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We show that the number of observed voids in galaxy redshift surveys is a sensitive function of the
equation of state of dark energy. Using the Fisher matrix formalism, we find the error ellipses in the w0-wa

plane when the equation of state of dark energy is assumed to be of the form wCPLðzÞ ¼ w0 þ waz=ð1þ zÞ.
We forecast the number of voids to be observed with the ESA Euclid satellite and the NASA WFIRST
mission, taking into account updated details of the surveys to reach accurate estimates of their power.
The theoretical model for the forecast of the number of voids is based on matches between abundances in
simulations and the analytical prediction. To take into account the uncertainties within the model, we
marginalize over its free parameters when calculating the Fisher matrices. The addition of the void
abundance constraints to the data from Planck, HST and supernova survey data noticeably tighten the
w0-wa parameter space. We, thus, quantify the improvement in the constraints due to the use of voids and
demonstrate that the void abundance is a sensitive new probe for the dark energy equation of state.
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I. INTRODUCTION

The measurement of luminosity distances from super-
novae of type Ia [1,2] gives observational evidence for the
accelerated expansion of the Universe. To account for
such acceleration, the standard cosmological model relies
on the existence of a mysterious component: dark energy.
Different models of dark energy are viable, such as models
where the Universe is permeated by a constant energy
density (e.g. a cosmological constant with w0 ¼ −1) or
models of dynamical dark energy. A precise measurement
of the equation of state of dark energy allows us to
distinguish among such models.
The large scale structure of the Universe depends on the

cosmological model, thus its study allows to trace the rate
of expansion of our Universe. For instance, the number of
galaxy clusters depends on the properties of dark energy: a
comparison of observational counts with analytical pre-
dictions permits to constrain the dark energy equation of

state [3]. While this measure relies on the high density
regions of the universe, the use of the low density ones,
such as cosmic voids, is also sensitive to the properties
of dark energy. Additionally, while cluster abundances can
be problematic because of the high intrinsic scatter in their
mass-observable relationships, voids promise to suffer
from this uncertainty in a milder (and different) way, as
their volumes can be observed and compared to theory
directly.
Cosmic voids have remained fairly unexplored until

recent times, due to the difficulty in acquiring sufficient
data from sparsely populated regions of the Universe.
Nowadays, as modern surveys such as the SDSS map out
the cosmic web in great detail, entire void catalogs are being
compiled [4–6] and used in a wide range of cosmological
applications, spanning from the Alcock-Paczyński test [7,8]
to the measurement of the integrated Sachs-Wolfe effect [9].
Analogously to galaxy cluster number counts, here we
propose to use void number counts to constrain the cosmo-
logical model: the number of observed voids is sensitive to
the dark energy equation of state. This means that simply*pisani@cppm.in2p3.fr
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counting voids in galaxy surveys enables us to constrain the
properties of the latter.
Theoretical models based on the Press-Schechter for-

malism [10] adapted for the case of voids (known as the
Sheth and Van de Weygaert model [11]) and the recent
observational work with voids allows in principle to
forecast the number of voids that should be observed by
a particular survey and with a given cosmological model.
While recent works have extended the original Sheth and
Van de Weygaert model (such as [12–14]), for this work
we will consider the original model, in the framework of
which we are qualitatively able to match simulations
mimicking the tracer number density of upcoming surveys
(as explained throughout the paper). Thus, the predicted
abundance of observed voids for each galaxy redshift
survey gives the power of the survey to constrain the dark
energy equation of state through void counting. To reach
this goal, we use the Fisher matrix formalism [15,16] (as it
has been done for different probes by [17] and [18]).
In this paper we focus on two upcoming surveys, Euclid

[19] and WFIRST (Wide Field Infrared Space Telescope)
[20,21], to establish their expected power to constrain dark
energy in terms of void abundance. The two surveys are in
some sense complementary. The Euclid satellite is a medium
class mission of the ESA-led Cosmic Vision 2015–2025 that
will cover 15000 deg2 of the sky. It will give pseudo-
spectroscopic redshifts of tens of millions of galaxies up to
high redshift. On the other hand, WFIRST—a NASA-led
mission—will cover a smaller portion of the sky, 2000 deg2,
but with a higher sampling density of galaxies. The two
surveys, thus, present two complementary strategies—on the
one side a wide but shallower survey (Euclid), and on the
other side a deeper but narrower field (WFIRST).
Naturally, one might ask which approach can provide the

largest number of voids. Because cosmic voids exhibit a
hierarchical structure [11,22], an increase in the density of
galaxies (a higher-resolution sampling of the large-scale
structure of the Universe) allows resolving voids of smaller
size at each redshift. On the other hand, a wider field also
increases the number of observed voids, so it is not obvious
which survey strategy is best suited for maximizing the
number of observed voids.
In this paper we aim to answer this question by

presenting a forecast for the number of voids to be detected
by Euclid and WFIRST. We also establish the constraining
power from their void abundances in view of the dark
energy equation of state. To this end, we consider the
Chevallier-Polarski-Linder [23,24] parametrization for the
dark energy equation of state:

wCPLðzÞ ¼ w0 þ wa
z

zþ 1
: ð1Þ

Once the number of observed voids is known, the Fisher
matrix formalism can provide error ellipses in the w0-wa
plane. The Fisher formalism gives an estimate of the

constraints to be expected from cosmological probes in
terms of area in parameter space.
Recent work on observational data (e.g. the SDSS DR7

and DR9 data, see [5,25]) sheds more light on the
behaviour of voids that are defined in the distribution of
galaxies (as opposed to dark matter [26,27]), thereby
allowing a more robust estimation of void abundances
based on the use of simulations and mock galaxy catalogs
that are calibrated to reproduce the properties of the data
in the most realistic way possible.
A number of cosmological tests based on void statistics

have been proposed, e.g. Alcock-Paczyński test on void
stacks [7,8,18,28], tests of coupled dark energy-dark matter
models [29], tests of modified gravity models [30–32],
constraints from CMB lensing with cosmic voids [33].
To understand the potential of void-based cosmology with
Euclid and WFIRST requires realistic estimates of void
abundances based on updated details on both missions,
such as those we present in this paper.
The paper is organized as follows: in Sec. II we present

the theoretical calculation of the void abundance. In Sec. III
we discuss the determination of the minimum void radius to
be considered useful for our analysis. Section IV presents
the Fisher matrix analysis, and in Sec. V we describe the
simulations used for this work. Finally, in Sec. VI we
present our results, and we conclude in Sec. VII.

II. VOID NUMBER CALCULATION

In order to estimate the constraining power from voids
that can be observed with future surveys, we need to have a
theoretical prediction of their expected abundance. This, in
turn, requires a theoretical model for the formation of voids.
One possibility to define the formation of a void is to
consider the spherical expansion of a top-hat perturbation,
analogously to the case of halo formation by spherical
collapse [34], but with opposite sign. The moment of void
formation can be defined as the evolutionary stage where
two adjacent radial shells start crossing each other, leading
to the formation of a ridge [11]. This consideration allowed
Sheth and Van de Weygaert [11] to construct a model for
the distribution of void sizes. We take this model as a
starting point for determining void abundances.
Following the Press-Schechter formalism [10], we cal-

culate the abundance of voids using

M2nðM; zÞ
ρ̄

dM
M

¼ νfðνÞ dν
ν
; ð2Þ

where M is the void mass, ρ̄ the background density, and
nðM; zÞ the number density of voids of given mass and
redshift. According to Sheth and Van de Weygaert [11],
assuming Gaussian initial conditions, the fraction fðνÞ of
mass that has evolved into voids can be approximated as

νfðνÞ ≈
ffiffiffiffiffiffi
ν

2π

r
expð−ν=2Þ; ð3Þ
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where ν ¼ δ2v
σ2ðMÞ, δv is the critical underdensity of void

formation, linearly extrapolated to the time when shell-
crossing takes place at the void edge, and σ2ðMÞ is the
variance of linear density fluctuations filtered on a scale
R ¼ ð3M

4πρ̄Þ−1=3. We anticipate here that we consider Eq. (3)
in the case were the two-barrier distribution reduces to a
single barrier, a particular case described in [11] where the
void-in-cloud process is neglected, as detailed in the next
section.
Recent work measured the abundance of voids in galaxy

surveys (e.g. [25]) and compared it to mock catalogs from
simulations with properties matching the data. The Sheth
and van de Weygaert excursion set model can be used to
model the void abundances accurately, as long as the
value of δv is taken as a free parameter. While this is a
phenomenological approach, it uses the power of the
theoretical description combined with the added realism
by fitting a parameter to simulations matching observa-
tions. Indeed the distribution of voids needs to be validated
with simulations in order to be reliable [13].
Thus, in the redshift range of interest to observe voids,

we have used sub-sampled simulations matched to the
tracer density of Euclid and WFIRST to tune this parameter
optimally. The value of δv obtained with this methodology
is −0.45, we find this value to be stable when varying the
cosmological parameters. The value of δv differs from the
Sheth and van de Weygaert prediction because watershed
voids are not spherical and do not exhibit uniform shell-
crossing. As mentioned, recent works show that some
improvements can be obtained [13] by validating the void
distribution with mocks. The use of simulations tuned to
observed data [25] thus enhances the robustness of the
abundance estimation we perform.
Additionally, since the value of δv might partially depend

on the void definition, we use the same void finder (VIDE
[35], based on ZOBOV [36]) for the treatment of existing
data and simulations with similar properties—to minimize
bias due to the void definition. This is only a consistency
choice, since generally, we do not expect void abundances
to change much for void finders based on a similar concept
as VIDE (namely a tessellation of the tracer distribution
followed by a watershed transform to detect the structure of
the cosmic web).
In Eq. (3) we used σ, the linearly extrapolated variance of

density fluctuations δ smoothed on the filtering scale RLag
by the Fourier transform of the window function for a top-
hat filter ~WðxÞ ¼ 3=x3½sinðxÞ − x cosðxÞ�. Considering the
matter power spectrum Pδðk; aÞ, we write the definition
of σ:

σ2ðM; aÞ ¼
Z

∞

0

k3Pδðk; aÞ
2π2

j ~WðkRLagðMÞÞj2 dk
k

ð4Þ

The calculation of σ depends on cosmology, thus it can
be used to constrain cosmological parameters through the

observed abundance of voids in a survey. We can change
variables from the mass of the void to its radius (either
Lagrangian or Eulerian) by using mass conservation inside
the void:

M ¼ 4π

3
R3
Lagρ̄ ¼ ð1þ ΔVÞ

4π

3
R3
Eulρ̄; ð5Þ

where ΔV is the underdensity of the matter inside the void.
From the spherical collapse model one finds ΔV ≃ −0.8 at
the time of shell crossing. Since the expansion of the void
reduces considerably after shell-crossing (see [11,37]) we
will assume this value of ΔV for all voids irrespective of
when the shell formed around them. It should be noted that
we have written the Eulerian radius in the comoving form,
hence the background density is constant and equal to its
present day value. To prevent confusion we will keep the
Eulerian and Lagrangian subscripts for the radii throughout
the paper. The observable quantity we measure in a galaxy
redshift survey is the number of voids larger than a given
radius Rmin

Eul located in a specified redshift interval. It can be
found as

Ne ¼
Z

zþΔz

z
dz

Z
∞

Rmin
Eul

dREul

Z
Ωsurvey

dΩnðREul; zÞ
dV
dzdΩ

; ð6Þ

where dV is the comoving volume element and the angular
integration is over the angular size of the survey. The
differential volume element is a function of cosmology
through the Hubble rate.
Considering Eqs. (4) and (6), the number of voids will

depend on the cosmological model through σ and the
differential volume element. Additionally, the minimum
radius of voids considered is a relevant quantity that will
affect the forecast of void abundance. Its choice will be
discussed in the next section.

III. MINIMUM VOID RADIUS DETERMINATION

The constraining power of a void survey crucially depends
on the minimum observable void radius. Particular care must
be taken to determine this minimum radius for the voids in
the survey: the abundance of voids increases rapidly with
decreasing radius (analogously to the abundance of clusters).
We consider two different criteria for defining the minimum
void radius and take into account the most stringent [17], i.e.
the largest radius of the two.
The first and simplest criterion is based on the mean

particle separation of galaxies in the survey. Taking into
account the features of the survey, we consider as a
minimum radius of a void twice the mean particle sepa-
ration. Empty spaces among galaxies might not correspond
to true voids in the dark matter distribution, as they may
simply result from the discrete sampling of the underlying
distribution (shot noise).
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Voids can be defined reliably down to the mean particle
separation, but considering twice the mean particle sepa-
ration 2Rmps also guarantees a small impact of peculiar
velocities in redshift space [38]. Indeed, voids below that
limit can be washed out or created by the effect of peculiar
velocities. Therefore, to increase our confidence that an
observed underdensity in the galaxy distribution is a true
void and to limit systematic effects due to velocities, we
demand that the radius of the void must be larger than twice
the mean particle separation RShot

Eul ¼ 2.0 × ð1=n̄galÞ1=3 ¼
2.0 × Rmps.
The comoving number density of galaxies n̄gal depends

on survey specifications, such as the maximum apparent
luminosity observable or the galaxy luminosity function
(see [17] for more details). While the Euclid redshift survey
has undergone some changes recently (which might lead to
updated values), to refer as much as possible to realistic
values for the galaxy number densities of the survey, for the
present paper we will use as representative for each redshift
bin the values reported in [39]. For the WFIRST satellite,
while our results do not change much using the values in
[21], we use updated values from the most recent report [40].
A second threshold for the minimum observable void

size is set by the void-in-cloud effect [11]. It is due to the
fact that small voids tend to be located inside surrounding
overdensities, and therefore will disappear with the gravi-
tational collapse of the overdense region around them.
In such cases the Press and Schechter formalism must be
extended. As proposed by Sheth and Van de Weygaert [11],
a two-barrier excursion set model should be used—the
need for two parameters for the void size distribution is
unique to the void case. It involves solving a diffusion
equation with two absorbing barriers instead of one, one for
halos and one for voids.
The void-in-cloud effect leads to a turn-over radius

below which the number density of voids decreases
towards smaller radii. For our analysis, as discussed in
Sec. II, we want to avoid this regime, so we consider voids
with radii larger than the Lagrangian void-in-cloud radius
for which we have σðRVinC

Lag ; zÞ≃ 1. Such voids are unlikely
to be embedded in an overdense region, hence giving a
framework where the Press and Schechter formalism can be
applied (only the smallest voids are subject to collapse
[11,41]). The analysis of velocity profiles confirms this
scenario [42–44]. We thus calculate this radius, convert it
from Lagrangian to Eulerian radius with Eq. (5) and use it
as the second criterion (it should be noted that this criterion
is rarely relevant, since it is usually less constraining than
the criterion of twice the mean particle separation).
At each redshift bin, the respectively higher value among

2Rmps and RVinC
Eul;σ≃1, defined as

Rmin
Eul ¼ maxðRVinC

Eul ; 2RmpsÞ; ð7Þ
is used as the minimum radius to obtain the abundance of
voids. Thus, at each redshift we consider the most stringent

of the two constraints, with one taking into account the
survey’s features (2Rmps) and the other depending on
cosmology (RVinC

Eul;σ≃1).
In the next section we present the Fisher formalism used

in this analysis.

IV. FISHER ANALYSIS

The Fisher formalism is a method to determine a lower
bound on the expected uncertainties with which cosmo-
logical parameters can be determined. We rely on this
formalism to estimate the power of surveys in constraining
cosmological models with void abundances.
We discretize the survey into separate redshift bins and

assume that the number of observed voids in any bin is a
random draw from a Poisson probability distribution. That
is, if the expected number of voids in the bin from the
theory is Ne, whose calculation was the subject of Sec. II,
then the observed number of voids, No, has the probability
distribution

pðNojNeÞ ¼
NNo

e e−Ne

No!
: ð8Þ

We assume that the drawings from two different redshift
bins are uncorrelated so that the probability to find No;1 in
the first bin, No;2 in the second bin and so on, simply is

LðNo;1; No;2;…jNe;1; Ne;2;…Þ ¼
YNbin

a¼1

Ne;a
No;ae−Ne;a

No;a!
: ð9Þ

The Fisher information matrix is defined as

Fmn ¼ E

�∂ lnL
∂θm

∂ lnL
∂θn

�
; ð10Þ

where E stands for the expectation value and the θi denote
the cosmological parameters. For the case of the Poisson
distribution, we will have

∂ lnL
∂θm ¼

X
a

�
No;a

Ne;a
− 1

� ∂Ne;a

∂θm : ð11Þ

Considering Eq. (9), using E½No;a� ¼ Ne;a and the fact
that for the Poisson distribution

E½No;aNo;b� ¼ E½No;a�δab þ E½No;a�E½No;b�
¼ Ne;aδab þ Ne;aNe;b; ð12Þ

it immediately follows [45] that

Fmn ¼
X
a

∂Ne;a

∂θm
∂Ne;a

∂θn
1

Ne;a
; ð13Þ

where the right-hand side is calculated for a fiducial set of
values of the parameters θ. We note that when deviating
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from fiducial cosmology, the inferred void radius will
change. We consider the modification of the void radius
when the adopted cosmology is not the fiducial one as

REul ¼ REul;true

�
dVfid=ðdzdΩÞ
dV true=ðdzdΩÞ

�
1=3

: ð14Þ

The variation of the radius of voids if a cosmology
different than the fiducial one is assumed needs to be taken
into account when performing the Fisher analysis since it
affects the derivatives of Eq. (13). We note that V true and
Vfid need to be in the same units. While correctly taking
into account this effect [considering Eq. (14) when we
calculate the numerical derivatives for Ne in Eq. (13)], for
the present analysis we are neglecting further effects
(such as the Alcock-Paczyński effect), which should be
quantified in future analysis with mocks based on Halo
Occupation Distribution models (that promise to be more
accurate when further details about Euclid and WFIRST
will be available) and for the application of this method
to data.
The Cramer-Rao theorem states that any unbiased

estimator of the parameters θA will have a covariance
matrix larger than, or at best equal to, the inverse of the
Fisher matrix.
Thus, the Fisher matrix formalism can give an estimate

of the constraints to be obtained from cosmological probes
in terms of area in the parameter space.
While more sophisticated techniques exist to estimate

such constraints [46], the Fisher matrix analysis is adapted
for a first application of our simulation-calibrated number
functions method.

V. SIMULATIONS

As discussed in Sec. I, we used simulations to tune the
parameter δv. We use simulations of subsampled dark
matter and use the void-finding technique described in
[35]. While we leave for future work the tuning of δv with
mocks constructed using halo occupation distribution
models (which promise to be more accurate when further
details about Euclid and WFIRST will be available), the
subsampling of simulations allows us to mimic the number
density of tracers in the two surveys.
For the simulations, we have used an adaptive tree code

N-body method whose operation count scales as N log N in
the number of particles, the 2HOT code [47]. With the use of
a compensating smoothing kernel for small-scale force
softening [48] and a technique to subtract the uniform
background density, the error behavior and accuracy are
particularly adapted for cosmological volumes (see [49] for
details). To generate initial conditions we used a power
spectrum calculated with CLASS [50] and then realized the
initial conditions with a modified version of 2LPTIC [51].
The simulations assume the fiducial Planck cosmology; we
have then independently varied w0 and wa while adapting

the amplitude of initial fluctuations such as to preserve the
value of σ8 determined by Planck. The size of the box is
1 Gpc h−1 and it contains 10243 particles. We subsample
the simulation to a mean density of n̄ ¼ 4 × 10−3 particles
per cubic h−1 Mpc, comparable to the number density
expected from future surveys [49].
The comparison of the void abundance in the ΛCDM

simulation with the theoretical model is shown in Fig. 1.
The theoretical model is able to match the abundances from
simulations, except for smaller radius which we do not
use to constrain parameters (as discussed in Sec. III). To
parametrize the uncertainty in the determination of the
parameter δv, we can marginalize over it to obtain the
constraints. The shaded areas in Fig. 1 show the effects of
the variation of the value of δv (varied by 0.05 and 0.1 in the
figure) for the ΛCDM case. The marginalization over δv
allows us to take into account the fact that the Sheth
and Van de Weygaert fit is qualitative, and only roughly
matches simulations, due to the discreteness of the galaxy
distribution as opposed to a smooth density field.
Figures 2 and 3 show the comparison of void abundance

with simulations for different values of the parameters w0

and wa. The used simulations mimic the number density of
tracers in the two surveys, thus allowing us to match the
abundance of voids in a realistic framework (although the
volumes of the simulations are smaller than the actual
volume to be obtained with both surveys). While at larger
radii we are able to match the behavior of simulations, we
see that in Figs. 2 and 3 the theoretical model and the curves
from simulations diverge at small radii. For voids of small

FIG. 1 (color online). We represent the prediction from the
Sheth and Van de Weygaert model matched to the simulation.
The shaded areas show the effects of the variation of the value of
δv (varied by 0.05 and 0.1 in the figure) for the ΛCDM case.
The marginalization over δv allows us to take into account the fact
that the Sheth and Van de Weygaert fit is qualitative, and only
roughly matches simulations due to the discreteness of the galaxy
distribution as opposed to a smooth density field.

COUNTING VOIDS TO PROBE DARK ENERGY PHYSICAL REVIEW D 92, 083531 (2015)

083531-5



radii, the void number function increases dramatically. As
described in Sec. III, to ensure a robust estimation for the
number of voids, we cut off the constraints only consid-
ering voids at higher radii and thus avoiding consideration
of voids at smaller radii.
Additionally, as mentioned before (and shown in Fig. 1),

in order to account for the residual uncertainty in the Sheth
and Van de Weygaert fit, we will marginalize over the
parameter δv. The abundance of voids obtained with the
described methodology gives a measure of the power of

the survey to constrain cosmological parameters and is
particularly robust, as based on recent observations.
The next section presents the results of the calculation.

VI. RESULTS

The cosmological parameters we use to evaluate the
Fisher matrix together with their fiducial values are given in
Table I (and correspond to Planck values [52]). We use the
BBKS analytical fit [53] for the transfer function TðkÞ and
consider its generalization [54] that takes into account the
effect of baryons. The matter power spectrum at any given
redshift can then be calculated as

Pδðk; aÞ ¼
4

25
T2ðkÞD2ðaÞ k4c4

Ω2
m0H

4
0

PζðkÞ: ð15Þ

Here, Pζ is the power spectrum of the primordial curvature
perturbation and is assumed to be of the form Δ2

ζðkÞ≡
k3PζðkÞ
2π2

¼ Δ2
ζðk0Þðk=k0Þnsðk0Þ−1, where k0 ¼ 0.05 hMpc−1 is

the pivot scale. Also, DðaÞ is the linear growth factor
of structure, normalized so that at late time Dða ¼ 1Þ ¼ 1.
In the case of a nonclustering dark energy fluid, it can be
found as the solution of the following differential equation,

3

2
ΩmðaÞ ¼

d2 lnδ
dðlnaÞ2 þ

�
d lnδ
d lna

�
2

þ;

þ d lnδ
d lna

�
1−

1

2
½ΩmðaÞ þ ð3wðaÞ þ 1ÞΩDEðaÞ�

�

ð16Þ

from [55] [to be more precise,DðaÞ is the growing mode of
the solution of Eq. (16), where we have δ ∝ DðaÞ].
To find out how a combination of different surveys can

constrain the cosmological parameters, we simply need to
add the Fisher matrices from those surveys. However, it is
important to have the same set of cosmological parameters
for all surveys. We can change from one set of parameters
to others by using F0 ¼ J†:F:J in which Jij ≡ ∂θi=∂θ0j is
the Jacobian of the transformation.
We consider Fisher forecasts computed from the Planck

satellite (note that this forecast does not include CMB
lensing); SN is the Fisher matrix for a type Ia supernova
survey such as the Large Synoptic Survey Telescope [17,56].
Inverting the Fisher matrices, we can obtain the 1-σ error

ellipses in the w0-wa plane, which measure the capacity of a

FIG. 2 (color online). Matching of the abundance of voids in
simulations for models with different w0. The lines show the
abundances from simulations for models with different w0 (and
fixed wa). The prediction from the Sheth and Van de Weygaert
model are represented with dashed lines.

FIG. 3 (color online). Matching of the abundance in simula-
tions for models with different wa. The thick lines show the
abundances from simulations for models with different wa (and
fixed w0). The prediction from the Sheth and Van de Weygaert
model are represented with dashed lines.

TABLE I. Parametrization of the cosmology and the fiducial
values chosen for the maximal set of parameters used in
evaluating the Fisher forecasts.

Ωb Ωm h τ Ωk w0 wa ns lnð1010Δζðk0ÞÞ
0.049 0.318 0.67 0.09 0.0 −1 0 0.96 3.098
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combination of experiments to constrain the dark energy
equation of state.
We show, respectively in Figs. 4 and 5, the 1-σ error

ellipses in the w0-wa plane for Euclid and WFIRST voids
combined with Planck and HST (namely the Hubble Space
Telescope Survey measurements of the Hubble constant
from [57]). For comparison, we also show the ellipse of
Planckþ HST alone, the Planckþ HSTþ SN and the
Planckþ HSTþ Euclid BAO (from [18]). Figures 4 and
5 thus allow us to compare the constraining power of
void abundances for Euclid and WFIRST with BAO and
supernovae.
Additionally, to parametrize the uncertainty on the δv

parameter, we can marginalize over it (as well as margin-
alizing over standard parameters). We vary the parameter δv
by �0.05, thus taking into account the effects of sparsity
(due to the discreteness of the galaxy distribution as
opposed to a smooth density field) that might affect the
void abundance and the ordering discrepancies between the
simulations and the Sheth and Van de Weygaert fit seen in
Fig. 3. For the marginalization to characterize the uncer-
tainties and biases between the Sheth and Van de Weygaert
model and the simulations, we use a uniform prior
(−0.45� 0.05). While we don’t expect our results to
change substantially in the case of e.g. a Gaussian prior
(because the cosmological constraints are relatively robust
with respect to the uncertainty in δv), the precision in the
calculation of the expected constraints is currently more

strongly affected by the uncertainty about the details of the
surveys than by the choice of the prior. Even though it is not
the purpose of this paper to perform a full Markov chain
Monte Carlo exploration of the probability distribution, we
point out that it would be the optimal way to explore the
probability distribution function to be considered for future
work, when details of the surveys will be updated and thus
more reliable, allowing a sensitive improvement in the
precision of constraints. The marginalization over δv also
allows us to take into account the residual effects of
peculiar velocities on void abundance for voids of larger
size, as well as further uncertainties related to the watershed
definition of voids in the tracer distribution [37]. Figures 4
and 5 also show (light-blue filled region) the 1-σ error
ellipses in the w0-wa plane for the satellites after margin-
alization. We observe that the ellipse is only slightly
thickened, showing that the cosmological constraints are
relatively robust with respect to the uncertainty in δv.
Interestingly, we notice that the void abundance with

WFIRST, while leading to similar constraints on the
parameter w0, constrains the wa parameter slightly better
than Euclid. Nevertheless, the conditional error on wa from
Euclid is lower—this means that if we combine constraints
from void abundances with other probes that constrain
effectively w0 (such as supernovae), we can expect the
resulting combined constraints on wa to be better for the
probe combined with Euclid (as we will see in Fig. 6).
Indeed, so far we have only compared the constraints

from the void abundance to the contraints from supernovae,

FIG. 4 (color online). 1-σ error ellipses for several combina-
tions of data sets. From outer ellipse to inner: Planckþ HST,
Planckþ HSTþ SN, Planckþ HSTþ Euclid Voids. The light-
blue filled contour shows the result of the marginalization over
the parameter δv. For comparison, we also show in the striped-
filled contour the BAO constraints from Euclid (also added to
Planckþ HST), from [18].

FIG. 5 (color online). 1-σ error ellipses for several combination
of data sets. From outer ellipse to inner: Planckþ HST,
PlanckþHSTþSN, Planckþ HSTþWFIRST Voids. The light-
blue filled contour shows the result of the marginalization over the
parameter δv. For comparison, we also show in the striped-filled
contour the BAO constraints from Euclid (also added to
Planckþ HST), from [18].
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but additional constraints are obtained if supernovae are
considered jointly with voids. Figure 6 shows the com-
parison of WFIRST and Euclid void constraints when both
are added to Planckþ HSTþ SN. It should be noted that
the axis range is smaller in this figure.
When independently added to supernovae, the void

abundance from Euclid and WFIRST results in an
enhanced constraint, although, as expected from the
previous discussion, Euclid combined with supernovae
is most constraining. Both WFIRST and LSST promise
to bring new SN data. We can expect that, when added
to the complementary probe from void abundance, these
data increase the quality of constraints. While voids alone
already bring important information to constrain the
dark energy equation of state, the different orientation
of ellipses—related to the different nature of probes as
well as to the different systematics affecting the probes—
for SN and voids will be a consistent asset to fully exploit
the complementarity of the two probes. The resulting
allowed w0-wa parameter space is considerably reduced
when voids are added to the supernovae probe, thus
showing the power of void number counts to constrain
the dark energy equation of state.
Also, it is worth noticing that while WFIRST will find

fewer voids than Euclid (see Table II), it still brings a
competitive constraint as far as the void abundance is
concerned because it is sampling the cosmic web at smaller
scales (higher density).

The error ellipses of the two surveys cover different parts
of the parameter space; thus—although it remains nontrivial
to combine cosmological constraints from the two data sets
[58]—if jointly considered, they promise to yield improved
constraints on the w0-wa plane. The different constraints on
the parameter space from the two surveys can be understood
considering that they have galaxy number densities peaked
at different redshifts (namely, the Euclid peak galaxy number
density will be at z≃ 0.75–0.85, while the WFIRST peak
will be at z≃ 1.30–1.45).
In addition to having different degeneracy directions, the

Euclid and WFIRST surveys will also have different
observational systematic errors due to their different observ-
ing strategies. In general, a space-based slitless redshift
survey possesses depth variations across the field of view of
the instrument due to varying image quality, spectral
resolution, and coverage (chip gaps and defects) and over
the area of the survey due to variations in sky brightness and
stellar confusion.
The WFIRST tiling strategy results in most galaxies

being observed multiple times at widely separated positions
on the focal plane and at different zodiacal brightness
levels, which will help to mitigate effects that depend on
field position and sky brightness. However, its warm
telescope results in a position-dependent thermal back-
ground that is highest near the center of the focal plane.
Both surveys use multiple dispersion angles (imple-

mented on Euclid by changing the grism and WFIRST
by rotating the entire telescope). While we leave an
investigation of these effects on void statistics to future
work, we note that comparison of the data sets in their
region of overlap should help to constrain the systematics
models for both surveys.
As mentioned, because of correlations it would be

nontrivial to combine Euclid and WFIRST constraints in
the range where the two surveys overlap; nevertheless, we
can obtain a close estimate of the combined power of void
abundances from the two surveys by considering that
WFIRST is deeper than Euclid in the covered space, and
Euclid is much wider. Thus, as a simple estimation we can
consider constraints from a survey such as Euclid but with
a smaller volume (i.e. subtracting the volume of WFIRST)
and then add the constraints of this survey to the con-
straints from WFIRST. We show the estimate of con-
straints obtained with such methodology in Fig. 6. As
expected, this estimate shows that combining voids from
the two surveys would allow us to enhance the quality of
constraints.

FIG. 6 (color online). Comparison of 1-σ error ellipses for
WFIRST and Euclid voids when the supernovae data are also
considered (in each case the void abundance constraints are added
to Planckþ HSTþ SN data). We also show the constraints
obtained by considering an estimate of the combination of voids
from both surveys (see Sec. IV). (It should be noted that the axis
range is smaller in this figure.)

TABLE II. Total number of voids forecasted for each survey.

Survey Sky Fraction Total Number of voids

Euclid 0.36 7.8 × 105

WFIRST 0.05 2.5 × 105
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We showed that the large volume and deepness of the
surveys allow us to constrain effectively the w0-wa param-
eter space by using a phenomenological prediction for the
number of voids with Euclid and WFIRST based on
simulations. To further dramatically improve the potential
of the method, one could also consider voids at smaller
radii which have not been used in our forecast—this would
need a theoretical model able to predict the abundance
more in detail also for smaller voids and the use of
simulations with larger volumes to confirm predictions
[59]. Since the abundance of voids increases rapidly with
decreasing radius, this could lead to a powerful increase in
statistics and, thus, in even better constraints. The results
we have obtained so far are able to show the potential of the
method and serve as an initial probe of the power of these
surveys in the framework of void abundance.

VII. CONCLUSION

In this paper we have considered the information gained
by using the number of observed voids as a function of
redshift to constrain the equation of state of dark energy.
The void number count is performs well in terms of
improving constraints on wðzÞ, in particular when com-
bined with other probes. The advantage of void number
counts is that the method does not need a separate
expensive survey since it can use data from the existing
or planned redshift surveys to give extra information about
the nature of dark energy.
The method of observed cluster counts has been used to

constrain the equation of state of dark energy (or, more
generally, cosmological models, e.g. [3,60–63]). It is worth
noticing that the observed void counts promise to give
complementary constraints to the cluster method. The first
advantage of considering the void method is that the
systematics will be different than in the cluster case. The
estimation of the number of voids is based on the void’s
observed “geometry” (radius), while the method for
clusters relies on the use of the cluster “masses.”
Clearly, there are different systematic errors involved in

their estimation, and the confidence of the detection of a
signal will be greatly enhanced when they are combined.
Additionally, as mentioned, the measurement of voids does
not need a different survey. To extract cosmological
information, it is possible to directly use surveys already
mapping the cosmic web for probes such as BAO, thus
obtaining a complementary constraint.

The second advantage is that the linear density threshold
for void formation is different than the one for halos, which
means we are considering a different probe. Finally, the
redshift dependences of the number of clusters and voids
are different since the mass scales probed are different. The
abundance of clusters and voids is, thus, sensitive to the
equation of state of dark energy in different redshift ranges.
For this reason, the use of voids can give complementary
and independent constraints on dark energy.
We have compared two upcoming satellites, Euclid and

WFIRST, and we have showed that their measured void
abundance will constrain the parameter space w0-wa differ-
ently, thus optimally sampling the cosmic web at a different
scale and redshift. This results in joint constraints of an
increased precision. Finally, the allowed w0-wa parameter
space is further reduced when void constraints are added
to the supernovae probe, thus showing the power of the
void number counts method to constrain the dark energy
equation of state.
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