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ABSTRACT
The geometry of the cosmic web drives in part the spin acquisition of galaxies. This can be
explained in a Lagrangian framework, by identifying the specific long-wavelength correlations
within the primordial Gaussian random field (GRF), which are relevant to spin acquisition.
Tidal torque theory is revisited in the context of such anisotropic environments, biased by the
presence of a filament within a wall. The point process of filament-type saddles represents
it most efficiently. The constrained misalignment between the tidal and the inertia tensors in
the vicinity of filament-type saddles simply explains the distribution of spin directions. This
misalignment implies in particular an azimuthal orientation for the spins of more massive
galaxies and a spin alignment with the filament for less massive galaxies. This prediction is
found to be in qualitative agreement with measurements in GRFs and N-body simulations. It
relates the transition mass to the geometry of the saddle, and accordingly predicts its measured
scaling with the mass of non-linearity. Implications for galaxy formation and weak lensing are
briefly discussed, as is the dual theory of spin alignments in walls.

Key words: galaxies: evolution – galaxies: formation – galaxies: kinematics and dynamics –
cosmology: theory – large-scale structure of Universe.

1 IN T RO D U C T I O N

Modern simulations based on a well-established paradigm of cos-
mological structure formation predict a significant connection be-
tween the geometry and dynamics of the large-scale structure on
the one hand, and the evolution of the physical properties of form-
ing galaxies on the other. Key questions formulated decades ago are
nevertheless not fully answered. What are the main processes which
determine the morphology of galaxies? What is the role played by
angular momentum in shaping them?

Pichon et al. (2011) have suggested that the large-scale coherence
of the inflow, inherited from the low-density cosmic web, explains
why cold flows are so efficient at producing thin high-redshift discs
from the inside out (see also Stewart et al. 2013; Prieto et al. 2015;
Laigle et al. 2015). On the scale of a given gravitational patch,
gas is expelled from adjacent voids, towards sheets and filaments
forming at their boundaries. Within these sheets/filaments, the gas
shocks and radiatively loses its energy before streaming towards
the nodal points of the cosmic network. In the process, it advects
angular momentum, hereby seemingly driving the morphology of
galaxies (bulge or disc). The evolution of the Hubble sequence in
such a scenario is therefore at least in part initially driven by the
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geometry of the cosmic web. As a consequence, the distribution
of the properties of galaxies measured relative to their cosmic web
environment should reflect such a process. In particular, the spin
distribution of galaxies should display a preferred mass-dependent
orientation relative to the cosmic web.

Both numerical (e.g. Aragón-Calvo et al. 2007; Hahn et al. 2007;
Sousbie et al. 2008; Paz, Stasyszyn & Padilla 2008; Zhang et al.
2009; Codis et al. 2012; Libeskind et al. 2013; Aragón-Calvo &
Yang 2014; Dubois et al. 2014), and observational evidence (e.g.
Tempel et al. 2013) have recently supported this scenario. In par-
allel, much analytical (e.g. Catelan, Kamionkowski & Blandford
2001; Hirata & Seljak 2004), numerical (e.g. Heavens, Refregier &
Heymans 2000; Croft & Metzler 2000; Schneider & Bridle 2010;
Schneider, Frenk & Cole 2012; Joachimi et al. 2013b; Codis et al.
2015; Tenneti et al. 2015) and observational (e.g. Brown et al. 2002;
Lee & Pen 2002; Bernstein & Norberg 2002; Heymans et al. 2004;
Hirata et al. 2004, 2007; Hirata & Seljak 2004; Mandelbaum et al.
2006, 2011; Joachimi et al. 2011, 2013a) efforts have been invested
to control the level of intrinsic alignments of galaxies as a potential
source of systematic errors in weak gravitational lensing measure-
ments. Such alignments are believed to be a worrisome source of
systematics of the future generation of lensing surveys like Euclid
or Large Synoptic Survey Telescope. It is therefore of interest to
understand from first principles why such intrinsic alignments arise,
so as to possibly temper their effects.
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Hence we should try and refine a theoretical framework to study
the dynamical influence of filaments on galactic scales, via an ex-
tension of the peak theory to the truly three-dimensional anisotropic
geometry of the circum-galactic medium, and amend the standard
galaxy formation model to account for this anisotropy. Towards
this end, we will develop here a filament version of an anisotropic
‘peak-background-split’ formalism, i.e. make use of the fact that
walls and filaments are the interference patterns of primordial fluc-
tuations on large scales, and induce a corresponding anisotropic
boost in overdensity. Indeed, filaments feeding galaxies with cold
gas are themselves embedded in larger scale walls imprinting their
global geometry (Danovich et al. 2012; Dubois et al. 2012).

On top of these modes, constructive interferences of high-
frequency modes produce peaks which thus get a boost in density
that allows them to pass the critical threshold necessary to decouple
from the overall expansion of the Universe, as envisioned in the
spherical collapse model (Gunn & Gott 1972). This well-known
biased clustering effect has been invoked to justify the clustering
of galaxies around the nodes of the cosmic web (White, Tully &
Davis 1988). It also explains why galaxies form in filaments: in
walls alone, the actual density boost is typically not sufficiently
large to trigger galaxy formation. The main nodes of the cosmic
web are where galaxies migrate, not where they form. They thus
inherit the anisotropy of their birth place as spin orientation. During
migration, they may collide with other galaxies/haloes and erase
part of their birth heritage when converting orbital momentum into
spin via merger (e.g. Codis et al. 2012). Tidal torque theory should
therefore be revisited to account for the anisotropy of this filamen-
tary environment on various scales in order to model primordial and
secondary spin acquisition.

In this paper, we will quantify and model the intrinsically 3D
geometry of galactic spins while accounting for the geometry of
saddle points of the density field. Indeed, saddle points define an
anisotropic point process which accounts for the presence of fila-
ments embedded in walls (Pogosyan et al. 1998), two critical ingre-
dient in shaping the spins of galaxies.

Taking them into account will in particular allow us to predict the
biased geometry of the tidal field in the vicinity of saddle points.
This can be formalized using the two-point joint probability of
the gravitational potential field and its first to fourth derivatives
and imposing a saddle-point constraint. For Gaussian (or quasi-
Gaussian) fields these two-point functions are within reach from first
principle (Bardeen et al. 1986). A proper account of the anisotropy
of the environment in this context will allow us to demonstrate
why the spin of the forming galaxies field are first aligned with the
filament’s direction.

We will also show that massive galaxies will have their spin
preferentially along the azimuthal direction. While relying on a
straightforward extension of Press–Schechter’s theory, we will pre-
dict the corresponding transition mass’ scaling with the (redshift-
dependent) mass of non-linearity, while relying on the so-called
cloud-in-cloud problem applied to the filament-background split.

The paper is organized as follows. Section 2 qualitatively presents
the basis of the physical process at work in aligning the spin of dark
haloes relative to the cosmic web. Section 3 then presents the ex-
pected Lagrangian spin distribution near filaments, assuming cylin-
drical symmetry, and explains the observed mass transition while
carrying a multiscale analysis of the fate of collapsing haloes in the
vicinity of 2D saddle points. Section 4 revisits this distribution in
three dimensions for realistic typical 3D saddle points. Section 5
investigates the predictions of the theory using Gaussian random
field (GRF) and N-body simulations, while we finally conclude in

Figure 1. Spin acquisition by tidal torquing. At linear order, the misalign-
ment between the inertia tensor of the proto-object and the surrounding tidal
tensor induces an inhomogeneous Zel’dovich boost which corresponds to
the acquisition of a net intrinsic angular momentum in Eulerian space.

Section 6. Appendix A discusses possible limitations and extensions
of this work. Appendix B presents the dual theory for spin align-
ment near wall saddles. Finally, Appendix C gathers some technical
complements.

2 T I DA L TO R QU I N G N E A R A SA D D L E

Before presenting analytical estimates for the expected spins near
filament in two and three dimensions and their transition mass, let
us discuss qualitatively what underpins the corresponding theory.

2.1 Spin acquisition by tidal torquing

In the standard paradigm of galaxy formation, protogalaxies acquire
their spin1 by tidal torquing coming from the surrounding matter
distribution (Hoyle 1949; Peebles 1969; Doroshkevich 1970; White
1984; Catelan & Theuns 1996; Crittenden et al. 2001). At linear
order, this spin is acquired gradually until the time of maximal
extension (before collapse) and is proportional to the misalignment
between the inertia tensor of the protogalaxy and the surrounding
tidal tensor (see Schaefer 2009, for a review)

Li =
∑
j,k,l

a2(t)Ḋ+(t)εijkIjlTlk , (1)

where a(t) is the scale factor, D+ the growth factor, Tij the tidal tensor
(detraced Hessian of the gravitational potential), Iij the protogalactic
inertia tensor (only its traceless part, I ij contributes to the spin). As
this work focuses on the spin direction, the factor a2(t)D+(t) will
henceforth be dropped for brevity. This process of spin acquisition
by tidal torquing is illustrated on Fig. 1.

In the Lagrangian picture, Iij is the moment of inertia of a uniform
mass distribution within the Lagrangian image of the halo, while
Tij is the tidal tensor averaged within the same image. Thus, to rig-
orously determine the spin of a halo, one must know the area from
which matter is assembled, beyond the spherical approximation.
While this can be determined in numerical experiments, theoret-
ically we do not have the knowledge of the exact boundary of a
protohalo. As such, one inevitably has to introduce an approximate
proxy for the moment of inertia (and an approximation for how the
tidal field is averaged over that region).

The most natural approach is to consider that protohaloes form
around an elliptical peak in the initial density and approximate its
Lagrangian boundary with the elliptical surface where the overden-
sity drops to zero. This leads to the following approximation for the

1 Note that in this paper we will call interchangeably ‘spin’ or ‘angular
momentum’ the intrinsic angular momentum of (proto)haloes.
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Anisotropic tidal torque theory 3371

traceless part of the inertia tensor (e.g. Schäfer & Merkel 2012, see
also equations A2–A4)

I ij = 2

5
νσ2MH

−1
ij = 2

5
νσ2

M

det H
H̃ij , (2)

where H
−1
ij is the traceless part of the inverse Hessian of the density

field, Hij = ∂i∂j δ, ν is the overdensity at the peak and M is the
mass of the protohalo. In the second form we explicitly presented
the inverse Hessian via the (detraced) matrix of the Hessian minors,
H̃ij . While H̃ij is a simple polynomial in second derivatives of
the density, M/det H is not, which is the source of most technical
difficulties when statistical studies of the spin are attempted.

Let us point at the following considerations to bypass these dif-
ficulties. First, the supplementary condition for the halo to be at
a peak of the density yields an extra det H factor in all statistical
measures (see e.g. Bardeen et al. 1986). This factor exactly can-
cels the determinant in the denominator. Secondly, all quantities
in equation (2) are computed after the density field is smoothed
at a particular scale Rh which sets the corresponding mass scale.
Therefore, it is more appropriate to apply equation (2) to haloes
at fixed mass M, determined by that smoothing. Hence, we could
argue for the proxy I ij ∝ νH̃ij for the moment of inertia for haloes
of a given fixed mass, where the change in mass is reflected in the
corresponding change in the smoothing scale. In two dimensions,
we show in Appendix A that this multiscale approximation gives
qualitatively the same statistical results as just using Hij as a proxy.
While this approximation is relatively simple, since we are only
concerned with the direction of the spin, we will now go one step
further and use throughout this paper the Hessian as a proxy for
the inertia tensor, even in three dimensions. Indeed, Iij, H̃ij and Hij

share the same eigen-directions (Catelan & Theuns 1996; Schäfer
& Merkel 2012), so we define the spin for the rest of the paper as

si ≡
∑
j,k,l

εijkHjlTlk . (3)

The vector field si is then quadratic in the successive derivatives of
the potential: its (possibly constrained) expectation can therefore be
computed for GRFs. This approximation is further discussed in Ap-
pendix A. Note that equation (3) improves upon simple parametriza-
tions of the mean misalignment between inertia and tidal tensors
(see e.g. Lee & Pen 2000; Crittenden et al. 2001) by ab initio ex-
plicitly taking into account the correlations between both tensors.

2.2 Geometry of the cosmic web

Galaxies are not forming everywhere but preferentially in fila-
ments and nodes which define the so-called cosmic web (Klypin &
Shandarin 1993; Bond, Kofman & Pogosyan 1996). The origin
of these structures lies in the asymmetries of the initial GRF de-
scribing the primordial universe, amplified by gravitational collapse
(Zel’dovich 1970). The presence of such large-scale structure (walls,
filaments, nodes) induces local preferred directions for both the tidal
tensor and the inertia tensor of forming objects which will eventu-
ally turn into preferred alignments of the spin w.r.t the cosmic web.
It is therefore of interest to understand what is the expected spin
direction predicted by equation (3) given the presence of a typical
filament nearby. As a filament is typically the field line that joins
two maxima of the density field through a filament-type saddle point
(where the gradient is null and the density Hessian has two negative
eigenvalues), we choose to study in this paper the expected spin
direction of proto-objects in the vicinity of a filament-type saddle
point with a given geometry (which imposes the direction of the

Figure 2. On top of the density contours (from dark blue to dark red),
the three (red triangle) maxima (resp. the three (green points) minima) are
connected by the crest lines (in solid gold, resp. the through lines in dashed
green) which intersect through saddles points (purple squares). The blue
arrows represent stream lines of the gradient flow. Throughout this paper,
we will assume that the geometry of the regions of intermediate densities
are set by the shape of the (purple) saddles.

filament and the wall). Fig. 2 illustrates the geometry of filaments
near peaks and saddles in a 2D Gaussian field.

2.3 Constrained tidal torque theory in a nutshell

2.3.1 Spin alignments and flips

It has been shown in simulations (among others Bailin & Steinmetz
2005; Aragón-Calvo et al. 2007; Paz et al. 2008; Zhang et al. 2009;
Codis et al. 2012; Libeskind et al. 2013; Forero-Romero, Contreras
& Padilla 2014) that the spin of dark haloes is correlated to the di-
rection of the filaments of the cosmic web in a mass-dependent way.
The alignment between the spin and the closest filament increases
with mass until a mass of maximum alignment (Laigle et al. 2015)
that we call here critical mass. As mass increases, the direction of
the spin becomes less aligned with the filament before becoming
perpendicular to it (Codis et al. 2012). This transition – from aligned
to perpendicular – occurs at a mass that we call here the transition
mass.

This paper will claim that the critical mass is directly related to
the size of the quadrant of coherent angular momentum imposed by
the tides of the saddle point (which are effectively the Lagrangian
counter parts of the quadrant of vorticity found in Laigle et al. 2015).
This mass can be captured using a cylindrical model that would
correspond to the plane perpendicular to the filament at the saddle
point (which amounts to assuming an infinitely long filament). This
2D toy model (see Section 3 below) shows that near a 2D peak
(i.e. near an infinitely long 3D filament), the quadrupolar structure
seen in simulation naturally arises in a Lagrangian framework. We
investigate the size of that quadrants and shows that it qualitatively
predicts the right critical mass.

MNRAS 452, 3369–3393 (2015)
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Figure 3. Sketch of main differential alignment between halo shapes and tidal tensor responsible for ez- and eφ-component of momentum. Top: the two
tensors in light and dark red, end up being misaligned as they feel differently the neighbouring wall (blue) and filament (purple), inducing a spin parallel to the
filament (red arrow). Three projections are shown for clarity. Bottom: correspondingly, the differential pull from the filament (purple) and the density gradient
towards the peak (blue) generates a spin (red arrow) along the azimuthal direction. By symmetry, the other peak(s) on the other side of the saddle point will
spin-up massive haloes in the opposite direction.

The second stage of accretion, that flips the spin of more massive
haloes from aligned to perpendicular to the filaments, requires a 3D
analysis (see Section 4). It is shown that indeed small haloes that
form close to the saddle point, acquire spin along the filaments while
more massive haloes that form further from the saddle (i.e. closer to
the peaks/nodes) acquire a spin perpendicular to the filaments (while
accreting smaller haloes). The transition mass will be predicted as
a function of redshift and shown to agree with measurements in
simulations.

2.3.2 The premises of anisotropic tidal torque theory

Let us present here an outline of the extension of tidal torque theory
(TTT) within the context of a peak (or saddle) background split.
Given the anisotropically triaxial saddle constraint, we will argue
that the misalignment between the tidal tensor and the Hessian of the
density field simply explains the transverse and longitudinal anti-
symmetric geometry of angular momentum distribution in their
vicinity. It arises because the two tensors probe different scales:
given their relative correlation lengths, the Hessian probes more
directly its closest neighbourhood, while the tidal field, somewhat
larger scales.

Within the plane of the saddle point perpendicular to the filament
axis (the mid-plane hereafter), the dominant wall (corresponding to
the longer axis of the cross-section of the saddle point) will re-orient
more the Hessian than the tidal tensor, which also feels the denser,
but typically further away saddle point, see Fig. 3, top panels. This
net misalignment will induce a spin perpendicular to that plane,
i.e. along the filament. This effect will produce a quadrupolar, anti-
symmetric distribution of the longitudinal component of the angular
momentum which will be strongest at some four points, not far off-
axis. Beyond a couple of correlation lengths away from those four

points, the effect of the tidal field induced by the saddle point will
subside, as both tensors become more spherical.

Conversely, in planes containing the filament, e.g. containing the
main wall, a similar process will misalign both tensors. This time,
the two anisotropic features differentially pulling the tensors are
the filament on the one hand, and the density gradient towards the
peak on the other. The net effect of the corresponding misalignment
will be to also spin-up haloes perpendicular to that plane, along the
azimuthal direction, see Fig. 3, bottom panels. By symmetry, the
anti-clockwise tidal spin will be generated on the other side of the
saddle point.

Hence, the geometry of angular momentum near filament-saddle
points is the following: it is aligned with the filament in the median
plane (within four anti-symmetric quadrants), and (anti-)aligned
with the azimuthal direction away from that plane. The stronger the
triaxiality the stronger the amplitude. Conversely, if the saddle point
becomes degenerate in one or two directions, the component of the
angular momentum in the corresponding direction will vanish. For
instance, a saddle point in the middle of a very long filament will
only display alignment with that filament axis, with no azimuthal
component. For a typical triaxial configuration, two pairs of four
points define the loci of maximal longitudinal and azimuthal spin.

2.3.3 Geometry of spin flip

Fig. 4 gives a more quantitative account of the geometry of the tidal
field around a given saddle point embedded in a given dominant
wall. We consider here the angular momentum distribution near a
filament-saddle point, S. It is assumed that the three eigenvalues
of the density are such that the filament going through this saddle
point is along the vertical axis and that the other two eigenvalues are
different, reflecting the presence of a dominant wall, in the Sxz plane,

MNRAS 452, 3369–3393 (2015)
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Anisotropic tidal torque theory 3373

Figure 4. Qualitative geometry of the angular momentum distribution near
a elliptical saddle point S (see also Fig. 12). The shape of a given triaxial
isodensity is shown in purple, together with two cross-sections, resp. in the
Sxy mid-plane and in a plane containing the maxima of transverse angular
momentum. The velocity flow in the Sxz plane is shown in cyan. The locus
of the Lagrangian extent of haloes is shown in orange concentric spheres
centred on M. In the Sxy plane, the four points, Pz correspond to the maxima
of the modulus of angular momentum. They point, respectively, along ez

in the first and third quadrants (in red), and along −ez in the second and
fourth quadrant (in blue). Conversely, the four points, Pφ , correspond to the
maxima of the alignment of s along eφ . Only two (above the mid-plane)
are shown. As the orange sphere capture more than one quadrant, the z-
component of L subside, as it encompasses more of the neighbourhood of
Pφ , and its eφ-component increases. In this Lagrangian framework, the spin
flip as a function of mass is a direct consequence of the geometry of the tidal
field imposed by the saddle point.

in which the filament is embedded. The shape of a given triaxial
isodensity is shown in purple, together with two cross-sections,
resp. in the Sxy mid-plane and in a plane containing the maxima
of transverse angular momentum. As we will demonstrate later, the
spin is mostly confined in the neighbourhood of the Sz-axis, up to a
couple of correlation length of the density. It would in fact vanish,
should the saddle become isotropic. In the Sxy plane, we identify
four quadrants corresponding to regions in which the spin is parallel
to the filament. Within theses quadrant, the spin point, respectively,
along ez in the first and third quadrants, and along −ez in the second
and fourth quadrants. By symmetry, the spin has to vanish along Sx
and Sy.

2.3.4 Towards a transition mass?

The twisted geometry of the spin near the saddle point also allows
us to identify the Lagrangian transition mass corresponding to the
alignment of dark matter (DM) haloes’ spin relative to the direction
of their neighbouring filament. Let us first consider the Lagrangian
counterpart of a low-mass halo and assume it lies near the median
plane. it will typically fall into one of the quadrant corresponding to
an orientation of the spin parallel to the filament axis. Now consider
a halo of larger Lagrangian extent. As long as its size is smaller than
the typical size of a quadrant (which will be defined more precisely
below) the alignment increases, until it overextends the quadrant.
As it does, two things happen (i) it will start capturing tides from the

next quadrant, which would anti-align it; as the Lagrangian patch
radius increases more, it reaches a size comparable to the whole tidal
region of influence of the saddle point. It then encompasses both
the clockwise and anti-clockwise azimuthal regions, and add up to
a net momentum of null amplitude. (ii) it will start capturing the
effect of the azimuthal tide, hence inducing a spin flip. Depending
on the ratio of the eigenvalues of the Hessian, the two might be
concurrent or not. In parallel, as the radius increases, the patch
collects the mean potential gradient which defines the Zel’dovich
boost which will drive it away from the neighbourhood of the saddle
point. The above description clearly accounts for the influence of
only one saddle point. As we consider regions further away from
that saddle, we should account for the influence of other critical
points, as discussed in Section 5.

We have up to now considered a patch centred near the mid-plane
close to the saddle point. Indeed, typically, in the peak-background-
split framework, such patches will collapse preferentially where the
density is boosted, that is within the wall containing the filament,
close to the filament. The rarer (more massive) haloes will form
in turn in the denser regions, away from the saddle point, along
the filament, while the more common lighter haloes will form ev-
erywhere and in particular near the saddle point. The former will
have a spin perpendicular to the filament. The latter will have a spin
parallel to the filament. The relative number of light to small haloes
will depend on curvilinear coordinate along the filament because
consumption is important: object above the transition mass have
swallowed their lighter parents. At a given redshift, the left overs
will decide what matters. This effect is the anisotropic version of
the well-known cloud-in-cloud problem.

2.3.5 Lagrangian dynamics of spin flip

In order to understand how a given halo flips, let us split the origi-
nal Lagrangian patch in two concentric shells. The inner shell will
correspond to the Lagrangian extent of the halo as it initially forms,
while the outer shell will correspond to secondary infall. The rea-
soning presented in Section 2.3.2 can be applied independently to
both the inner and outer shells, and we would typically conclude that
the outer shell would be more likely to have its spin perpendicular
to the filament axis. It follows that, as far as this halo is concerned,
it will undergo a spin flip as it moves towards the core of the fila-
ment and away from the saddle. This process will also correspond
to an acquired net helicity for the secondary infall, which will last
as long as the transverse anisotropy of the saddle point correlates
the local tidal field. In effect, this consistent helicity will build up
the spin of the forming galaxy via secondary infall as it drifts, up
to the point where mergers will re-orient the direction of its spin.
Hence, this constructive build-up of disc should only last so long
as the galaxy drifts within the high-helicity region. Note that the
transverse motion will correspond to the halo entering the vortex
rich caustic corresponding to the multiflow region near the filament,
so that this Lagrangian description remains fully consistent with the
Eulerian discussion given in Laigle et al. (2015). We can anticipate
that the longitudinal motion generates azimuthal vortices as well.

The scenario described in this section can be formalized at two
levels. First, within the framework of constrained random fields,
one can compute the expected geometry of the spin configuration
near a given saddle. This will yield a map of the mean alignment
between spin and filament in the vicinity of the saddle point. We
will then marginalize over the expected distribution of such saddles,
and model correspondingly the evolution of the expected mass of
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dark haloes around the filament. This will allow us to recover the
numerically measured mass transition for spin flip. We may also
test the mass-dependent alignment w.r.t. eφ in GRFs and N-body
simulations. For the sake of clarity, we will proceed in two steps:
first, while assuming cylindrical symmetry we will compute the
expected spin distribution within the most likely cross-section of a
filament of infinite extend (Section 3); then we will compute this
expectation around the most likely 3D saddle point (Section 4).

3 SPIN A LONG INFINITE FILAMENT

Let us first start while assuming that the filament is of infinite
extent, so that we can restrict ourselves to cylindrical symmetry
in two dimensions. This is of interest as the angular momentum is
then along the filament axis by symmetry and its derivation in the
context of TTT is much simpler. It captures already in part the mass
transition, in as much as we can define the mean extension of a
given quadrant of momentum with a given polarity. In this context,
it is of interest to study the spin geometry in the median plane, i.e.
in the vicinity of a 2D peak. This 2D spin is along the filament, and
will be denoted sz in what follows.

3.1 Shape of the spin distribution near filaments

Under the assumption that the direction of the spin along the z di-
rection is well represented by the fully anti-symmetric (Levi Civita)
contraction of the tidal tensor and density Hessian given by equation
(3) (e.g. Schäfer & Merkel 2012), it becomes a quadratic function
of the second and fourth derivatives of the potential. As such, it be-
comes possible to compute expectations of it subject to its relative
position to a peak with a given geometry (which would correspond
to the cross-section of the filament in the mid-plane). Note that, as
mentioned in Section 2.1, standard TTT relies, more correctly, on
the inertia tensor in place of the Hessian. Even though they have
inverse curvature of each other, their set of eigen-directions are lo-
cally the same, so we expect the induced spin direction – which is
the focus of this paper, to be the same, so long as the inertia tensor
is well described by its local Taylor expansion.

3.1.1 Constrained joint PDF near peak

Any matrix of second derivatives fij – rescaled so that 〈(�f)2〉 = 1
– can be decomposed into its trace �f, and its detraced components
in the frame of the separation

f + = (f11 − f22)/2 , f × = f12. (4)

Then all the correlations between two such matrices, fij and gij can
be decomposed irreducibly as follows. Let us call ξ��

fg , ξ�+
fg and

ξ××
fg the correlation functions in the frame of the separation (which

is the first coordinate here) between the second derivatives of the
field f and g separated by a distance r:

ξ��
fg (r) = 〈�f �g〉 ,

ξ�+
fg (r) = 〈�fg+〉 ,

ξ××
fg (r) = 〈f ×g×〉 . (5)

All other correlations are trivially expressed in terms of the above
as〈
f ×�g

〉 = 0,
〈
f +g×〉 = 0,〈

f +g+〉 = 1

4
ξ��
fg (r) − ξ××

fg (r) . (6)

Here, we consider two such fields, namely the gravitational potential

 and the density δ. In the following, these two fields and their first
and second derivatives are assumed to be rescaled by their variance
σ 2

0 = 〈
2〉, σ 2
1 = 〈(∇
)2〉, σ 2

2 = 〈(δ = �
)2〉, σ 2
3 = 〈(∇δ)2〉 and

σ 2
4 = 〈(�δ)2〉. The shape parameter of the density field is defined

as

γ = σ 2
3 /(σ2σ4). (7)

The rescaled potential and density will be denoted by φ and x and
the rescaled first and second derivatives by φi, xi and φij, xij.

Let us gather the first and second derivatives of the gravitational
field and the first and second derivatives of the density in a vector
denoted by X spatially located in rX and Y located in rY . The
Gaussian joint probability distribution function (PDF) of X and
Y at the two given locations (rX and rY separated by a distance
r = |rX − rY |) obeys

P(X, Y ) = 1√
det|2π C| exp

⎛⎝−1

2

⎡⎣ X

Y

⎤⎦T

· C−1 ·
⎡⎣ X

Y

⎤⎦⎞⎠ , (8)

where C0 ≡ 〈X · XT〉, Cγ ≡ 〈X · Y T〉 and

C =
⎡⎣ C0 Cγ

CT
γ C0

⎤⎦ .

All these quantities depend on the separation vector r only because
of statistical homogeneity. This PDF is sufficient to compute the
expectation of any quantity involving derivatives of the potential
and the density up to second order. All the coefficients can easily
be computed from the power spectrum of the potential〈

∂
i1
1 ∂

i2
2 φ,∂

j1
1 ∂

j2
2 φ
〉

=
∫ ∞

0

∫ 2π

0
dθ dk Pk(k) exp(ık r cos θ )

ıi1+i2 (−ı)j1+j2 (cos θ )i1+j1 (sin θ )i2+j2
ki1+i2+j1+j2+1

σi1+i2σj1+j2

, (9)

and

σ 2
n =
∫ ∞

0

∫ 2π

0
dθ dk Pk(k)k2n+1 ,

where the power spectrum of the potential Pk(k) can include a filter
function on a given scale. In this work, we use a Gaussian filter
defined in Fourier space by

WG(k, R) = 1

(2π)3/2
exp

(−k2R2

2

)
. (10)

For instance, the one-point covariance matrix for (�φ, φ+, φ×, �x,
x+, x×) at a given point simply reads

C02 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 −γ 0 0

0 1/8 0 0 −γ /8 0

0 0 1/8 0 0 −γ /8

−γ 0 0 1 0 0

0 −γ /8 0 0 1/8 0

0 0 −γ /8 0 0 1/8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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Figure 5. Two-point correlation functions as a function of the separation
r in units of the smoothing length for a power-law 2D power spectrum
with spectral index n = −1/2, i.e. γ = √

3/7. For aesthetic purpose, these
functions have been rescaled by their value in r = 0 as explicitly written in
the legend.

where γ = √
(n + 2)/(n + 4) for a scale-invariant density power

spectrum with spectral index n (i.e. n − 4 for the potential). Note
that the first derivatives of the density and the potential fields are
decorrelated from the second derivatives meaning that

C0 =
⎛⎝C01 0

0 C02

⎞⎠ ,

where C01 is the one-point covariance matrix of the gradients of
the potential and the density fields (φ1, φ2, x1, x2) as a function of
γ ′ = σ 2

2 /σ1/σ3

C01 =

⎛⎜⎜⎜⎜⎜⎝
1/2 0 −γ ′/2 0

0 1/2 0 −γ ′/2

−γ ′/2 0 1/2 0

0 −γ ′/2 0 1/2

⎞⎟⎟⎟⎟⎟⎠ .

The two-point covariance matrix, Cγ can be similarly derived.
In particular, its restriction to the second derivatives of the density
and the potential fields can be written as a function of the nine ξ

functions defined in equation (5) (for fg = φφ, φx, xx) (see Fig. 5
and Appendix C2):⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ��
φφ ξ�+

φφ 0 ξ��
φx ξ�+

φx 0

ξ�+
φφ

ξ��
φφ

4 − ξ××
φφ 0 ξ�+

φx

ξ��
φx

4 − ξ××
φx 0

0 0 ξ××
φφ 0 0 ξ××

φx

ξ��
φx ξ�+

φx 0 ξ��
xx ξ�+

xx 0

ξ�+
φx

ξ��
φx

4 − ξ××
φx 0 ξ�+

xx
ξ��
xx

4 − ξ××
xx 0

0 0 ξ××
φx 0 0 ξ××

xx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Once the joint PDF given by equation (8) is known, it is straight-

forward to compute conditional PDFs (in particular subject to a

critical point constraint C(crit) = | det
(
xij

) |δD(xi)). Given the con-
ditionals, simple algebra then yield the conditional density and spin.
More specifically, relying on Bayes theorem, the conditional can be
expressed in terms of the joint PDF – equation (8) – as

P(X|Y , pk) = P(X, Y , pk)

P(Y , pk)
,

where

P(Y , pk) =
∫

dYP(X, Y )C(pk)

is the marginal distribution describing the likelihood of a given
peak, pk (the transverse cross-section of an infinite filament) with
a given geometry. Once the conditional, P(X|Y , pk) is known, it is
straightforward2 to compute the expectation of any function, f (X)
as

〈f (X)|pk〉 =
∫

dX P(X|pk)f (X) , (11)

which, when f (X) is multinomial in the components of X can be
carried out analytically. In the following, we will consider in turn
functions which are indeed algebraic function of X .

3.1.2 Constrained density maps

From equation (8), given a contrast ν and a geometry for the saddle
(or any critical point) defined by κ = λ1 − λ2, I1 = λ1 + λ2 (where
λ1 > λ2 are the two eigenvalues of the Hessian of the density
field H – both negative for a peak), the mean density contrast,
δext = 〈δ|ext〉, (in units of σ 2) around the corresponding critical
point can be analytically computed

δ(r|ext, κ, I1, ν) = I1

(
ξ��
φx + γ ξ��

φφ

) + ν
(
ξ��
φφ + γ ξ��

φx

)
1 − γ 2

+ 4(r̂T · H · r̂) ξ�+
φx , (12)

where H is the detraced Hessian of the density and r̂ = r/r so that

r̂T · H · r̂ = κ
cos(2θ )

2
, (13)

r being the distance to the critical point and θ the angle from the
eigen-direction corresponding to the first eigenvalue λ1 of the criti-
cal point. When r goes to zero, given the properties of the ξ functions
(see Fig. 5), the density trivially converges to the constraint ν.

3.1.3 Constrained 2D spin maps

In two dimensions, the spin is a scalar given by

sz(r) =
∑
i,j ,k

εij3φikxjk , (14)

where ε = εij3 is built upon the totally anti-symmetric rank 3 Levi-
Civita tensor εijk. Since equation (14) is quadratic in the fields x
and φ, equation (11) can be readily applied to compute analytically
its conditional expectation. The angular momentum generated by
TTT as a function of the polar position (r, θ ) subject to the same
critical point constraint at the origin with contrast ν, and principal

2 see http://tinyurl.com/mmbse3z which describes an implementation in
MATHEMATICA of the conditional probability.
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3376 S. Codis, C. Pichon and D. Pogosyan

Figure 6. Left: mean density (contrast) field near a 2D peak of height ν = 1, λ1 = −1 and λ2 = −2 for a power spectrum with index n = 1/2 computed from
equation (12). Contours are displayed from δ = −1 to 1 by step of 1/4 as labelled. The x- and y-axes are in units of the smoothing length. Right: corresponding
mean spin colour coded from blue (negative) to red (positive) computed from equation (14). The flattening of the filament’s cross-section induces a clear
quadrupolar spin distribution in its vicinity.

curvatures (λ1, λ2) is given by the sum of a quadrupole (∝ sin 2θ )
and an octupole (∝ sin 4θ )

〈sz|ext〉 = sz(r|ext, κ, I1, ν) ,

= −16(r̂T · ε · H · r̂)
(
s(1)
z + 2(r̂T · H · r̂)s(2)

z

)
, (15)

where the octupolar coefficient s(2)
z can be written as

s(2)
z (r) = (ξ��

φx ξ××
xx − ξ××

φx ξ��
xx

)
,

and the quadrupolar coefficient s(1)
z reads

s(1)
z (r) = ν

1 − γ 2

[(
ξ�+
φφ + γ ξ�+

φx

)
ξ××
xx − (ξ�+

φx + γ ξ�+
xx

)
ξ××
φx

]
+ I1

1 − γ 2

[(
ξ�+
φx + γ ξ�+

φφ

)
ξ××
xx − (ξ�+

xx + γ ξ�+
φx

)
ξ××
φx

]
,

while

r̂T · ε · H · r̂ = −κ
sin(2θ )

2
. (16)

Equation (15) is remarkably simple. As expected, the spin, sz, is
identically null if the filament is axially symmetric (κ = 0). It is zero
along the principal axis of the Hessian (where θ = 0 mod π/2 for
which r̂T · ε · r̂ = 0). Near the peak, the anti-symmetric, sin (2θ ),
component dominates, and the spin distribution is quadrupolar. For
scale-invariant density power spectra with index n (n − 4 for the
potential), sz can be computed explicitly. At small separation, sz

behaves like

sz ∝ κ((n + 2)ν +
√

(n + 2)(n + 4)I1)r2 sin(2θ ), (17)

which shows explicitly that the quadrupolar term dominates.
Fig. 6 displays the mean density and spin map for a power-law

power spectrum with index n = 1/2 around a 2D peak of the density
field with geometry ν = 1, λ1 = −1 and λ2 = −2.

At this stage, it is interesting to understand how much angular
momentum is contained into spheres of increasing radius that would
feed the forming object at different stages of its evolution. For

Figure 7. Evolution of the amount of algebraic angular momentum in
sphere of radius RTH centred on r� The density power-spectrum index is
n = −3/2, the height of the peak in (0, 0) is ν = 1 and principal curvatures
λ1 = −1, λ2 = −2. The amplitude of the spin is normalized by its maximum
value around RTH = r�

instance, let us assume there is a small-scale overdensity at (one
of the four) location of maximum angular momentum (denoted r�

hereafter) and let us filter the spin field with a top-hat window
function centred on r� and of radius RTH. The resulting amount of
angular momentum as a function of this top-hat scale is displayed
in Fig. 7. During the first stage of evolution, the central object
will acquire spin constructively until it reaches a Lagrangian size
of radius RTH = r� and feels the two neighbouring quadrants of
opposite spin direction. The spin amplitude then decreases and
becomes even negative before it is fed by the last quadrant of positive
spin. The minimum is reached for radius around 2.4r�. This result
does not change much with the contrast and the geometry of the
peak constraint. Fig. 7 is the Lagrangian counterpart of fig. 4 of
Laigle et al. (2015, or fig. 7 of Pichon & Bernardeau 1999) which
displays the quadrant of vorticity in the vicinity of filaments.
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Anisotropic tidal torque theory 3377

Figure 8. 2D spin dispersion (defined in equation 18) near a 2D peak of
height ν = 1 and curvatures λ1 = −1 and λ2 = −2 for a power spectrum
with index n = 1/2

3.1.4 Cosmic variance on spin

On top of the mean spin, one can also compute the dispersion of the
spin described by

σ (r) =
√〈

s2
z (r)
〉 − 〈sz(r)〉2 . (18)

A map of this spin dispersion is shown on Fig. 8. Comparing Fig. 8
to Fig. 6, we see that spin direction fluctuates along the major axis

of the filament cross-section, and best defined along its minor axis.
As the conditional statistics is Gaussian, the whole spin statistics
(third moments,. . . ) can in principle be similarly computed.

3.1.5 Zel’dovich mapping of the Spin

Fig. 9 displays the image of the initial density field (resp. initial spin
field) translated by a Zel’dovich displacement. The displacement is
proportional to (φ1, φ2) here and its expectation given a central
peak is trivially computed from the conditional PDFs. The result-
ing quadrupolar caustics is qualitatively similar to the quadrupolar
geometry of the vorticity field measured in numerical simulations
(Laigle et al. 2015). Indeed, as discussed in that paper, there is a
dual relationship between such Eulerian vorticity maps and the ge-
ometry of the spin distribution within the neighbouring patch of a
3D saddle point.

3.2 Transition mass for long filaments

Up to know we assumed that the geometry of the critical point was
given. Let us now build the joint statistics of the spin and the mass
near 2D peaks.

3.2.1 Geometry of the most likely cross-section

Let us now study what should be the typical geometry of a peak.
Following Pogosyan et al. (2009), it is straightforward to derive the
PDF for a point to have height ν and geometry κ , I1 as in their
notation J2 = κ2 so that

P(ν, κ, I1)= κ

π
√

1 − γ 2
exp

⎛⎝−1

2

(
ν + γ I1√

1 − γ 2

)2

− 1

2
I 2

1 − κ2

⎞⎠ .

Figure 9. Left: stream lines of the 2D velocity field (defined as the potential gradient) near a 2D peak of height ν = 1 and curvatures λ1 = −1 and λ2 = −2 for
a power spectrum with index n = 1/2. Right: Zel’dovich mapping of the spin distribution. There is a good qualitative agreement between the vorticity section
presented in Laigle et al. (2015) and this spin map.
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Now the PDF for a peak to have height ν and geometry κ , I1

becomes:

P(ν, κ, I1|pk) =
√

3κ|(I1 − κ)(I1 + κ)|
2π
√

1 − γ 2
�(−κ − I1)

× exp

⎛⎝−1

2

(
ν + γ I1√

1 − γ 2

)2

− 1

2
I 2

1 − κ2

⎞⎠ .

(19)

The maximum of this PDF is trivially reached for ν̄ = √
7/3 γ ,

κ̄ = √
1/3 and Ī1 = −√

7/3.

3.2.2 The size and area of constant polarity quadrants

From equation (15), it appears clearly that the extension of the region
of influence of the critical point is limited, and peaks within each
quadrant at some specific (r�, θ�) position. Moreover, for small
enough κ , the quadrupole dominates, and the extremum is along
θ = π/4. It is therefore possible to use r� to define an area in
which the spin is significantly non-zero within each quadrant. Let
us compute r�, as the radius for which sz(θ = π/4) is maximal as a
function of r.3 The area of a typical quadrant, in which the spin has
the same orientation, can then simply be expressed as

A = πr2
� , (20)

where r� = r�(ν, κ) is the position of a maximum of angular mo-
mentum from the peak. Because of the quadrupolar anti-symmetric
geometry of the angular momentum distribution near the saddle
point, it is typically twice as small (in units of the smoothing length)
as one would naively expect.

For power-law density power spectrum with spectral index in the
range n ∈ ] − 2, 2], a good fit to its scaling is given by

r�

Rs
≈ 3

250
(n − 5)2 + 13

10
, (21)

where r� was computed for the mean geometry given by ν̄ =√
7/3 γ , κ̄ = √

1/3 and Ī1 = −√
7/3.

3.2.3 Critical mass scaling

The critical mass is the mass of maximum spin alignment. In simula-
tion, it has been shown by Laigle et al. (2015) to be Mcrit ≈ 1012M

at redshift 0. The authors claimed that the critical mass is related
to the mass contained in a typical quadrant of vorticity. In this
work, we have computed in Lagrangian space the typical area of a
quadrant (see equation 20). This area is a function of the smooth-
ing scale. In order to compute it, we need to define a scale. It is
reasonable that the maximum spin alignment should be reached
for filament that has just collapsed at redshift 0. Indeed, for larger
scale filaments, part of the haloes do not lie inside the filament but
in the nearby wall which will therefore decrease the mean spin-
filament alignment. In previous sections, we focused on ν = 0.9
filaments. The model of the cylindrical collapse then say that those
filaments have just collapsed at redshift 0 for a top-hat initial
smoothing scale σ (RTH) = 1.6 which corresponds to a smoothing
length RTH = 2.2 Mpc h−1. We can therefore compute the corre-
sponding r� which is r� ≈ 1.6Rs ≈ 0.7RTH = 1.5 Mpc h−1 and cor-
responds to the mass Mcrit = 4

3 πr3
� ρc�m ≈ 1.5 1012 M
, in good

3 Setting θ = π/4 effectively neglect the octupolar part of sz.

agreement with the value measured in simulations. Its redshift evo-
lution is also predicted by the formalism through the cylindrical
collapse and could be compared to simulation in future works.

Note that this line of reasoning could be made more rigorous
by adding new ingredients in the formalism: a peak constraint at
the location of the spin with a smoothing length Rh < Rs so that
one can vary Rh (without any assumption on the additivity property
of the spin) and see how the spin changes. This formalism can be
implemented in two dimensions (see Appendices A2 and A3) and
leads to the same order of magnitude for r�.

4 3 D SP I N N E A R A N D A L O N G FI L A M E N T S

Let us now turn to the truly three dimensional theory of tidal torques
in the vicinity of a typical filament-saddle point. Beyond the obvious
increased realism, the main motivation is that the 3D saddle theory
fully captures the mass transition.

In three dimensions, we must consider two competing processes.
If we vary the radius corresponding to the Lagrangian patch centred
on the running point, we have a spin-up (along ez) arising from
the running to wall running to saddle tidal misalignment and a
second spin-up (along eφ) arising from running to filament-running
peak tidal misalignment. To each position in the vicinity of the
central saddle point, we can assign M(r) together with cos μz(r)
and cos μφ(r), the cosines of the angle between the spin of the
patch and the ez and eφ direction, respectively. Eliminating r yields
cos μz(M) and cos μφ(M) and therefore yields an estimate of the
transition mass.

4.1 Spin distribution along and near filaments

The formalism developed in Section 3 can easily be extended to
three dimensions. A critical (saddle) point constraint is now im-
posed. This critical point is defined by its geometry, namely its
height ν and eigenvalues λ1 ≥ λ2 ≥ λ3. Note that such a critical
point is a filament-type saddle point if λ1 ≥ 0 ≥ λ2 ≥ λ3. In what
follows, we decouple the trace from the detraced part of the den-
sity Hessian and therefore define the three curvature parameters
I1 = λ1 + λ2 + λ3, κ1 = λ1 − λ2 and κ2 = λ2 − λ3.

4.1.1 Mean density field around a critical point

The resulting mean density (contrast) field subject to that critical
point constraint becomes (in units of σ 2):

δ(r|crit, I1, κ1, κ2, ν) = I1

(
ξ��
φx + γ ξ��

φφ

)
1 − γ 2

+ ν
(
ξ��
φφ + γ ξ��

φx

)
1 − γ 2

+ 15

2

(
r̂T · H · r̂

)
ξ�+
φx , (22)

where again H is the detraced Hessian of the density and r̂ = r/r
and we define in 3D ξ�+

φx as

ξ�+
φx = 〈�x φ+〉, (23)

with φ+ = φ11 − (φ22 + φ33)/2. The other ξ functions are defined in
the same way as in two dimensions (see equations 5) and displayed
on Fig. 10. Note also that r̂T · H · r̂ is a scalar defined explicitly
as
∑

ij r̂iH ij r̂j . Fig. 11 displays the mean density field around a
typical filament-type saddle point. The elongation of the filament
along the Oz-axis together with the flattening of the filament in the
plane of the wall (Oxz) are clearly visible on this figure.
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Figure 10. Two-point correlation functions as a function of the separation
r in units of the smoothing length for a power-law 3D power spectrum with
spectral index n =−2, i.e. γ = √

3/3. As in two dimensions, the correlations
are rescaled at the origin. See also Fig. C1.

4.1.2 Mean spin field around a critical point

As in two dimensions, the expected spin can also be computed.
In three dimensions, the spin, s, is a vector which components are
given by

si =
∑
j,k,l

εijkxklφlj , (24)

with ε the rank 3 Levi-Civita tensor. It is found to be orthogonal to
the separation and can be written as the sum of two terms

s(r|crit, I1, κ1, κ2, ν) = −15(s(1) + s(2)) · (r̂T · ε · H · r̂) , (25)

where s(1) is a scalar operator that depends on the height ν and trace
of the Hessian I1

s(1) =
(

ν

1 − γ 2

[(
ξ�+
φφ + γ ξ�+

φx

)
ξ××
xx − (ξ�+

φx + γ ξ�+
xx

)
ξ××
φx

]
+ I1

1 − γ 2

[(
ξ�+
φx + γ ξ�+

φφ

)
ξ××
xx − (ξ�+

xx + γ ξ�+
φx

)
ξ××
φx

])
I3,

and s(2) a combination of a matricial and a scalar operator that
depends on the detraced part of the Hessian

s(2) = −5

8

[
2
((

ξ�+
φx − ξ��

φx

)
ξ××
xx − (ξ�+

xx − ξ��
xx )ξ××

φx

)
H

+ ((7ξ��
xx + 5ξ�+

xx

)
ξ××
φx − (7ξ��

φx + 5ξ�+
φx

)
ξ××
xx

)
× (r̂T · H · r̂)I3

]
with I3 the identity matrix, operating on the vector

r̂T · ε · H · r̂ =
∑
ikl

r̂ iεijk Hkl r̂ l . (26)

Note that the dependence with the distance r is encoded in the
two-point correlation functions, ξ , while the geometry of the critical
point is encoded in the terms corresponding to the peak height,
trace and detraced part of the Hessian and the orientation of the
separation is in r̂ . Equation (25) is also remarkably simple: as
expected the symmetry of the model induces zero spin along the
principal directions of the Hessian (where r̂T · ε · H · r̂ = 0) and
a point reflection symmetry (r̂ → −r̂). Note that the correlation
functions, ξ can be evaluated for arbitrary power spectra (such as
power laws, see Appendix C2, or � cold dark matter (�CDM), see
Appendix C3), hence equation (25) is completely general.

Figure 11. Mean density around a filament-saddle point of height ν = 1.25γ , λ1 = 0.31, λ2 = −0.56, λ3 = −1 for a power-law 3D power spectrum with
spectral index n = −2, i.e. γ = √

3/3. The Ox-, Oy- and Oz-axes are in units of the smoothing length and z is the direction of the filament while the wall is in
the plane Oxz. Contours represent the isocontours of the density δ = −0.3, 0, 0.5 from blue to red. A 3D view is displayed on the left-hand panel and a cut in
the plane Oyz is shown on the right-hand panel.
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Figure 12. The velocity and spin flow near a vertical filament (in red)
embedded in a (purple) wall for (x, y, z) ∈ [ − 2Rs, 2Rs]3. The purple
and green flow lines trace the (Lagrangian) 3D velocities (upwards and
downwards, respectively). The red and blue arrows show the spin 3D dis-
tribution, while the three horizontal cross-sections show spin flow lines
in the corresponding plane. Note that the spin is along ez in the mid-
plane and along eφ away from it, and that it rotates in opposite direc-
tion above and below the mid-plane. See also the interactive version at
http://www.iap.fr/users/pichon/AM-near-saddle.html.

For scale-invariant density power spectra with index n (n − 4 for
the potential), s can be computed explicitly. At small separation,
the term proportional to r̂T · H · r̂ goes like r4 and is thus negligible
compare to the rest (that scales like r2). The spin coordinates in the
frame of the Hessian are therefore quadrupolar

s ∝ (f (λi, ν, n)yz, g(λi, ν, n)xz, h(λi, ν, n)xy) . (27)

Fig. 12 illustrates the mean spin geometry around a typical saddle
point. All the symmetry properties (anti-symmetry, octopole,. . . )
described in this section are clearly seen on this figure. In the plane
of the saddle point, spins are aligned with the filament direction.
When moving towards the nodes, the spins become more and more
perpendicular (and more and more along eφ).

4.1.3 Cosmic variance on 3D spin

It is of interest to also study the variance of the spin alignment
σ (r|ext, I1, κ1, κ2, ν) defined as

σ =
√

〈cos2 θ〉 − 〈cos θ〉2 , (28)

where cos θ = s · ez/||s||. It requires the numerical evaluation of
a 12D integral. In contrast, the mean of the spin s (as computed
in Section 4.1.2) or its square s2 can be analytically computed.

We therefore propose to approximate the dispersion of the spin
alignment with the following related estimator

σ̃ =
√〈

s2
z

〉 − 〈sz〉2

〈s · s〉 , (29)

where sz is the component of the spin along the z-axis, i.e. along
the filament direction. For the sake of readability, we do not write
down the result of the integration here but display in Fig. 13 the map
of the alignment dispersion σ̃ around a typical saddle point. This
standard deviation is roughly constant around ≈0.6 and decreases
to ≈0.3 in the close vicinity of the saddle point. Note that the spin
direction is again best defined along its minor axis. This would be
the best place to measure spin alignments in observations.

4.2 Mean saddle-point geometry

Here, we want to compute the mean values of ν, λ1 < λ2 < 0 < λ3

of a typical saddle point of filament type. Let us start from the
so-called Doroshkevich formula for the PDF of these variables:

P(ν, λi) = 135 (5/2π)3/2

4
√

1 − γ 2
exp

[
−1

2
ζ 2 − 3I 2

1 + 15

2
I2

]
× (λ3 − λ1)(λ3 − λ2)(λ2 − λ1) ,

where ζ = (ν + γ I1)/
√

1 − γ 2, I1 = λ1 + λ2 + λ3,
I2 = λ1λ2 + λ2λ3 + λ1λ3 and I3 = λ1λ2λ3. Subject to a saddle-point
constraint, this PDF becomes

P(ν, λi |sad) = 540
√

5πP(ν, λi)

29
√

2 + 12
√

3
I3�(λ3)�(−λ2) , (30)

after imposing the condition of saddle point
| det ∂i∂j δ|δD(∇δ)�(λ3)�(−λ2) for which as the gradient is
decoupled from the density and the Hessian, only the condition on
the sign of the eigenvalues and the determinant contribute. From
this PDF, it is straightforward to compute the expected value of the
density and the eigenvalues at a saddle-point position: 〈ν〉 ≈ 0.76γ ,
〈λ1〉 ≈ −0.87, 〈λ2〉 ≈ −0.40 and 〈λ3〉 ≈ 0.51. However, this saddle
point does not belong to the skeleton of the density field but to its
inter-skeleton (see Pogosyan et al. 2009). We thus want to impose
an additional constraint which is λ2 + λ3 < 0. Let us call those
saddle points ‘skeleton saddles’. The PDF at those points becomes

P(ν, λi |skl) = 26460
√

5πP(ν, λi)I3�(λ3)

1421
√

2 − 735
√

3 + 66
√

42
�(−λ2 − λ3) . (31)

The expected value of the density and the eigenvalues at a skele-
ton saddle position now becomes 〈ν〉 ≈ 1.25γ , 〈λ1〉 ≈ −1.0,
〈λ2〉 ≈ −0.56 and 〈λ3〉 ≈ 0.31.

4.3 Spin flip: from spatial to mass transition

The geometry of the spin distribution near a typical skeleton saddle
point (as defined by equation (31)) allows us to compute the mean
alignment angle between the spin and the filament (see Section 4.3.1
below). In turn, the shape of the density profile in the vicinity of
the same critical point, together with an extension of the Press–
Schechter theory involving a filament-background split, allows us
to estimate the ‘typical’ mass of the DM haloes forming in any
spatial position around the saddle point (Section 4.3.2 below). The
alignment-angle map and the typical-mass map will together yield
a prediction for the transition mass.
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Figure 13. Alignment dispersion σ̃ (defined in equation 29) around a typical filament-type saddle point of height ν = 1.25γ , λ1 = 0.31, λ2 = −0.56, λ3 = −1
for a power-law 3D power spectrum with spectral index n = −2. The left-hand panel displays a cut along the plane, Oxy, of the saddle point and right-hand
panel along the plane, Oxz, of the wall. The uncertainty on spin direction is smallest near the saddle.

Figure 14. measure the height z corresponding to the transition from
aligned to perpendicular to the filaments. The amplitude in both direc-
tion is averaged by plane following equation (32). The transition curvilinear
coordinate is ztr = 1.5Rs.

4.3.1 Spin flip along filaments

Section 4.1 showed that the mean spin flips from alignment in
the plane of the saddle point to orthogonality when going towards
the nodes. This can be quantified by measuring the curvilinear
coordinate along the filament at which the spin flips.

Let us consider the mean modulus of the projection of the spin
along the ez- and eφ-axes within a plane of height z

ˆ̄sz/φ(z) =
∫

dxdy
∣∣s̄z/φ(r)

∣∣ /||s(r)|| . (32)

Fig. 14 displays ˆ̄sz/φ(z) as a function of z along the filament. Let us
define θ̂ the flip angle so that

cos θ̂ (z) = ˆ̄sz(z)√
ˆ̄sz(z)2 + ˆ̄sφ(z)2

= 1√
2

. (33)

In Fig. 14, this flip angle is found to occurs around z = 1.5Rs which
is very close to the r� measured in two dimensions (see Section 3.2).

Alternatively, one can also compute at each position the mean
alignment with the filament direction ez

cos θ (r) = s(r|crit) · ez

||s(r|crit)|| . (34)

The result is shown on the right-hand panel of Fig. 15. Spins tend
to align with the filament (region in red) in the plane of the saddle
point and becomes perpendicular to it when moving towards the
nodes (region in blue). This is a transition in Lagrangian space.
Section 4.3.2 shows how to convert it into a transition in mass.

4.3.2 Halo mass gradient along filament

The local mass distribution of haloes is expected to vary along the
large-scale filament due to changes in the underlying long-wave
density. In the linear regime, the typical overdensity near the end
points (nodes) of the filament, where it joins the protocluster re-
gions, may exceed the typical overdensity near the saddle point
by a factor of 2 (Pogosyan et al. 1998). During epochs before the
whole filamentary structure has collapsed, this leads to a shift in the
hierarchy of the forming haloes towards larger masses near the fil-
ament end points (the clusters) relative to the filament middle point
(the saddle). This can be easily understood using the formalism
of barrier crossing (Peacock & Heavens 1990; Bond et al. 1991;
Paranjape, Lam & Sheth 2012; Musso & Sheth 2012), which asso-
ciates the density of objects of a given mass to the statistics for the
random walk of halo density as the field is smoothed with decreasing
filter sizes. Specifically, these authors predict the first upcrossing
probability for the critical threshold at the filter scale correspond-
ing to the mass of interest. The precise outcome of the formalism
depends on the spectral properties of the field and the form of the
smoothing filter, however it is clear that, in general, decreasing the
barrier threshold increases the probability that such first upcrossing
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3382 S. Codis, C. Pichon and D. Pogosyan

Figure 15. Left: cross-section of Mp(r, z) (in units of 1012 M
) along the most likely filament and in the direction x = y. Right: corresponding cross-section
of 〈cos θ̂ 〉(r, z), the normalized component of the spin aligned with the filament. The black dot represents the position of the saddle point. The mass of haloes
increases towards the nodes, while the spin flips.

will happen at large smoothings, i.e. large mass. A larger fraction
of the Lagrangian space will then belong to large-mass haloes, at
the expense of the low-mass ones.

Following the presentation of Paranjape et al. (2012) of the
Peacock–Heavens (Peacock & Heavens 1990) approximation – that
was found to fit numerical simulations rather well, the number den-
sity of dark haloes in the interval [M, M + dM] is

dn(M)

dM
dM = ρ

M
f (σ 2, δc)d ln σ 2 , (35)

where f(σ 2, δc) is given by the function

f (σ 2, δc) = exp

(
1

�

∫ σ 2

0

ds ′

s ′ ln p(s ′, δc)

)

×
(

−σ 2 dp(σ 2, δc)

dσ 2
− 1

�
p(σ 2, δc) ln p(σ 2, δc)

)
.

(36)

Here, σ 2 is the variance of the density fluctuations smoothed at the
scale corresponding to M and p(σ 2, δc) ≡ 1/2(1 + erf(δc/

√
2σ )) is

the probability of a Gaussian process with variance σ 2 to yield value
below some critical threshold δc. In equation (36), � is the parameter
dependent on the filtering scale and, to less extend the underlying
power spectrum, that specifies how correlated the density values at
the same point when smoothed at different scales are. For Gaussian
filter, the value � ≈ 4 is advocated.

The overall mass distribution of haloes is well described by
the choice δc = 3/5 (3π/2)2/3 = 1.681, motivated by the so-called
spherical collapse model. When haloes form on top of a large-scale
structure background, however, the long-wave overdensity δ(z) adds
to the overdensity in the protohalo peaks. The effect on halo mass
distribution, in this so-called peak-background-split approach, can
be approximated as a shifted threshold δc(z) = 1.681 − δ(z) for
halo formation. In Fig. 16, we show that, as expected, the result of
this long-wavelength mode is a shift of the halo mass distribution
towards larger masses. This shift can be characterized by the de-

Figure 16. Mass distribution for three values of density threshold,
δc = 1.681, 1, 0.681 from left (yellow dashed line) to right (blue solid
line). The displayed function f(σ 2) is defined in equation (36).

pendence on the threshold of M∗(δc), defined as σ ∗(M∗) = δc, or of
the mass Mp(δc) that corresponds to the peak of f(σ 2, δc), i.e. the
variance σ 2

p (z) defined by

σ 2
p (z) ≡ argmax

σ 2
(f (σ 2, δc(z))) . (37)

Fig. 17, right-hand axis, shows these two characteristic variances
as functions of the threshold, δc.

The link to cosmology is established by relating the variance
σ 2 to the mass of the objects. If a background field is absent, the
variance is just the integral of the power spectrum P(k) smoothed
over a sphere of mass M

σ 2 = σ 2(M,Z) ≡ D2(Z)
∫

k2dkP (k)W 2
TH

(
(3 M/4πρ̄)1/3

)
,

where D(Z) is the linear growing mode of perturbations as a function
of redshift Z and WTH is the top-hat filter. However, when large-scale
structures are considered as fixed background, the variance of the
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Figure 17. Characteristic variances (plain) and M∗ (yellow dashed) and
Mp halo masses (blue dashed) as functions of the large-scale density in the
peak-background-split picture.

relevant small-scale density fluctuations that are responsible for
object formation is reduced, approximately as

σ 2 ≈ σ 2(M) − σ 2(MLSS) , (38)

where σ 2(MLSS), given as well as σ 2(M) by equation (38), is the
unconstrained variance at the scales at which we have defined the
background large-scale density. This correction is negligible when
there is distinct scale separation between non-linear forming objects
and the large-scale density, i.e. δ̄(x) � 1.681 but becomes impor-
tant, truncating the mass hierarchy at MLSS, whenever large-scale
structures are themselves non-linear.

On Fig. 17, left-hand axis, the variances are converted into
masses, M� and Mp according to equation (38). We choose here
σ 8 = 0.8, Z = 0, we define the mass in a 8h−1 Mpc comoving
sphere for the best-fitting cosmological mass density and we ap-
proximate the spectrum with a power law of index n = −2, which
allows to solve equation (38) explicitly, giving the M(σ ) relation
as

M(σ,Z) = 2.6 × 1014 M

(

σ 2 + σ 2(MLSS)

σ 2
8 D(Z)2

)− 3
n+3

. (39)

We consider filaments to be defined with R = 5h−1 Mpc Gaus-
sian smoothing, which gives σ 2(MLSS) ≈ 0.66. The evolution of
Mp(δ̄, Z) follows from putting equation (37) into equation (39).

4.3.3 Spin orientation versus mass

From the above described Mp–δ relation, one can attribute a mass
to each position depending on the value of the mean density at
that location. The result is illustrated in Fig. 15 where the left-
and right-hand panels display, respectively, the mass map and the
spin alignment map around a typical saddle point. Eliminating the
spatial position, r , between these two maps yields 〈 cos θ 〉 as a
function of Mp as shown on Fig. 18. The transition mass, Mtr for
spin flip (〈 cos θ 〉 = 0.5) is found to be of the order of 4 × 1012 M
,
assuming a smoothing scale of 5 Mpc h−1, as used in Codis et al.
(2012). This mass is in qualitative agreement with the transition
mass found in that paper, all the more so as the redshift evolution
of this transition mass will also be consistent (scaling as the mass
of non-linearity).

Figure 18. Mean alignment as a function of mass for a smoothing scale for
filaments of 5 Mpc h−1. Error bars represent the error on the mean cosine
in each bin of mass for the region [ − 2Rs, 2Rs] × [ − 2Rs, 2Rs] × [ −
2Rs, 2Rs] around a typical filament-saddle point. The flip transition mass
corresponds to 4 × 1012 M
.

It is quite striking that the geometry of the saddle point alone
allows us to predict this mass. The two main ingredients for success
are the point reflection symmetry of the spin distribution near the
most likely filament-like saddle point on the one hand, and the
peak-background-split mass distribution gradient along the filament
towards the nodes of the cosmic web on the other hand.

5 STATISTIC S

Up to now, we have considered the neighbourhood of a given unique
typical saddle point as a proxy for the behaviour within a GRF. In
view of our finding let us now first analyse the statistics of alignment
for GRF, and then for fields corresponding to their simulated cosmic
evolution down to redshift zero.

5.1 Validation on GRF

Let us consider the following experiment. Let us generate 2D or
3D realizations of GRF smoothed on two successive scales, Lh and
Ls � Lh. In the first maps, let us build a catalogue of positions,
rh and heights, νh corresponding to ‘small-scale’ peaks. From the
second maps, let us identify the loci, rs of the corresponding ‘large-
scale’ peaks (in 2D) and (filament-type) saddles (in 3D), and build
the corresponding fields s(r) (via fft using equation 24). This
field allows us to assign a spin to each ‘halo’ at position rh and a
closest saddle, rs. Given the relative position rh − rs as measured
in the frame defined by the Hessian at rs, we may project the
direction of the spins, ŝ ≡ s/s of all ‘haloes’ in the vicinity along
the corresponding local cylindrical coordinate (eR, eφ, ez). We may
then compute the one-point statistics of μz ≡ ŝ · ez per octant.

5.1.1 2D GRF fields spin flip

In two dimensions, the expectation is that the spin should be aligned
or anti-aligned with ez depending on each quadrant.

Let us first start with a set of 25 2D 20482 maps from a power
spectrum with n = −1/2. The map is first smoothed with Gaussian
filter of width Lh = 4 pixels, and the positions of the peaks are
identified. It is then smoothed again over Ls = 24 pixels, expo-
nentiated (in order to mimic the almost lognormal statistics of the
evolved cosmic density field), and the corresponding Hessian and
tidal fields are computed, together with the momentum map, which
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Figure 19. Top: example of spin map (colour coded by sign) generated
following the prescription of Section 5.1.1. Bottom: the local frame (in
red, long axis and blue) around a couple of ‘saddle’s. The black contours
correspond to the density.

is thresholded above 1/30th of its highest value (see Fig. 19). The
peaks of this second map are identified as ‘saddles’ for contrasts
higher than 2.5. Fig. 20 shows that the average spin of ‘haloes’
in each quadrant is flipping from one quadrant to the next, with a
statistically significant non-zero mean value in each quadrant.

5.1.2 3D GRF fields spin flip

Let us similarly consider a set of 20 three-dimensional 2563 cubes
from a power spectrum with n = −2. The cube is first smoothed
with Gaussian filter of width Lh = 4 pixels, and the positions of the
peaks are identified. It is then smoothed again over Ls = 24 pixels,
exponentiated, and the corresponding Hessian and tidal fields are
computed, together with the spin field, which is thresholded above
1/30th of its highest value. The saddle of this second cube are
identified as for contrasts higher than 1. Only peaks closer than one
smoothing length from the large-scale saddles are kept. The angle
between their spin and the filament axis is computed and stored
depending on the octant they belong to. In this section, the octants
are numbered from 1 to 8 depending on the separation from the peak
to the saddle r = (x, y, z): x, y, z > 0 (#1), x < 0 and y, z > 0 (#2),
x, y < 0 and z > 0 (#3), y < 0 and x, z > 0 (#4), z < 0 and x, y > 0
(#5), x, z < 0 and y > 0 (#6), x, y, z < 0 (#7), and y, z < 0 and x > 0

Figure 20. Alignment of ‘spin’ along ez in two dimensions as a function of
quadrant rank, clockwise. As expected, from one quadrant to the next, the
spin is on average unambiguously flipping sign.

Figure 21. Alignment of the spin along the filamentary direction depending
on the considered octant. As predicted by the theory, the z-component of
the spin is flipping sign from one octant to the other.

(#8). Fig. 21 shows that, as expected, the component of the spin
aligned with the filament axis is flipping sign from one octant to the
other.

5.2 Validation on dark matter simulations at z = 0

Let us now identify the Eulerian implication at redshift zero of
the above sketched Lagrangian theory. For this, we must rely on
N-body simulations. Hence, we now make use of the 43 million
DM haloes detected at redshift zero in the Horizon-4π N-body sim-
ulation (Teyssier et al. 2009) to test some of the outcomes of the
anisotropic tidal torque theory presented in this paper. This simu-
lation contains 40963 DM particles distributed in a 2 h−1Gpc peri-
odic box and is characterized by the following �CDM cosmology:
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�m = 0.24, �� = 0.76, n = 0.958, H0 = 73 km s−1 Mpc−1 and
σ 8 = 0.77 within one standard deviation of WMAP3 results (Spergel
et al. 2003). The initial conditions were evolved non-linearly down
to redshift zero using the adaptive mesh refinement code RAM-
SES (Teyssier 2002), on a 40963 grid. The motion of the particles
was followed with a multigrid Particle-Mesh Poisson solver using
a cloud-in-cell interpolation algorithm to assign these particles to
the grid (the refinement strategy of 40 particles as a threshold for
refinement allowed us to reach a constant physical resolution of
10 kpc, see the above-mentioned two references).

The Friend-of-Friend Algorithm (Huchra & Geller 1982) was
used over 183 overlapping subsets of the simulation with a linking
length of 0.2 times the mean inter-particular distance to define DM
haloes. In the present work, we only consider haloes with more
than 40 particles (the particle mass being 7.7 × 109 M
). The mass
dynamical range of this simulation spans about five decades.

The filament’s direction is then defined via the global skeleton
algorithm introduced by Sousbie, Colombi & Pichon (2009) and
based on Morse theory. It defines the skeleton as the set of critical
lines joining the maxima of the density field through saddle points
following the gradient. In practice, Sousbie et al. (2009) define
the peak and void patches of the density field as the set of points
converging to a specific local maximum/minimum while following
the field lines in the direction/opposite direction of the gradient.
The skeleton is then the set of intersection of the void patches,
i.e. the subset of critical lines connecting the saddle points and
the local maxima of a density field and parallel to the gradient
of the field. In practice, the ∼70 billion particles of the Horizon-
4π were sampled on a 20483 Cartesian grid and the density field
was smoothed using mpsmooth (Prunet et al. 2008) over a scale of
5 h−1 Mpc corresponding to a mass of 1.9 × 1014 M
. This cube
was then divided into 63 overlapping subcubes and the skeleton was
computed for each of these subcubes. It was then reconnected across
the entire simulation volume to produce a catalogue of segments
which locally defines the direction of the filaments.

Fig. 22 demonstrates that the spins of the 43 million dark haloes
of the simulation obey the expected mass-dependent flip predicted
by the theory presented in Section 4. On top of the alignment with
the filament direction found, e.g. in Codis et al. (2012), haloes are
shown to have a spin increasingly perpendicular to eφ at low-mass
(red) and up to the critical mass (� 1012 M
), while high-mass
haloes have a spin parallel to the eφ direction. The transition from
alignment to orthogonality occurs around Mtr � 5 × 1012 M
.

Fig. 23 shows that the spins tend to be more aligned with the
filament axis when getting closer to the saddle point. The alignment
decreases from cos θ = 0.511 at r � 20 Mpc h−1 to cos θ = 0.506
at r < 1 Mpc h−1. This qualitative trend is in full agreement with
the anisotropic tidal torque theory picture presented in Section 4 for
which on average, spins are aligned with the filament axis in the
plane of the saddle point and become misaligned when going away
from this saddle point.

Fig. 24 displays the occupancy of haloes along the filaments. It
appears that the higher the mass, the more concentrated they are
far from the saddles. This is in good agreement with the halo mass
gradient along the filaments described in Section 4.3.2.

Overall, the above GRF experiments as well as the re-analysis
of the Horizon-4π N-body simulation seem consistent with the
prediction of the theory presented in Sections 3 and 4. While the
former demonstrates that interferences from neighbouring saddles
do not wash out the tide correlations, the latter suggests that on
the scales probed by this experiment, this Eulerian measure still
captures features of the underlying Lagrangian theory.

Figure 22. Alignment of ‘spin’ along eφ in the Horizon-4πsimulation. The
normalized histogram of the cosine of the angle between the spins and the
closest filament’s direction is displayed. Deviations from the ξ = 0 uniform
distribution are detected and depends on the dark matter halo mass. Haloes
have a spin aligned with the eφ direction on average at low-mass (red) and
perpendicular to it at larger mass (blue).

Figure 23. Alignment of the spins and the filaments in the Horizon-4π

simulation as a function of the distance to the closest saddle point (from red
– 0 – to blue – 10 Mpc h−1). The alignment decreases with the distance to
the saddle point as predicted by the anisotropic tidal torque theory model.

6 C O N C L U S I O N S A N D P E R S P E C T I V E S

TTT was revisited while focusing on an anisotropic peak-
background-split in the vicinity of a saddle point. Such critical
point captures as a point process the geometry of a typical filament
embedded in a given wall (Pogosyan et al. 1998). The induced mis-
alignment between the tidal tensor and the Hessian of the density
simply explains the surrounding transverse and longitudinal point
reflection-symmetric geometry of the spin distribution near fila-
ments. This geometry of the spin field predicts in particular that
less massive galaxies have their spin parallel to the filament, while
more massive ones have their spin in the azimuthal direction. The
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Figure 24. (log-)fraction of haloes of different mass (from red to blue in
solar mass units) as a function of the distance to the saddle point in the
Horizon-4π simulation. Low-mass haloes (red) lie almost uniformly along
the filaments (with a small concentration – not clearly seen in logarithmic
units – around the saddles due to consumption when going towards the
nodes) while high-mass haloes (blue) are more concentrated far from the
saddles.

corresponding transition mass follows from this geometry together
with its scaling with the mass of non-linearity, in good agreement
with measurements in simulations.

The main findings of this paper are: (i) galaxies form near
filaments embedded in walls, and flow towards the nodes: this
anisotropic environment produces the long wave modes on top of
which galactic haloes pass the turnaround threshold; (ii) a typical
filament is elongated and flattened: as a point process, it is therefore
best characterized by its triaxial saddle points; (iii) the spin geom-
etry is octupolar in the vicinity of the saddle point, displaying a
point reflection symmetry; (iv) the mean spin field is parallel to the
filament axis in the plane of the saddle point and becomes azimuthal
away from it; (v) the constrained tidal torque theory presented in
this paper allows to accurately predict the transition mass of the
spin-filament alignment measured in simulations; (vi) this theory
seems consistent with both GRF experiments and results from N-
body simulations; (vii) a dual theory describes spin alignments in
voids (see Appendix B).

6.1 Discussion

One of the striking features of this anisotropic extension of TTT
is the induced quadrupolar point-symmetric flattened geometry of
the spin distribution near a saddle point, which effectively scales
down by 1 order of magnitude the transition mass away from the
mass of non-linearity, in agreement with the measured scaling. The
qualitative analysis derived from first principles in the vicinity of a
given saddle point seems to hold when considering realizations of
GRF, once proper account of the induced geometry near such points
is taken care of. In effect, we have shown that the geometry of the
saddle point provides a natural ‘metric’ (the local frame as defined
by the Hessian at that saddle point) relative to which we can study
the dynamical evolution of dark haloes along filaments. It should
allow us to study how galactic feeding (via helicoidal cold flow; see

Dubois et al. 2014) should vary with curvilinear coordinate along
the filament. It was indeed found in that paper using hydrodynamical
simulations that such flows were reaching galaxies in the so-called
circum-galactic medium with velocities roughly parallel the polar
axis. Taken at face value, such findings suggest that the flow feeding
galaxies has significant helicity during that phase.

Another striking feature of this Lagrangian framework is that it
captures naturally the arguably non-linear Eulerian process of spin
flip via mergers. Recently, Laigle et al. (2015) showed that angu-
lar momentum generation of haloes could be captured in Eulerian
space via the secondary advection of vorticity which the formation
of the filament generates, whereas we show in this paper that it
may also be described in Lagrangian space via the analysis of the
anisotropic tides generated by the filament to be. No description
is more fundamental than the other but are the two (Eulerian ver-
sus Lagrangian) sides of the same coin. The mapping between the
two descriptions requires a reversible time integrator, such as the
Zel’dovich approximation, which clearly limits its temporal valid-
ity to weakly non-linear scales. Our proxy for the spin, equation
(3), is an approximation which seems to quantitatively capture the
relevant physics. It is remarkable that such an (admittedly approx-
imate) straightforward extension of TTT captures what seems to
be the driving process of spin orientation acquisition and its initial
evolution. It is also sticking that very simple closed form for the
spin orientation distribution in the vicinity of the saddle point are
available for this proxy.

Our theory here has focused on a two-scale process. Given the
characteristics of �CDM hierarchical clustering, one can anticipate
that this process occurs on several nested scales at various epochs –
and arguably on various scales at the same epoch. The scenario we
propose for the origin of this signal is, like the signal itself, relative
to the linear scale involved in defining the filaments and as such,
multiscale. It will hold as long as filaments are well defined in order
to drive the local cosmic flow. In other words, one expects smaller
scale filaments are themselves embedded in larger scale walls. The
induced multiscale anisotropic flow transpires in the scaling of the
transition mass with smoothing, as discussed in Codis et al. (2012).

Of course, we have here completely ignored the effect of feed-
back, which will play some – yet undefined – role in redistributing
the cosmic pristine gas falling on to forming galaxies. Another is-
sue would be to estimate for how long this entanglement between
the large-scale dynamics and the kinematic properties of high red-
shift pervades, given the disruptions induced by feedback. What
will be the effect of AGN feedback (Dubois et al. 2013; Prieto et al.
2015) on tidally biased secondary infall? Ocvirk, Pichon & Teyssier
(2008) have also shown that at lower redshift, the so-called hot mode
of accretion will kick in; how will hot flows wash out/disintegrate
these ribbons? Given that they locally reflect the large-scale geom-
etry, will the gas continue to flow-in along preferred directions (as
does the DM; see e.g. Aubert, Pichon & Colombi 2004), or does the
hot phase erase any anisotropy? Will the above-mentioned smaller
scale non-linear dynamics eventually wash out any such trace?

6.2 Perspectives

One possibly significant shortcoming of the analysis is the proxy
involved in using the Hessian of the density instead of the inertia
tensor (though see Appendix A1). This is critical in order to retain
a point process for the induced spin, but is achieved at the expense
of having an adequate estimate for the amplitude of the spin, which
is unfortunate because from the point of view of morphology, the
dividing line between spirals and ellipticals is likely to be spin
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amplitude. Let us none the less assume that, e.g. match to simula-
tions or ansatz such as those described in Schäfer & Merkel (2012)
will yield access to reasonable fit to spin amplitude and discuss
briefly implications to galaxy formation within its cosmic web.

6.2.1 Epoch of maximal spin advection?

The inspection of hydrodynamical simulations (e.g. Codis et al.
2012, using tracer particles) shows that ribbon-like caustics feed the
central galaxy along its spin axis from both poles. The gas flowing
roughly parallel to the spin axis of the disc along both directions will
typically impact the disc’s circum-galactic medium and shock once
more (as it did when it first reached the wall, and then the filaments,
forming those above-mentioned ribbons), radiating away its vertical
momentum (see Tillson et al. 2015). These ribbons are generated via
the same winding/folding process as the protogalaxy, and represent
the dominant source of secondary filamentary infall which feeds the
newly formed galaxy with gas of well-aligned angular momentum.

Having computed the most likely spin (direction) as a function
of position, it is therefore of interest to measure its covariant polar
flux through a drifting forming galaxy.

From our knowledge of the spin distribution within the neigh-
bourhood of a given saddle, we may then compute the rate of ad-
vected spin within some galactic volume V = S�z; it reads

ṡ =
∫

d2 S · v ⊗ ρs =
∫
V

d3r ∇ · (ρv ⊗ s) ,

≈ S [ρv ⊗ s]+− ≈ S�z
∂

∂z
(ρvzsz) , (40)

where the last equality assumes that the advection is quasi-polar,
and that the spin is mostly aligned with the filament. In equation
(40), v is the gradient of the potential. Let us identify the curvilinear
coordinate, zup, for which this flux is maximal:

zup = argmaxz
∂

∂z
(ρvzsz) =

{
z

∣∣∣∣ ∂2

∂z2
(ρvzsz) = 0

}
. (41)

The coordinate zup(ν, κ1, κ2) characterizes the most active regions
in the cosmic web for galactic spin-up. Focusing on the most likely
saddle, the argument sketched in Section 4.3.2 allows us to assign a
redshift-dependent spin-up mass, Mup(Z), via equations (37) and
(39). There could be an observational signature, e.g. in terms of the
cosmic evolution of the SFR, as maximum spin-up corresponds to
efficient pristine cold and dense gas accretion, which in turn induces
consistent and steady star formation.

6.2.2 Morphological type versus loci on web?

The magnitude of the spin of galaxies could be taken as a proxy for
morphological type. Indeed, Welker et al. (2014, 2015) have shown
in cosmological hydrodynamical simulations that spin direction and
galactic sizes where sensitive to the anisotropic environment. It is
shown in particular that the magnitude of the spin of simulated
galaxies increases steadily and aligns itself preferentially with the
nearest filament when no significant merger occurs, in agreement
with the first phase of the above described spin-up (see also Pichon
et al. 2011). During that phase, the fraction of larger spirals should
increase. In contrast, following Fig. 24, if we account for the fact
that galactic morphology – the fraction of ellipticals, correlates with
dark halo mass, it should then increase with distance to saddle.

In order to tackle such process theoretically, it would therefore
be worthwhile to revisit Quinn & Binney (1992) in the context

of this constrained theory of tidal torques and quantify how the
dynamics of concentric shells are differentially biased by the tides
of a saddle point. This would allow us to describe the whole timeline
of anisotropic secondary infall.

6.2.3 Implication for weak lensing?

Weak lensing attempts to probe the statistics of the cosmic web
between background galaxies – which shape is assumed to be un-
correlated – and the observer, while assuming that observed shape
statistics reflects the deflection of light going through the interven-
ing web. In view of Fig. 12, if we take as a proxy spin alignment for
shape alignment, we can in principle compute the expectation of
ξ (�r) ≡ 〈s(r) · s(r ′)| skl 〉 as a function of �r = r − r ′. Calling
δs = s − 〈s(r)| skl 〉, we have ξ (�r) = 〈s(r)| skl〉 · 〈s(r ′)| skl 〉 +
〈δs(r) · δs(r ′)| skl 〉 + 2〈δs(r) · s(r ′)| skl 〉. Let us just focus here on
the first term, 〈s(r)| skl〉 · 〈s(r ′)| skl 〉. Given equation (25), we can
compute it and find that it will typically be non-zero and vary sig-
nificantly depending on both the magnitude and the orientation of
�r . E.g. if �r is off-axis along the filament, but if the pair is close
to the saddle and |�r| is small it will be positive (spins will align as
they are both within coherent region of the saddle’s tides), while if
|�r| is somewhat larger it will vanish (spins will be perpendicular).
Conversely, if �r is transverse to the filament and |�r| is small, it
will be positive, but if |�r| is of the order of the size of one octant it
will typically vanish again. The formalism presented in Section 3.1
can clearly be extended (while considering the joint three points
statistics) to predict exactly all terms involved in ξ (�r) and quan-
tify within this framework the effect of intrinsic alignments on the
spin–spin two-point correlation. This is will be to topic of future
work (Codis et al., in preparation).
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A P P E N D I X A : A M U LTI S C A L E TH E O RY

The proxy we take for the spin direction

si =
∑
j,k,l

εijkHjlTlk , (A1)

is, as mentioned in the main text, a (quadratic) approximation. First, because equation (1) is only valid in the linear regime (Porciani, Dekel
& Hoffman 2002), but possibly more importantly because we take the Hessian as a proxy for the inertia tensor. In practice, recall that this
approximation seems nevertheless to capture the essence of the processes at work in aligning spins with the large-scale structure given its
ability to explain observed alignments through the comparison with simulations presented in Section 5.2 together with the measured mass
transition. This suggests experimentally that it is indeed reasonable. Notwithstanding, while Hij and Iij locally share the same eigenframe,
their amplitudes are different, leading to a different weighting of field configurations when computing ensemble averages such as in equation
(14). It is therefore important to investigate this possible shortcoming further in this Appendix.

A1 More realistic spin proxies and peak

For this purpose, one can in principle (i) impose an additional peak constraint at the location where the spin is computed in order to impose
that a protohalo will form there, and (ii) use more realistic spin proxies.
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The peak constraint will typically be at a smaller scale than the filament’s constraint, which requires building a two-scale theory and
therefore increases significantly the complexity of the formalism. An additional difficulty with (ii) is that standard local proxies for the inertia
tensor are highly non-linear and therefore require high-dimensional numerical integrations that are fairly difficult to implement in practice.
For instance, considering the proxy that Schäfer & Merkel (2012) use to locally approximates the inertia tensor, we have

Iij = M

5

⎛⎜⎝A2
y + A2

z 0 0

0 A2
z + A2

x 0

0 0 A2
x + A2

y

⎞⎟⎠ , (A2)

(in the frame of the Hessian) where the mass is M = 4/3πAxAyAzρ0a
3
0 and the semi-axes of the ellipsoid, Ai, are function of the eigenvalues

of the Hessian (negative for a peak),

Ai =
√

2νσ2

−λi

. (A3)

The traceless part of Iij that is relevant for torques is then proportional to the traceless part of the inverse Hessian

I ij = 2

5
νσ2MH

−1
ij . (A4)

This introduces singular factors like 1/
√

det H in the expectation for 〈s〉. Such factors make the numerical evaluation of equation (24) more
challenging as discussed in Section 2. We therefore postpone their evaluation in three dimensions to future work. Let us briefly investigate
their implementation in two dimensions. In Appendix A2, we introduce a multiscale description while in Appendix A3 we take into account
the proxy given by equation (A2) and we add an explicit peak condition.

A2 A 2D multiscale analysis

The evaluation of r�, see equation (20), requires to look for the scale that maximizes the spin amplitude. An improvement to the main text’s
approach is to investigate this issue in a two-scale theory where the scale of the central peak is larger than the scale of the halo. In this
section, we propose to describe how to implement this multiscale theory and we show that this more accurate multiscale estimate for r� yields,
following the main text, a very similar value for the critical mass.

More specifically, let us smooth the fields in rY (the location of the spin) on Rh, an additional parameter, characterizing the halo’s size and
the fields in rX on a different scale Rs > Rh in order to impose a large-scale filament (a peak in 2D). If the one-point covariance matrix C0,
does not change for a power-law power spectrum, the two-point covariance matrix Cγ does. In particular, all correlation functions ξ are now
function of r, Rs and Rh. For instance for a power-law density power spectrum, P(k) ∝ kn,

ξ��
φφ (r) =

(
R2

s + R2
h

2RsRh

)− n+2
2
[
F2

1 − 1

8
(n + 2)

r2

R2
s + R2

h

F3
2

]
,

where F j
i = 1F1

(
n/2 + i; j ; −r2/2(R2

s + R2
h)
)
. The mean spin in rY is then given by the expectation of s̃z =∑i,j ,k εij3φikxjk given a peak

on scale Rs in rX as was computed in the main text. Compared to the main text, the only difference here is that we now also take into account
the two-scale process through the two smoothing scales, Rs and Rh. The maximum spin magnitude as a function of the scale Rs/Rh is then
computed and displayed in Fig. A1. It appears that the spin magnitude is non-monotonic, peaking at Rh = 0.8Rs which is very close to the
value of r� ≈ 0.7Rs (when top-hat smoothing are taken for both lengths).

Note that as we are computing here only the component of the spin along the filament, our magnitude plot does not contain the mass
pre-factor, and our proxy for the moment of inertia, I ≈ H , reflects only its orientation, but not its magnitude. We are able to argue, however,

Figure A1. Maximum of spin as a function of the halo’s scale Rh.
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Figure A2. Mean spin computed via numerical integrations when (i) a central peak with geometry given by ν = 1, λ1 = −1, λ2 = −2 is set, (ii) the inertia
tensor is approximated by equation (A2), (iii) the scale of the central peak Rs is different from the scale of the halo Rh (here we take Rh/Rs = 1/10), (iv) there
is a peak constraint at the location where the spin is computed with height ν = 5/2, negative eigenvalues and zero gradient. The density power spectrum is a
power law here with spectral index n = 1/2.

that Fig. A1 displays a maximum spin alignment with the filament’s direction for some critical value of Rh – as it shows first an increase and
then a fall in the z-component of the spin that is due to Hessian-tidal shear alignment.

A3 A 2D multiscale analysis with peak constraint

Adding a peak constraint at the location of the spin and taking into account the proxy given by equation (A2) is more difficult as it requires a
numerical integration to account for the sign constraints on the eigenvalues. Notwithstanding this shortcoming, we will show now that in two
dimensions, the adjunction of a peak constraint preserves both the qualitative picture (same geometry with four quadrants of opposite spin
direction) as well as the typical scale for r�.

Fig. A2 indeed shows the numerical integration of the mean spin when (i) the inertia tensor is approximated by equation (A4) – where
the mass is fixed by the smoothing length Rh –, (ii) the scale of the central peak Rs is different from the scale of the halo Rh (here we take
Rh/Rs = 1/10), (iii) there is a peak constraint at the location where the spin is computed with height ν = 5/2, negative eigenvalues and zero
gradient. In short, the mean spin is now computed as

〈s̃|pk,pk〉 = 〈s̃ det[H] �(−λi)δD(x − ν)δD(xi)|pk〉
〈det[H] �(−λi)δD(x − ν)δD(xi)|pk〉 , (A5)

where s̃i is defined as s̃i =∑j,k,l εijkH
−1
j l Tlk while the expectations 〈·|pk〉 are defined as conditional expectation to a central peak of geometry

ν = 1, λ1 = −1, λ2 = −2. The mean spin map is then obtained by numerical integration. Fig. A2 clearly shows that the four quadrants of
opposite spin direction, as well as the size of these quadrants are preserved. This test strongly suggests that in two dimensions, improvements
beyond the I ≈ H approximation do not change the global picture described in the main text.

Further developments, beyond the scope of this paper, could be to carry out the same analysis in three dimensions, also adding a peak
constraint at the location where the spin is computed in order to impose the existence of a protohalo and use equation (A2) to define its inertia
tensor. While the two-scale analysis is straightforward enough to implement, the adjunction of a peak constraint in three dimensions is much
more tricky and requires in particular the computation of high-dimension numerical integrals (the results will not be analytic anymore) that
are left for future investigations.

A P P E N D I X B: D UA L VO I D TH E O RY

The theory presented in Section 4.1 is algebraic. Effectively no assumption has been made about the signs of the eigenvalues of the saddle
we are considering. It is therefore also perfectly valid in the neighbourhood of a wall-type saddle in order to describe the spin alignments of
dark haloes in that vicinity. At a qualitative level, Fig. 3 applies up to a sign: voids and wall saddles repel. It follows that the spins should
rotate around the wall saddle to void axis and become parallel near the wall with a point symmetric change of polarity. This is indeed what
equation (25) predicts and is shown on Fig. B1.

The statistical significance of these alignments is likely to be reduced as there are much fewer galaxies in voids and near wall saddles.
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Figure B1. Top left-hand panel: mean density in the plane of the wall Oxy and centred on a wall-type filament with geometry ν = 0.5, λ1 = 0.8 along the
x-axis, λ2 = 0.6 along the y-axis and λ3 = −0.5 along the z-axis for a power-law density power spectrum with spectral index n = −2. Contours are displayed
from δ = 0.6 to 1.2 as labelled. The filaments are clearly seen around y = ±2Rs. Top right-hand panel: mean spin colour coded by its projection along the
normal to the wall. The spins are aligned with the normal in the plane of the wall and perpendicular to it when going outside the plane of the wall. Bottom
panels: mean spin vectors at z = 0.5Rs (left) and z = 1Rs (right). Contours represent the orientation of the spin with regards to the normal to the wall from −1
(anti-aligned, red) to +1 (aligned, blue) through 0 (perpendicular).

A P P E N D I X C : T E C H N I C A L C O M P L E M E N T S

C1 Codes for density and spin in 2/3D

The expression for the 2 and 3D spin statistics (mean and variance) for scale-invariant power spectra are available both as a math-
ematica package (http://www.iap.fr/users/pichon/spin/code/ATTT.m), and a mathematica notebook (http://www.iap.fr/users/pichon/spin/
code/ATTT-package.nb). The following functions are provided: δ2D, spin2D, var2D, δ3D, spin3D, which correspond, resp. to the
2D density, spin, its variance, and in 3D the density and the spin for scale-invariant power spectra of index n as a function of position r, θ , (φ)
and the geometry of the peak (resp. saddle) ν, λ1, λ2, (λ3). Compiled versions are also provided.

C2 Correlation functions for power-law spectra

The 2D correlation functions defined in equations (5) and (9) can be analytically obtained for density power-law power spectrum Pk(k) ∝ kn

for which the scale parameter is γ = √
(n + 2)/(n + 4):

ξ��
φφ (r) = F2

1 − 1

16
(n + 2)r2F3

2 ,
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ξ��
φx (r) = γ

(
(n + 4)

16
r2F3

3 − F2
2

)
,

ξ��
xx (r) = F2

3 − 1

16
(n + 6)r2F3

4 ,

ξ�+
φφ (r) = − 1

32
(n + 2)r2F3

2 ,

ξ�+
φx (r) = γ

32
(n + 4)r2F3

3 ,

ξ�+
xx (r) = − 1

32
(n + 6)r2F3

4 ,

ξ××
φφ (r) = 1

8

(
4F2

1 − 3F3
1

)
,

ξ××
φx (r) = −γ

8

(
4F2

2 − 3F3
2

)
ξ××
xx (r) = 1

8

(
4F2

3 − 3F3
3

)
, (C1)

where r is in units of the smoothing length and F j
i = 1F1

(
n/2 + i; j ; −r2/4

)
, with 1F1 the Hypergeometric functions of the first kind. Some

of those correlation functions are plotted in Fig. 5.
The 3D correlation functions can similarly be obtained for power-law power spectrum Pk(k) ∝ kn(some of those correlations are plotted in

Fig. 10) for which the scale parameter is γ = √
(n + 3)/(n + 5) and we define Gj

i =1 F1

(
n + i/2; j/2; −r2/4

)
:

ξ��
φφ (r) = −32(n − 1)G3

1 − ((2 − 4n)r2 + r4 − 32
)G1

−1 + (n − 2)
(
2nr2 − r4 + 32

)G3
−1

2
(
n2 − 1

)
r2

,

ξ��
φx (r) = �

(
n+1

2

) (
32(n + 1)G3

3 + (−2(2n + 3)r2 + r4 − 32
)G1

1 + n
(−2(n + 2)r2 + r4 − 32

)G3
1

)
8r2
√

�
(

n+3
2

)√
�
(

n+7
2

) ,

ξ��
xx (r) = −32(n + 3)G3

5 + (2(2n + 7)r2 − r4 + 32
)G1

3 + (n + 2)
(
2(n + 4)r2 − r4 + 32

)G3
3

2(n + 3)(n + 5)r2
,

ξ�+
φφ (r) =

(
4n
(
r2 + 3

) − (r2 + 8
)
r2 − 40

)G1
−1 + 16(n − 1)G3

1 + (n − 2)
(
2(n − 3)r2 − r4 − 28

)G3
−1

2
(
n2 − 1

)
r2

,

ξ�+
φx (r) = �

(
n+1

2

) (−16(n + 1)G3
3 + (−4n

(
r2 + 3

) + r4 + 16
)G1

1 + n
(−2(n − 1)r2 + r4 + 28

)G3
1

)
8r2
√

�
(

n+3
2

)√
�
(

n+7
2

) ,

ξ�+
xx (r) = 16(n + 3)G3

5 + (4(n + 2)r2 + 12n − r4 + 8
)G1

3 + (n + 2)
(
2(n + 1)r2 − r4 − 28

)G3
3

2(n + 3)(n + 5)r2
,

ξ××
φφ (r) =

(
(n − 2)r2

(
r2 + 10

) − 48
)G3

−1 + (−2(n − 6)r2 + r4 + 48
)G1

−1(
n2 − 1

)
r4

,

ξ××
φx (r) = −�

(
n+1

2

) ((
nr2
(
r2 + 10

) − 48
)G3

1 + (−2(n − 4)r2 + r4 + 48
)G1

1

)
4r4
√

�
(

n+3
2

)√
�
(

n+7
2

) ,

ξ××
xx (r) =

(
(n + 2)r2

(
r2 + 10

) − 48
)G3

3 + (−2(n − 2)r2 + r4 + 48
)G1

3

(n + 3)(n + 5)r4
.

C3 Correlation functions for LCDM spectra

The same ξ correlation functions can also be computed for a �CDM power spectrum using Bardeen et al. (1986) and equation (9). The
corresponding functions are shown on Fig. C1 for a Gaussian smoothing length of Rs = 5Mpc h−1 and a WMAP-7 cosmology. Note that
those correlation functions are quite similar to n = −2 power-law power spectrum (see Fig. 10). Given these correlations, it would be
straightforward to compute the corresponding spin.
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Figure C1. Two-point correlation functions as a function of the separation r in units of the smoothing length Rs = 5 Mpc h−1 for a �CDM power spectrum.
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