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ABSTRACT
Recent analyses of multiwavelength light curves of gamma-ray bursts afterglows point to
values of the magnetic turbulence well below the canonical ∼1 per cent of equipartition, in
agreement with theoretical expectations of a microturbulence generated in the shock precursor,
which then decays downstream of the shock front through collisionless damping. As a direct
consequence, the Compton parameter Y can take large values in the blast. In the presence
of decaying microturbulence and/or as a result of the Klein–Nishina suppression of inverse
Compton cooling, the Y parameter carries a non-trivial dependence on the electron Lorentz
factor, which modifies the spectral shape of the synchrotron and inverse Compton components.
This paper provides detailed calculations of this synchrotron self-Compton spectrum in this
large Y regime, accounting for the possibility of decaying microturbulence. It calculates the
expected temporal and spectral indices α and β customarily defined by Fν ∝ t−α

obs ν
−β in

various spectral domains. This paper also makes predictions for the very high energy photon
flux; in particular, it shows that the large Y regime would imply a detection rate of gamma-ray
bursts at >10 GeV several times larger than currently anticipated.

Key words: acceleration of particles – shock waves – gamma-ray burst: general.

1 IN T RO D U C T I O N

The afterglow radiation of gamma-ray bursts (GRBs), which spans
the range from the radio domain to the X-ray and possible higher
frequencies, with a characteristic decrease in time of the peak flux,
is nicely interpreted in terms of the synchrotron radiation of ul-
trarelativistic electrons that have been accelerated at the forward
ultrarelativistic collisionless shock wave of the outflow, see e.g.
Piran (2004) for a detailed review.

This model thus opens a beautiful connection between astronomi-
cal data and the microphysics of the rather extreme phenomena that
relativistic collisionless shocks represent. Zooming in on micro-
physical scales reveals the shock front as a microturbulent magnetic
barrier which isotropizes the incoming background plasma, see e.g.
Moiseev & Sagdeev (1963) for pioneering studies, and Kato &
Takabe (2008) and Spitkovsky (2008a) for detailed numerical sim-
ulations. This microturbulent barrier itself results from the build-up
of electromagnetic microinstabilities ahead of the shock front, in the
shock precursor where suprathermal particles mix with the incom-
ing background plasma, e.g. Medvedev & Loeb (1999), Wiersma &
Achterberg (2004), Lyubarsky & Eichler (2006), Achterberg &
Wiersma (2007), Achterberg, Wiersma & Norman (2007), Bret,
Gremillet & Bénisti (2010), Lemoine & Pelletier (2010, 2011),
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Rabinak, Katz & Waxman (2011), Shaisultanov, Lyubarsky &
Eichler (2012) and Lemoine et al. (2014a,b).

The resulting microturbulence, with typical length-scale
λδB ∼ c/ωpi (ωpi the ion plasma frequency) and typical strength1

εB ∼ 0.01, thus emerges as a key ingredient for the microphysics
of collisionless shocks. Actually, it also represents a key requisite
for the relativistic Fermi process, since this latter can take place
(in ideal conditions) only when an intense microturbulence, with
power on scales smaller than the gyroradius of the accelerated par-
ticles, is able to unlock the particles off the background magnetic
field lines, by scattering them faster than a gyration time in this
background field (Lemoine, Pelletier & Revenu 2006; Niemiec,
Ostrowski & Pohl 2006; Pelletier, Lemoine & Marcowith 2009). In
terms of magnetization σ = B2/

(
8π 4�2

bnmpc
2
)
, with B the back-

ground field expressed in the downstream frame, this condition
amounts to σ � ε2

B (Lemoine & Pelletier 2010, 2011; Lemoine
et al. 2014a), a condition which is indeed satisfied for the forward
shock of GRBs, since σ ∼ 10−9 in the interstellar medium. This
point of view has been confirmed by particle-in-cell (PIC) simula-
tions (e.g. Spitkovsky 2008b, Martins et al. 2009; Nishikawa et al.

1 εB ≡ δB2/
(
8π4�2

bnmpc
2
)

represents the magnetic energy fraction of
equipartition, if �b � 1 represents the relative Lorentz factor between up-
stream and downstream, and n the upstream proper density.
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2009; Sironi & Spitkovsky 2009, 2011; Haugbølle 2011; Sironi,
Spitkovsky & Arons 2013).

Finally, these microinstabilities may also build the magnetized
turbulence in which the electrons eventually produce the afterglow
radiation in a synchrotron-like process (Medvedev & Loeb 1999)
– jitter effects are expected to be weak in the conditions typical
of those shock waves – provided it survives collisonless damping
downstream of the shock front (Gruzinov & Waxman 1999). Recent
analyses of the damping of this Weibel-type microturbulence yield a
damping rate ∝ k3, where k denotes a turbulent wavenumber, indi-
cating that small scales are dissipated first, but that large scales may
survive longer (Chang, Spitkovsky & Arons 2008; Lemoine 2015).
In turn, this implies that the turbulence strength, or εB, should de-
cay as a power law in (proper) time (or distance) downstream of the
shock front, with an index which itself depends on the (unknown)
microturbulent power spectrum at the shock front. Interestingly, this
time dependence of εB turns out to be encoded in the multiwave-
length synchrotron spectrum, since electrons of different Lorentz
factors cool at different times, hence in regions of different mag-
netic field strengths (Rossi & Rees 2003; Derishev 2007; Lemoine
2013).

Although one cannot exclude that other external instabilities
would pollute the blast with magnetized turbulence, it is tempt-
ing to consider that the generation of microturbulence could be
responsible at the same time for the formation of the shock, for
the acceleration of particles and for the radiation of these particles.
It is furthermore tempting to follow this thread to use the multi-
wavelength spectrum of GRBs as a tomograph of the magnetized
turbulence. As a matter of fact, the recent detections of extended
emission of GRBs in the >100 MeV band by the Fermi-LAT in-
strument do point to a net decay of the microturbulence behind the
shock front (Lemoine, Li & Wang 2013), with εB ∝ (tωpi/100)αt

and −0.5 � αt � −0.4. This argument can be recapped as follows: if
the accelerated particles scatter in a microturbulence, the maximal
synchrotron photon energy is limited to a few GeV at an observer
time of 100 s (Kirk & Reville 2010; Plotnikov, Pelletier & Lemoine
2013; Sironi et al. 2013; Wang, Liu & Lemoine 2013); this max-
imal energy scales as the square root of εB+, i.e. the magnitude
of the turbulence in the vicinity of the shock front, and the above
value assumes εB+ = 0.01. Therefore, the interpretation of this
extended >100 MeV emission as a synchrotron process points to
the existence of a strong microturbulence close to the shock front;
on the other hand, multiwavelength fits of the afterglows for these
Fermi-LAT GRBs indicate that low-energy photons are produced in
regions of rather low εB−, of the order of 10−6–10−5. This discrep-
ancy between εB− and εB+ is naturally interpreted as the decay of
the microturbulence through collisionless damping. As discussed
in Lemoine et al. (2013), the decay rate αt ∼ −0.5 to −0.4 further
matches the results of a detailed numerical experiment reported in
Keshet et al. (2009).

The decay of microturbulence has also been proposed as a possi-
ble solution to the abnormal spectral indices observed in the prompt
emission phase (Derishev 2007), but admittedly, the physics of
mildly relativistic shock waves may well differ from that of ultra-
relativistic shock waves; in particular, the extended precursor size
in mildly relativistic shocks opens the way to other instabilities op-
erating on larger length-scales. Although the present considerations
can also be generalized to the case of internal shocks, all of the
discussion that follows will focus on the external ultrarelativistic
shock front.

An interesting consequence of a decaying microturbulence, or
more generally, of a low average value of εB as measured in

the Fermi-LAT and other bursts (e.g. Kumar & Barniol-Duran
2009, 2010; He et al. 2011; Barniol-Duran 2014; Santana, Barniol-
Duran & Kumar 2014), is a large Compton parameter Y, at least if
one omits the influence of Klein–Nishina (KN) effects, which ac-
tually depend on electron energy and hence on observed frequency,
see below. Recall indeed that in the standard model, assuming that
electrons cool through inverse Compton (IC) interactions on their
synchrotron spectrum in the Thomson limit (i.e. neglecting KN ef-
fects), Y ∼ (ηεe/εB)1/2 at Y � 1, with η � min[1, (γ c/γ m)2 − p] the
cooling efficiency of electrons, γ c denoting the Lorentz factor of
electrons which cool on a dynamical time-scale, γ m the minimum
Lorentz factor of the injected electron power law and −p the index
of this power law, e.g. Panaitescu & Kumar (2000), Sari & Esin
(2001) and Piran (2004). This Y parameter also reflects the power
of the IC component relatively to the synchrotron component, and
therefore the ratio of emission at very high energies to that in the
X-ray range. The possibility of a large Y parameter should thus
increase the chances of observing GRBs at very high energies with
upcoming Čerenkov telescopes. The observation of this IC compo-
nent would then open a new spectral domain with which one could
study the microphysics of the turbulence in the blast.

However, the computation of the synchrotron self-Compton
(SSC) spectrum of the blast in the large Y regime is not trivial
because the shape of the synchrotron spectrum influences the cool-
ing history of the electrons, which itself determines the synchrotron
spectral shape. In particular, the KN suppression of the IC cross-
section may itself modify this cooling history, and hence modify
the very shape of the synchrotron spectrum, see Nakar, Ando &
Sari (2009) and Wang et al. (2010); see also Barniol-Duran &
Kumar (2011) for the particular case of GRB090902B and Bošnjak,
Daigne & Dubus (2009) and Daigne, Bošnjak & Dubus (2011) for
related discussions in the context of GRB prompt emission. In the
case of decaying microturbulence, this issue is more acute, be-
cause the synchrotron power νFν may be rising with frequency,
due to the fact that lower frequency photons are emitted by elec-
trons of longer cooling time, in regions of lower magnetic field
strength (Lemoine 2013). Therefore, the Lorentz factor-dependent
KN limit determines the radiation intensity on which an electron
can cool. Finally, so far the influence of decaying microturbulence
on the synchrotron spectrum has been studied for a fixed Y pa-
rameter, independent of electron Lorentz factor; hence, the general
shape of the SSC spectrum is not known in this physically relevant
case.

These considerations motivate the present study, which calculates
the SSC spectrum for a relativistic blast wave in the large Y regime.
Although the prime objective is to understand how the decaying
microturbulence affects the SSC spectrum, the present discussion
also addresses the case of a uniform, low value of εB. The results
are applied to the case of the GRB afterglows, by calculating the
spectrum at various observer times and by plotting, in particular,
the spectral slopes in various frequency windows. The spectrum is
also evaluated in the multi-GeV range, with a proper account of
synchrotron and SSC contributions, to make clear predictions for
future Čerenkov observatories such as HAWK and CTA.

This paper is organized as follows: Section 2 presents an analyti-
cal description of the spectrum in the slow-cooling limit, accounting
for KN effects, and introduces a fast algorithm to compute this spec-
trum in the fast-cooling regime; Section 3 then computes the light
curves and plots the temporal and spectral indices α and β, com-
monly defined by Fν ∝ t−α

obs ν
−β , and gives predictions for the very

high energy photon flux; finally, Section 4 summarizes these results
and provides some conclusions.
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2 SSC SPECTRUM

2.1 Set-up

The set-up is as follows: electrons are swept up by a rela-
tivistic shock front propagating in a density profile n ∝ r−k,
then accelerated on a short time-scale to a power law dNe, 0/

dγ ∝ γ −p�(γ − γ m) above a minimal Lorentz factor γ m. The
minimal Lorentz factor is defined as usual by γ m ≡ εe�bmp/me(p
− 2)/(p − 1), with εe ∼ 0.1. Cooling takes place on much longer
time-scales. When describing the cooling history, the total IC cross-
section is modelled as a top-hat, with σ = σ T for ν < ν̃(γ ) and zero
otherwise, and ν̃(γ ) denoting the frequency of photons with which
electrons of Lorentz factor γ interact at the KN limit (Nakar et al.
2009; Wang et al. 2010), i.e.

ν̃ ≡ �bmec
2

hγ (1 + z)
. (1)

All frequencies are written in the observer rest frame; as mentioned
above, �b denotes the Lorentz factor of the blast in the source rest
frame. The Compton parameter can then be approximated as

Y (γ ) � Urad [ν < ν̃(γ )]

UB (γ )
, (2)

where

Urad [< ν̃(γ )] =
∫ ν̃(γ )

0
dν Uν(ν) (3)

represents the comoving radiation energy density at frequencies
ν < ν̃(γ ), on which the electron of Lorentz factor γ can cool. Of
course, if ν̃ > νpeak at which the differential energy density Uν(ν)
reaches its maximum, then Urad [ν < ν̃(γ )] ∼ νpeakUνpeak ∼ Urad

and it does not depend on γ (Urad denotes here the total comoving
energy density). In principle, Urad includes all forms of radiation,
synchrotron and IC alike; however, multiple Compton scattering
can be neglected for standard GRB parameters, and hence Urad is
hereafter determined with the synchrotron spectrum only.

The quantity UB(γ ) represents the energy density contained in
the magnetic field and it depends on γ if the turbulence decays
in (proper) time behind the shock, because electrons of different
Lorentz factors then cool in regions of different magnetic field
strengths. In this work, the decay law of the turbulence takes
the power-law form εB (t) ∝ tαt far from the shock front and
εB ∼ εB+ = 0.01 close to the shock front. How far is expressed
in terms of the proper time t since the plasma element was injected
through the shock, i.e. t ≡ x/βd in terms of the downstream (comov-
ing) distance to the shock front x and βd, the shock front velocity
relative to the downstream rest frame. According to PIC simulations,
the characteristic (temporal) scale � separating far from close to the
shock front is � ∼ 102−3 ωpi, see Chang et al. (2008) and Keshet
et al. (2009) for simulations, as well as Lemoine (2013, 2015) for
discussions of this issue; for reference, ω−1

pi ∼ 7.5 × 10−4 n
−1/2
0 s

for a relativistic blast wave propagating in a medium of proton den-
sity n0 cm−3. The uncertainty on the value of � does not really
influence the results presented below, because it can be embedded
in that associated with the decay power-law exponent αt. Recent
work mentioned above suggests αt ∼ −0.5 → −0.4 for a decay law
εB ∼ εB+(tωpi/100)αt ; hence, the following adopts � = 100ω−1

pi
and αt = − 0.4. This decay implies that the minimum magnetic
field in the blast, close to the contact discontinuity, is characterized
by the equipartition fraction εB− = εB+(tdyn/�)αt in terms of the
dynamical time-scale tdyn = r/(�bc). Typical values are tdyn ∼ 105–
106 s at an observer time of 104 s (e.g. �b ∼ 20–30 and r ∼ 1017–

1018 cm), with a mild dependence on the model parameters, lead-
ing to values of the order of εB− ∼ 10−5 for αt ∼ −0.5. Note that
tdyn/� ∝ t

(5−2k)/(8−2k)
obs evolves slowly as a function of observer

time, and hence so does εB−.
In this work, it is assumed that a particle emits its synchrotron

radiation at the location at which it cools, if it cools on a dynami-
cal time-scale; in the opposite limit, it is assumed that it emits its
synchrotron photons in the magnetic field close to the contact dis-
continuity, of strength δB− (associated with the parameter εB−). The
justification of this approximation is as follows: the energy emitted
in synchrotron photons by a particle up to time t, along its trajectory
downstream of the shock, can be written as

Esyn = 1

6π
σTc

∫ t

0
dτ δB2(τ )γ 2

e (τ )β2
e (τ ) (4)

as a function of the time-dependent Lorentz factor γ e(τ ) of the
particle along its cooling trajectory, with βe(τ ) ∼ 1 the particle ve-
locity in units of c. One can then show that Esyn is dominated by
the contribution at t ∼ tcool(γ ), where γ denotes the initial value
γ e(0), as follows. At early times τ � tcool(γ ), γ e(τ ) ∼ γ and the
integrand scales as UB (τ ) ∝ ταt ; hence, the integral is dominated
by the large time behaviour if αt > − 1, which is indeed an explicit
assumption of the present work. At late times τ � tcool(γ ), one
can obtain an upper bound on how fast γ e(τ ) decreases by con-
sidering synchrotron losses only, i.e. by neglecting IC losses. The
integration of

dγe

dτ
= −4

3

σTcUB (τ )

mec2
γ 2

e (τ )βe(τ )2 (5)

leads to γe(τ ) ∼ γ [τ/tcool(γ )]−1−αt for τ � tcool(γ ). Therefore, the
integrand in equation (4) behaves as τ−2−αt for τ > tcool(γ ); hence,
Esyn is indeed dominated by the contribution at t ∼ tcool(γ ) provided
αt > − 1.

This thus supports the above approximation that a particle with
initial Lorentz factor γ > γ c emits its synchrotron radiation on a
magnetic field of strength δB[tcool(γ )], with tcool(γ ) the cooling
time of the particle. Of course, if tcool(γ ) > tdyn, the particle does
not actually cool, and Esyn is then dominated by the upper bound
t ∼ tdyn, i.e. particles radiate synchrotron radiation in the relaxed
magnetic field at the back of the blast, of strength δB−.

Since tcool(γ c) = tdyn by definition, and since δB(tdyn) = δB−, also
by definition,

UB (γ ) � UB− max

[
1,

(
tcool(γ )

tdyn

)αt
]

(6)

with UB− ≡ δB2
−/(8π) = UB (γc).

In line with the above discussion, electrons of Lorentz factor γ

radiate their energy through synchrotron at a typical frequency

νsyn(γ ) ∝ δB [tcool(γ )] γ 2 � νc

[
tcool(γ )

tdyn

]αt /2 (
γ

γc

)2

. (7)

Here, νc ≡ νsyn(γ c) denotes the synchrotron peak frequency for
particles of Lorentz factor γ c.

Finally, the cooling time-scale can be written as

tcool(γ ) � tdyn
1 + Yc

1 + Y (γ )

UB−
UB (γ )

γc

γ
,

� tdyn

[
1 + Y (γ )

1 + Yc

]−1/(1+αt ) (
γ

γc

)−1/(1+αt )

. (8)
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The second equality is obtained by replacing UB(γ )/UB− with its
value given in equation (6), assuming γ > γ c.

Equations (2), (6), (7) and (8) then allow one to derive the fol-
lowing scalings for γ > γ c:

UB (γ )

UB−
�

[
1 + Y (γ )

1 + Yc

]−αt /(1+αt ) (
γ

γc

)−αt /(1+αt )

, (9)

νsyn(γ )

νc
�

[
1 + Y (γ )

1 + Yc

]−αt /[2(1+αt )] (
γ

γc

)2−αt /[2(1+αt )]

, (10)

Y (γ ) [1 + Y (γ )]−αt /(1+αt )

Yc(1 + Yc)−αt /(1+αt )
� Urad(ν < ν̃)

Urad(ν < ν̃c)

(
γ

γc

)αt /[(1+αt )]

. (11)

Yc stands for Y(γ c).
Once the ratio Urad(ν < ν̃)/Urad(ν < ν̃c) – which captures KN

effects – has been specified, it is possible to derive the scalings of
Y(γ ) as a function of γ , and hence of νsyn(γ ). One should emphasize
that in the above expressions, γ represents the initial Lorentz factor
of the particle, after acceleration has shaped the power law, but
before cooling has effectively taken place.

2.2 Synchrotron spectrum

Standard calculations of the synchrotron spectrum of a blast wave
generally derive the stationary electron distribution in the blast, by
solving a transport equation in momentum space, averaged over the
depth of the blast, accounting for injection of the power law at the
shock and for cooling downstream (e.g. Sari, Piran & Narayan 1998;
Sari & Esin 2001); this yields a standard broken power-law shape
dNe/dγ e with indices −2 for γ c < γ < γ m or −p for γ m < γ < γ c

and −p − 1 for max(γ c, γ m) < γ . However, one can also derive
the synchrotron spectrum by a direct mapping of the energy ini-
tially stored into the electron population to that radiated in syn-
chrotron; this approach is simpler in the present case and it works as
follows.

Electrons injected with Lorentz factor γ > max(γ m, γ c) emit a
fraction [1 + Y(γ )]−1 of their energy in synchrotron radiation; the
energy density contained in such electrons (within an interval d ln γ )
is itself a fraction (p − 2)(γ /γ m)2 − p d ln γ of the energy density
Ue contained in electrons immediately behind the shock front, be-
fore cooling has started to take place; Ue = εe 4�2

bnmpc
2. Conse-

quently, the synchrotron flux received at frequency ν = νsyn(γ ) can
be written as

νFν,syn � 1

4πD2
L

4

3
�2

b

4πr2c(p − 2)Ue

1 + Y (γ )

(
γ

γm

)2−p d ln γ

d ln ν
. (12)

The above assumes p > 2, but it can be generalized to any in-
dex p > 1. Indeed, the above picture assumes that particles with
γ > max(γ m, γ c) radiate their energy at νsyn(γ ) and then do not
contribute anymore to the synchrotron spectrum, which is a rea-
sonable approximation if p > 1; if p < 1, in contrast, the radiation
of the high-energy particles during their complete cooling history
dominates that of the lower energy ones.

Similarly, one can write down the flux for γ m > γ > γ c or
γ c > γ > γ m, whichever occurs, as follows:

νFν,syn � νmFνm,syn

⎧⎪⎪⎨
⎪⎪⎩

γ

γm

1 + Ym

1 + Y
(γm > γ > γc)(

ν

νm

)(3−p)/2

(γc > γ > γm)

(13)

with Ym ≡ Y(γ m) and νm = νsyn(γ m). The spectrum at ν < νc is
indeed unchanged with respect to the standard case, although the
value of UB− must be used to compute the characteristic frequencies.
Regarding the fast-cooling limit γ c < γ < γ m, the factor can be
understood by noting that all injected particles with γ > γ m shift
from γ to γ c during their cooling history, and that at each point
along this cooling trajectory they radiate (in synchrotron) a fraction
(γ /γ m)(1 + Ym)/(1 + Y) of the energy radiated (in synchrotron)
by a particle of Lorentz factor γ m. Note also that in the limits
αt → 0, Y(γ ) � 1, one recovers the usual scaling νFν,syn ∝ ν1/2

since ν ∝ γ 2.
Provided γ c and Yc are given, one can derive νsyn(γ ) and Y(γ ), and

hence γ (ν) and Y(ν) by using equations (9)–(11), and then νFν,syn

using equations (12) and (13). Consider as an example the case
Y � 1, omitting KN effects, i.e. ν̃ → +∞ for all ν: for γ > γ c, one
derives Y (γ ) ∝ γ αt from equation (11), νp ∝ γ 2−αt /2 from equa-
tion (10) and νFν,syn ∝ γ 2−p/(1 + Y ) ∝ ν(2−p−αt )/(2−αt /2) from
equation (12). This latter scaling matches the explicit calculation of
Lemoine (2013), which computes the integrated cooling history of
the electron power law in the decaying magnetic field. This exam-
ple also confirms that νFν,syn rises with ν if αt � 2 − p; hence, KN
effects should not be omitted in an accurate calculation of νFν,syn.

The above provides the tools needed to calculate the synchrotron
spectrum; explicit calculations in both the slow- and the fast-cooling
regimes are provided in the following sections.

2.3 IC spectrum

In order to calculate the IC emissivity, the synchrotron spectral den-
sity Fν,syn must be folded over the Compton cross-section and the
cooled particle distribution, integrated over the blast. The following
derivation of the cooled distribution function relies on the observa-
tions that dtcool(γ )/dγ < 0 and that the cooling history γ cool(t) at
times t > t0 does not depend on the history at times t < t0, i.e. elec-
trons of various Lorentz factor follow a universal cooling trajectory
γ cool(t).

One writes dṄe,0 the (comoving) rate at which electrons are swept
up and accelerated into a power law in a Lorentz factor interval dγ .
One also defines dNe, which represents the total number of electrons
in the blast in a Lorentz factor interval dγ e; note the difference of
notation: γ e refers to a value of the Lorentz factor of the blast-
averaged distribution, while γ corresponds to the Lorentz factor of
the injection distribution, i.e. before cooling has occurred.

The injection of particles with Lorentz factor γ populates the
downstream with particles of Lorentz factor γ e = γ over a fraction
tcool/tdyn of the depth of the blast. In contrast, particles injected with
γ c > γ > γ m retain their Lorentz factor (no cooling) and populate
the whole blast. Therefore, one can write the average distribution
for γ e > γ m as

dNe

dγe
� dṄe,0

dγ
(γ = γe) min

[
tdyn, tcool(γ )

]
(γ > γm) . (14)

Note also that tdyn sets the scale for adiabatic losses, while tcool sets
the scale for radiative losses.

In the fast-cooling regime, all electrons injected with Lorentz
factor γ > γ m cool down to γ c, following the same cooling history
γ cool(τ ); therefore,

dNe

dγe
�

∫ tdyn

0
dτ

∫ +∞

γm

dγ
dṄe,0

dγ
δ [γe − γcool(τ )]

� Ṅe,0
tcool(γe)

γe
, (15)
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3776 M. Lemoine

where Ṅe,0 = ∫ +∞
γm

dγ dṄe,0/dγ represents the total injection rate
of electrons. The last expression in equation (15) follows from the
definition tcool(γ e) = γ e|dγ e/dt|−1 after interchanging the integrals.

Using the scaling of tcool(γ ), one then derives

dNe

dγe
� Ṅe,0tdyn

γm

(
γe

γm

)−p

(γm < γe < γc)

dNe

dγe
� Ṅe,0tdyn

γm

(
γe

γm

)−1 (
γe

γc

)−1/(1+αt )

×
[

1 + Y (γe)

1 + Yc

]−1/(1+αt )

(γc < γe < γm)

dNe

dγe
� Ṅe,0tdyn

γm

(
γe

γm

)−p (
γe

γc

)−1/(1+αt )

×
[

1 + Y (γe)

1 + Yc

]−1/(1+αt )

[max(γc, γm) < γe] .

(16)

In the limit αt → 0, one recovers dNe/dγe ∝ [1 + Y (γe)]−1 γ −2
e

for γ c < γ e < γ m or dNe/dγ e ∝ [1 + Y(γ e)]−1γ −p − 1 for
γ m < γ c < γ e; both match the expressions derived in Nakar et al.
(2009) and in Wang et al. (2010) for a homogeneous (non-decaying)
turbulence.

It is also instructive to show that the above average electron
distribution, when associated with the appropriate (i.e. Lorentz
factor-dependent) magnetic field, leads to the same scalings for
the synchrotron spectrum as equations (12) and (13). Consider
for instance the regime γ > max(γ c, γ m): the average synchrotron
power of the blast scales as νFν,syn ∝ UB (γe)γ 2

e dNe/d ln γe; us-
ing the scaling for UB(γ e) given in equation (9), one recovers
νFν,syn ∝ [1 + Y (γe)]−1 γ 2−p

e indicated in equation (12). One can
proceed similarly for the other two regimes, noting in particular
that for γ m < γ e < γ c (slow cooling), UB = UB− and it no longer
depends on γ e.

Finally, using the above electron distribution, one can compute
the IC component using standard formulae:

Fν,IC(νIC) � τIC

∫
dγe

1

Ne

dNe

dγe

∫ 1

0
dq (1 − u)gKN(q)

× Fν,syn

[
νIC

4γ 2q(1 − u)

]
� (1 − u) , (17)

with u ≡ (1 + z)hνIC/(�bγ emec2); the function gKN(q) =
[2qln q + (1 + 2q)(1 − q) + G2(1 − q)/[2(1 + G)]], with G ≡ u/

(1 − u), characterizes the energy dependence of the KN cross-
section, see Blumenthal & Gould (1970) for details.

The prefactor τ IC defines the optical depth to Compton scattering;
an explicit calculation leads to

τIC = 3σT
Ne

4πr2
= 12σT�bnctdyn. (18)

Note that this expression uses Ne = 4πr2 ctdyn 4�bn, i.e. it only
includes the electrons that have been swept up in the last dynamical
time-scale, because electrons injected at earlier times have been
adiabatically cooled to Lorentz factors < γ c and therefore do not
participate in shaping the IC spectrum. With the above value of
τ IC, one can verify that the energy density of the radiation asso-
ciated with the IC component is correctly normalized to Yc times
that contained in the synchrotron component, as can be verified by

calculating
∫

dνICFνIC,IC in terms of
∫

dνsynFνsyn,syn (neglecting the
influence of KN effects).

2.4 Slow cooling

2.4.1 General procedure

As discussed in detail in Nakar et al. (2009) and Wang et al. (2010),
the cooling Lorentz factors and Compton parameters γ c and Yc can
be obtained in the slow-cooling regime γ m < γ c from the system,

Yc (1 + Yc) � εe

εB−

(
γc

γm

)2−p
Usyn(< ν̃c)

Usyn(< νc)

γc � γc,syn

1 + Yc
(19)

with γ c, syn ≡ (3/4)mec/(σ TUB−tdyn) the cooling Lorentz factor in
the relaxed turbulence, in the absence of IC losses.

Write Cc ≡ Usyn(< ν̃c)/Usyn(νc) the term entering the first equa-
tion. If ν̃c < νc, Cc < 1 because the peak of the synchrotron flux
lies at νc or above (see below); in this limit, KN suppression
inhibits the cooling of γ c electrons. Assuming that such elec-
trons cool by interacting with the νmin < ν < νc part of the syn-
chrotron spectrum, which is generically the case, one can write
Cc = (ν̃c/νc)(3−p)/2 ∝ γ −3(3−p)/2

c and the system can be solved
easily.

In the opposite limit, ν̃c > νc; one may have Cc ∼ 1 if the peak
of the synchrotron flux is located at νc, or Cc � 1 if the peak lies
at higher frequencies. In the latter case, Cc � (ν̃c/νc)1−β , where
β is the synchrotron spectral index defined by Fν,syn ∝ ν−β in
the spectral range above νc, calculated thereafter. The analytical
calculation proposed here uses equation (27) below to derive this
β, but the result depends little on this choice, because in all cases
considered, 1 − β is small, meaning that the peak flux is not very
different from the flux νFν at νc.

The next step is to determine the critical Lorentz factors γ̂c ≡
γ̂ (νc) and γ̂m ≡ γ̂ (νm) with the general definition (Nakar et al.
2009):

γ̂ (ν) = �bmec
2

(1 + z)hν
, (20)

which corresponds to the Lorentz factor for which electrons interact
with photons of frequency ν at the onset of the KN regime. Note that
νm and νc are to be calculated in the relaxed turbulence of strength
δB− in this slow-cooling regime. Using equations (9)–(11), one may
then calculate the Compton parameters Y (γ̂c) and Y (γ̂m). Note also
that the slow-cooling limit γ m < γ c implies γ̂c < γ̂m.

Another critical Lorentz factor is γ 0, for which Y(γ 0) = 1. If
Y (γ̂m) > 1, then γ̂m < γ0, and γ 0 can be obtained by solving

Y (γ0) [1 + Y (γ0)]−αt /(1+αt )

Y (γ̂m)
[
1 + Y (γ̂m)

]−αt /(1+αt ) =
[

ν̃(γ0)

νm

]4/3 (
γ0

γm

)αt /(1+αt )

(21)

which derives from equation (11). The latter equation assumes
that ν̃(γ0) lies in the spectral range between νa (synchrotron
self-absorption frequency) and νm, in general a very good ap-
proximation; it can be generalized to other cases without diffi-
culty. If Y (γ̂m) < 1, then γ0 < γ̂m; one can repeat the above ex-
ercise to derive γ 0, replacing the 4/3 exponents with (3 − p)/2,
which characterizes the spectral dependence of νFν,syn between νm

and νc.
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SSC spectra at large Y 3777

For improved accuracy, one may also determine the next-order
critical Lorentz factor ̂̂γ c ≡ �bmec

2/
[
(1 + z)hνsyn(γ̂c)

]
. Follow-

ing a procedure similar to the above, one can derive ν(̂̂γ c) and
Y (̂̂γ c).

The following makes use of the short-hand notation: ν̂ = νsyn(γ̂ )
for various critical Lorentz factors; similarly, νsyn(γ 0) is written ν0

for commodity.
One can derive the power-law 1 − β ′ index of νFν,syn as fol-

lows. Below νc, the scaling remains unchanged compared to the
standard case because the cooling history does not influence the
synchrotron spectrum, and the results will not be repeated here.
Above νc, the spectral slope is determined by the scalings of Y(γ ),
ν(γ ) and νFν,syn ∝ (1 + Y )−1 γ 2−p (equation 12). In particular, if
ν̃(γ ) lies in a spectral domain in which νFν,syn ∝ ν1−β , below the
peak of the synchrotron energy flux, then electrons of Lorentz fac-
tor γ cool by IC interactions with that portion of the synchrotron
spectrum if Y(γ ) � 1, in which case equations (9)–(11) lead to

Y ∝ γ αt −(1−β)(1+αt )

ν ∝ γ 2−βαt /2

tcool ∝ γ −β . (22)

Assuming νFν,syn ∝ ν1−β ′
in the range of interest around ν(γ ), and

using the above scalings, one obtains directly

1 − β ′ = 2 − p − αt + (1 − β)(1 + αt )

2 − αt/2 + (1 − β)αt/2
. (23)

The limit β → 1 recovers the case in which ν̃ lies above the peak
of the synchrotron flux, discussed previously.

2.4.2 Power-law segments

As mentioned above, the synchrotron spectrum at ν < νc remains
unaffected and it is not discussed here. At the upper end of the
spectral range, i.e. ν0 < ν, Y(γ ) < 1 because of the KN suppression
of electron cooling, which implies that νFν,syn ∝ ν1−β ′

with

1 − β ′ = 2 − p

2 − αt/[2(1 + αt )]
[ν0 < ν] (24)

as can be derived from equation (12) with 1 + Y � 1. This scaling
also matches that derived by a full computation of the electron
cooling history with negligible IC losses in Lemoine (2013). For
αt = 0, one recovers of course the standard fast-cooling index
β ′ = p/2.

In the range ν̂m < ν < ν0, if it exists, the synchrotron spectrum
is shaped by electrons with Lorentz factor γ such that γ̂m < γ <

γ0, which thus cool by interacting with photons in the range ν < νm;
one can therefore use equation (23) with 1 − β = 4/3, so that

1 − β ′ � 5 − 3p/2 + αt/2

3 + αt/4

(
ν̂m < ν < ν0

)
. (25)

The limit αt → 0 gives β ′ = −2/3 + p/2, which fits the results of
Nakar et al. (2009) in this frequency range.

In the range max(νc, ν̂c) < ν < min(ν̂m, ν0), the Lorentz fac-
tor of electrons shaping that part of the spectrum satisfies
max(γc, γ̂c) < γ < min(γ̂m, γ0); hence, one can use equation (23)
with 1 − β = (3 − p)/2, leading to

1 − β ′ � 7 − 3p + (1 − p)αt

4 + (1 − p)αt/2[
max

(
νc, ν̂c

)
< ν < min

(
ν̂m, ν0

)]
. (26)

Note that ν̂c < νc is equivalent to ν̃c < νc. Here as well, one re-
covers the index β ′ = − 3/4 + 3p/4 derived in Nakar et al. (2009)
in the limit αt → 0.

If ν̃c < νc, meaning γ̂c < γc, the above completes the descrip-
tion of the spectrum. If, however, νc < ν̃c, one needs to describe
the intermediate range νc < ν < ν̂c. This range can actually be
decomposed into two sub-ranges, as follows.

For ̂̂νc < ν < ν̂c, the corresponding Lorentz factor verifieŝ̂γ c < γ < γ̂c; hence, νc < ν̃ < ν̂c. Consequently, the particle
cools on the spectral range of νFν,syn that it contributes to through
synchrotron emission, so that one can use equation (23) with
β = β ′, giving

1 − β ′ � −2 + 3αt + [
4 + (4 − 8p)αt + α2

t

]1/2

2αt

(̂̂νc < ν < νc) (27)

and 1 − β ′ � 0.12 for αt = −0.5, p = 2.3, i.e. a slowly rising νFν,syn.

Finally, in the remaining range νc < ν < ̂̂νc, the particle cools
on photons of frequency in the range ν̂c < ν̃ < ν̃c, for which 1 −
β is given by equation (26) above. This leads to

1 − β ′ � 15 − 7p + αt (1 − p) (10 − p + αt ) /2

8 + αt (1 − p)(10 + αt )/4
. (28)

One finds 1 − β ′ � 0.09 for αt = −0.5 and p = 2.3.

2.4.3 IC component

In principle, one can derive analytical approximations to the IC
component using the above broken power-law approximations,
folded over the particle distribution, as in equation (17) above.
However, this appears rather intricate, given the number of po-
tential power-law segments, in regard to the quality of the ap-
proximation that one can obtain; indeed, as discussed in detail in
Sari & Esin (2001), folding over the distribution function generally
introduces logarithmic departures, which smooth out the power-
law segments and breaks. One can nevertheless describe the gen-
eral features of this IC component in the slow-cooling regime as
follows.

Below νIC,m = 2γ 2
mνm, the slope is that of νFν,syn below νm, i.e.

4/3. For νIC, m < ν < νIC, c with νIC,c = 2γ 2
c νc, the slope of νFν,IC

is (3 − p)/2, reflecting that of νFν,syn in the corresponding range.
Above νIC, c, the IC component reflects, up to the aforementioned
logarithmic corrections, the slope of νFν,syn above νc, which is
generally close to flat or gently rising, see above.

Consequently, if the synchrotron spectrum has an extended range
above νc where it is close to flat (i.e. β ∼ 1), then one might have
a close to flat IC component, at least up to the cut-off frequency
defined as

νIC,KN = γ 2
c ν̃c (29)

corresponding to the boosting of ν̃c photons at the onset of the KN
regime by γ c electrons. One can define another cut-off frequency, as
follows:

νIC,̂c = γ̂ 2
c νc (30)

which corresponds to the boosting of νc photons by electrons
of Lorentz factor γ̂c, at the onset of the KN regime. The ratio
νIC,̂c/νIC,KN can be written as γ̂c/γc; hence, the ordering of one with
respect to the other depends on whether γ < γ̂c or not. In any case,
the actual cut-off occurs at νIC, KN, while the presence of νIC,̂c may
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3778 M. Lemoine

Figure 1. Comparison of the analytical calculation (dashed red line) of the synchrotron spectrum in the slow-cooling regime to a numerical calculation (solid
blue line), for two representative cases: upper panel, observer time tobs = 104 s, blast energy E = 1053 erg, external density n = 0.01 cm−3; lower panel, tobs =
3 × 104 s, E = 1054 erg, n = 1035 r−2 cm−3; in both cases, εe = 0.1, p = 2.3 and εB = εB+[t/(100ω−1

pi )]−0.4. The analytical estimates of the characteristic
frequencies are indicated with arrows. The solid orange line represents the numerical calculation of the IC component.

lead to a feature (e.g. softening) in the IC spectrum. This can be
understood by noting that in the present case, the synchrotron (en-
ergy) flux generically peaks above νc, while the particle distribution
function falls steeply beyond γ c; hence, the peak of the IC com-
ponent is determined by the boosting of ν̃c photons by electrons of
Lorentz factor γ c.

2.4.4 Comparison to numerical calculations

The above analytical broken power-law model of the synchrotron
spectrum is compared to a full numerical calculation (with the algo-
rithm described in Section 2.5 thereafter) in Fig. 1, in two different
representative cases: upper panel, observer time tobs = 104 s, blast
energy E = 1053 erg, external density n = 0.01 cm−3; lower panel,
tobs = 3 × 104 s, E = 1054 erg, n = 1035 r−2 cm−3 (wind profile
with shock radius r expressed in cm); for both, εe = 0.1, p = 2.3,
εB+ = 0.01 and αt = −0.4, assuming εB = εB+[t/(100ω−1

pi )]αt . For
a decelerating adiabatic Blandford & McKee (1976) solution, the
value of the blast Lorentz factor at these observer times is �b � 33
in the upper panel and �b � 29 in the lower panel. For the above
decay law of the magnetic field, one finds for the first scenario
εB− = 3.2 × 10−5 (tdyn = 1.3 × 106 s, ω−1

pi = 7.6 × 10−3 s), and
in the second scenario εB− = 2.1 × 10−5 (tdyn = 1.7 × 106 s,
ω−1

pi = 3.5 × 10−3 s).
The critical frequencies are indicated with arrows. The thick

solid line corresponds to the numerical calculation (synchrotron in
blue, IC component in orange), while the dashed line shows the
analytical estimates, which clearly provides a faithful match in both
cases.

In the first scenario (upper panel), γ̂c � 60 while γ c � 107: KN
effects are therefore particularly strong; they are actually so strong
that ν0 < νc, which means that the KN suppression of electron
cooling reduces the Compton parameter to below unity at γ c. Con-
sequently, the dependence of Y on γ does not affect the spectrum
above νc. Noting that in this region νFν ∝ γ 2 − p (equation 12)
and ν ∝ γ 2−αt /2(1+αt ) (equation 10), one finds νFν ∝ ν1 − β with
1 − β = (2 − p)/[2 − αt/2(1 + αt)], which matches equation (24).
As mentioned earlier, the spectrum remains unaffected with respect
to the standard synchrotron spectrum below νc because the elec-
trons shaping that part of the spectrum do not cool on a dynamical
time-scale.

In this first scenario, the method proposed in equations (19) over-
estimates γ c by a factor of 2.5, hence νc by a factor of 6 and
νIC,KN = ν̃cγ

2
c by a factor of 2.5 as well. Taking into account this

overestimate, the numerical calculation indicates that the suppres-
sion of the IC flux becomes noticeable at a factor of ∼5 below the
theoretical value of νIC, KN, as calculated with the correct γ c. As an-
ticipated, the characteristic frequency νIC,̂c leads to a soft softening
in the IC component, but not to a cut-off.

In the second scenario (lower panel), γc < γ̂c; hence, KN sup-
pression of the IC cooling becomes effective at ν̂c only. The (an-
alytical) synchrotron spectrum is thus close to flat in the region
νc � ν � ν̂c, as indicated by equations (27) and (28) above, then
rising with 1 − β � 0.14 corresponding to equation (26) above for
the range ν̂c < ν < ν0, because ν0 < νm. Above ν0, equation (24)
applies and gives the same high-energy spectral slope as for the
previous scenario.

In this second case, the analytical calculations underestimate γ c

by a factor of 1.8. There is nevertheless broad satisfactory agreement
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SSC spectra at large Y 3779

Figure 2. Synchrotron and IC spectra at tobs = 3 × 104 s, representative of the slow-cooling regime, for a blast with energy E = 1054 erg impinging on
a progenitor wind with density n = 1035 r−2 cm−3 (r in cm), assuming εe = 0.1 and p = 2.3, for three microphysical models, as indicated: homogeneous
(non-decaying) εB = εB+ = 0.01 (dashed red line); decaying εB = εB+[t/(100ω−1

pi )]−0.4 (solid blue); homogeneous εB = εB− = 2.1 × 10−5 (dash–dotted
orange), the value of εB− being representative of εB close to the contact discontinuity in the decaying εB model. The synchrotron model predictions have
been thinned beyond an ad hoc maximal synchrotron photon energy of 1 GeV (see the text). Characteristic frequencies are for αt = −0.4 and for εB = εB−,
νm � 5.6 × 1011 Hz, νc � 1.2 × 1016 Hz and νIC, KN � 2 × 1026 Hz; for εB = εB+, νm � 1.2 × 1013 Hz, νc � 4.2 × 1013 Hz and νIC, KN � 2 × 1024 Hz.

between the analytical synchrotron spectrum and the numerical
calculation.

2.4.5 Comparison to non-decaying scenarios

Fig. 2 provides a numerical comparison of the spectra shown in the
lower panel of Fig. 1 with two calculations for the same parame-
ters but a homogeneous (non-decaying) turbulence: one in which
εB = εB+ = 0.01, another one in which εB = εB− = 2.1 × 10−5,
which corresponds to the value of εB(tdyn), i.e. close to the contact
discontinuity, in the above decaying microturbulence model.

As expected, the SSC spectrum with decaying microturbulence
merges with that corresponding to uniform εB− at frequencies below
νc, since electrons of Lorentz factor γ < γ c then cool in magne-
tized turbulences of equal strength in both models. The synchrotron
spectrum for decaying microturbulence also merges with the syn-
chrotron spectrum for uniform εB+ at the highest frequencies, since
the cooling time for those emitting electrons becomes shorter than
�; hence, the particles effectively cool in a magnetic field character-
ized by εB+. However, the integrated powers for these two models
differ, because the cooling efficiencies ∼ (γ c/γ m)2−p differ.

In this regard, the slow-cooling synchrotron spectrum for decay-
ing microturbulence is a hybrid of the spectra for uniform high and
low εB, transiting from εB− at low frequencies to εB+ at high fre-
quencies. This justifies the use of a two-zone model, one with low
εB− and one for high εB+, to compute an approximated spectrum in
wavebands at respectively low and high frequencies.

In Fig. 2, the synchrotron spectra have been arbitrarily continued
at very high frequencies, albeit with a thin line, but they should
of course cut off at some maximal energy where the acceleration
time-scale becomes of the same order as the cooling time-scale.
Since this depends on acceleration physics, see the discussion in
Lemoine (2013), the lines have been turned from thick to thin at an
ad hoc location corresponding to a synchrotron photon energy of
1 GeV. This estimate is discussed in Plotnikov et al. (2013), Lemoine

(2013), Wang et al. (2013) and Sironi et al. (2013); it depends on
the afterglow parameters and, in particular, on observer time.

For reference, one notes the critical frequencies:

νIC,c = 2γ 2
c νc

� 7.3 × 1023 Hz E54ε
−7/2
B−,−5A

−9/2
�,11.7t

2
obs,4.5z

−3
+ Y−4

c,2

νIC,KN = 1

1 + z
�bγcmec

2

� 4 × 1025 Hz E
1/2
54 ε−1

B−,−5A
−3/2
�,11.7t

1/2
obs,4.5z

−3/2
+ Y−1

c,2 (31)

with the notations z+ = (1 + z)/2, Yc, 2 = (1 + Yc)/100 and A�, 11.7 =
A�/(5 × 1011 g cm−2). For reference, in the scenario of Figs 2 and 3,
A� � 0.3 and Yc � 50 for εB− = 2.1 × 10−5. Note the strong de-
pendence of νIC, c and νKN on the external density. As discussed
above, the peak of the IC component is expected to occur at νIC, KN,
although the numerical calculation suggests that the turn-over be-
comes manifest a factor of ∼5 below the above theoretical value.

The VERITAS collaboration has recently been able to observe the
exceptional GRB130427A and to put stringent upper limits on the
emission at �100 GeV (Aliu et al. 2014). The absence of detection
of this energy range suggests that, for this burst at least, the IC
component has cut-off below �100 GeV, while the Fermi detection
of multi-GeV photons up to a day or so suggests that this cut-off
lied above 1–10 GeV. Such a cut-off energy fits well with the above
estimates for νIC, KN for a low average εB.

2.5 Fast cooling

The fast-cooling regime involves a substantial variety of syn-
chrotron spectra, with multiple breaks and indices, as discussed
in detail in Nakar et al. (2009) and Wang et al. (2010) for the case
of uniform εB. One key difference with the slow-cooling regime
is that particles with Lorentz factors γ < max(γ c, γ m) may have a
non-trivial cooling history while in the slow-cooling regime, such
particles do not cool. As a consequence, it is difficult to even derive

MNRAS 453, 3772–3784 (2015)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/453/4/3772/2593659 by C
N

R
S - ISTO

 user on 25 April 2022



3780 M. Lemoine

Figure 3. Same as Fig. 2 at observer time tobs = 30 s, representative of the fast-cooling regime. Characteristic frequencies are for αt = −0.4, νc � 1012 Hz,
νm � 3 × 1016 Hz and γ 2

mν̃m � 6 × 1025 Hz; for εB = εB−, νc � 2 × 1013 Hz, νm � 3 × 1016 Hz and γ 2
mν̃m � 6 × 1025 Hz; for εB = εB+, νc � 4 × 1011 Hz,

νm � 4 × 1017 Hz and γ 2
mν̃m � 6 × 1025 Hz.

the cooling Lorentz factor and the Compton parameter Yc when KN
effects become significant.

In this fast-cooling regime, it is actually more efficient to compute
the spectrum numerically, using the following simple and efficient
algorithm. One starts with a template synchrotron spectrum, for
instance that corresponding to a homogeneous magnetized turbu-
lence. One can then derive a first approximation to γ c and Yc, either
using standard formulae (e.g. Panaitescu & Kumar 2000) – which
ignore KN effects – or through an explicit determination of γ c as
the Lorentz factor for which cooling takes place on a dynamical
time-scale, using a radiation energy density inferred from the tem-
plate spectrum. With γ c and Yc, one can solve equations (9)–(11)
to compute the frequencies and Compton parameter as a function
of the initial Lorentz factor of an electron; one can then use equa-
tions (12) and (13) to compute an improved version of the syn-
chrotron spectrum, properly taking into account the cooling history
of the electrons in the decaying turbulence as well as all relevant
KN effects. The latter spectrum remains an approximation, because
it relies on a guessed value for γ c and Yc. Nevertheless, iterating
the above process, using each time as a template the previously
computed synchrotron spectrum, one obtains after ∼10 iterations
a self-consistent synchrotron spectrum, with γ c and Yc determined
to high accuracy. Finally, one can derive the IC spectrum using
equation (17).

The above algorithm provides a self-consistent estimate of the
synchrotron and IC spectra with a normalization accuracy of or-
der unity. This accuracy can be checked by calculating a poste-
riori the integrated synchrotron and IC powers and comparing to
the total electron power injected through the shock: in the fast-
cooling regime, these should match. The error is of the order of
10–40 per cent for the SSC spectrum of a decaying microturbu-
lence as shown in Fig. 3, depending on observer time; it is less than
10–20 per cent for αt = 0 and εB = εB+, but it becomes a factor
of �2 for αt = 0 and εB = εB−. Most of the error results from
the broken power-law normalization of the flux in equation (12)
and from the treatment of the KN cross-section as a step function
in the calculation of the synchrotron cooling history. The resulting
uncertainty remains nevertheless satisfactory given the uncertainty

associated for instance with the definition of tdyn (hence γ c) in the
absence of a realistic description of the blast energy profile.

A detailed example of the SSC spectrum of the blast, for the same
parameters as in Fig. 2, is presented in Fig. 3 at an observer time
tobs = 30 s; assuming a Blandford & McKee (1976) decelerating
solution in a wind profile, the Lorentz factor of the blast at that time
is �b � 160. The value of εB− in this case is 4.2 × 10−5. As expected,
the spectrum corresponding to a decaying turbulence merges with
the spectrum for uniform εB = εB+ above a frequency ν ∼ 1023 Hz,
since the electrons that emit in that range cool fast, in a region
where εB � εB+. In this fast-cooling regime, the total integrated
energy densities of the three SSC spectra correspond to the injected
electron energy density. The spectrum for decaying microturbulence
does not merge with that for uniform εB = εB− at low frequencies,
since the cooling Lorentz factors differ for both. In this fast-cooling
regime, one cannot therefore describe accurately the synchrotron
spectrum at low frequencies with a spectrum computed for uniform
low εB: an explicit calculation becomes necessary.

Finally, note that the IC component in the fast-cooling regime is
expected to peak at γ 2

mνm, if the synchrotron flux peaks at νm and if
one omits KN effects. The KN suppression implies a turn-over of
the IC component at most at γ 2

mν̃m, for reasons analogous to those
discussed in the slow-cooling regime, see also Nakar et al. (2009).
If νm < ν̃m, the slow rise of the synchrotron flux above νm in the
case of low εB (due to the KN suppression of electron cooling) or
decaying microturbulence implies a comparable behaviour of the IC
component between γ 2

mνm and γ 2
mν̃m. This feature is not clearly seen

in Fig. 3 due to the (relative) proximity of these two frequencies,
γ 2

mν̃m � 6 × 1025 Hz and γ 2
mνm � 1024 Hz.

3 SP E C T R A A N D L I G H T C U RV E S

3.1 Spectral and temporal behaviours

The spectra shown in Figs 2 and 3 illustrate how a complete and
simultaneous spectral coverage would allow one to tomograph the
evolution of the microturbulence behind the relativistic shock. The
effects are most noticeable in the X-ray and MeV regions, as one
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would expect: in this region of the spectrum, the emitting electrons
feel the decaying turbulence, while at the highest frequencies, they
cool in regions with ε ∼ εB+, and at frequencies ν < νc they cool in
a magnetic field characterized by εB−, the value of which evolves
slowly in time.

Afterglow models often rely on the spectral and temporal slopes
in various domains and their so-called closure relations to make
comparison to observations. Fig. 4 therefore presents the spectral
slopes β defined by Fν ∝ ν−β (where Fν sums the synchrotron
and IC fluxes), for the optical, X-ray, high-energy (0.1–10 GeV)
and very high energy (>10 GeV) ranges (note that no attenuation
in extragalactic background radiation has been assumed for the
latter range). This figure compares the spectral slopes for the three
previous representative models: (αt = 0, εB = 0.01), αt = − 0.4 and
(αt = 0, εB = 10−5) with otherwise same parameters as in Figs 2
and 3, except k, which takes values 0 (constant-density profile) or 2
(stellar wind).

In the optical, β has been calculated at a reference frequency of
4.7 × 1014 Hz (R band); in the X-ray, β is calculated as the average
slope over the interval of energies 0.3–10 keV; at high energy, it is
calculated as the average of the energy interval 0.1–10 GeV and at
very high energy, over >10 GeV.

According to Fig. 4, the most robust signature of a decay-
ing microturbulence appears to be a slightly harder slope in the
X-ray, β � 0.9 [panels (b) and (e)] versus β � 1.15 for uniform
εB in the first hours [panels (a), (c), (d) and (f)]. The latter value
corresponds to the fast-cooling regime β = p/2; therefore, it de-
pends on p. However, one does not expect it to go below 1, be-
cause p > 2 is a generic prediction of relativistic shock accelera-
tion, e.g. Bednarz & Ostrowski (1998), Kirk et al. (2000), Achter-
berg et al. (2001), Lemoine & Pelletier (2003) and Sironi et al.
(2013). Current data do not allow one to distinguish between these
limits; in particular, the Swift data lead to β � 1 ± 0.1 (Evans
et al. 2009) in afterglows with standard power-law decay. Inter-
estingly, even in the case of a homogeneous turbulence, the X-ray
slope hardens at late times because of the emergence in the X-
ray range of the IC component; for instance, in panels (a) and (c),
one can see β transits to values of the order of 0.7, correspond-
ing to the low-energy extension of this IC component with slope
β = (p − 1)/2.

In the optical range, the slope is comparable to that in the X-ray
range for the decaying microturbulence scenario at observer times
∼ 103 s, but significantly harder at earlier times when the optical
falls in the range νc –νm: Fig. 4 indicates values β ∼ 0.3, harder than
expected (1/2) in the standard fast-cooling regime in this range of
frequencies. At an observer time tobs = 30 s, for k = 2 corresponding
to panel (e) as well as to Fig. 3, ν̃m � 1.4 × 1018 Hz, which lies
below the peak of the synchrotron component (see Fig. 3). This
implies that KN effects are significant, and that γ m electrons cool
by interacting with the segment in the range 1017 –1021 Hz, whose
index β ∼ 0.8. In this case, one can compute the expected index β ′

of the segment below νm, using a variant of equation (23): one notes
that νFν,syn ∝ γ /(1 + Y ) (equation 13), which gives

1 − β ′ = 1 − αt + (1 − β)(1 + αt )

2 − αt/2 + (1 − β)αt/2
� 0.3, (32)

the last equality applying for αt = − 0.4 and β = 0.8. This ex-
plains the values of αt found in the optical range. Such values
do depart from the standard synchrotron spectra, although KN
effects may also cause values β ∼ 0.3 below νmin in the case of
homogeneous turbulence scenarios, see Nakar et al. (2009), their
figs 2 and 3 for example. Therefore, it is not clear at present whether

Figure 4. Flux density index β, with Fν ∝ ν−β , as a function of time,
in various wavebands, for different external density profiles: k = 2 (wind,
n = 1035r−2 cm−3) and k = 0 (constant density, n = 1 cm−3), assuming
uniform εB = 0.01, εB = (100ωpit)αt or uniform εB = 10−5. Blast energy,
jet Lorentz factor and εe are as in Fig. 2. Wavebands are as indicated: for
reference, optical (circles) ν = 4.7 × 1014 Hz, X-ray (squares) integrated
from 0.3 to 10 keV (i.e. 0.72–24 × 1017 Hz), 0.1–10 GeV (upward triangles,
in frequency 0.24–24 × 1023 Hz) and > 10 GeV (diamonds, in frequency
> 24 × 1023 Hz).
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one can consider such values of β as a clear signature of a decaying
microturbulence.

All in all, an accurate measurement of β in the X-ray range or,
better, in the MeV range if the MeV afterglow could be detected
would provide the best probe of αt, see also Figs 2 and 3 for illus-
trations of these effects.

Another quantity of interest for a general description of the after-
glow is the temporal slope, defined by Fν ∝ t−α

obs . Of course, these
temporal slopes directly depend on the time evolution of the various
parameters, through the assumed evolutionary law for �b and the
evolution of r and n, in contrast to the spectral slopes β at any given
time. Here �b is assumed to decrease as in the Blandford & McKee
(1976) adiabatic solution, i.e. �b ∝ t(k − 3)/[2(4 − k)].

The values of α for the same models and intervals as Fig. 4 are
reported in Fig. 5. The largest differences between constant (high)
and decaying εB result from the different transit times between the
slow- and fast-cooling regimes, but these times depend in turn on
other parameters that are a priori unknown. The light curves other-
wise present similar features, without a clear trend distinguishing
one from the other.

Figs 4 and 5 thus indicate that α and β are by themselves weakly
sensitive probes of the dynamics of the magnetized turbulence in the
blast and that it is not possible at present to distinguish a decaying
microturbulence from a uniform low or high εB on the basis of these
data. It appears much more effective to try to probe εB through a
multiwavelength fit of the afterglow light curves, using not only the
temporal and spectral slopes, but also the ratio of fluxes between
different spectral windows, as done in Lemoine et al. (2013) and
Liu, Wang & Wu (2013) for Fermi-LAT bursts.

3.2 Emission at very high energy

Finally, an interesting consequence of a decaying microturbulence
is the generic prediction of substantial emission at the highest en-
ergies, due to the large value of the Compton parameter. Naive es-
timates, Y ∼ √

εe/εB−, indicate values of several hundreds for Y,
although they neglect KN effects which depend on the electron en-
ergy, therefore on observed frequency; furthermore, the non-trivial
spectral shape above νc in the case of decaying microturbulence
modifies the ratio of the IC to the synchrotron component. As dis-
cussed in Wang et al. (2013), emission above 10 GeV is most likely
of IC origin, because the maximal synchrotron photon energy is
more likely of the order of 1 GeV or so at 100–1000 s observer
time. This emission is a prime target for future gamma-ray tele-
scopes such as HAWK (Mostafa 2013) or CTA (Inoue et al. 2013).
For the particular case of CTA, Inoue et al. (2013) have investigated
the detection rates of GRBs above 30 GeV by assuming that the
spectrum continues beyond 1 GeV with a spectral index β = 1.1
(corresponding to the standard fast-cooling regime β = p/2 with
p = 2.2) and scaling the flux at 1 GeV to that measured by the
Fermi-LAT instruments. Their simulations lead to about one detec-
tion per year. This rate is rather low; therefore, any improvement
would be quite valuable, given the potential impact of a high-energy
detection.

One can use the calculations of Section 2 to study how a decaying
microturbulence or low εB− affects these predictions. In order to do
so, one calculates the ratio of the total (synchrotron + IC) energy
flux above 30 GeV, F(>30 GeV) = ∫

30 GeVFν dν, to a theoretical ref-
erence flux Fth(>30 GeV). As in Inoue et al. (2013), Fth(>30 GeV)
is obtained by extrapolating the total flux measured at a reference

Figure 5. Observer time decay index of the flux density, i.e. Fν ∝ t−α
obs , for

various models, as indicated in Fig. 4. Blast energy and εe are as in Fig. 2.

energy, here 0.1 GeV, with an index β � 1.1, i.e.

Fth(>30 GeV) = Fν(0.1 GeV)

×
∫ +∞

30 GeV/h

dν

(
hν

0.1 GeV

)−1.1

(33)
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SSC spectra at large Y 3783

Figure 6. Ratio of the total energy flux above 30 GeV to a theoretical flux
obtained by matching the calculated total flux at 0.1 GeV and extrapolating
this flux to higher energies with a power law Fν,th ∝ ν−1.1, as in Inoue
et al. (2013). The symbols correspond to the six models studied in Figs 4
and 5, as follows: red circles εB = εB+ and αt = 0; blue squares αt =
−0.4; orange triangles εB = εB− and αt = 0. Filled symbols correspond to
k = 2 and open symbols to k = 0; other parameters are as in Fig. 2.

with Fν = Fν,syn + Fν,IC the total flux. The reference energy chosen
here is smaller than that in Inoue et al. (2013), because the IC flux
is already prominent at 1 GeV in the scenarios studied, as shown in
Figs 2 and 3 for example. However, given the value of the index
β, the theoretical flux νFν is roughly flat above 1 GeV; hence, this
should not affect the statistics of detection.

The results are shown in Fig. 6, which carries out this evaluation
for the six models shown in Figs 4 and 5. This figure indicates
that a decaying microturbulence with αt = −0.4 (or a low average
εB) increases by a factor of a few, up to an order of magnitude,
depending on αt, k and tobs, the prospects of observing the afterglows
at energies >30 GeV, relatively to statistics computed for a model
with εB = 0.01, as in Inoue et al. (2013). This certainly brings the
number of potential detections by instruments such as CTA in a
more comfortable range.

Furthermore, it is important to note that in most models studied
here, the IC component contributes to a significant fraction of the
total flux at 0.1 GeV; therefore, the above ratio actually is an under-
estimate of the ratio of the IC flux at high energies to the synchrotron
flux at GeV energies.

4 C O N C L U S I O N S

This paper has discussed the spectral shapes of the SSC spectrum of
a relativistic blast wave, including all relevant KN effects, and their
evolution in time. A particular emphasis has been put on the impact
of a decaying microturbulence behind the shock front, which is
motivated by theoretical analysis (Chang et al. 2008; Lemoine 2015)
and observational inference (Lemoine et al. 2013; Liu et al. 2013).
However, the results are fully applicable to the case of a uniformly
magnetized blast, possibly with a low value of the average εB.

A decaying microturbulence and/or a low average value of εB

both lead to a large Yc Compton parameter, with interesting physi-
cal and observational consequences. From a more theoretical point
of view, the KN suppression of IC cooling has a strong effect on
the synchrotron spectral shape, as noted elsewhere for the case of a
uniformly magnetized blast (Nakar et al. 2009; Wang et al. 2010).
In the case of a decaying microturbulence, the modification is not
trivial to compute, and the present paper has described a simple
algorithm which allows one to compute the full SSC spectrum with
satisfactory accuracy, at a modest numerical cost. Among the in-
teresting phenomenological consequences, one may point out the
slight deviations in the spectral and temporal slopes induced by the

decaying microturbulence, or by KN effects in uniformly magne-
tized blasts at low εB. A multiwavelength coverage of the afterglow
would, in principle, allow one to tomograph the dynamics of this
magnetized turbulence, through its influence on the light curves in
various wavebands. However, as expressed in terms of the spectral β
and temporal α slopes, defined customarily through Fν ∝ t−α

obs ν
−β ,

the deviations are relatively weak and not currently distinguishable
through observations. A multiwavelength fit of the afterglow, which
also relies on the flux ratios between various wavebands, seems to
provide a more sensitive probe of the dynamics of the microturbu-
lence.

Finally, a large Yc parameter also implies a large IC flux at multi-
GeV energies, relatively to the lower energy synchrotron flux, with
direct consequences for the detectability of GRB afterglows by
future gamma-ray telescopes. A numerical estimate indicates that
a low average εB would imply a detection rate several times larger
than currently anticipated on the basis of the extrapolation of the
flux of GRBs detected by Fermi-LAT.
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