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Gravity theories beyond general relativity typically predict dipolar gravitational emission by compact-
star binaries. This emission is sourced by “sensitivity” parameters depending on the stellar compactness.
We introduce a general formalism to calculate these parameters, and show that in shift-symmetric
Horndeski theories stellar sensitivities and dipolar radiation vanish, provided that the binary’s dynamics is
perturbative (i.e., the post-Newtonian formalism is applicable) and cosmological-expansion effects can be
neglected. This allows one to reproduce the binary-pulsar-observed orbital decay.
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General relativity (GR) is very successful at interpreting
gravity on a huge range of scales, field strengths, and
velocities. Nevertheless, evidence for dark matter and dark
energy may be interpreted as a breakdown of GR on
cosmological scales. Also, GR is intrinsically incompatible
with quantum field theory, and should be replaced, at high
energies, by a (still unknown) quantum theory of gravity.
Given this situation, guidance may come from experiments,
namely, those testing gravity in regimes involving strong
fields and/or relativistic speeds. These experiments include
measurements of the orbital decay of binary pulsars driven
by the emission of gravitational waves (GWs) [1] and
upcoming GW interferometers [2–4]. It is therefore crucial
to analyze gravitational emission in theories alternative
to GR.
Modified gravity theories typically generalize GR by

introducing extra gravitational fields nonminimally coupled
to the metric. An example is Fierz-Jordan-Brans-Dicke
(FJBD) gravity [5–7]; see, e.g., Ref. [8] for a recent review
of more theories. Often, even theories where no extra fields
are explicitly added [e.g., fðRÞ gravity] can be recast as GR
plus extra fields by a suitable change of variables. The extra
fields generally introduce “fifth forces,” and the motion of a
body free falling in a gravitational field will generally depend
on thebody’s nature.This effect can be suppressed forweakly
gravitating bodies by assuming that the extra gravitational
fields do not couple to matter directly; i.e., the equivalence
principle (EP) can be restored for weakly gravitating bodies
(“weak EP”). However, for bodies with strong self-gravity,
the extra fields will still effectively couple to matter (because
they are nonminimally coupled to the metric, which in turn is
coupled to matter via gravity). This coupling will be
increasingly important as the body’s gravitational binding
energy—which measures the “strength” of the body’s self-
gravity—increases. Indeed, the extra gravitational fields will
generally affect the body’s binding energy, and since in

relativistic theories all forms of energy gravitate, the body’s
gravitational mass will depend on the extra fields via the
binding energy. As such, the inertial mass may differ from
the gravitational mass if the binding energy’s contribution to
the latter is important. Indeed, possible deviations from the
“strong” EP (i.e., the universality of free fall for strongly
gravitating bodies) in modified gravity theories are typically
parametrized by the “sensitivities” [9]

sQA
¼ 1

M
∂M
∂QA

����
N;Σ

; ð1Þ

i.e., the derivatives of the gravitational massM relative to the
theory’s extra fieldsQA,whilekeeping thebody’s total baryon
numberN andentropyΣ fixed. (The sensitivities thusmeasure
the body’s response to changes in the local value ofQA.) For
weakly gravitating bodies to obey the weak EP, it must be
sQA

≈ 0. Indeed, if the extra fieldsQA do not couple to matter
directly, they only enter M via the binding energy, whose
contribution is negligible if the body’s self-gravity is weak.
The sensitivities enter both the conservative dynamics of

binary systems (e.g., the periastron precession) and the
dissipative one (i.e., GW emission). Their leading-order
dissipative effect is the emission of dipolar gravitational radi-

ation; i.e., binaries will produce GWs ϕ∼G=c3×O½ðsð1Þϕ −

sð2Þϕ Þ2�, where sð1Þϕ ; sð2Þϕ are the bodies’ sensitivities. This is a

−1 post-Newtonian (PN) effect, i.e., it is enhanced by ðv=cÞ−2
compared toGR (v being the binary’s relativevelocity), if sð1Þϕ ,

sð2Þϕ ∼ 1. Therefore, knowledge of the sensitivities is crucial to
verify the agreement between a theory and GWobservations
(binary-pulsar data or direct detections). For example, binary
pulsars have already placed strong constraints on Lorentz-
symmetry violations in gravity [10,11] and on certain scalar-
tensor theories [8,12,13], and even stronger bounds will be
possible with direct GW detections [14–16].
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Here, we generalize previous work in scalar-tensor
theories [17,18] and Lorentz-violating gravity [10,11] by
introducing a formalism to calculate the sensitivities of stars
(including pulsars) in generic theories.As an application,we
calculate them in the most general scalar-tensor theories
(“Horndeski theories” or “generalized galileons”) [19–21]
that have second-order field equations and are invariant
under a shift of the scalar fieldϕ, i.e.,ϕ → ϕþ const. These
theories have receivedmuch attention because some of them
provide a screening mechanism (the “Vainshtein mecha-
nism” [22,23]; see also Refs. [24,25]), which may permit
modifying gravity on cosmological scales (possibly repro-
ducing cosmological data without dark energy) while
recovering GR on small scales, where gravitational mod-
ifications would be “screened.” Another reason for interest
in these theories is that galileon interactions arise in the
decoupling limit of massive gravity [26,27].
We show that in shift-symmetric Horndeski theories

(SSHTs) stellar sensitivities vanish (this agrees with pre-
vious results for a specific theory of this class, i.e., Einstein-
dilaton Gauss-Bonnet gravity in the decoupling limit [28]),
and the leading-order GWemission matches that of GR.We
conclude that SSHTs reproduce existing binary-pulsar data
(provided that a PN expansion over Minkowski space is
adequate—i.e., the binary’s dynamics is perturbative—and
that cosmological-expansion effects can be neglected
[29–32]), but deviations might still appear for the sources
targeted by upcoming GW interferometers.
We use Latin (Greek) lower-case letters for space

(spacetime) indices, and capital Latin letters for indices
running on fields. Repeated indices denote summations,
and we assume c ¼ 1 and signature ð−;þ;þ;þÞ.
A general expression for the sensitivities.—Consider an

action

S ¼
Z

LðQA; ∂μQAÞd4x; ð2Þ

where QA are fields, and the corresponding field equations

∂μ

� ∂L
∂ð∂μQAÞ

�
−

∂L
∂QA

¼ 0: ð3Þ

A solution’s canonical mass-energy is

M ¼
Z

d3xðπA∂tQA − LÞ; ð4Þ

where πA ¼ ∂L=∂ð∂tQAÞ for brevity. For a solution with
πA∂tQA ¼ 0 [this is the case for, e.g., stationary solutions,
where ∂tQA ¼ 0, or solutions where some variables QA
depend on time, but πA ¼ 0; see, e.g., Eq. (8)], the mass is
then simply

M ¼ −
Z

d3xLðQA; ∂μQAÞ: ð5Þ

(We have checked that this mass matches the ADM mass,
both in GR and SSHTs; see also Ref. [33].) Consider a

neighboring solution, with πA∂tQA ¼ 0 and the same total
baryon number and entropy [cf. Eq. (1)]. The two solutions
represent the same star with different local values of the
fields QA, and their mass difference is

δM ¼ −
Z

d3x∂tðπAδQAÞ −
Z

d2Si
∂L

∂ð∂iQAÞ
δQA; ð6Þ

where δQA is the difference between the fields, d2Si is a
coordinate surface element, and we have used Gauss’s
theorem, as well as Eq. (3) to show that the bulk terms
vanish.
Because this result assumes an action with no derivatives

higher than first order, it would not seem to apply to GR,
since the Einstein-Hilbert action depends on second metric
derivatives. However, the latter enter the Einstein-Hilbert
action only through a total divergence; i.e., GR can be
described by a first-order “Einstein Lagrangian” Lg ¼ffiffiffiffiffiffi−gp

gμνðΓα
μλΓλ

να − Γλ
μνΓα

λαÞ=ð16πGÞ (see, e.g., Ref. [34]).
Besides the metric, in theories different from GR there
are other gravitational degrees of freedom, which
we denote by ϕA, and which we assume to be coupled
to the metric and its derivatives, i.e., with Lagrangian
LϕðϕA; ∂μϕA; gμν; ∂αgμνÞ. Moreover, the matter fields ψB

must couple minimally to the metric [i.e., with Lagrangian
LmðψB; ∂μψB; gμνÞ] to satisfy the weak EP. (The fields ϕA

and ψB are not necessarily scalars; they could represent,
e.g., the components of a vector or tensor.) Consider now a
stationary (i.e., time-independent) star in one such theory.
The mass difference between neighboring solutions is

δM ¼ −
Z

d2Si
∂Lg

∂ð∂igμνÞ
δgμν

−
Z

d3x∂tðπψB
δψBÞ −

Z
d2Si

∂Lm

∂ð∂iψBÞ
δψB

−
Z

d2Si
∂Lϕ

∂ð∂iϕAÞ
δϕA −

Z
d2Si

∂Lϕ

∂ð∂igμνÞ
δgμν; ð7Þ

where we have used ∂tðπgμνδgμνÞ ¼ ∂tðπϕA
δϕAÞ ¼ 0

because of stationarity. Note that we have not assumed
∂tðπψB

δψBÞ ¼ 0 [but only πψB
∂tψB ¼ 0, so that Eqs. (5)

and (6) hold], which will allow us to use this expression for
perfect-fluid stars.
The Lagrangian for a perfect fluid with equation of state

ρ ¼ ρðn; σÞ (ρ, n, and σ being the energy density, baryon-
number density, and entropy per particle, respectively) is
[35,36]

Lm ¼ −
ffiffiffiffiffiffi
−g

p
ρ − φ∂μJμ − θ∂μðσJμÞ − αA∂μðβAJμÞ; ð8Þ

where αA, βA, φ, and θ are scalars (αA can be interpreted
as Lagrangian coordinates). The fluid four-velocity is
defined as Uμ ¼ Jμ=jJj (with jJj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gμνJμJν
p

) and
n ¼ jJj= ffiffiffiffiffiffi−gp

; i.e., Jμ is the baryon-number density current
Jμ ¼ ffiffiffiffiffiffi−gp

nUμ. Variation with respect to gμν (keeping
Jμ;φ; θ; σ; αA, and βA fixed) gives the perfect-fluid
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stress-energy tensor, by using the first law of thermody-
namics n∂ρ=∂njσ ¼ pþ ρ (p being the pressure).
Variations with respect to Jμ;φ; θ; σ; αA, and βA yield

∂μJμ ¼ ∂μðσJμÞ ¼ Jμ∂μβA ¼ Jμ∂μαA ¼ 0;

hUμ ¼ −∂μφ − σ∂μθ − βA∂μαA; Uμ∂μθ ¼ T; ð9Þ
where h ¼ ðpþ ρÞ=n is the specific enthalpy, and we have
used ∂ρ=∂σjn ¼ nT (T being the temperature) from the
first law of thermodynamics. From these equations, it is
clear that φ and θ are Lagrange multipliers enforcing the
local baryon-number and entropy conservation, while βA
and αA are constant along the fluid lines. In addition, these
equations imply the conservation of the fluid stress-energy
tensor [35,36].
For a stationary fluid, we can adopt comoving coordi-

nates where Ui ¼ Ji ¼ 0. Therefore, the third term in
Eq. (7) vanishes (since δJi ¼ 0), while the second becomes

−
Z

d3x∂tðπψB
δψBÞ

¼
Z

d3x∂t½φδJt þ θδðσJtÞ þ αAδðβAJtÞ�

¼ −
Z

d3x½ðh − σTÞUtδJt þ TUtδðσJtÞ�; ð10Þ

where we have used ∂tαA¼∂tβ
A¼∂tJt¼∂tσ¼0, −∂tφ¼

ðh−σTÞUt, and −∂tθ ¼ TUt, obtained from Eq. (9) (with
Ji ¼ 0). For a fluid in hydrostatic and thermodynamic
equilibrium in a stationary spacetime, TUt and ðh − σTÞUt
are uniform [37–39], and Eq. (10) thus becomes

−
Z

d3x∂tðπψB
δψBÞ ¼ −ðh − σTÞUtδN − TUtδΣ; ð11Þ

where δN ¼ R
d3xδJt and δΣ ¼ R

d3xδðσJtÞ are the
differences in total baryon number and total entropy
between the two solutions. Therefore, the terms in Eq. (7)
depending on thematter variables vanish if the two solutions
have the same entropy and baryon number [cf. Eq. (1)].
Furthermore, if the two solutions are asymptotically flat,

i.e., gμν ¼ ημν þOð1=rÞ, the first term in Eq. (7) also
vanishes [17]. This is seen by evaluating the integral at
r → ∞, since the integrand decays as 1=r3, while
d2Sr ∼ r2. Therefore, the mass variation only depends on
the non-GR part of the action, i.e.,

δM¼−
Z

d2Si
∂Lϕ

∂ð∂iϕAÞ
δϕA−

Z
d2Si

∂Lϕ

∂ð∂igμνÞ
δgμν: ð12Þ

This generalizes similar expressions for scalar-tensor the-
ories [17] and Lorentz-violating gravity [10,11].
Let us now consider an action depending also on second

derivatives of the metric and extra gravitational degrees of
freedom ϕA (e.g., Horndeski theories),

S ¼
Z

LðQA; ∂μQA; ∂ν∂μQAÞd4x: ð13Þ

By introducing new fields XAμ ≡ ∂μQA and enforcing this
definition by Lagrangian multipliers, one obtains

S ¼
Z

½LðQA; XAμ; ∂νXAμÞ þ λAμðXAμ − ∂μQAÞ�d4x;
ð14Þ

whose variation relative to XAμ yields

λAμ ¼ ∂α

� ∂L
∂ð∂αXAμÞ

�
−

∂L
∂XAμ

: ð15Þ

Since Eq. (14) is in the form given by Eq. (2), the
construction outlined above gives [using also Eq. (15)]

δM ¼ −
Z

d2Si
∂Lϕ

∂ð∂iϕAÞ
δϕA

−
Z

d2Si
∂Lϕ

∂ð∂igμνÞ
δgμν −

Z
d2Si

∂Lϕ

∂ð∂i∂jϕAÞ
∂jδϕA

−
Z

d2Si
∂Lϕ

∂ð∂i∂jgμνÞ
∂jδgμν

þ
Z

d2Si∂j

� ∂Lϕ

∂ð∂i∂jϕAÞ
�
δϕA

þ
Z

d2Si∂j

� ∂Lϕ

∂ð∂i∂jgμνÞ
�
δgμν: ð16Þ

Sensitivities and gravitational radiation in SSHTs.—
SSHTs are described by the Lagrangian for the galileon
scalar ϕ [19–21],

Lϕ ¼
ffiffiffiffiffiffi−gp

16πG
fKðXÞ −G3ðXÞ□ϕþG4ðXÞR

þG4X½ð□ϕÞ2 − ð∇μ∇νϕÞ2�

þG5ðXÞGμν∇μ∇νϕ −
G5X

6
½ð□ϕÞ3

− 3ð□ϕÞð∇μ∇νϕÞ2 þ 2ð∇μ∇νϕÞ3� þ χϕGg; ð17Þ
where ∇, R, and Gμν are the Levi-Civita connection,
Ricci scalar, and Einstein tensor, K, G3, G4, and G5 are
arbitrary functions of X ≡ −∇μϕ∇μϕ=2, GiX ≡ ∂Gi=∂X,
□≡∇μ∇μ, ð∇μ∇νϕÞ2 ≡∇μ∇νϕ∇ν∇μϕ, ð∇μ∇νϕÞ3≡
∇μ∇ρϕ∇ρ∇νϕ∇ν∇μϕ, χ is a constant, and G≡
RμνλκRμνλκ − 4RμνRμν þ R2 is the Gauss-Bonnet scalar.
[The χϕG term is shift invariant because G is (locally) a
total divergence. Also, this term can be obtained by
choosing G5 ∝ ln jXj [40].] The total action also includes
the Einstein Lagrangian Lg and the perfect-fluid
Lagrangian Lm described above. Regarding the latter,
one may couple the matter fields to a “disformal” metric
~gμν ¼ gμν þ ξ∇μϕ∇νϕ (ξ being a constant), rather than to
gμν alone. If such a disformal coupling is present, however,
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one can adopt ~gμν as the metric field, which puts the matter
Lagrangian in the form LmðψB; ∂μψB; ~gμνÞ considered
above, while the action (17) remains invariant up to
redefinitions of the functions K, G3, G4, and G5 [41].
Thus, our results also apply to SSHTs with a (special)
disformal coupling to matter. To allow asymptotically flat
solutions (see below), we assume that K, G3, G4, and G5

are analytic in X. [This excludes, e.g., KðXÞ ∼ X3=2, which
reproduces the modified Newtonian dynamics (MOND)
[42] in the nonrelativistic limit, and gives ϕ ∼ ln r near
spatial infinity.] This implies KðXÞ ¼ X þOðXÞ2, since a
constant can be absorbed in the matter stress-energy tensor
as an effective cosmological constant, and a coefficient for
the linear term can be absorbed by redefining ϕ; G3 ¼
OðXÞ and G5 ¼ OðXÞ, since a constant produces a total
divergence (recall the Bianchi identity ∇μGμν ¼ 0); and
G4 ¼ OðXÞ, since a constant in G4 can be absorbed in the
metric Lagrangian Lg by redefining the “bare” Newton
constant G.
Consider now an isolated stationary star, i.e., ϕ ¼

Oð1=rÞ, gμν ¼ ημν þOð1=rÞ, where the shift symmetry
allows one to set ϕ asymptotically to zero. [In theories with
a Vainshtein screening, ϕ ¼ Oð1=rÞ and gμν ¼ ημνþ
Oð1=rÞ only for r ≫ rv, with rv the Vainshtein radius
within which deviations from GR are screened; we will
return to this later]. To determine the sensitivities, recall
that Eq. (16) compares two neighboring solutions. If
the latter are asymptotically flat, Gμν ∼ R ∼ Rμν∼
Rμναβ ¼ Oð1=rÞ3, and the differences δϕ and δgμν between
them scale as δϕ ¼ Oð1=rÞ and δgμν ¼ Oð1=rÞ. With these
asymptotics, all the surface integrals in Eq. (16) vanish
when evaluated at r → ∞, thus yielding zero sensitivities.
For example, by considering the contribution of K to the
first term in Eq. (16), we find

δM ∼
Z

d2Si
∂Lϕ

∂ð∂iϕÞ
δϕ ∼ r2j∇ϕj 1

r
∼
1

r
; ð18Þ

and this surface integral vanishes when evaluated at r → ∞.
Similar calculations show that all terms in Eq. (16) vanish.
Note that it is the shift symmetry that makes the

sensitivities vanish. In generic Horndeski theories, two
solutions (“1” and “2”) have in general different asymptotic
values of ϕ, i.e., ϕð1Þ ¼ ϕ∞ þ α=rþOð1=r2Þ (α being a
constant) and ϕð2Þ ¼ ϕ∞ þ δϕ∞ þ ðαþ δαÞ=rþOð1=r2Þ.
As such, δϕ ¼ δϕ∞ þOð1=rÞ [while δϕ ¼ Oð1=rÞ in
SSHTs] and Eq. (18) gives δM ∝ αδϕ∞, hence
sϕ ∝ ∂M=∂ϕ∞ ∝ α. This is the case for, e.g., FJBD theory
[5–7] and Damour-Esposito-Farèse gravity [18], where the
sensitivities are proportional to the coefficient α of the 1=r
term in the scalar field’s falloff. Therefore, these theories
predict the emission of dipolar radiation; hence, they can be
constrained by existing binary-pulsar data [12] and they
give testable predictions for upcoming GW interferometers
[14–16,43,44]. In general, the sensitivities are also not zero

in the presence of a conformal coupling between the
galileon and matter, e.g., in massive gravity. This effect
is not considered in, e.g., Refs. [45,46].
The vanishing sensitivities imply the absence of dipolar

gravitational emission in SSHTs. Consider metric and
scalar perturbations hμν and δϕ over a Minkowski back-
ground, i.e., gμν¼ημνþϵhμνþOðϵÞ2 and ϕ¼ϵδϕþOðϵÞ2,
with ϵ a perturbative parameter. To leading order in ϵ,
Eq. (17) coincides with the Lagrangian of a minimally
coupled scalar field [note that up to boundary terms,
G4 ¼ OðXÞ gives OðϵÞ3 terms in the action, because
XRþð□ϕÞ2− ð∇μ∇νϕÞ2¼Gμν∇μϕ∇νϕþ totaldivergence
[40]]. Therefore, the leading-order field equations for a
binary become

□ηh̄μν ¼ −16πGTμν þ ϵOðh̄δϕ; δϕ2; h̄2Þ; ð19Þ

□ηδϕ ¼ Oðsð1Þϕ ; sð2Þϕ Þ þ ϵOðh̄δϕ; δϕ2; h̄2Þ
¼ ϵOðh̄δϕ; δϕ2; h̄2Þ; ð20Þ

where □η¼ημν∂μ∂ν, h̄μν¼ημν− ffiffiffiffiffiffi−gp
gμν¼hμν−1

2
ημνhααþ

OðϵÞ, sð1Þϕ ¼ sð2Þϕ ¼ 0 are the sensitivities, Tμν is the
binary’s stress-energy tensor (which is the same as in
GR and depends on the stars’ masses and velocities), and
we have assumed the Lorenz gauge ∂μh̄μν ¼ 0. (These
equations can also be obtained from Ref. [17] by noting
that the theories studied here coincide at leading order with
those of Ref. [17] when the conformal scalar-matter
coupling is switched off, i.e., AðϕÞ ¼ 1 in the notation
of Ref. [17]). Equation (20) implies that ϕ is not excited at
leading order in ϵ, while Eq. (19) matches its GR
counterpart. As such, gravitational emission behaves as
in GR at leading PN order; i.e., monopolar and dipolar
emission vanish—like in GR, but unlike non-shift-
symmetric scalar-tensor theories, where these emission
channels are sourced by the sensitivities [17,47]—while
the quadrupolar emission matches that of GR. [Note that
FJBD theory corrects GR’s quadrupole formula even for

sð1Þϕ ¼ sð2Þϕ ¼ 0, due to the (Einstein-frame) conformal
scalar-matter coupling. This coupling (and corresponding
corrections) are not present here.]
Let us now replace the leading-order solution in the

nonlinear terms of Eqs. (19) and (20). Since δϕ ¼ 0 at
leading order, at next-to-leading order one has

□ηh̄μν ¼ −16πG½ð1 − ϵh̄ααÞTμν þ ϵτμν� þOðϵÞ2; ð21Þ

□ηδϕ ¼ −ϵχδGþOðϵÞ2: ð22Þ

Here, τμν ¼ Oðh̄2Þ is the GR gravitational stress-energy
pseudotensor [48], while δG ¼ Oðh̄Þ2 is the perturbed
Gauss-Bonnet invariant. Equations (21) and (22) match
those of Einstein-dilaton Gauss-Bonnet gravity [i.e., K¼X
and G3 ¼ G4 ¼ G5 ¼ 0 in Eq. (17)] in the decoupling
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limit; hence, the leading PN order at which deviations from
GR appear is the same as in that theory. Following Ref. [49],
we then conclude that non-GR effects only appear at 3PN
(2PN) order in the dissipative (conservative) sector.
Our PN formalism is only valid for stellar radii R much

smaller than the gravitational wavelength λGW, so that the
perturbations decay as 1=r in both the far zone (i.e., at
distances from the binary r ≫ λGW) and near zone (i.e., for
R ≪ r ≪ λGW) [50]. In theories with a Vainshtein mecha-
nism, ϕ ¼ Oð1=rÞ and gμν ¼ ημν þOð1=rÞ only for
r ≫ rv; i.e., rv is an “effective” stellar radius. Therefore,
our perturbative PN approach requires rv ≪ λGW, in which
case rv only causes higher-PN-order “finite-size” effects
[50]. Note that for the dominant quadrupole mode,
λGW ∼ 109 km for binary pulsars and λGW ∼ 103 km for
the late inspiral of neutron-star binaries targeted byupcoming
GW detectors. Thus, although the value of rv (and the very
presence of a Vainshtein mechanism) depend on the theory,
our approach might break down, especially in the latter case.
If the dynamics is not perturbative (i.e., PN), the analysismay
be conducted on a case-by-case basis using aWKB approach
[45,46]. While simple theories (e.g., cubic galileons) may
still provide results in agreementwith binary-pulsar data [45]
(however, see also Ref. [51]), in more generic theories (e.g.,
ones including quartic and quintic galileons), the nonper-
turbative dynamics generally makes theWKB approach also
fail unless rv ≪ λGW [46]. If this condition is not satisfied,
Ref. [46] concludes that many multipoles radiate with the
same strength. This seems difficult to reconcile with binary-
pulsar observations, which agree with GR’s quadrupole
formula. (However, note that, unlike us, Ref. [46] assumes
a conformal scalar-matter coupling).
In conclusion, GW emission from stellar binaries is only

modified at high PN orders in SSHTs. Therefore, binary-
pulsar observations, which agree with GR’s quadrupole
formula at the percent level and also test the 1PN conservative
dynamics, are reproduced in SSHTs, provided that the
binary’s dynamics is perturbative (i.e., PN) [46] and that
cosmological-expansion effects can be neglected [29–32].
Direct detection ofGWs from neutron-star binaries, however,
may still provide prospects for testing these theories.
Moreover, our main result, Eq. (16), is valid for generic
gravitational theories, but it applies only to stars and not to
black holes, where additional surface integrals at the horizon
might be present. In the special case of SSHTs, black holes
are the same as in GR if χ ¼ 0 in Eq. (17) [52], but they
possess scalar hairs if χ ≠ 0 [53–55]. We thus expect dipolar
emission from binaries involving black holes in SSHTs with
χ ≠ 0 [49,56].
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