich approximation is exact

until shell crossing [26,43], and it yields for the redshift-
space nonlinear density contrast (70) the expression (see
Appendix A 4)

~δsðk; tÞ ¼
Z

dq
2π

e−ikqþkð1þfÞDþ
R

dk0
k0 e

ik0q ~δL0ðk0Þ: ð73Þ

The expression (73) is exact at all orders of perturbation
theory, but it no longer holds after shell crossing (which is a
nonperturbative effect). On the other hand, we can define a
1D toy model by setting particle trajectories as equal to
Eq. (A17). This system is no longer identified with a 1D
gravitational system, and it only coincides with the latter in
the perturbative regime, but it remains well defined and
given by Eqs. (A17) and (73) in the nonperturbative shell-
crossing regime.
Then, using the expression (73),we can explicitly check the

1D consistency relations (72). We present in Appendix A 5
two different checks. First, in Appendix A 5 a, we check
Eq. (71) by explicitly computing the impact on the nonlinear
density contrast (73) of a small change ΔδL0 to the initial
conditions. Second, in Appendix A 5 b, we directly check the
consistency relations (72) by explicitly computing the corre-
lations h~δLðk0Þ~δsðk1Þ…~δsðknÞi0k0→0

and h~δsðk1Þ…~δsðknÞi0
and verifying that they satisfy Eq. (72).
These two different checks allow us to check both the

reasoning that leads to the consistency relations, through
the intermediate result (71), and the final expression of
these relations. They also explicitly show that they are not
restricted to the perturbative regime. In particular, they
extend beyond shell crossing, as seen from the toy model
defined by the explicit expression (73) (i.e., where one
defines the system by the Zel’dovich dynamics, even
beyond shell crossing, without further reference to gravity).
As for the real-space consistency relations [26], it happens

that in this 1D model (73) the 1D consistency relations (72)
are actually exact, that is, they do not rely on the approxi-
mation κ ≃ κ0, where κ defined in Eq. (A8) plays the role of

the 3D factor Ωm=f2 encountered in Eqs. (19)–(21). This is
because the redshift-space density contrast (73) truly only
depends on cosmology and time through the two factorsDþ
and f, even at the nonlinear order. In contrast, in the 3D
gravitational case, beyond linear order, new functions of
cosmology and time appear (for cosmologies that depart
from the Einstein–de Sitter case), and they can only be
reduced to powers of Dþ and f within the approximation
Ωm=f2 ≃ 1. On the other hand, if we consider the actual 1D
gravitational dynamics even beyond shell crossing, where it
deviates from the expression (73), then the 1D consistency
relations (72) are only approximate in the nonperturbative
regime, as they rely on the approximation κ ≃ κ0, while
remaining exact at all perturbative orders.
Unfortunately, it is not easy to build 3D analytical

models that can be explicitly solved and suit our purposes.
The 3D Zel’dovich approximation again provides a simple
model for the formation of large-scale structures and the
cosmic web. However, it cannot suit our purposes because
it does not apply to the dynamics of the 3D background
universe itself. Indeed, as can be seen from their derivation in
Sec. IV, the consistency relations precisely derive from the
fact that a large-scale almost uniform density perturbation
can be seen as a local change of the cosmological parameters
(i.e., the background density). This is also apparent through
the fact that the deviation ϵðtÞ between the two nearby
universes (23) obeys the same evolution equation (16) as the
linear growing mode of local density perturbations. This is
no longer possible for the 3D Zel’dovich approximation,
which is not an exact solution and cannot be extended to the
Hubble flow itself. In contrast, in the 1D universe, the
Zel’dovich approximation is actually exact (before shell
crossing), and it applies both at the level of the background
and of the density perturbations. An alternative dynamics,
which is exact at the background level and provides
analytical results on small nonlinear scales, is the spherical
collapsemodel. However, this yields a very different density
field than the actual one, as there is a single central
density fluctuation that breaks statistical homogeneity and
density correlations are no longer invariant through trans-
lations. Therefore, although it should be possible to obtain
some consistency relations for thismodel, theywould have a
rather different form, and this 1D spherical model would be
even farther from the actual universe than the 1D statistically
homogeneous model studied in this section.

VII. SIMULATIONS

The angular-averaged consistency relations (37)–(41) are
valid at all orders of perturbation theory and also beyond
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the perturbative regime, including shell-crossing effects,
within the accuracy of the approximation Ωm=f2 ≃ 1 (and
as long as gravity is the dominant process). We have
explicitly confirmed them either perturbatively or non-
perturbatively, but the latter is limited to the one-
dimensional case.
It would thus be of great importance to further check

these relations in three dimensions nonperturbatively. We
exploit here a series ofN-body simulations for this purpose.
As can be seen in the following, they are also useful to
understand the possible breakdown of the relations and test
the validity of the ansatz employed in the measurement in
practical situations. We first summarize how we can
evaluate the derivative terms in the consistency relations.
We then present the numerical results for the bispectrum
together with a brief description of the simulations
themselves.

A. Derivatives from numerical simulations

The consistency relation (43) involves derivatives with
respect to Dþ and f. They can be obtained at once within
the framework of an explicit analytic model for the matter
density polyspectra. However, in this paper, we do not use
these relations to check a specific analytical model. Instead,
we wish to use numerical simulations to test these relations
(which are only approximate because of the approximation
Ωm=f2 ≃ 1). Nevertheless, we can also measure separately
the derivatives with respect to Dþ and f from the
simulations.
The redshift-space coordinate s can be written in terms of

the comoving coordinate x and peculiar velocity v as in
Eq. (30). As explained in Sec. III, within the approximation
Ωm=f2 ≃ 1 that is used to derive the consistency relations,
all time dependence can be absorbed in the linear growing
mode DþðtÞ with the change of variables (17). This means
that the fields fδ;u;φg are only functions of time through
Dþ, as well as the displacement field Ψðq; tÞ ¼ x − q,
where q is the Lagrangian coordinate of the particles. Thus,
for a given realization defined by the linear density field
δL0ðqÞ (normalized today or at the initial time of the
simulation), the redshift-space coordinate s depends on the
functions DþðtÞ and fðtÞ as

sðq; tÞ ¼ xðq; DþÞ þ furðq; DþÞer: ð74Þ

Therefore, a small changeΔf of the factor f corresponds to
a change of the redshift-space coordinate sðqÞ of the
particles given by

f → f þ Δf∶ s → sþ Δfurer ¼ sþ Δf
vr
_af

er: ð75Þ

On the other hand, from the equations of motion (19)–
(21), a change Δ lnDþ of the linear growing mode leads to
a change of the particle velocities and coordinates,

lnDþ → lnDþ þ Δ lnDþ∶ x → xþ Δ lnDþu;

u → u − Δ lnDþ

��
3Ωm

2f2
− 1

�
uþ∇φ

�
; ð76Þ

whence

s → sþ Δ lnDþ

�
u − f

��
3Ωm

2f2
− 1

�
ur þ

∂φ
∂r

�
er

�

¼ sþ Δ lnDþ

�
v
_af

−
��

3Ωm

2f2
− 1

�
vr
_a
þ 1

_a2f
∂ϕ
∂r

�
er

�
:

ð77Þ

Thus, to obtain the partial derivative of the power
spectrum with respect to f or lnDþ, we modify the particle
redshift-space coordinates by Eqs. (75) or (77), for a small
value of Δf or Δ lnDþ, and we compute the associated
power spectrum. Taking the difference from the initial
power spectrum and dividing by Δf or Δ lnDþ gives a
numerical estimate of ∂Ps=∂f or ∂Ps=∂ lnDþ.

B. Numerical results

We are now in a position to present the consistency
relations measured from simulations. Before that, let us
briefly describe the simulations used here. They are the
ones performed in Ref. [9]. Employing 10243 dark matter
particles in a periodic cube of ð2048 h−1MpcÞ3, the
gravitational dynamics was solved by the public simulation
code Gadget2 [44] starting from an initial condition set at
z ¼ 15 by solving second-order Lagrangian perturbation
theory [39,45,46]. The cosmological model used was a flat-
ΛCDM model consistent with the five-year observation of
the WMAP satellite [47]: Ωm¼0.279, Ωb¼0.165Ωm, h¼
0.701, As¼2.49×10−9, and ns¼0.96 at k0¼0.002Mpc−1.
This whole process was repeated 60 times with the initial
random phases varied to have a large ensemble of random
realizations.
The consistency relations have already been examined

and presented in real space in Ref. [28]. There, it was found
that the relation was consistent with the N-body simula-
tions within their statistical uncertainty at z ¼ 1, while a
discrepancy of the several percent level was found at
z ¼ 0.35. It was further discussed that this is presumably
due to the breakdown of the approximation Ωm=f2 ≃ 1; for
instance, we found that the relations better hold in
supplementary simulations done in the EdS background,
but with exactly the same initial perturbations. We focus
here on the lower redshift, z ¼ 0.35, at which the con-
sistency relations are the most nontrivial.

1. Full consistency relations

We first consider the redshift-space consistency relations
in their full form (48)–(49), with both derivative operators
∂=∂Dþ and ∂=∂f.
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Having already presented the methods we employ to
measure the derivative terms in the previous subsection,
the postprocessing for the simulation outputs is exactly the
same as in Ref. [28] except that we now consider the
particle positions in redshift space. The matter density field
is constructed with the Cloud-in-Cells (CIC) interpolation
on 10243 mesh cells, and subsequent computations are
based on the fast Fourier transform. The change in the
particle coordinates corresponding to a slight change in
lnDþ is also computed based on the calculation on the
same mesh cells for ∂ϕ=∂r and then interpolated to the
positions of particles using the CIC kernel [see Eq. (77)].
The monopole and the quadrupole moments of the

relation for the bispectra, Eqs. (48) and (49), are, respec-
tively, shown in the left and the right panels of Fig. 1. In
each panel, we fix the value of the larger wave number k
and plot the ratio of the two sides as a function of the
smaller wave number k0. The error bars are estimated based
on the scatter among the 60 independent realizations. They
thus correspond to the error level expected for an ideal
survey with a volume of ∼8 h−3Gpc3 when we can ignore
the shot-noise contamination. Overall, the ratio is close to
unity for both the monopole and quadrupole. From this
figure, we basically confirm the relations at the non-
perturbative level in the three-dimensional dynamics.

The dashed lines in Fig. 1 show the ratio of the measured
bispectrum to its tree-order predictions (67) and (68). For
the monopole, this lowest-order perturbative prediction
fares reasonably well as it only underestimates the non-
linear results by 30%, on these scales. However, it is
already less accurate than our result (48), which takes into
account higher-order and nonperturbative nonlinear cor-
rections (at the price of the approximationΩm=f2 ≃ 1). For
the quadrupole, the lowest-order perturbative prediction
does not appear in the panels at k ≥ 0.4 hMpc−1 because in
these cases it is out of range and actually gives the wrong
sign. This change of sign is likely due to the fingers-of-god
(FOG) effect, which is not captured by perturbation theory.
Indeed, it is well known that higher-order multipoles are
increasingly sensitive to small-scale nonlinear contribu-
tions, as FOG effects impart a strong angular dependence to
the bispectrum [32].
We can confirm this from Fig. 2; we remove most of the

FOG effect from the simulated density field in redshift
space by relocating all the member particles of friends-of-
friends halos to the centers of mass. We do this to one of our
60 realizations and measure the same angular-averaged
bispectra (symbols), which are compared with the original
measurement (solid lines) from the same realization. The
difference between the symbols and the lines is more
prominent for higher multipoles and on smaller scales. The

FIG. 1. Consistency-relation ratio for the redshift-space bis-
pectrum from N-body simulations. The circles with error bars
show our numerical measurements, while the dashed lines show
the ratio of the measured bispectrum to its tree-order predictions
(67) and (68). We omit the statistical errors on the dashed lines for
clarity, but they are very similar to those on the circles. Note that
the dashed lines fall out of the plotted range for the quadrupole
moment on small scales (k ≥ 0.4 hMpc−1), as they take the
wrong sign.

FIG. 2. Impact of the finger-of-god effect on the angular-
averaged bispectra. We show by the symbols the multipole
moments of the bispectra after the FOG removal with the
procedure explained in the text. The original measurement
without this compression is shown by the solid line. Note that
this exercise is done with one of our 60 realizations, and the result
from the same realization is shown for the original measurement
for a fair comparison.
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monopole moment differs by as much as a factor 5 at
k ¼ 1 hMpc−1 before and after the FOG removal, high-
lighting the importance of the FOG effect. The quadrupole
moment has a different sign in the two measurements
at k ¼ 0.4 hMpc−1, and the negative bispectrum on the
smaller scale is mostly damped when FOG is compressed
by hand.
In contrast to the perturbative calculation, our result (49)

remains consistent with the simulation data within 20% in
Fig. 1. This shows that we test the consistency relations in a
nontrivial regime, beyond the reach of standard perturba-
tion theory. Thus, the tradeoff between the error introduced
by the approximate symmetry of Sec. III and the advantage
of taking into account all nonlinear contributions, at both
perturbative and nonperturbative levels, is beneficial. This is
particularly true for complex statistics such as the redshift-
space quadrupole that are very sensitive to small-scale
highly nonlinear effects, which are difficult to include in
analytical modelings.
However, when we look into each panel more closely, we

can find that the data points are slightly off from unity. For
the monopole moment, the ratio tends to be larger than
unity at k≳ 0.4 hMpc−1. On the other hand, unity is within
the statistical error level for the quadrupole moment, though
the central values are larger (smaller) than unity on k≲
0.4 hMpc−1 (k≳ 0.8 hMpc−1). In most of the cases, the
deviation from unity is at most 20%, and this is meaningful
only when we measure the ratio very precisely; an ideal
survey with a volume of ∼8 h−3Gpc3 can detect the
deviation from unity only for the monopole moment on
small scales.
These deviations are somewhat greater than those found

in Ref. [28] in real space, which only reached 7% at
k ¼ 1 hMpc−1. This is not surprising because it is well
known that redshift-space statistics are more sensitive to
small nonlinear scales, for instance, through the fingers-of-
god effect, and low-order perturbation theory has a smaller
range of validity. Then, we can expect a greater violation of
the redshift-space consistency relations because the break-
down of the approximation Ωm=f2 ≃ 1 has a stronger
impact on higher perturbative orders. Indeed, absorbing the
time and cosmological dependence by DþðtÞ and fðtÞ is
exact at linear order, whereas higher orders involve new

functions DðnÞ
þ ðtÞ that are not exactly equal to DþðtÞn [4],

and the discrepancies may cumulate in the nonlinear
regime.
We then work on the supplemental simulations done in

the EdS background to understand the cause of this small
discrepancy, just as in our previous real-space paper [28].
Note that our consistency relations in an Einstein–de Sitter
cosmology also involve the approximate symmetry
described in Sec. III, even though Ωm=f2 ¼ 1 in the
EdS background. Indeed, what matters is not that Ωm=f2

is unity in the reference cosmology but that Ωm=f2 remain

(approximately) constant as we vary the background
curvature around the reference cosmology. Nevertheless,
the comparison between EdS and ΛCDM results provides a
simple estimate of the impact of our approximation because
the difference between these two cosmologies arises from
the change of the reference point along the Ωm=f2 curve.
The results from four realizations of such simulations are

shown in Fig. 3. Although the scatter of the data points is
larger than in Fig. 1, the systematic departure from unity in
the previous figure is clearly reduced. We thus conclude
that the small violation of the consistency relations for the
bispectrum can be explained by the breakdown of the
approximation Ωm=f2 ≃ 1 (more precisely, of constant
Ωm=f2 for nearby background curvatures), in agreement
with the discussions above.

2. fμ2 ansatz and reduction to ∂=∂Dþ operator

Now, we come back to the original ΛCDM simulations
and apply the ansatz that all the f and μ dependences
appear through the combination fμ2. This allows us to
replace the f derivatives, ∂=∂f, by μ2 derivatives, ∂=∂μ2,
as in Eq. (50). This gives the approximated consistency
relations for the bispectrum, Eqs. (54) and (55), respec-
tively, for the monopole and quadrupole moment, which we
plot in Fig. 4. In contrast with the exact form of the
consistency relations, given by Eqs. (48) and (49) and
displayed in Fig. 1, the right-hand side now involves an
infinite summation over all Legendre multipoles of the

FIG. 3. Same as Fig. 1, but for the simulations performed in
EdS background expansion. Note that we have only four
realizations for the EdS simulation, and this is the reason why
we have a larger statistical error than in Fig. 1.
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redshift-space power spectrum. Here, we truncate these
series at order Ps

2 (circles) or Ps
4 (solid lines).

The difference between the symbols and the lines is
negligible at k ¼ 0.2 and 0.4 hMpc−1 for the monopole and
k ¼ 0.2 hMpc−1 for the quadrupole moment, where the
ratio itself is roughly consistent with unity. As we move to
smaller scales, the symbols and the lines become more
distinct. In those cases, adding the higher-order term (i.e.,
Ps
4) does not help to restore the relations, suggesting that

the ansatz is not a good approximation at the corresponding
scales. The plot suggests that the quadrupole moment is
more sensitive to the higher-order term and thus the ansatz
works less accurately than for the monopole moment. This
is naturally expected since the quadrupole moment is
impacted more strongly by higher-order corrections (see,
e.g., Ref. [48], where we can see how much higher-order
perturbative corrections affect the first two moments; these
corrections have terms μ2mfn, where m and n can be
different).

3. fμ2 ansatz and further reduction to ∂=∂a operator

The situation is basically the same after we further apply
the ansatz to replace the derivative with respect to Dþ by a
derivative with respect to time or the scale factor, as in
Eq. (52). As compared with the form displayed in Fig. 4,
this involves an additional approximation, which relies on
the same fμ2 ansatz because the full time derivative, or
scale-factor derivative, ∂=∂a, combines both theoretical

derivatives ∂=∂Dþ and ∂=∂f. Therefore, to replace the
operator ∂=∂Dþ by ∂=∂a, we must once again use the fμ2

ansatz to remove the new ∂=∂f terms generated by the
change of variable from Dþ to a.
Figure 5 shows the results of Eqs. (56) and (57). The

solid lines for the truncation at the Ps
4 order are now out of

the plotted range for the quadrupole moment on small
scales. The relation for the monopole moment is more
robust against this approximation ansatz on large scales,
especially at k ¼ 0.2 hMpc−1, and we can safely apply the
consistency relation here in the simplified form (56).
Except for this case, the ratio is affected significantly by
the ansatz and the order at which we truncate the infinite
summation on the right-hand side. Nevertheless, we note
that by truncating at order Ps

2 we obtain a good agreement,
better than 20% up to k ¼ 1 hMpc−1, for the monopole. For
the quadrupole, the deviation can reach up to 40%.
Therefore, even with the current ansatz, we can still

examine how the ratio behaves in the observations and
compare it with the simulation results. Since the data points
obtained with the truncation at order Ps

2 (i.e., circles) are
less noisy and moreover stay around unity after applying
the ansatz, the easiest check of the true gravitational
dynamics is to apply the same ansatz and truncate the
moments at this order. We would need a more involved
ansatz for the estimation of the derivative terms from
observations to extend the applicable range of these
consistency relations, and we leave this to a future study.

FIG. 4 (color online). Same as Fig. 1, but for Eqs. (54) and (55)
after applying the ansatz to rewrite the f-derivative terms. The
circles and the solid lines, respectively, show the ratio truncated at
Ps
2 and Ps

4.

FIG. 5 (color online). Same as Fig. 4, but for Eqs. (56) and (57)
after applying the ansatz once again to convert the Dþ-derivative
terms into the a derivatives. Note that the lines for the quadrupole
moment fall below (above) the plotted range at k ¼ 0.4 (0.6, 0.8
and 1.0) hMpc−1.
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VIII. SUMMARY

In this paper, we have generalized the equal-time
angular-averaged consistency relations for the cosmic
density field originally developed in real space by
Ref. [26] to redshift space, in which the actual observations
are taking place. These relations express the squeezed limit
of (nþ 1)-point correlation functions or polyspectra, with
n small-scale modes (that can be in the nonlinear regime)
and one large-scale mode (in the linear regime at a much
larger scale than all other n wave numbers), in terms of the
n-point correlation of the small-scale modes. These rela-
tions can be generalized to (nþ l) correlations, with l
large-scale modes, as in Ref. [26], but we focused here on
the case of one large-scale mode. The explicit forms that we
have obtained rely on an approximate symmetry of the
dynamics, Ωm=f2 ≃ 1. However, within this approxima-
tion, they are valid at a fully nonlinear level. Thus, they
hold at all orders of perturbation theory and also in the
nonperturbative regime, beyond shell crossing. In particu-
lar, they include both the large-scale Kaiser effect [35],
associated with the infall of matter within large-scale
gravitational wells, and the fingers-of-god effect [34],
associated with the virial motions inside collapsed halos.
We have found that, because the mapping from the real to

redshift space involves the velocity component along the
radial direction, the form of these consistency relations is
slightly more complex than in real space, as it involves two
types of time derivatives. The first is a derivativewith respect
to the linear growing mode DþðtÞ, which also appeared in
the real-space case. The second is a derivativewith respect to
the linear growth rate, fðtÞ ¼ d lnDþ=d ln a. This differ-
ential operator, ∂=∂f, did not appear in the real-space case,
and it arises from the scaling of the peculiar velocity field
(i.e., through the change of variable from v to u, where u is
the rescaled velocity field that makes use of the approximate
symmetry of the dynamics). This feature makes it more
difficult to use these relations for observations because at
best we can only measure one time derivative, ∂=∂t, which
combines both ∂=∂Dþ and ∂=∂f, and we cannot measure
these two derivatives separately. However, these relations
can still be used to check analytical models or numerical
simulations, where we can explicitly compute these two
derivatives.
Next, we have tested these consistency relations both

analytically and numerically. First, at the leading order of
perturbation theory, we have checked the lowest-order
consistency relation, which expresses the squeezed limit
of the bispectrum in terms of the nonlinear power spectrum
of the small-scale modes. Second, in a fully nonlinear
and nonperturbative analysis, we have checked all these
consistency relations at all orders, in the simpler one-
dimensional case, where we can use the exact Zel’dovich
solution of the dynamics.
We have also tested the lowest-order consistency

relations, relating the nonlinear bispectrum and power

spectrum, with numerical simulations. We find a reason-
ably good agreement at z ¼ 0.35. Projecting the angular
dependence of the redshift-space polyspectra onto
Legendre polynomials, we find a good agreement for the
monopole up to k≲ 0.4 hMpc−1, and we detect a small
deviation of at most 20% for k ≤ 1 hMpc−1. For the
quadrupole, we do not detect significant deviations (but
the statistical error bars are slightly larger). In the case of an
Einstein–de Sitter cosmology, we find that these deviations
are greatly reduced and our numerical data agree with
theoretical predictions. Therefore, the small deviations
found in the ΛCDM cosmology can be explained by the
finite accuracy of the approximation Ωm=f2 ≃ 1.
The typical magnitude of these deviations is larger and

extends over a wider wave number range than for the real-
space consistency relations [28]. This is consistent with the
observation that the nonlinearity in the cosmic velocity
field is more sensitive to the local nonlinear structure on
small scales, as small-scale effects can easily propagate to
larger scales through the nonlinear mapping from the real to
the redshift space. Indeed, it is well known that the
perturbation-theory prediction of the matter power spec-
trum is more difficult in redshift space [4]. Then, because
nonlinear effects are likely to amplify the breakdown of the
approximation Ωm=f2 ≃ 1, violations of the consistency
relations due to the breakdown of this approximate sym-
metry are indeed expected to be greater in redshift space.
On the other hand, we find that our results for the

bispectrum provide a significant improvement over lowest-
order perturbation theory, especially for the quadrupole
where the perturbative prediction even gives the wrong sign
for k ≥ 0.4 hMpc−1. This is a signature of the strong impact
of small-scale nonlinearities onto redshift-space statistics,
which is usually difficult to model analytically. In particu-
lar, by comparing our results with density fields where the
fingers-of-god effect is removed by replacing particles by
their host halo, we find that we can probe scales where the
fingers-of-god effects are important and can even change
the sign of the quadrupole. This shows that we test the
consistency relations in a nontrivial regime, beyond low-
order perturbation theory. It also shows the interest of these
nonlinear relations, as the inaccuracy introduced by the
approximate symmetry Ωm=f2 ≃ 1 is more than compen-
sated by the account of higher-order and nonperturbative
nonlinear contributions. This can be even more beneficial
for statistics such as the redshift-space quadrupole that are
sensitive to highly nonlinear effects that are difficult
to model.
To make the connection with observations, or to simplify

the form of these consistency relations, we also tested a
simple ansatz that allows one to remove the new operator
∂=∂f. This relies on the approximation that f and μ2 only
enter the redshift-space power spectrum through the com-
bination fμ2 (this is exact at linear order, in the Kaiser
effect). A first step allows us to remove the operator ∂=∂f,
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which only leaves the operators ∂=∂Dþ and ∂=∂k in
multipole space. The drawback is that the right-hand side
of each consistency relation now involves an infinite series
over multipoles of all orders. We find that this approxi-
mation gives rise to an additional source of discrepancy
between the numerical data and the analytic predictions,
especially for the quadrupole. Moreover, the result depends
on the order at which we truncate the multipole series in the
right-hand side. It turns out that better results are obtained
when we truncate at the lowest-order Ps

2. This suggests that
the fμ2 ansatz does not faithfully describe higher pertur-
bative or nonperturbative orders.
In a second step, we use once more the fμ2 ansatz to

replace the operator ∂=∂Dþ by the full time derivative, or
scale-factor derivative ∂=∂a. As could be expected, we find
that this further increases the deviation from the numerical
simulation data and the dependence on the truncation order,
especially for the quadrupole.
Nevertheless, we find that using the fμ2 ansatz and

truncating at order Ps
2 we obtain an agreement that is better

than 20% up to k ¼ 1 hMpc−1 for the monopole. For the
quadrupole, the deviation can reach 40%. Although these
limitations make the accessible range of these consistency
relations rather narrow, we can still make use of them to
predict the higher-order polyspectra. There is substantial
recent progress on the redshift-space clustering, but the
calculations are mostly limited to the power spectrum (e.g.,
Refs. [33,48–52]). Using the relations developed here, one
can compute, for instance, the angular-averaged bispectrum
in redshift space by substituting these formulas for the
power spectrum. Since the relations approximately hold
down to very small scales, albeit not perfectly, they can be
useful in estimating the covariance matrices of the redshift-
space observables (we need the trispectrum to compute the
matrix for the power spectrum). Indeed, the accuracy
required for the covariance matrices might not be as
demanding as that for the spectra themselves. A study
along this line is undergoing now, and we wish to present
the results elsewhere in the near future.
Amore complex issue is the problem of biasing, when we

wish to connect measures from galaxy surveys with theo-
retical predictions. In principle, the approximate symmetry
Ωm=f2 ≃ 1 that we used to obtain explicit expressions no
longer applies once we take into account galaxy formation
physics. Indeed, baryonic processes (cooling, star forma-
tion, etc.) involve new characteristic scales that explicitly
break the symmetry of the dynamics. Then, a priori it is no
longer possible to absorb the time dependence of the
dynamics by a simple rescaling that only involves the linear
growingmode. Therefore, the relationswe have obtained are
not guaranteed to apply to the galaxy density field itself, by
making the naive replacement δ → δg. One should rather use
these relations as constraints on the matter density field and,
given a supplementary model that relates the galaxy field to
the dark matter density field, derives the consequences onto

the galaxy density field. Of course, this would depend on the
model that is used to describe galaxy formation and
introduce an additional approximation. We leave such a
study for future works.
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APPENDIX A: 1D EXAMPLE

As for the real-space consistency relations [26], it is
interesting to check the redshift-space consistency relations
(37)–(41) obtained in this paper by using a simple one-
dimensional example that can be exactly solved. This is
again provided by the Zel’dovich dynamics [43], which is
exact in one dimension (before shell crossing).

1. 1D equations of motion

The 1D version of Eqs. (13)–(15) reads as [26]

∂δ
∂t þ

1

a
∂
∂x ½ð1þ δÞv� ¼ 0; ðA1Þ

∂v
∂t þHvþ 1

a
v
∂v
∂x ¼ −

1

a
∂ϕ
∂x ; ðA2Þ

∂2ϕ

∂x2 ¼ 4πGðtÞρ̄a2δ: ðA3Þ

Here, we generalized the 1D gravitational dynamics to the
case of a time-dependent Newton’s constant GðtÞ. This
allows us to obtain ever-expanding cosmologies, similar to
the 3D Einstein–de Sitter cosmology, for power-law cases
GðtÞ∝tα with −2<α<−1 [and aðtÞ∝tαþ2, ρ̄ðtÞ ∝ 1=aðtÞ ∝
t−ðαþ2Þ].
Linearizing these equations, we obtain the evolution

equation of the linear modes of the density contrast. It takes
the same form as the usual 3D equation (16), D̈þ
2HðtÞ _D − 4πGðtÞρ̄ðtÞD ¼ 0, but with a time-dependent
Newton’s constant and the 1D scale factor aðtÞ.
In a fashion similar to the change of variables (17), we

make the change of variables

η ¼ lnDþ; v ¼ _afu; ϕ ¼ ð _afÞ2φ; with

f ¼ a _Dþ
_aDþ

; ðA4Þ

and we obtain the rescaled equations of motion
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∂δ
∂ηþ

∂
∂x ½ð1þ δÞu� ¼ 0; ðA5Þ

∂u
∂η þ ½κðtÞ − 1�uþ u

∂u
∂x ¼ −

∂φ
∂x ; ðA6Þ

∂2φ

∂x2 ¼ κðtÞδ; ðA7Þ

where we introduced the factor κðtÞ defined by

κðtÞ ¼ 4πGðtÞρ̄ðtÞDþðtÞ2
_DþðtÞ2

: ðA8Þ

Thus, κðtÞ plays the role of the ratio 3Ωm=ð2f2Þ encoun-
tered in the 3D case in Eqs. (19)–(21). Then, the 3D
approximation Ωm=f2 ≃ 1 used in the main text corre-
sponds in our 1D toy model to the approximation κ ≃ κ0.
That is, we neglect the dependence of κ on the cosmological
parameters and time, and the dependence on the background
is fully contained in the change of variables (A4). [The
generalization to the case of a time-dependent Newton’s
constant is not important at a formal level because it does not
modify the form of the equations of motion. However, it is
necessary for this approximate symmetry to make practical
sense so that we can find a regime where κ is approximately
constant. This corresponds to cosmologies close to the
Einstein–de Sitter-like expansion aðtÞ ∝ tαþ2, in the case
GðtÞ ∝ tα with −2 < α < −1.]
The fluid equations (A5)–(A7) only apply to the

single-stream regime, but we can again go beyond shell
crossings by using the equation of motion of trajectories,
which reads as

∂2x
∂η2 þ ½κðtÞ − 1� ∂x∂η ¼ −

∂φ
∂x ; ðA9Þ

where φ is the rescaled gravitational potential (A7). This is
the 1D version of Eq. (22), and it explicitly shows that
particle trajectories obey the same approximate symmetry,
before and after shell crossings.

2. 1D background density perturbation

To derive the 1D consistency relations, we follow the
method described in the main text for the 3D case; see also
the Appendix in Ref. [26]. As in Eq. (23), we consider two
universes with close cosmological parameters, a0ðtÞ ¼
aðtÞ½1 − ϵðtÞ� and ρ̄0ðtÞ ¼ ρ̄ðtÞ½1þ ϵðtÞ�. Substituting into
the 1D Friedmann equation, we again find that ϵðtÞ obeys
the same equation as the 1D linear growing mode DþðtÞ,
and we can write ϵðtÞ ¼ ϵ0DþðtÞ.

Next, the change of frame described in Eq. (26) becomes

x0 ¼ ð1þ ϵÞx; δ0 ¼ δ − ϵð1þ δÞ; v0 ¼ vþ _ϵax;

ðA10Þ

and at linear order over both δ and ϵ, we have δL ¼ δ0L þ ϵ.
This means that the background density perturbation ϵ is
again absorbed by the change of frame, with ϵ0 ¼ ΔδL0.
The redshift-space coordinate s now transforms as

s0 ¼
�
1þ ϵþ _ϵ

H

�
s: ðA11Þ

Then, as in Eq. (29), the redshift-space density contrast in
the actual unprimed frame, with the uniform overdensity
ΔδL0, is written as

k ≠ 0∶ ~δsϵ0ðk; tÞ ¼ ~δs½ð1 − ϵ − _ϵ=HÞk;Dþϵ0 ; fϵ0 �; ðA12Þ

where we disregarded the Dirac factor that does not
contribute for wave numbers k ≠ 0. Therefore, the deriva-
tive of the redshift-space density contrast with respect to ϵ0
reads as

∂ ~δsðk; tÞ
∂ϵ0 ¼ ∂Dþϵ0

∂ϵ0
∂ ~δs
∂Dþ

þ ∂fϵ0
∂ϵ0

∂ ~δs
∂f − ð1þ fÞDþk

∂ ~δs
∂k :

ðA13Þ
As shown in Ref. [26], the derivative of the linear growing

mode is ∂Dþ=∂ϵ0¼D2þ, which means that D0þ ¼ Dþþ
ϵ0D2þ. Then, using a0 ¼ a − ϵ0Dþa and the definition (A4)
for f and f0, we obtain f0 ¼ f þ fðϵþ _ϵ=HÞ, whence
∂Dþϵ0

∂ϵ0
����
ϵ0¼0

¼ D2þ;
∂fϵ0
∂ϵ0

����
ϵ0¼0

¼ fDþð1þ fÞ: ðA14Þ

Therefore, Eq. (A13) gives Eq. (71).

3. 1D consistency relations

Using the result (71), the 1D version of the consistency
relations (37) is written as

1

2

X
�k0

h~δL0ðk0Þ~δsðk1; t1Þ…~δsðkn; tnÞi0k0→0

¼PL0ðk0Þ
Xn
i¼1

Dþi

�
1þfi
n

þ ∂
∂ lnDþi

þð1þfiÞfi
∂
∂fi

− ð1þfiÞ
Xn
j¼1

�
δKi;j−

1

n

�
ki

∂
∂kj

�
h~δsðk1; t1Þ…~δsðkn; tnÞi0:

ðA15Þ

The 3D angular average
R
dΩk0=ð4πÞ of Eq. (37) is replaced

by the 1D average 1
2

P
�k0 over the two directions of k0 (i.e.,
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the two signs of k0).We again defined the reduced polyspectra
as in Eq. (38), h~δsðk1Þ…~δsðknÞi ¼ h~δsðk1Þ…~δsðknÞi0×
δDðk1 þ…þ knÞ.
On large scales, we recover the linear theory, with

~δsðk0; t0Þ≃Dþðt0Þð1þ f0Þ~δL0ðk0Þ, and Eq. (A15) is also
written as

1

2

X
�k0

�
~δsðk0; t0Þ
1þf0

~δsðk1; t1Þ…~δsðkn; tnÞ
�0

k0→0

¼PLðk0; t0Þ
Xn
i¼1

Dþi

D0þ

�
1þfi
n

þ ∂
∂ lnDþi

þð1þfiÞfi
∂
∂fi

− ð1þfiÞ
Xn
j¼1

�
δKi;j−

1

n

�
ki

∂
∂kj

�
h~δsðk1; t1Þ…~δsðkn; tnÞi0:

ðA16Þ

When all times are equal, t0 ¼ t1 ¼ … ¼ tn ≡ t, this
simplifies as Eq. (72).

4. Zel’dovich solution

In the 1D case, the Zel’dovich approximation is exact
until shell crossing [26,43]. It corresponds to taking for the
particle trajectories the linear prediction

xðq; tÞ ¼ qþΨLðq; tÞ ðA17Þ

with

ΨLðqÞ ¼ i
Z þ∞

−∞

dk
k
eikq ~δLðk; tÞ: ðA18Þ

Therefore, the redshift-space coordinate (69) is written as
(using v ¼ a_x)

s ¼ qþ ð1þ fÞΨL ðA19Þ

and the redshift-space nonlinear density contrast (70)
as Eq. (73).

5. Check of the 1D consistency relations

a. Impact of a large-scale perturbation on the
nonlinear redshift-space density contrast

To check the validity of the 1D consistency relations
from the exact solution (73), we simply need the change of
the nonlinear redshift-space density contrast ~δsðkÞ when we
make a small perturbation ΔδL0 to the initial conditions on
much larger scales. Let us consider the impact of a small
large-scale perturbationΔδL0 to the initial conditions. Here,
we also restrict to even perturbations, Δ~δL0ð−k0Þ ¼
Δ~δL0ðk0Þ, as the consistency relations studied in this paper
apply to spherically averaged statistics, which correspond
to the �k0 averages in the 1D relations (A15)–(A16). Then,

expanding Eq. (73) up to first order over ΔδL0, and over
powers of k0, we obtain

k0 → 0∶ Δ~δsðkÞ ¼ ð1þfÞDþ

�Z
dk0Δ~δL0ðk0Þ

�

×
Z

dq
2π

e−ikqþkð1þfÞDþ
R

dk00
k00 e

ik00q ~δL0ðk00ÞðikqÞ:

ðA20Þ

Here, the limit k0 → 0 means that we consider a perturba-
tion of the initial conditions Δ~δL0ðk0Þ that is restricted to
low wave numbers, k0 < Λ, with a cutoffΛ that goes to zero
(i.e., that is much smaller than the wave numbers k and
2π=q of interest).
On the other hand, from the expression (73), we obtain at

once the exact result

∂ ~δs
∂ lnDþ

þ ð1þ fÞf ∂ ~δ
s

∂f − ð1þ fÞk ∂ ~δ
s

∂k
¼

Z
dq
2π

e−ikqekð1þfÞDþ
R

dk00
k00 e

ik00q ~δL0ðk00Þð1þ fÞðikqÞ:

ðA21Þ

The comparison with Eq. (A20) gives

k0 → 0∶ Δ~δsðkÞ ¼ Dþ

�Z
dk0Δ~δL0ðk0Þ

�� ∂ ~δsðkÞ
∂ lnDþ

þ ð1þ fÞf ∂ ~δ
sðkÞ
∂f − ð1þ fÞk ∂ ~δ

sðkÞ
∂k

�
:

ðA22Þ

The consistency relations (A15)–(A16) and (72) only
rely on the expression (71), which also reads (at linear order
over ϵ0) as

Δ~δsðkÞ ¼ ϵ0Dþ

� ∂ ~δsðkÞ
∂ lnDþ

þ ð1þ fÞf ∂ ~δ
sðkÞ
∂f

− ð1þ fÞk ∂ ~δ
sðkÞ
∂k

�
: ðA23Þ

Since we have ϵ0 ¼ ΔδL0 ¼
R
dk0Δ~δL0ðk0Þ, we recover

Eq. (A22). This provides an explicit check of Eq. (71),
and hence of the 1D consistency relations.

b. Explicit check on the redshift-space
density polyspectra

Instead of looking for the impact of a large-scale
linear perturbation on the nonlinear density contrast, as in
Sec. A 5 a, we can directly check the consistency relations
in their form (A15) or (72). Considering for simplicity
the equal-time polyspectra (72), we define the mixed
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polyspectra, formed by one linear density contrast and n
nonlinear redshift-space density contrasts,

Es
nðk0; k1;…; kn; tÞ≡ h~δLðk0; tÞ~δsðk1; tÞ…~δsðkn; tÞi

¼ Dþ

�
~δL0ðk0Þ

Z
dq1…dqn
ð2πÞn e−i

P
n
j¼1

kjqj

× eð1þfÞDþ
R

dk=k~δL0ðkÞ
P

n
j¼1

kje
ikqj

�
;

ðA24Þ

where in the last expression we used Eq. (73). The Gaussian
average over the initial conditions ~δL0 gives

Es
n ¼ −

PLðk0Þ
k0

ð1þ fÞ
Z

dq1…dqn
ð2πÞn

Xn
j¼1

kje−ik
0qj

× e−i
P

n
j¼1

kjqj−ð1þfÞ2D2
þ=2

R
dk=k2PL0ðkÞj

P
n
j¼1

kje
ikqj j2 :

ðA25Þ

Making the changes of variable q1 ¼ q01 þ qn;…; qn−1 ¼
q0n−1 þ qn, the argument of the last exponential does not
depend on qn. Then, the integration over qn yields a Dirac
factor δDðk0 þ k1 þ…þ knÞ, that we factor out by defining
Es
n ¼ Es0

n δDðk0 þ k1 þ…þ knÞ, with a primed notation as
in Eq. (38), and we replace kn by −ðk0 þ k1 þ…þ kn−1Þ.
Finally, in the limit k0 → 0, we expand the terms e−ik

0qj up to
first order over k0, and we obtain

k0 → 0∶ Es0
n ¼ PLðk0Þð1þ fÞ

Z
dq1…dqn−1
ð2πÞn−1

×

�
1þ i

Xn−1
j¼1

kjqj

�
e−i

P
n−1
j¼1

kjqj

× e−ð1þfÞ2D2
þ=2

R
dk=k2PL0ðkÞj

P
n−1
j¼1

kjðeikqj−1Þj2 :

ðA26Þ

Proceeding in the same fashion, the n-point redshift-
space polyspectra read as

Ps
n ≡ h~δsðk1; tÞ…~δsðkn; tÞi0

¼
Z

dq1…dqn−1
ð2πÞn−1 e−i

P
n−1
j¼1

kjqj

× e−ð1þfÞ2D2
þ=2

R
dk=k2PL0ðkÞj

P
n−1
j¼1

kjðeikqj−1Þj2 : ðA27Þ

Then, we can explicitly check from the comparison with
Eq. (A26) that we have the relation

k0 → 0∶ Es0
n ¼ PLðk0Þ

�
1þ f þ ∂

∂ lnDþ
þ ð1þ fÞf ∂

∂f
− ð1þ fÞ

Xn−1
i¼1

∂
∂ ln ki

�
Ps
n; ðA28Þ

and we recover the consistency relation (72). [In Eq. (A28),
the right-hand side does not involve kn because it has been
replaced by −ðk1 þ…þ kn−1Þ in Eq. (A27), using the
Dirac factor δDðk1 þ…þ knÞ.]

[1] A. Albrecht et al., arXiv:astro-ph/0609591.
[2] R. Laureijs et al., arXiv:1110.3193.
[3] M. H. Goroff, B. Grinstein, S.-J. Rey, and M. B. Wise,

Astrophys. J. 311, 6 (1986).
[4] F.Bernardeau, S.Colombi,E.Gaztañaga, andR.Scoccimarro,

Phys. Rep. 367, 1 (2002).
[5] M. Crocce and R. Scoccimarro, Phys. Rev. D 73, 063519

(2006).
[6] P. Valageas, Astron. Astrophys. 465, 725 (2007).
[7] M. Pietroni, J. Cosmol. Astropart. Phys. 10 (2008)

036.
[8] F. Bernardeau, M. Crocce, and R. Scoccimarro, Phys. Rev.

D 78, 103521 (2008).
[9] A. Taruya, F. Bernardeau, T. Nishimichi, and S. Codis,

Phys. Rev. D 86, 103528 (2012).
[10] M. Crocce, R. Scoccimarro, and F. Bernardeau, Mon. Not.

R. Astron. Soc. 427, 2537 (2012).
[11] F. Bernardeau, N. Van de Rijt, and F. Vernizzi, Phys. Rev. D

87, 043530 (2013).

[12] P. Valageas, T. Nishimichi, and A. Taruya, Phys. Rev. D 87,
083522 (2013).

[13] M. Pietroni, G. Mangano, N. Saviano, and M. Viel,
J. Cosmol. Astropart. Phys. 01 (2012) 019.

[14] D. Baumann, A. Nicolis, L. Senatore, and M. Zaldarriaga,
J. Cosmol. Astropart. Phys. 07 (2012) 051.

[15] J. J. M. Carrasco, S. Foreman, D. Green, and L. Senatore,
J. Cosmol. Astropart. Phys. 07 (2014) 057.

[16] T. Baldauf, L. Mercolli, M. Mirbabayi, and E. Pajer,
J. Cosmol. Astropart. Phys. 05 (2015) 007.

[17] A. Kehagias and A. Riotto, Nucl. Phys. B873, 514 (2013).
[18] M. Peloso and M. Pietroni, J. Cosmol. Astropart. Phys. 05

(2013) 031.
[19] P. Creminelli, J. Noreña, M. Simonović, and F. Vernizzi,

J. Cosmol. Astropart. Phys. 12 (2013) 025.
[20] A. Kehagias, J. Noreña, H. Perrier, and A. Riotto, Nucl.

Phys. B883, 83 (2014).
[21] M. Peloso and M. Pietroni, J. Cosmol. Astropart. Phys. 04

(2014) 011.

TAKAHIRO NISHIMICHI and PATRICK VALAGEAS PHYSICAL REVIEW D 92, 123510 (2015)

123510-20

http://arXiv.org/abs/astro-ph/0609591
http://arXiv.org/abs/1110.3193
http://dx.doi.org/10.1086/164749
http://dx.doi.org/10.1016/S0370-1573(02)00135-7
http://dx.doi.org/10.1103/PhysRevD.73.063519
http://dx.doi.org/10.1103/PhysRevD.73.063519
http://dx.doi.org/10.1051/0004-6361:20066832
http://dx.doi.org/10.1088/1475-7516/2008/10/036
http://dx.doi.org/10.1088/1475-7516/2008/10/036
http://dx.doi.org/10.1103/PhysRevD.78.103521
http://dx.doi.org/10.1103/PhysRevD.78.103521
http://dx.doi.org/10.1103/PhysRevD.86.103528
http://dx.doi.org/10.1111/j.1365-2966.2012.22127.x
http://dx.doi.org/10.1111/j.1365-2966.2012.22127.x
http://dx.doi.org/10.1103/PhysRevD.87.043530
http://dx.doi.org/10.1103/PhysRevD.87.043530
http://dx.doi.org/10.1103/PhysRevD.87.083522
http://dx.doi.org/10.1103/PhysRevD.87.083522
http://dx.doi.org/10.1088/1475-7516/2012/01/019
http://dx.doi.org/10.1088/1475-7516/2012/07/051
http://dx.doi.org/10.1088/1475-7516/2014/07/057
http://dx.doi.org/10.1088/1475-7516/2015/05/007
http://dx.doi.org/10.1016/j.nuclphysb.2013.05.009
http://dx.doi.org/10.1088/1475-7516/2013/05/031
http://dx.doi.org/10.1088/1475-7516/2013/05/031
http://dx.doi.org/10.1088/1475-7516/2013/12/025
http://dx.doi.org/10.1016/j.nuclphysb.2014.03.020
http://dx.doi.org/10.1016/j.nuclphysb.2014.03.020
http://dx.doi.org/10.1088/1475-7516/2014/04/011
http://dx.doi.org/10.1088/1475-7516/2014/04/011


[22] P. Creminelli, J. Gleyzes, M. Simonović, and F. Vernizzi,
J. Cosmol. Astropart. Phys. 02 (2014) 051.

[23] P. Valageas, Phys. Rev. D 89, 083534 (2014).
[24] P. Creminelli, J. Gleyzes, L. Hui, M. Simonović, and F.

Vernizzi, J. Cosmol. Astropart. Phys. 06 (2014) 009.
[25] A.Kehagias, A.MoradinezhadDizgah, J. Noreña, H. Perrier,

and A. Riotto, J. Cosmol. Astropart. Phys. 08 (2015) 018.
[26] P. Valageas, Phys. Rev. D 89, 123522 (2014).
[27] A. Kehagias, H. Perrier, and A. Riotto, Mod. Phys. Lett. A

29, 1450152 (2014).
[28] T. Nishimichi and P. Valageas, Phys. Rev. D 90, 023546

(2014).
[29] C.-T. Chiang, C. Wagner, F. Schmidt, and E. Komatsu,

J. Cosmol. Astropart. Phys. 05 (2014) 048.
[30] I. Ben-Dayan, T. Konstandin, R. A. Porto, and L. Sagunski,

J. Cosmol. Astropart. Phys. 02 (2015) 026.
[31] C. Wagner, F. Schmidt, C.-T. Chiang, and E. Komatsu,

J. Cosmol. Astropart. Phys. 08 (2015) 042.
[32] R. Scoccimarro, H. M. P. Couchman, and J. A. Frieman,

Astrophys. J. 517, 531 (1999).
[33] R. Scoccimarro, Phys. Rev. D 70, 083007 (2004).
[34] J. C. Jackson, Mon. Not. R. Astron. Soc. 156, 1P (1972).
[35] N. Kaiser, Mon. Not. R. Astron. Soc. 227, 1 (1987).
[36] A. N. Taylor and A. J. S. Hamilton, Mon. Not. R. Astron.

Soc. 282, 767 (1996).

[37] P. Valageas, Astron. Astrophys. 526, A67 (2011).
[38] P. J. E. Peebles, The Large-Scale Structure of the Universe

(Princeton University, Princeton, NJ, 1980).
[39] M. Crocce, S. Pueblas, and R. Scoccimarro, Mon. Not. R.

Astron. Soc. 373, 369 (2006).
[40] P. Valageas, Astron. Astrophys. 484, 79 (2008).
[41] T. Baldauf, U. Seljak, L. Senatore, and M. Zaldarriaga,

J. Cosmol. Astropart. Phys. 10 (2011) 031.
[42] F. R. Bouchet, R. Juszkiewicz, S. Colombi, and R. Pellat,

Astrophys. J. Lett. 394, L5 (1992).
[43] Y. B. Zel’Dovich, Astron. Astrophys. 5, 84 (1970).
[44] V. Springel, Mon. Not. R. Astron. Soc. 364, 1105 (2005).
[45] R. Scoccimarro, Mon. Not. R. Astron. Soc. 299, 1097

(1998).
[46] T. Nishimichi et al., Publ. Astron. Soc. Jpn. 61, 321 (2009).
[47] E. Komatsu et al., Astrophys. J. Suppl. Ser. 148, 119 (2003).
[48] A. Taruya, T. Nishimichi, and S. Saito, Phys. Rev. D 82,

063522 (2010).
[49] T. Matsubara, Phys. Rev. D 77, 063530 (2008).
[50] U. Seljak and P. McDonald, J. Cosmol. Astropart. Phys. 11

(2011) 039.
[51] E. Jennings, C. M. Baugh, and S. Pascoli, Mon. Not. R.

Astron. Soc. 410, 2081 (2011).
[52] B. A. Reid and M. White, Mon. Not. R. Astron. Soc. 417,

1913 (2011).

REDSHIFT-SPACE EQUAL-TIME ANGULAR-AVERAGED … PHYSICAL REVIEW D 92, 123510 (2015)

123510-21

http://dx.doi.org/10.1088/1475-7516/2014/02/051
http://dx.doi.org/10.1103/PhysRevD.89.083534
http://dx.doi.org/10.1088/1475-7516/2014/06/009
http://dx.doi.org/10.1088/1475-7516/2015/08/018
http://dx.doi.org/10.1103/PhysRevD.89.123522
http://dx.doi.org/10.1142/S0217732314501521
http://dx.doi.org/10.1142/S0217732314501521
http://dx.doi.org/10.1103/PhysRevD.90.023546
http://dx.doi.org/10.1103/PhysRevD.90.023546
http://dx.doi.org/10.1088/1475-7516/2014/05/048
http://dx.doi.org/10.1088/1475-7516/2015/02/026
http://dx.doi.org/10.1088/1475-7516/2015/08/042
http://dx.doi.org/10.1086/307220
http://dx.doi.org/10.1103/PhysRevD.70.083007
http://dx.doi.org/10.1093/mnras/156.1.1P
http://dx.doi.org/10.1093/mnras/227.1.1
http://dx.doi.org/10.1093/mnras/282.3.767
http://dx.doi.org/10.1093/mnras/282.3.767
http://dx.doi.org/10.1051/0004-6361/201015658
http://dx.doi.org/10.1111/j.1365-2966.2006.11040.x
http://dx.doi.org/10.1111/j.1365-2966.2006.11040.x
http://dx.doi.org/10.1051/0004-6361:20079071
http://dx.doi.org/10.1088/1475-7516/2011/10/031
http://dx.doi.org/10.1086/186459
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
http://dx.doi.org/10.1046/j.1365-8711.1998.01845.x
http://dx.doi.org/10.1046/j.1365-8711.1998.01845.x
http://dx.doi.org/10.1093/pasj/61.2.321
http://dx.doi.org/10.1086/377220
http://dx.doi.org/10.1103/PhysRevD.82.063522
http://dx.doi.org/10.1103/PhysRevD.82.063522
http://dx.doi.org/10.1103/PhysRevD.77.063530
http://dx.doi.org/10.1088/1475-7516/2011/11/039
http://dx.doi.org/10.1088/1475-7516/2011/11/039
http://dx.doi.org/10.1111/j.1365-2966.2011.19379.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19379.x

