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We investigate a large class of infinitesimal, but fully nonlinear in the field, transformations of the
Galileon and search for extended symmetries. The transformations involve powers of the coordinates x and
the field π up to any finite order N. Up to quadratic order the structure of these symmetry transformations is
the unique generalization of both the infinitesimal version of the standard Galileon shift symmetry as well
as a recently discovered infinitesimal extension of this symmetry. The only higher-order extensions of this
symmetry we recover are (“Galileon dual” versions of) symmetries of the standard kinetic term.
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I. INTRODUCTION

Galileon field theories are a class of nonlinear field
theories with derivative self-interactions. As their name
suggests they satisfy an internal shift symmetry π → π þ
Cþ Baxa for any constant C and any constant vector Ba.
They can be defined as the maximal class of theories with
this shift symmetry which still obeys second-order field
equations. Ever since their recent rediscovery [1] they have
attracted much attention and these theories have a lot of
internal structure yet to be fully explored. Covariant [2] and
multifield generalizations [3] have also been considered but
in this work we restrict ourselves to single-field Galileon
theories in flat space-time.
The main reason for the interest in these theories is that,

despite their nonlinear derivative dependence, they still
satisfy second-order field equations, thereby avoiding the
Ostrogradsky ghost, which generically plagues higher-
derivative theories (see also Ref. [4]). They are therefore
expected to arise in the effective field theory (EFT)
description of many physically interesting situations
(see e.g. Ref. [5] for recent reviews). In particular, they
frequently arise in scaling limits of various modified
gravity theories exhibiting Vainshtein screening, e.g. in
the decoupling limit of brane-world models à la Dvali-
Gabadadze-Porrati, [6] or in the decoupling limit of non-
linear massive gravity and its generalizations [7]. For such
theories the nonrenormalization theorem of Ref. [8] then
ensures that Vainshtein screening can be realized in a
controlled fashion within the regime of validity of the EFT,
unlike in theories with arbitrary (non-Galileon) irrelevant
operators. More generally, Galileons are known to arise
in the EFT limit of fluctuating surfaces [9]. All taken in
conjunction, they have a potential interest in many concrete
applications all across physics.
In this work we do a systematic search for the exis-

tence of extended infinitesimal (but fully nonlinear in the
coordinates and field) symmetries of Galileon theories. We

find that, up to quadratic order, the symmetry is uniquely
fixed to be the standard Galileon shift symmetry plus
coordinate/Lorentz transformations together with the quad-
ratic extension recently discovered in Ref. [10]. The only
higher-order extensions of this symmetry we find are
(“Galileon dual” [11] versions of) symmetries of the
standard kinetic term [12].
Conventions: We work in D space-time dimensions and

frequently employ Einstein summation. We use the nota-
tion πa ≡ ∂aπ, πab ≡ ∂a∂bπ for derivatives of the field π.

II. GALILEON FIELD THEORIES

The Galileon field theories are defined via an action
constructed out of the following Lagrangian:

L ¼
XD

n¼1

cn
ðnþ 1Þ ππ

½a1
a1 � � � πan�an : ð1Þ

Here and in what follows we have omitted a possible
inclusion of a tadpole contribution (n ¼ 0), which would
only change the background solution (i.e. c0 ¼ 0 here). The

cn are constant parameters of the theory and the π½a1a1 � � � πan�an
are the completely antisymmetric products of πab ≡ ∂a∂bπ,
normalized with unit weight. More explicitly we have

n ¼ 1∶ πaa;

n ¼ 2∶
1

2
ðπaaπbb − πabπ

b
aÞ;

n ¼ 3∶
1

6
ðπaaπbbπcc − 3πabπ

b
aπ

c
c þ 2πabπ

b
cπ

c
aÞ;

..

.

n ¼ D∶ detðπabÞ: ð2Þ
These are, up to normalization, the unique total derivatives
which can be formed out of πab at each order in π. Due
to their antisymmetric structure, π½a1a1 � � � πan�an ¼ 0 for any

PHYSICAL REVIEW D 92, 064009 (2015)

1550-7998=2015=92(6)=064009(5) 064009-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.064009
http://dx.doi.org/10.1103/PhysRevD.92.064009
http://dx.doi.org/10.1103/PhysRevD.92.064009
http://dx.doi.org/10.1103/PhysRevD.92.064009


n > D. Note that the n ¼ 1 term in Eq. (1) is the standard
kinetic term and, with a mostly plus convention for the
metric, the value c1 ¼ 1 canonically normalizes this term in
the action.
From Eq. (1) the Galileon equations of motion are

E ≡XD

n¼1

cnπ
½a1
a1 � � � πan�an ¼ 0 ð3Þ

and we notice that under an infinitesimal transformation,
π → π þ ϵδπ, at linear order in ϵ (i.e. infinitesimally), the
Lagrangian (1) shifts by

ΔL ¼
XD

n¼1

cnδππ
½a1
a1 � � � πan�an : ð4Þ

III. SYMMETRIES AT QUADRATIC ORDER

Do any Galileon theories exist that are invariant (up to
total derivatives) under extensions of the standard Galileon
shift symmetry π → π þ Cþ Baxa? The most general
transformation for π that is a function of π itself and
coordinates xa (up to second order in xa and π combined
and up to first derivatives acting on π; we will refer to this
as quadratic order) can be written as

δπ ¼ dð0;0Þ þdð1;0Þb
ð1Þ
a xaþdð2Þð0;1Þπþdð0;1Þb

ð2Þ
a πa

þdð1Þð0;2Þπ
2þdð2Þð0;2Þπb

ð3Þ
a πaþdð2Þð1;1Þrabx

aπb

þdð2;0Þsabxaxbþdð1;1Þpabxaπbþdð0;2Þqabπaπb: ð5Þ

Bracketed indices are labels and all scalar, vector
and matrix coefficients dðr;mÞ; ba; sab;… are constant.
sab; pab; qab are symmetric, whereas rab is antisymmetric.
Plugging the ansatz (5) into the variation (4) we compute
the contribution to the equations of motion,

ΔE ¼ ∂ΔL
∂π − ∂a

∂ΔL
∂πa þ ∂a∂b

∂ΔL
∂πab : ð6Þ

Forcing this to vanish provides conditions relating the
parameters cn of the Lagrangian and the parameters dðr;mÞ
of the ansatz (5) and allows us to efficiently find any
symmetries. Doing so (for details see Ref. [13]), the most
general infinitesimal symmetry transformation up to this
order is

δπ ¼ dð0;0Þ þ dð1;0Þbaxa

þ sabðdð2;0Þxaxb þ dð1;1Þxaπb þ dð0;2ÞπaπbÞ
þ dð0;1Þb

ð2Þ
a πa þ dð2Þð1;1Þrabx

aπb; ð7Þ

where sab is symmetric and traceless. All coefficients are
free, except dð2;0Þ; dð1;1Þ; dð0;2Þ, which have to satisfy

dð0;2Þ ¼
c22 − c1c3

c21
dð2;0Þ; dð1;1Þ ¼

c2
c1

dð2;0Þ ð8Þ

and, if any of dð2;0Þ; dð1;1Þ; dð0;2Þ are nonzero, we have to
restrict to Galileon Lagrangians satisfying

c4 ¼
2c2c3
c1

−
c32
c21

: ð9Þ

The first line in Eq. (7) is precisely the standard Galilean
shift symmetry, the second line is the nonlinear extension
recently found in Ref. [10] and the third line is the unique
completion of these other symmetries at quadratic order,
which simply consists of a coordinate shift and a Lorentz
transformation respectively. In Ref. [13] we extend this
argument to higher orders and also consider terms with
higher derivatives acting on π.

IV. HIGHER-ORDER SYMMETRIES

Can this quadratic order symmetry be generalized to
higher orders? Extensions involving partially antisymmet-
ric coefficient tensors are somewhat complicated and
will be discussed in Ref. [13], but here we conjecture that
the general higher-order generalization of the symmetric
(sab-dependent) piece of Eq. (7) is

δπ ¼
XN

ðr;mÞp
dðr;mÞQa1���arb1���bmx

a1 � � � xarπb1 � � � πbm; ð10Þ

i.e. a power series in the components of xa and πa,
where the Q’s are totally symmetric and traceless constant
coefficient tensors. The sum in Eq. (10) runs over all
the ordered partitions ðr;mÞ of integers p ¼ rþm (includ-
ing 0) up to some N and we define the Q’s appropriately
whenever 0 is part of the partition. In general, for each p
there are pþ 1 such partitions. This means that the ansatz
contains at most

P
N
p¼0ðpþ 1Þ ¼ 1

2
NðN þ 3Þ þ 1 arbitrary

parameters dðr;mÞ. In order to avoid confusion we stress that
we label these partitions according to,

ðr;mÞ ¼ ð# of xa; # of πaÞ: ð11Þ
For example, considering N ¼ 2 we would sum over the
values p ¼ 0; 1; 2 with ðr;mÞ taking values in the sets
fð0; 0Þg, fð1; 0Þ; ð0; 1Þg and fð2; 0Þ; ð1; 1Þ; ð0; 2Þg respec-
tively. Also note that the pattern of generalization (10) is
simply to add, at each order in xa and πa combined, all
possible terms with symmetric and traceless constant
coefficient tensors which, at each order, differ at most
by an overall constant. We stress that this ansatz is
motivated by the above explicit calculation of general
symmetry transformations at the lowest orders.
We now wish to evaluate Eq. (6) for the conjectured

higher-order symmetry (10). For this it is convenient to
define the traceless symmetric matrices,
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ðr;mÞQc
d ≡ xa1 � � � xarπb1 � � � πbmQa1…arb1…bm

c
d: ð12Þ

These matrices satisfy the following useful identities
(which hold for any traceless matrix Q):

nQa1bπ
b½a1πa2a2 � ��πan�an ¼−ðnþ1ÞQ½a1

a1 π
a2
a2 �� �πanþ1�

anþ1
; ð13Þ

and,

Qbcπ
bcπ½a1a1 � � � πan�an ¼ nQa1bπ

bcπ½a1c πa2a2 � � � πan�an

− ðnþ 2ÞQ½a1
a1 π

a2
a2 � � � πanþ2�

anþ2
: ð14Þ

These identities can be used to convert all terms appearing
in the evaluation of Eq. (6) into functions of the following
form (now there is no nonderivative π dependence):

I ðn;r;mÞ ≡ nðr;mÞQ½a1
a1 π

a2
a2 � � � πan�an : ð15Þ

Due to the tracelessness of Q and the antisymmetric
structure we have the very important properties that,
independently of the values ðr;mÞ,

I ð1;r;mÞ ¼ 0; I ðn;r;mÞ ¼ 0 ∀ n > D: ð16Þ

In terms of these functions we find that,

ΔE ¼
XD

n¼1

cn
XN

ðr;mÞp
dðr;mÞ½mðm − 1ÞI ðnþ2;r;m−2Þ

þ rðr − 1ÞI ðn;r−2;mÞ − 2rmI ðnþ1;r−1;m−1Þ�: ð17Þ

It is now straightforward, for any given N, to find the
conditions, which need to be satisfied in order to achieve
ΔE ¼ 0. Since all the I ðn;r;mÞ are independent, we simply
collect the coefficients of each one of them and demand that
they all vanish. This implies the recurrence relation

cndðr;mþ2Þðmþ 1Þðmþ 2Þ þ cnþ2dðrþ2;mÞðrþ 1Þðrþ 2Þ
− 2cnþ1dðrþ1;mþ1Þðrþ 1Þðmþ 1Þ ¼ 0: ð18Þ

This can be solved for any ðr;mÞ but its form is not very
illuminating. Before providing an explicit example, some
very general remarks can be made by inspection of Eq. (17)
and observing the properties (16).

(i) Any terms with r ¼ 0 [i.e. a string of πa in Eq. (10)]
leave the cD and cD−1 terms invariant. Similarly, any
terms with r ¼ 1 [i.e. one xa together with a string of
πa in Eq. (10)] leave the cD term invariant.

(ii) Considering the minimum (maximum) value of
2 ≤ n ≤ D, the coefficients of I ðnmin;r−2;mÞ and
I ðnmax;r;m−2Þ in Eq. (17) have to vanish separately.
This implies that the presence of a nonzero dðr;mÞ
with r ≥ 2 (m ≥ 2) requires c1 ≠ 0 (cD ≠ 0 or

cD−1 ≠ 0). Since c1 parametrizes the standard ki-
netic term, this is also necessary to avoid infinitely
strongly coupled solutions.

V. A CUBIC SYMMETRY IN D ¼ 4

In order to elucidate these points we present the
conditions that arise for the p ¼ 2 and p ¼ 3 terms in
four dimensions, i.e. considering N ¼ 3. The ordered
partitions fall into the sets fð2; 0Þ; ð1; 1Þ; ð0; 2Þg and
fð3; 0Þ; ð2; 1Þ; ð1; 2Þ; ð0; 3Þg. Computing ΔE we find the
following set of nontrivial equations:

ðc1dð1;1Þ − c2dð2;0ÞÞI ð2;0;0Þ ¼ 0;

ðc1dð0;2Þ − c2dð1;1Þ þ c3dð2;0ÞÞI ð3;0;0Þ ¼ 0;

ðc2dð0;2Þ − c3dð1;1Þ þ c4dð2;0ÞÞI ð4;0;0Þ ¼ 0;

ð2c1dð1;2Þ − c2dð2;1ÞÞI ð2;0;1Þ ¼ 0;

ð2c1dð2;1Þ − 3c2dð3;0ÞÞI ð2;1;0Þ ¼ 0;

ð3c1dð0;3Þ − 2c2dð1;2Þ þ c3dð2;1ÞÞI ð3;0;1Þ ¼ 0;

ðc1dð1;2Þ − 2c2dð2;1Þ þ 3c3dð3;0ÞÞI ð3;1;0Þ ¼ 0;

ð3c2dð0;3Þ − 2c3dð1;2Þ þ c4dð2;1ÞÞI ð4;0;1Þ ¼ 0;

ðc2dð1;2Þ − 2c3dð2;1Þ þ 3c4dð3;0ÞÞI ð4;1;0Þ ¼ 0: ð19Þ

It is straightforward to see that the coefficients solving these
equations obey the general recurrence relation (18).
A solution to all of the above nine equations (the unique

solution for nonzero parameters) is given by,

c3 ¼
3c22
4c1

; c4 ¼
c32
2c21

; dð1;1Þ ¼
c2dð2;0Þ

c1
;

dð0;2Þ ¼
c22dð2;0Þ
4c21

; dð2;1Þ ¼
3c2dð3;0Þ

2c1
;

dð1;2Þ ¼
3c22dð3;0Þ

4c21
; dð0;3Þ ¼

c32dð3;0Þ
8c31

: ð20Þ

Note that this leaves two Lagrangian parameters, e.g.
c1 and c2, as well as two parameters, e.g. dð2;0Þ and dð3;0Þ,
of the transformation undetermined. Furthermore, only the
ratio c2=c1 appears in the dðr;mÞ.
We define α≡ c2=2c1 and set dð2;0Þ ¼ dð3;0Þ ¼ 1 by

absorbing them into the definition of the corresponding
Q’s. Ignoring any contributions from (partially) antisym-
metric coefficient tensors (like rab), the Galileon theory
specified by the above values for the cn has a symmetry up
to cubic order in fields and coordinates given by,

δπ ¼ Cþ Baxa þQaπ
a þQabxaxb þ 2αQabxaπb

þ α2Qabπ
aπb þQabcxaxbxc þ 3αQabcxaxbπc

þ 3α2Qabcxaπbπc þ α3Qabcπ
aπbπc: ð21Þ
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This result generalizes Eq. (7) and earlier results by going
one order further, but is in some sense trivial. To see this
more clearly we discuss the general version of this
symmetry.

VI. THE GENERAL FORM OF THE SYMMETRY

An attentive reader may have recognised the binomial
coefficients appearing in Eq. (21). This is no accident and,
for arbitrary D, the higher-order generalization of Eq. (21)
can be written

δπ ¼ Cþ Baxa þQaπ
a þ

XN

m¼2

Qa1…am

Ym

k¼1

ðxak þ απakÞ;

ð22Þ

with the cn obeying cn ¼ Knαn and where K;C; B;Q are
constants as well as Qa1…am being symmetric and traceless.
To prove this, define Ya ≡ xa þ απa and note that under
π → π þQa1…am

Q
m
k¼1 Y

ak , for any m ≥ 2, we have

ΔE ¼
XD

n¼1

cn½α2J mðnþ 2Þ − 2αJ mðnþ 1Þ þ J mðnÞ�;

ð23Þ

where we have defined,

J mðnÞ≡ nmðm − 1ÞQb1…bm−2
½a1
a1
πa2a2…πan�an

Ym−2

k¼1

Ybk : ð24Þ

The J mðnÞ vanish for n ¼ 1 and n > D. We then find that
ΔE ¼ 0 provided that (with n ≥ 0 and c0 ¼ 0),

cnα2 − 2αcnþ1 þ cnþ2 ¼ 0 ⇒ cn ∝ nαn: ð25Þ
This is exactly satisfied by the above values for the cn and
the constant of proportionality can be fixed by normalizing
c1. This shows that Eq. (22) is indeed an infinitesimal
symmetry for arbitrary D.
What is the nature of this symmetry? Due to the

existence of Galileon “duality” transformations [11], there
is a one-parameter ambiguity. Galileon theories which
share this symmetry are therefore unique modulo “duality”
transformations. This can be used to fix the value c2 ¼ 0,
which transforms the Lagrangian with parameters con-
strained by Eq. (25) into a free (noninteracting) Lagrangian
with only c1 ≠ 0. Furthermore the symmetry (22) in this

case transforms into a string of xa, since the duality
transformation is essentially a coordinate transformation
xa → xa þ λπa for a free parameter λ [14]. This confirms
that Eq. (22) is indeed a symmetry of the standard kinetic
term [12].

VII. CONCLUSIONS

We have performed a systematic search for extended
infinitesimal symmetries of the Galileon. At quadratic order
we found that the most general such symmetry is given
by Eq. (7), which establishes the result found in Ref. [10]
as the unique quadratic-order extension of the standard
Galileon symmetries modulo coordinate and Lorentz trans-
formations. Based on this we conjectured a general form for
extensions up to any order N in coordinates and field. The
parameters cn of the Lagrangian and the parameters dðr;mÞ
of any such symmetry must obey the recurrence relation
(18). Although special cases may be found by studying
this recurrence relation, the generic solution for nonzero
parameters is uniquely given by Eq. (22). This symmetry
is however rather trivial since the parameters of the
Lagrangian are constrained such that we are dealing with
a “dual” version of the free theory and the symmetry
reduces to just a string of xa, i.e. Eq. (22) is the dual version
of solely coordinate-dependent symmetries of the kinetic
term. Together with the results of Ref. [15], who found that
only one particular Galileon theory has an enhanced soft
limit [the quartic Galileon associated with the symmetry
found in Ref. [10]—essentially our Eq. (7)], this suggests
that no “nontrivial” extension of Eq. (7) to higher orders
exists.
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